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Factorization of the normalization of the Nash blowup
of order n of +A, by the minimal resolution

Enrique Chavez-Martinez

Abstract. We show that the normalization of the Nash blowup of order 7 of the toric
surface singularity #j, can be factorized by the minimal resolution of #4;,. The result
is obtained using the combinatorial description of these objects.

Introduction

The Nash blowup of an algebraic variety is a modification that replaces singular points by
limits of tangent spaces at non-singular points. It was proposed to achieve a resolution of
singularities by iterating this process [16,20]. This question has been treated in [1,5, 12,
13,15,16,18,21,22]. The particular case of toric varieties is treated in [7, 10-12, 14] using
their combinatorial structure.

There is a generalization of Nash blowups, called higher Nash blowups or Nash blow-
ups of order n, that was proposed by Takehiko Yasuda. This modification replaces singular
points by limits of infinitesimal neighborhoods of certain order at non-singular points. In
particular, the higher Nash blowup looks for resolution of singularities in one step [23].
Yasuda proves that this is true for curves in characteristic zero, but conjectures that is false
in general, proposing as a counterexample the toric surface A3.

There are several papers that deal with higher Nash blowups in the special case of
toric varieties. The usual strategy for this special case is to translate the original geometric
problem into a combinatorial one and then try to solve the latter. So far, the combinatorial
description of higher Nash blowups of toric varieties has been obtained using Gréebner
fans or higher-order Jacobian matrices.

The use of Groebner fans for higher Nash blowups of toric varieties was initiated in [6].
Later, this tool was further developed in [22] to show that the Nash blowup of order n of
the toric surface singularity #3 is singular for any n > 0, over the complex numbers. This
problem was later revisited to show that it also holds in prime characteristic [9].

The techniques from [22] can be used to compute the Groebner fan of the normaliz-
ation of higher Nash blowup of #, for some n’s. Those computations suggest that the
essential divisors of the minimal resolution of #, appear in the normalization of the Nash
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blowup of order n of A, for some n’s. The main goal of this paper is to show that this
happens for all . In particular, this implies that the normalization of the Nash blowup of
order n of A, factors through its minimal resolution (see Corollary 1.9).

The approach to study higher Nash blowups of toric varieties using a higher order
Jacobian matrix was initiated in [4]. That paper deals with a conjecture proposed by Yas-
uda concerning the semigroup associated to the higher Nash blowup of formal curves.
There it was proved that the conjecture is true in the toric case but false in general. This
was achieved by studying the properties of the higher order Jacobian matrix of monomial
morphisms. In this paper we follow a similar but more general approach.

The normalization of the higher Nash blowup of A, is a toric variety associated to a
fan that subdivides the cone determining -4, see [4,11]. An explicit description of this fan
could be obtained by effectively computing all minors of the corresponding higher order
Jacobian matrix. This is a difficult task given the complexity of the matrix for large 7.
However, for the problem we are interested in, we do not require an explicit description
of the entire fan.

The rays that subdivide the cone of #, to obtain its minimal resolution can be expli-
citly specified. Thus, in order to show that these rays appear in the fan associated to the
normalization of the higher Nash blowup, we need to be able to control only certain minors
of the matrix. A great deal of this paper is devoted to construct combinatorial tools that
allow us to accomplish that goal.

1. The main result

In this section we state the main result of this work. First, we introduce some notation that
will be constantly used throughout this paper. From now on, n will always denote a fixed
positive natural number.
Notation 1.1. Let y, 8 € N’ and v € N2,
(1) We denote by 7; (8) the projection to the i-th coordinate of S.
(2) y < Bifandonly if m;(y) < m;(B) foralli € {1,...,¢}. Inparticular, y < B if and
only if y < B and ; (y) < m;(B) forsome i € {1,...,t}.
BY . 17t i(B)
(3) (y) T l_[i=l (Z,(y))
@) 1Bl =iy mi(B).
(5) Arn:={B € N'|1<|B| <n}. Inaddition, A, := |[Aru| = ("]) - L.
6) ¥ := ((Z))aeAz,n € N*2n. We order the entries of this vector increasingly using
graded lexicographical order on N*2 .
(7) Let Ay == (1 ,%0)-
(8) Given J C A3y, letmy := Zﬂej App € N2,
Let X C C® be an irreducible algebraic variety of dimension d. For a non-singular

point x € X, the C-vector space (m,/m”+!)¥ has dimension A4 ,, where m, denotes
the maximal ideal of x.
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Definition 1.2 ([16,17,23]). With the previous notation, consider the morphism of Gauss:
G : X \ Sing(X) = Gr(Ag,.C*), x> (m,/m 1Y,

where Sing(X) denotes the singular locus of X and Gr(A4 ., C*sn) is the Grassmanian of
vector subspaces of dimension A4 , in Chsn,

Denote by Nash, (X) the Zariski closure of the graph of G,. Call m,, the restriction
to Nash, (X) of the projection of X x Gr(Ag4 ;. C*sn) to X. The pair (Nash, (X), 77,,) is
called the Nash blowup of X of order n.

This entire paper is devoted to study some aspects of the higher Nash blowup of the 4,
singularity. Let us recall its definition and the notation we will use.

Definition 1.3. Consider the cone 0, = Rx{(0, 1), (n + 1,—n)} C (R?)Y. We denote
by s, the normal toric surface corresponding to o, i.e., A, = V(xz — y"*1),

In [4], the higher Nash blowup is studied through a higher-order Jacobian matrix. It is
worth mentioning that there are other versions of higher order Jacobian matrices [2, 3, 8].
In the context of toric varieties, that matrix gave place to the following definition.

Definition 1.4 ([4, Proposition 2.4]). Let J C A3 be such that |J| = A, ,. We define
the matrix

LCJ = (cﬂ)ﬂeJ’

¢ = Z(_l)ﬁ_y(i)m c N2

=B
We order the rows of this matrix increasingly using graded lexicographical order on
J C As,. In addition, we denote

where

Sap :={J CAszpn||J| = A2 and det LG # 0}.

Proposition 1.5 ([4, Proposition 3.15]). Let I, = (x™/ | J € S4,). Then Nashy (+4,) =
Bly, (An), where By, (#4y) is the blowup of A, centered on I,.

Abusing the notation, let I, = {m; € R? | J € S4,}. The set I, defines an order
function:

ord;, 0, > R, v mér} (v,my).
mjy n

This function induces the following cones:
Omy = {v € 0y | 0rdy, (v) = (v.my)}.

These cones form a fan X (1) := | Om,. This fan is a refinement of o.

myely
Proposition 1.6. With the previous notation, we have

Nashy, (Ar) = Xz (1,).

where Nash, (A,) is the normalization of the Nash blowup of A, of order n and X1,
is the normal variety corresponding to %(1,).
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Proof. By the previous proposition we have that Nash,, (4,,) is a monomial blowup. The
result follows from Proposition 5.1 and Remark 4.6 of [11]. [

Definition 1.7. Let X/, be the subdivision of o, given by the rays generated by (k, 1 — k),
foreach k € {1,...,n}. We denote by +4/, the normal toric surface corresponding to X/,.
It is well known that A/, is the minimal resolution of 4.

Moreover, for each k € {1, ..., n}, consider the function
Jr N2 >7Z, v ((k, 1 —=k),v).

The goal of this paper is to prove the following result about the shape of the fan X (7).

Theorem 1.8. For each k € {1, ..., n}, there exist Ji, J]é € S, such that fr(my,) =
S (mjli) < fi(my) forall J € Sy4,. In particular, the rays generated by (k,1 — k) appear
in the fan % (Iy).

Corollary 1.9. Let A, be the minimal resolution of A, and let Nashy,(#4,) be the
normalization of the higher Nash blowup of A, of order n. Then there exists a proper
birational morphism ¢: Nash, (A,) — A, such that the following diagram commutes:

Nashy (A,) -~ ¢> A
\ An'
Proof. The result follows by Theorem 1.8. ]

2. A particular basis for the vector space C*2-»

As stated in Theorem 1.8, we need to find some subsets J C A3 , such that the determinant
of LG is non-zero. This will be achieved by reducing the matrix L to another matrix
given by vectors formed by certain binomial coefficients. In this section, we prove that
those vectors are linearly independent. We will see that this is equivalent to finding some
basis of the vector space C*27.

The following results are stated for the field C, but can be generalized for any field of
characteristic 0.

Definition 2.1. Consider a sequence 1 = (z, dy, d1, d2, ..., d;), where z € Z /27,
do =0,{d;}_, C N\ {0} and }_;_, d; = n. We denote by € the set of all these possible
sequences.

With this set let us define a subset of vectors of N2,

Definition 2.2. Letn = (z,dy,d1,...,d;) € 2. We construct a set of vectors {v,-,,,};’=1 C

N2 as follows. For each j € {1,...,n}, there exists a unique ¢ € {1, ..., r} such that
SUZldi < j <Yi_,d;. This implies that j = Y '_{ d; + ¢, where 0 < ¢ < d,. Then
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we define
(Zd,- +c,o) ifz = 1and odd,
i odd
i<t
(0, Z d; +c> if z = 1and even,
i even
<t
Vjn =
(0, > di + c) ifz = 0and odd,
i odd
<t
( Z d; +c,0> if z =0and ¢ even.
lielgl’l
In addition, for each j € {1,...,n}, we let

Tim = {vjn. vy + (L1),... 050 + (1 — j)(1, D)}
Furthermore, we set v, 1= (1,1) and Ty := {(1, 1), ..., (n,n)}. We define

n
Iy = U Tjy.
j=0

Finally, recalling Notation 1.1, we define
T, =1{0 € C* |veT,).
Remark 2.3. Notice that this construction depends only on 7. Moreover, geometrically,

this construction is equivalent to taking vectors in an ordered way on the axes of N2,

Example 2.4. Letn =6andn=(1,0,1,1,1,1,2). For j =3 we have thatdy + d; + d» <
3=dy+di +dy+ds. Thent =3,v3, =(2,0)and T3, = {(2,0), (3, 1), (4,2),(5,3)}.
T}, is computed similarly and can be seen in Figure 1.

Now we give some basic properties of Definition 2.2.

Lemma 2.5. Letn € Q and u,v € N2, Then we have the following properties:

(1) If u # v, thenu # v.

@) Tyl = A2

3) Ifvj, =,0)0rvjy =(0,1), thenl < j.

4) mi(v) <nforallveT,andi €{l,2}.

(5) If vjy = (0, p), thenforall g < p, there exists | < j such that v; , = (0,q). If vj 5 =
(p.0), then for all ¢ < p, there exists | < j such that v; , = (q,0).

6) If vy = (0,1), then {viy}_, = {(0, )}, U{(s, 002} If vjy = (I, 0), then
ity = 0.0} 2 UG 0¥,

Proof. (1) Since u # v, my(u) # m1(v) or mo(u) # 72 (v). Suppose the first case; the

other is analogous. By definition, u = ((Z))OteA2 . Notice that (1,0) € A3 . Then

i = ((Z)) = (m@)....) # (m@)....) = ((2)) — 7.
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dy

do

Figure 1. Example of T}, for n = (1,0,1,1,1,1,2)

(2) Notice that for each j € {1,...,n},|Tj,| =n— j + 1 and |To | = n. This implies
Tyl =+ 1Dn+2)/2-1=2L,. By the previous item, we have that |7, | = A5 5.

(3)Letz < r be such that j = Z d + ¢. By definition, we have [ = Zz odd di +c¢
orl = Z,evend + c¢. In any case, [ <]

“) Let veTy. IfveTyy thenv = (p, p), with p <n.Ifv ¢ Ty ,, by Definition 2.2,
we have that v = v; , + p(1,1), with p <n — j. Then

7i(v) = i (vjy) + mi(p(L 1) =mwi(vjiy) + p<j+p=n
(5) Lett <rbesuchthat j = Zt_l d; + c. Consider the case v;,, = (0, p). Suppose
that ¢ is odd. By Definition 2.2, p = Z, oddd +cand z =0. Let ¢ < p. Then g =

Z, Oddd + ¢/, wheret’isodd, t’ <t and ¢’ <d,/ ort’ =t and ¢’ < c¢. In any case, consider
i<t

| = Zt_ld + ¢’. Since ¢’ is odd and z = 0, then we get v; , = (0, Z,oddd +c) =
(0,g). If ¢ is even, we have that p = ) ; even di + ¢ and z = 1. In this case the proof is
identical. If v; , = (p,0), the argument isl ;rtlalogous.

(6) If v; , = (0,!), by the previous point, we have that {(0, t)}lt=l C {v,-,n}ljzl. On Fhe
other hand, we have that there exists {i1,...,7;—;} such thati, < j and v;, , ¢ {(0, NYy_,
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forall p € {1,...,j —1}. Since i, < j for all p, using the previous point, we obtain
that v;, , = (s, 0) for some 5, € N, and also {vi,,,n};;ll = {(s, 0)};;11. This implies that
{vig)tey = 0,0}, U{(s, 00221, u

2.1. Linear independence of T,

By Lemma 2.5 (2), we know that the cardinality of T,, is A2 . In order to prove that it is a
basis of C*2_ we only have to see that it is linearly independent. For that, we need some
preliminary lemmas.

Lemma 2.6. Let 0 < co < ¢y < -+ < ¢; be natural numbers. Then

(g

0<j<l

In particular, the set of vectors {((C;))O<j<l eClHHl|0<i< l} is linearly independent.

Proof. For each j < [, consider the polynomial b;(x) = x(x —1)---(x —j + 1)/j!
and by = 1. Notice that for x € N, we have b;(x) = (}) and degb;(x) = j for all

j €10,...,1}. Thus,
¢i
(-

0<j<I
We show that the columns of this matrix are linearly independent. Let oy, ...,a; € C be
such that Zﬁ':o ajbj(c;) = 0foreachi € {0,...,1}. Consider f(x) = Zj‘:o ojbj(x).
Then {cog, ..., c;} are roots of f(x). Since deg f(x) <[/, we obtain that f(x) = 0. Since
degh;(x) = j, we conclude o; = O for all j. [

As we mentioned before, the goal is to prove that given 1 € €2, the set of vectors T,, is
linearly independent on C*2. Consider

2.1) > agi=0eCh.

Fix this notation for the next results.

Lemma 2.7. Let [,m,n € N be such that 1 <l <nandm <n—1+ 1. Let n € Q.
Suppose that E = {(c1,1),...,(cm, D)} (resp. {(I,c1),...,(I,cm)}) is contained in T, for
some 0 < ¢y < -+ < cp. Moreover, suppose that for eachu € Ty, \ E such that 7y (u) > [
(resp. w1 (1) > 1), we have that az; = 0. Then for all v € E, we obtain that ay = 0.

Proof. Consider the set of vectors D = {(0,7), (1,1),...,(n —1,1)} C Ay, (respectively
{1,0), (I, 1),....(L,n—D)}).Letu € Ty \ E. If ma(u) </ (resp. 1 (u) < 1), then (¥) =0
for all @ € D. If my(u) > I (respectively 1 (1) > I), by hypothesis a; = 0. Consider
7y C A2n 5 C the projection on the «-th coordinate. Therefore, 7, (a;u) = 0 for all
u € Ty \ E and o € D. This implies

Z e (azv) = Z ny(azv) =0 foralla € D.

veE veTy,
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Since @ = (j, /) (respectively, (I, j)) with0 < j <n —[ and v = (¢;, 1) (respectively,
(I, ¢;)), with 1 <i < m, we obtain that 7, (V) = (C]’) Thus,

>ar(4) = X matas) =0,
i=1

veE
forall0 < j <n —1[.ByLemma 2.6, we obtain that a; = 0 forall v € E. [
Lemma 2.8. Letn = (z,dy,dy,....dy) € Qand1 <[ < j <n.
e If vy = (p1,0) and vj, = (p;,0), then
71 (Vi + (= )1 1)) < mi(ury + (n = 1)(1,1)).

The equality holds if and only if there exists 1 <t < r such that

t—1 t
Zd,- <l<j 5261,-.
i=0 i=0

e If vy, = (0, p) and v, = (0, pj), then
(Vi + (n = j)(1, 1)) < ma(vry + (n = 1)(1,1)).

The equality holds if and only if there exists 1 <t < r such that

t—1 t
Zd,- <l<j SZd,-.
i=0 i=0

Proof. Suppose that z = 1. By Definition 2.2 and the fact [ < j, p; = Y ioda di + ¢;
i<t

and p;j =Y i oda di + ¢y, for some odd numbers t < ¢’ < r, where ¢; < d; and ¢y < dp.
i<t
Moreover, by definition, = Z;;}) di +c;and j = Zfz_ol d; + ¢¢. Then
11 (Wi + = HOD) = py+ (=) =n= Y di=n=) d;

i even i even
i<t i<t
=pr+n—1)=m (v, +@—-D(,1)).
Notice that the equality holds if and only if " = ¢. For the other three cases (z = 1,

vl,n = (07 pl)’ vj,?] = (0’ p]); zZ = O? vl,n = (p170)7 vj,?] = (p]’o); zZ= 07 Ul,n = (07 pl)7
vjy = (0, pj)) the proof is analogous. m

Now we are ready to prove the first important result of the section.
Proposition 2.9. Let n € Q2. Then 7_",, is linearly independent.

Proof. Letn = (z,dy,ds,...,d,) and suppose that z = 1. Define the numbers

dy,r=Y di. d,=)_d.

i<r i<r
i odd i even

Notice that, by Definition 2.1, we have thatn = dy , + d_ ;.
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Claim 1. Forallv € Ty such that wo(v) > n —dy , or m1(v) > n — d_ , we obtain that
a; = 0in (2.1).

Assume Claim 1 for the moment. Foreach 0 <s < d ,,definetheset E; = {v € T;, |
m1(v) = s and mp(v) < d— ,}. Notice that

|Es|<d_,+1=n—dy,+1<n—s+1.

Using Claim 1 and taking s = d , we obtain the conditions of Lemma 2.7. Therefore,
ay =0forallv € E4, .. Now we can repeat the same argument for s = d+ , — 1. Apply-
ing this process in a decreasing way for each s € {0, ..., d; +}, we obtain that a; = 0 for all
ve Uj:o’ E;. Then for v € T;, we have three possibilities: v € Uflo’ Es, 11 (v) > d+ 1,
or m3(v) > d_ ;. In any case, we obtain that a; = 0 by the previous argument or Claim 1.
This implies that T,, is linearly independent.

Proof of Claim 1. Foreach 1 <[ < r, define

dyg =) di. d_;=)_d.

i<l i<l

i odd i even
We prove Claim 1 by induction on /. By definition, we have that d4 ; = d; and
d_,1 = 0. Therefore, we only have to prove that if 7, (v) > n — dj, then a; = 0. ]

Claim 2. Forall v € Ty, such that w,(v) > n — dy, we have that 71 (v) > w2 (v).

Proof of Claim 2. We proceed to prove Claim 2 by contrapositive. Let v € T, be such
that 5 (v) > 71 (v). This implies that v = (0, m2(v) — 71 (v)) + 1 (v)(1, 1) = v;, +
1(v)(1, 1) for some j < n, where 71 (v) < n — j, by Definition 2.2. By Lemma 2.5 (5),
there exists i < j such that v; , = (0, 1). Moreover, by Definition 2.2, i = d; + 1. By
Lemma 2.8, we obtain

2 (v) = m2 (v + 1 (v)(1, 1) < m2(vjy + (n — j)(1, 1))
< (Vg 41,y + (n —dy —1)(1,1))
=n—d,

concluding the proof of Claim 2. [ ]

Foreach s € {n —d; + 1,...,n}, we define the set E(s) = {v € Ty, | m2(v) = s}.
By Lemma 2.5 (4) and Claim 2, we have that for each s € {n —dy + 1,...,n}, we have
|E(s)| <n—s+ 1. Now we are in the conditions of Lemma 2.7. Applying the lemma for
each s in a descendant way, we obtain the result for [ = 1.

Now suppose that Claim 1 is true for /, i.e., for all v € T}, such that m»(v) > n —dy ;
or m1(v) > n —d_; for some [ > 1, we have that a; = 0 and we prove for / + 1. We
have two cases: [/ odd or [ even. We prove the case / odd, the other case is analogous.
Since [ is odd, we obtain that dy ; = dy j+; and d_; + dj4+; = d_ ;4+1. Then, by the
induction hypothesis, we only need to check that for all v € T}, such that n —d_ ;4 <
m(v) <n—d_;and 1y (v) <n—dy ;, wehave a; = 0. For this, we are going to apply
Lemma 2.8 in an iterative way. By definition, Ut g = (d+,1,0).
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Claim 3. Forallv € Ty such that w1 (v) > n —d_ 141 + 1, we have that w,(v) > m1(v) —
dy—1.

Proof of Claim 3. We proceed to prove Claim 3 by contrapositive. Let v € T;, be such that
w2 (v) < m(v) —dy,; — 1. This implies that v = (71 (v) — m2(v), 0) + w2 (v)(1,1) =
Vjy + m2(v)(1, 1), where mp(v) < n — j, by Definition 2.2. Since 1 (v) — m2(v) >
dy,; + 1, by Lemma 2.5 (5), there exists i < j such that v; , = (d+ ; + 1,0). Moreover,
by Definition 2.2, i = Z;ilo dp + 1. By Lemma 2.8, we obtain

m1(v) = w1 (v + w2 W)L, 1) = T (v, + (0= )1, 1)

I+1
SCSHPRE R o) Y
p=0
I+1
=dy +1+n=) dy—l<n—d_ ;4 +1,
p=0
concluding the proof of Claim 3. ]

Foreachs e {n —d_ ;41 + 1,...,n —d_}, we define the set E(s) = {v € Ty |
m1(v) = s and 2 (v) < n —dy ;}. Notice that, by Claim 3, we have that for each s €
fn—d_j1+1....n—d_}, |[EGS)|<(n—dy))—(s—dy;—1) =n—s+1
By the induction hypothesis, we are in the conditions of Lemma 2.7 for s = n —d_ ;.
Applying the lemma for each s in a descendant way, we conclude the proof of Claim 1.

In the case z = 0, Claim 1 becomes: for each v € T such that m,(v) > n —d_ , or
m1(v) > n —d4+ », we have a; = 0. The proof of this case is analogous. ]

2.2. Moving T; , along a diagonal preserves linear independence

Proposition 2.9 shows that T,, is a basis of C*2» for all 5 € Q. Our following goal is to
show that we can move the set 7} ; along a diagonal without losing the linear independ-
ence for all j € {1,...,n}. First we need the following combinatorial identities.

Lemma 2.10 ([19, Chapter 1]). Given n,m, p € N, we have the following identities:
M GG = GG
@ 2,0 00) = G = G4

3) 35 Gt )5 = (0

@ X, GG =G
Lemma 2.11. For all m € N, we have that (m,m) € spanC{(L_l), . (nn)).
Proof. Recalling Notation 1.1, for each j € {1,...,n}, consider the vector

J .
o=y (1)@

i=1
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Notice that for all j € {I,...,n}, we have v; € spanc{(l,1),..., (n,n)}. We claim that
(m,m) =37, (7)v;. Recall that (i,i) := (((’&’)))%A“. Therefore, we have to prove
the identity: ’

()-S5 (O

j=1li=1

foralll < p <mand0 < g < p. By Lemma 2.10 (1), we obtain the identities:

e (G
-2y (OEDG)
(o) () (R

-3y ()

L e T

j=li=1

With this, the claim is reduced to prove that

()= Eme (DG

j=1li=1

Now we have the following identities, where the second identity comes from the reindex-
ing i — [ — i, and the fourth identity by Lemma 2.10 (2):

R s L
:i(—l)f('f )(Z(—l)"(f:;])(piq))

(5 E (D)
B0

2072000
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Finally, we have the following identities, where the first identity comes from replacing j

with j + ¢ (we can make this change since for values of / less than g, (';’:;1) =0, on

the other hand, if j + ¢ > n > p, then (pzj) = 0). The second identity comes from

Lemma 2.10 (3):
“(m—q 9\ _~(m—q q _(m
.Z(j—q)(p—j)_z( J )((p—q)—j) (p—q)’
proving the claim. u

J=1 Jj=1

Lemma 2.12. Foralla,r € N and ! < n, we have that
n—I+1

Z(—l)’(i) Z(—l)"‘++-’( j )(a+r+j,r+i+j)=0.
i=0 j=0

Proof. The proof is by induction on r. First, consider r = 0. We need to show that for all
(P =9.9) € Az,

Lo & n—l+ 1\ (a+ j\(i+]
(i) e (I ) =

J p—9q q

Notice that

2.2) Xl:(_l)i (’) "_fl(_l)n_mﬂ- (n . 1)(a +j ) (i + j)
i=0 i j=0 j

J P—dq q
I n-l+1 . . .
33 G (A G 6)
;;( ) J P—q q i
n—Il+1 . 1 . .
S e (e ()
;( ) J P—q ;( ) q i

Now we have the following identity, where the first identity comes from the reindexing
i — | —i and the second comes from Lemma 2.10 (2):

I . . 1 . . .
NEE l L+ J—i / Jj
S -1 ( )() = 1) Y1) ( =)
i=0 q ! i=0 q ! q
Replacing this identity in the sum (2.2) and using Lemma 2.10 (1), we obtain
n—Il+1 . .
(n— 1
oy () (1)
= J p—q)\q—1
1 .
znil(_l)nﬂﬂ.(n—l+1)(n—q+1)(a+j)
= q—1 J—a+1J\p—q
n—Il+1

_ et n—l+1) B j( n—q-+1 )(a+j)
£ ( q-1 ,-;)( g m=1+0D)—j)\p—q)
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Replacing j by n — [ + 1 — j on the sum (2.3) and using Lemma 2.10 (2), we obtain that
—I+1 ;
nZ(—l)j( n—q+1 )(a+j)
- n—1+1-j)\p—g
1+1
nZ( [yt a+m—-1+1)—j\(n—qg+1 _ a+qg—1
j p—n—1)

= P—q

Since p < n, the claim is true for r = 0.
Now suppose that the statement is true for r — 1, i.e.,

§:GJY({)n§fk—nw4+rv(”—{+1)(a+%r—1y+j)(v-4)+i+j)::Q
Y=o pP—q q

i=0 J

and we have to show that

! (1! (n=l+1\(a+r+j\(r+i+]
> )()}2( ) e q

J

forall (p —q,q) € Ao .
Using basic properties of binomial coefficients, we have

(a+r+j)(r+i+j)
P—q q
_ (a+(r—1)+j)((r—1)+i+j)+(a+(r—1)+j)((r—1)+i+j)
P—q q P—q q—1

a+(r—1)+j ((r—1)+i+j (a+(r—1)+j) (r—1)+i+j)

+( p—q—l) q )+ p—q—1 ( q-1 '
A= RSAYCETESAYERTEY
e (i) Y e ( )50

1)(a+(r—1)+]) (r—l)—i—l—i-]

SO

1)(a+(r—1)+])

p—q—1
l~|—1)

a+(r—1)+] (r—1)+1+]

n—I+1 a+(r_1)+]

p—q—1

(r—1)+l+J

()
(")
(0—D+w+])
(")



E. Chavez-Martinez 1214

Notice that each element of {(p — ¢,9),(p —¢,.q—1),(p—q—1,9),(p—q— 1,9 — 1)}
belongs to A, , or has a negative entry. In any case, by the induction hypothesis, each of
the four sums are zero, obtaining the result. [

Corollary 2.13. Foralla,r € N andl < n, we have that

n—I+1

! (1 (n—1+1

Z(—l)’(.) > (—1)”‘”1*’( . )(r+i+j,a+r+j)=6.

i=0 i J

Proof. We need to prove that
1
(1

D—l)’(.)
i=0 !

forall (p —q.q) € A» . Notice that, by the definition of A, ,, if (p — ¢.q) € A3 5, then
(g, p — q) € Az, With this and the previous lemma, we obtain the result. ]

n—Il+1

3 (_1)n_,+1+_,~(n—l.+l)(r+i+j)(a+r+j) _o.
j=0

J P—q q

Definition 2.14. Letn € Q, {v; »}7_, and {T; ;}7_, C N? as in Definition 2.2. We define
the set .
Tipg+rli={v+@r)|veTy}

foralli € {1,...,n}and r € N.

Now we are ready to show the other important result of this section. As we mentioned
before, the goal is to show that we can move the sets 7} ; along a diagonal without losing
the linear independence. We are going to prove this with some additional properties.

Proposition 2.15. Letne Q,1 €{l,...,n}and (ry,...,r;) € N!. Then we have
I 1
spanc{f) € Chan { veTy,U U(T’F" +r;l )} = spanc{ﬁ € Chan | v E U Ti,n}-
i=1 i=0
In particular, v; , + (r,r) € spanc{v € Chn v e Uf:o Tin}, forallr € N.

Proof. Consider the notation ¢(T) = spang{i € C*2» | v € T}, where T C C2.
Let n € Q. The proof is by induction on /. Consider / = 1. There are two cases,
vi,y = (1,0) or vy, = (0, 1). Suppose that vy ; = (1, 0). Consider the sums

Jor =) (=" (j) (L+r+jr+J),

J=0

fir = Z(—l)"”(j) (L+r+j14+r+j).
Jj=0

Applying Lemma 2.12 fora = 1 and [ = 1, we obtain that

(2.4) fir— for =0 forallr e N.
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By Lemma 2.11, we have that

{7+ T+ + )} — Cs(Top),

forall r, j € N. In particular, f1,, € ¢(To,,). Moreover, since v, = (1,0), for r = 0, we
have that fo 0 — (1 + n,n) € ¢(T1,,). Then

(1+n.n) = fio— foo+ (1 +n.n)ec(Ty).

Notice that the coefficient of (1, 0) is not zero. By elementary results of linear algebra,
we have that

§(Ton U Tig) = s({To.y U T \ (L0} UL(T+1,m)}) = 5(To,y U (Tyy + 11)).

Applying the same argument for r = 1 in (2.4), we obtain that

¢(Toy U (Try + 11)) = ¢ ({To,y U (Try + THINAQ, DY UL{2 + 1, T+ n)})
= §(T0,n ) (Tl,n + ZT))

Repeating the argument r; times for each r and putting together all the identities, we
obtain that

s(Ton UT1,y) = s(To,y U (Th,y + "IT))~

This completes the proof for [ = 1 and vy, = (1,0). For vy, = (0, 1), the proof is
analogous using Corollary 2.13.
Now suppose that the statement is true for / — 1 and let (r1,...,r;) € N’. We claim

that
-1 I
s(UTin U T+ 1)) =5 (U Tia)-
i=0 i=0

Assume this claim for the moment. By the induction hypothesis, we have that

-1 -1
§<T0,n U U(Ti,n + r,-l)) = S'( U T,-,,,).
i=1 i=0
This implies that
! I
5 (Toa U JTin + 1)) = (U Tin).
i=1 i=0

Now we proceed to prove the claim. There are two cases, v; , = (a,0) or v; , = (0,a),
where 0 < a <[ by Lemma 2.5 (3). Suppose that v; , = (a,0). For each i € {0,...,[}
and r € N, consider the sum

n—Il+1

_ (n—1+1 — .
fir= Y (=1 ’+1+J(" j )(a+r+],l+r+j).

Jj=0
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Applying Lemma 2.12 for / and a, we have that

1 i l ~
O (l)f 0.

By Lemma 2.5 (6), we have that
I-1

{(@=1,0),....(1,0), (0, 1),.... (0,1 —a)} = {viy)},_}.

Notice thatif i =a,then (a +r + j)(1,1) e spanc{v C Chr|ve To,5} by Lemma?2.11.
If1 <i <a,then

@—i,00+G+r+ji+r+j)=@+r+ji+r+7j),
andifa <i <1, then
Oi—a)+@—i,a—i)+(+r+ji+r+j)=@+r+ji+r+j).
By the induction hypothesis, we obtain that

-1
— ; —I+1
{@rr+iitr+ )i, cs(UT).
i=0

forall i € {1,...,/}, r € N. In particular, f;, € g(Uf;}) T;y) forall i e {1,...,[}.
Moreover, since v; , = (a,0), forr =0, wehave that foo—(a+n—-[+1,n—-1+1)€
5(T1,5). Then

(a@+n—-I+1n-101+1)
1

1
Z_(Z(—l)i(i)ﬁ,o) +@+n—1+1n—1+1) €§<U7’i,n).
i=0

i=0

Applying the same argument as in the case [ = 1, we obtain

I -1

s(UTin) =s(UTinu @,y +11))
i=0 i=0
-1

= §(U Ti,n U (Tl,n +2T)>

i=0

-1

= (U T U (T + 1)),

i=0
Now suppose that v; , = (0, a). In this case we have that

-1

{(0.a—1).....(0.1).(1,1).(1,0).....(l —a.0)} = {vin};_,-

obtaining

. . S
{G+r+ja+r+ j)};-l=0+ € (T ).

The proof is analogous using Corollary 2.13. ]
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3. Proof of Theorem 1.8

In this section we give the proof of the main theorem. We first associate to each n € Q
a unique J, € Sy, with certain properties. Secondly, we construct a distinguished ele-
ment J;, for each k € {1,...,n} and prove that there exists another element J, € Sy,
with the same value with respect to an order function. Finally, we prove that J;, is min-
imal in S4, with respect to the previous function.

Definition 3.1. Let n € Q, {v; »}"_, and {T; ,}"_, C N? as in Definition 2.2. Consider
iy =n-mp(v; ) foralli € {1,...,n}. We define the set

n
T;; =Toy U U(Ti,n +rigl),

i=1
where T; , + ri,ni comes from Definition 2.14.

Example 3.2. Let n = 6 and n = (1,0, 1, 1, 1, 1, 2). By Definition 2.2, we have that
vi,; = (1,0), v2,y = (0,1), v3;, = (2,0), v4,, = (0,2), vs; = (3,0) and v, = (4,0).
By definition, we obtain that 71, = 0,72 5, = 6,735, =0,74y = 12,75, =0and r¢ 5 = 0.
Thus,

T = ToyUTiyU(Tay +61)UTs, U(Tsy+121)UTs, U Te,,
where
Toy 46 =1{(6,7),(7.8),(8,9), (9, 10), (10, 11)},
Tay + 12 = {(12,14), (13,15), (14, 16)}.

Remark 3.3. Recall Notation 1.1. Let 8, B’ € A3, be such that 8 # p’. Then 4,8 #
A, B’ This is a consequence of || < n and |B’| < n and the fact that the smallest relation
among (1,0), (1, 1) and (n,n + 1)is (n + 1)(1,1) = 1(1,0) + 1(n,n + 1).

Proposition 3.4. For each n € 2, there exists a unique J, C A3, such that
An - Jy:={Ap-BeN>|B ey} =T,.
Moreover, J; € S4,,.

Proof. We need to show that for each v € T, there exists a unique element § € A3, such
that A, 8 = v. The uniqueness comes from Remark 3.3.

Now, let v € T;. Then v € Ty orv € Ji—; Ty + ry.i 1. For the first case we have
that v = (¢, ¢) with ¢ < n. In this case we take § = (0, ¢, 0). For the second case we have

V= vi,ﬂ + (S,S) + ri,ﬂ(ls 1) = vi,r] + (S,S) + nﬂz(vi,n)(ls 1),
where s < n — i. By Definition 2.2, v; , = (¢,0) or v; , = (0,¢), where ¢ < i. Then
v=(+s,5) or v=(ng+s,(n+1)q+s).

For these, we take 8 = (¢, s,0) and 8 = (0, s, q), respectively. Using the previous inequal-
ities, we obtain that B € As3 ;.
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—
T4,'n + T4 1

§l|

Top+ 1o

Figure 2. Example of T,;, withn = (1,0,1,1,1,1,2).

Now we have to see that J; € Sy, . Since >, = |T| = |T;| = |J;|, we only have to
see that dethJn # 0. Let {1, B2..... Ba,,} = Jy be such that By < B <--- < By, .
where < denotes the lexicographic order. Notice that if 8’ < § (see Notation 1.1), then
B’ < B. By the definition of Lc77 , we need to check that

det( 3 (—1)31'—?'(’?/")@) £ 0.

y<Bi l<i<Aan

For this, we will show below that we can transform the previous matrix into (A8;)1<i<A,.,

using elementary row operations. This implies the result since we have that A, J, = T,;
and {v € Z*» | v € T,} is linearly independent by Propositions 2.9 and 2.15.
. . A
Fix the A’Z’n_row' Consider ﬂkz»n > yls)"Z,n o> yrlz A2 where {)/l',)tz,n }ii’rl’ =

{y € Asn |y < Ba,, ) We can write this row as the sum

Bis.,

Anﬂ/\z,n + (_1)\5)\2’,, Y120, | (
yl,lz,n

) An Vl,)kz,,,

Bizn

yrlzyn aAZ,n

|8 n " Vr > n‘
4+ .4 (—1) A2, A2 2, ( )An yrlz,n A2
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Since A,,,B,lz’n € T,;, we have that /312’” have the shape (g, s,0) or (0, s, g), with
s +¢q <nand 4, B,,, equals one of (g + s5,5) or (nq + s, (n + 1)q + s). Since y1 2,,, <
Bi.,,» We obtain that y; ;,  have the shape (¢’,s",0) or (0,s',¢’), with s’ < s or g’ < gq.
Thus, Any1,3,, have the shape (¢' 4 5',s") or (ng’ + 5', (n 4 1)q" + 5’). In any case, we
have that Apy1,2,, € Ty

By the first part of the proposition, we have that y, 3, ,, = B;, for some i < A, ,. Then

we subtract (—1)/Pr2n 77142, (y[j Yo )-times the row i to the row A2, in the matrix Lg,.
A2

n

Notice that if y < B;, we have y < B, . Thus, we obtain that

An,B/lz,,, + CZAI’I VZ,}Q’,, + e + Cr;tz n An Vr,lz n’AZ’"

is the new A5 ,-row, for some constants {c,....cr,, } C Z. Applying the same argument
for each y; 3, , in a increasing way, we turn the A5 ,-th row into 4,8;, .

Applying this process to the other rows of L in an ascending way, we obtain the

matrix (ABi)1<i<i,,- [ ]

3.1. A distinguished element of Sy4,

Definition 3.5. Letn € N\ {0}, 1 <k <n, dy o = 0and consider f;: N2 — Z from Defin-

ition 1.7. If fr((1,0)) < fx((n,n 4+ 1)), we take zx = 1. If fr((n,n + 1)) < fx((1,0)),
we take z; = 0.
Now, we define di; for [ > 0 in an iterative way. Let

-1
di) = min{n — de,j,ll —S[},
Jj=0
where

max{m eN [ m- f((1,0) < fk(( Ii dij + 1)(n,n n 1))} if 2, = 1 and [ odd,

J even

max{m eN|m- fi((n,n+1) < fk(( li dj + 1)(1,0))} if z = 1and [ even,

J odd
= I-1
rnax{m eN | m- fir((n,n+1)) < fk(( Z di,j + 1)(1,0))} if z = 0 and/ odd,
J even
-1
max{m eN | m- fr((1,0)) < fk(( Z di,j + l)(n,n + l))} if zz = 0 and/ even,
Jj odd
and
0 ifl =1,

si= 1 Y ldi; ifloddandl > 1,
Zl_l di,j ifl even.

Jj even
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If Zj.:l dk,; < n, we define di ;. Otherwise, we finish the process and we define
Mk = Ck-dio, - dir)-

Example 3.6. Let n = 6 and k = 3. We have that d3 o = 0. On the other hand, we have
f3((1,0)) =3 <4 = f3((6.7)).
Then z3 = 1. For [ = 1, we have that
nn=max{meN|m-3=m- f3((1,0)) < f3((6,7) =4} =1,

and 5; = 0. Then
d3,1 = min{6, 1 —0} =1.

Now we compute d3 . By definition,
p=max{meN|m-4=m- f3((6.7) < f5(2(1,0)) = 6} = 1,
and s, = 0. This implies that
dzp =min{6—-1=5,1-0} = 1.

In an analogous way we obtain that d3 3 = 1 and d3 4 = 1. Now we compute d3 5. We
have that

ts=max{m € N |m-3=m- f3((1,0)) < f5(3(6,7)) = 12} = 4,
and s3 = d3,1 + d33 = 2. Then
dys=min{6—1—1—1—1=24-2=2}=2.
Since n — 213-:0 dk,; = 0, we completed the process. Thus, n3 = (1,0,1,1,1,1,2).

Lemma 3.7. Let 1 < k < n and ny be as in Definition 3.5. Then we have the following
propetrties:
(1) dig >O0foralll €{1,...,r}. Inparticular, n; € Q.
(2) For each i € {1,...,n}, we let | € {1,...,r} be the unique element such that
Zé—:lo drj <i < Zé:l dy, ;. Then we have the following inequalities:

1
Fe@im) +7im, = (D diej +1)@n+ 1) if 2 = 1and 1 od,

J even

1
JeWin) +rig < fr Z di,; + 1)(1,0)) if zt = land | even,
J odd

J even

((
Fieine) + rime = fe(( Xl: dij +1)(1,0)) if zx = O.and | odd,
((

1
Fiewine) + rimg = fie((X dis +1)0rm + 1)) if zx = 0 and [ even.
j odd
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(3) Leti’,i € N\ {0} be such that Zé;lo dej <i<i' < §=0 dy,j, for some | €
{1,...,r}. Then
JeWim) + rie = feWirge) + rirgy.-

(4) Foralll <i <i’ <n, we have that

fk(vi,nk + ri,r]k(lv 1)) =< fk(vi’,nk + ri’,nk(l’ 1))

3) If I >2and fi(viy, + 119, (1,1) = fr(Vi—1,y, + 7i-1,9,(1, 1)), then we have
fk(vl,nk + rl,nk(l’ 1)) = fk(vl—Z,nk + r1—2,7]k(17 1)) + 2.

Proof. (1) By construction n — Zj_:l dy,j > 0. Then, by Definition 3.5, we only have to
check that #; — s5; > 0. Notice that, by definition, #; > 0 and s; = 0. This implies that the
statement is true for / = 1. Now suppose that / > 1. We have four cases: zy = 1 and /
odd; zx = 1 and/ even; zx = 0 and [ odd; z;x = 1 and / even. Consider z; = 1 and / odd.
By the definition of 7;_1,

Sty + D0nn + 1) > fi( lfj dij +1)(1,0)).

Jj odd

Since [ is odd, j_oid d,; = Zj_o(l,d dk, ;. It follows that

fk((l_zzdk,j + 1)(1,0)) = fk((lidk,j + 1)(1,0)) — fi((s1 + 1)(1,0)).

J odd Jj odd

On the other hand, notice that if d ;1 = n — Zj;zo di.j, thenn = Zj'_:lo dk,;, and
so there is no dj ;, which is a contradiction. This implies that dy ;_; = t;—1 — s5;—;. Thus,

Je((t1—1 + D(n,n + 1)) = fr((dri—1 + s1-1 + D(n,n + 1)).

dk,j, we have that dk,l—l + 851 = Zl_l dk’j.

Since / — 1 is even and s;_; = Zl_z 7 even

J even
Then

A li dij +1)01n+ 1) > fil(st + D(1,0)).

J even
By the definition of #;, we obtain that #; > s; 4+ 1, and so #; — s5; > 0. The other three cases
are analogous.

(2) Leti €{l,...,n}and [ € {1,...,r}. We have four cases: zxy = 1 and [/ odd;
zx = l and/ even; zx = 0 and/ odd; zx = 1 and / even. Suppose that z;z = 1 and / odd.
In this case, by definition, v; , = (Zj‘;}m di,j + ¢)(1,0) with ¢ < dy, riy, = 0 and
S; = Zj_mlid di,j. Then

-1 -1

de,_j +c =< Z drj+dig=s1+dig <1
Jj odd Jj odd
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By the definition of #;, we have that

JeWign) + rigg, = fk(( IZ_E di,j + C>(1,0)) < fk(( lii dy.j + 1)(n,n + 1)).
j odd

J even

Since [ is odd, we have that Zﬁ_evlen di,; = Zﬁ even @k, j- This implies the inequality that
we need.
Now suppose that zr = 1 and [ even. In this case, by the deﬁnition of ng, we have

that v; ,, = (Z] even Ak, +¢)(0,1), withe <dg;,rip = ”(Zj even @k,j +¢) and s; =
Zl- ! dg,j. Using the above and the linearity of fi, we obtain

j even
fk(vi,nk) + ri,nk = fk(vi,nk) + fk(ri,nk(l’ 1)) = fk(vi,nk + ri,nk(lv 1))

= fk<( lii\ d,j +c)(n,n + 1)).

J even

Since
-1 -1

Yodijtc= Y dijtdieg <.
J even J even

by the definition of #;, we obtain the inequality

Sie@ind) + rim = fe(( S diy + c)on+1) = fi( S+ 1)1,0).

J even Jj odd

Since [ is even, we have that 0} 7 odd Ak,j = Zj odd 4k, j» obtaining the result.

The other two cases are analogous.

(3) The hypothesis implies that i = Zj_:lo di,j +ciandi’ = Zj;lo d,j + cir, where
0 < ¢; <cir < dg;. We have four cases: zx = 1 and / odd; zx = 1 and [ even; zx = 0
and / odd zx = 1 and / even. Consider zk =1 and / even. By Definition 2.2, v; ,, =

(0, Z] even dk,j + ¢i) and v, = (0, Z/ even dk,j + cir). Then

- I-1
Fiewing) + rime = (1 =) Z dij+ci) +n( Y dij + i)

J even J even
-1

= (n—k+l)( > dk,,-)+(n—k+1)c,-

j even
< —k+1)( Ii i) + (1 =k + ey
J even
=(1 —k)( Ii d,; —l—Ci/) +n( lil: di,j —i—ci/)
J even J even

= fe@irng) + riry-

The other three cases are analogous.
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(4) We fix in this proof the auxiliary notation §; = Z§=0 dy,j,forall] € N.

Letl <i<i’<n.Letl <l <I'<rbesuchthati =8 _; +¢; andi’ = 8,_1 + ci,
where 0 < ¢; < dj; and 0 < ¢; < d . By hypothesis, we have that | < [’.If | =/, the
result follows from (3). Suppose that [ < [’, this implies that [’ = [ 4+ ¢ with ¢ > 0.

We have four cases (zx = 1 and [ odd; zx = 1 and/ even; z; = O and/ odd; zx =0
and / even). Consider the case z; = 0 and / even. By Definition 2.2, we have that v; ;, =

(Zl_l dk,j + ci,0). By (2), we have that

J even

1

Fe@ind) + rime = Se((X dis + 1) 0 + 1),

j odd

On the other hand, by Definition 2.2, we obtain that vs, 1,5, = (0, Zﬁ odd dk,j + 1). Then

I I
Ses+1,m) + 7541, = fk((O, > dij+ 1) +n- < > dij+ 1)(1, 1))

J odd J odd

= fk(( i di,j + 1)(”,” + 1)) > i) + Fig-

j odd
Now, if ¢ > 1, by (2) and knowing that / + 1 is odd, we obtain that

1+1

Fe@snd) + rairme = fi((X doy +1)(1,0).

J even

Using Definition 2.2, we have the vector vg,,  +1,p, = (Zl-+1 dk,; + 1,0). Then

j even

Fe@s i) + raein = fi(( HZI dyj +1)(1,0))

J even

= feWsy +1,m) = SeWsy +1,m) + 750 +1,m-

Repeating this argument ¢ times, we obtain

fk(vi,nk) + ri,nk < fk(v81+1,7’]k) + r51+1,r]k

= fk(v51+1+1,ﬂk) LR IR

= fk(081/71+1,nk) + ré‘l’—l"'l"]k
E fk (vi,,f]k) + ri/,nk )

where the last inequality comes from (3). The other cases are analogous.

(5) Notice thatif k =n, f,(t(n,n+ 1)) =t forallt € {1,...,n}and f,((1,0)) = n.
Then, by Definition 3.5, n, = (0,0, n), ie., vj,, = (0, ) forall j € {1,...,n}. In
particular, f,(vip, + i, (1, 1) < fu(Ujg, + 75, (1, 1)) if 1 <i < j < n. Then we



E. Chavez-Martinez 1224

cannot have the conditions of the lemma. Analogously, if k = 1, n; = (1,0, n), and
S1ig, +rig (1,1) < fi(vjg, +rjp (1,1)), forall 1 <i < j < n. This implies that if
there exists / € {1,...,n} suchthat fi (v, + 719, (1,1) = fr(Vi—1,y, +7i—1,5 (1, 1)),
then we have that k € {2,...,n — 1}.

Now, we suppose that there exists / € {1,...,n} such that fx (v, + 11, (1,1)) =
Jei—i g, + 1121, (1L, 1). If vy 5, = (0,5) and v;—y 5, = (0,5 — 1), then

Seig + 11y, (1L1D) =s(n—k +1)
S (=D —k+1)
= fk(vl—l,nk + rl—l,nk(L 1))

In an analogous way, we obtain a contradiction if v; ;, = (¢,0) and v;_y,, = (£ —1,0).
This implies that v; ,, = (¢,0) and v;_;,;, = (0,5) or vy 5, = (0,5) and v;_y 5, = (Z,0).
Consider the first case, the other case is analogous. By definition,

(3.1 Je@rg + 115, (1.1) = fi(.0)) = fi((0.5) + (ns.ns)),

By Lemma 2.5 (5), we deduce that v;_5 5, = (0,s — 1) orv;_5 5, = (¢t — 1,0). Suppose
that v;_5 , = (0,5 — 1). Then we have

Sy + 11, (1, 1) = f(0,5) + (ns,ns))

= fi(s(n,n+ 1))
sn—k+1)
=G—-1)mn—-k+1)+n—-k+1
= fi(6G—Dm,n+1)+n—-k+1
> Jei—a.p + r1—2.9, (1, 1)) + 2,

where the first equality comes from equation (3.1) and the last inequality comes from
k<n-—1.
Now suppose that v;_, , = (£ — 1, 0). In an analogous way, we obtain that

Se@igy + 110, (1L1D) = fi((2,0)) =k —1) + k
> fk(vl—Z,nk + rl—2,7’]k(]’ 1)) + 27

where the first equality comes from equation (3.1) and the last inequality comes from
k > 2. Obtaining the result. [

The previous lemma will be constantly used in the rest of the section.

Proposition 3.8. Letk € {1,...,n}. Let ni € Q be from Definition 3.5. Then vy, 5, = (0,k)
or vy, = m—k+1,0).

Proof. Suppose the statement is not true. By definition, we have that Z]r.=0 dg,j = n.
Using Lemma 2.5 and since vy, is not (n —k + 1,0) or (0, k), we have that there
exists m < n such that vy, ,, = (n —k +1,0) or vy, = (0,k). Let [ < r be such that

m = Z;'_:lodk,j +cand0 < ¢ < dy,.
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We have four cases: zz = 1 and/ odd; zx = 1 and [ even; zz = 0 and/ odd; zx = 0
and / even. Consider z = 1 and / odd. In this case, by Definition 2.2, we have that v, 5, =

(X' iad,j +¢.0) = (n —k + 1,0). Hence, Y. iy di,; + ¢ = n—k + 1. Then

-1 -1
n—k+1=m-— de,j <n-— de,j.

J even J even

This implies that 341 dj j + 1 <k.Thus,

Jj even

-1
fk<( 3 di; + 1)(n,n n 1)) < fulk(on + 1)) = k(n —k + 1)
e = fi(n =k +1,0) = fe(mune) + Py

This is a contradiction to Lemma 3.7 (2).
Now, suppose that z; = 1 and / even. For this case, by Definition 2.2, we have that

Um,y, = (0,k) and k = Z dk, + ¢. Then

j even

-1 -1 -1
k= dij+c=m=> dij<n—Y di;.

J even Jj odd J odd

This implies that Zj_o}id dr,j + 1 <n—k + 1. Thus,

-1
fk(< 3 diy + 1)(1,0)) < fillln—k +1)(1,0)) = k(n —k + 1)

J odd
= felk(n,n + 1)) = fi((0.k) + k -n(1,1))
= JieWm,ne) + rmny -
This is a contradiction to Lemma 3.7 (2). The other two cases are analogous. ]

Recall that for J € S4,,, we denote mj = Zﬂe] ApB.

Corollary 3.9. Letn € N\ {0} and 1 < k < n. Then there exists n € Q such that n # n
and fi(my,) = fi(my, ).

Proof. By the previous proposition, we have that v, ,, = (n —k +1,0) or vy, = (0,k).
By Lemma 2.5 (6), we obtain that {v; , }'=1 = {(r,0)}'Z U {(0, s)}k ! Moreover, we
can deduce that v,_1 5, is (n —k,0) or (0,k —1).

Suppose that v,_1,,, = (n — k, 0). This implies that there exists p < n — 1 such that
Vp.n, = (0,k — 1). Moreover, by Definition 2.2, we obtain that p = Z;;}) dy,; and for
all p<g<n-—1,wehavethat vy, =m—-—k—-—(n—-1-¢q),00=(@q+1—k,0).In
particular, s, = p + 1 — k (recall Definition 3.5). Since

(n—k+1)- fi((1.0)) = fal(n —k +1.0)) = fi(k(n,n + 1))
=k fi((n.n+1)),
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we obtain that t, = n — k + 1. By Definition 3.5, we have that

r—1
di =min{n—2dk,j,tr—s,} =min{n —pn—k+1—(p+1-k)}=n—p.
j=0

This implies that Z]r-:() dk,j = n, i.e., the process completes, and di , > 2. In the case
of Vp_1,5, = (0,k — 1), we obtain that dy , > 2 using the same argument. In any case,
we obtain that di , > 2. Then we define n = (z'. dy.dy.....d].d] ), where z’ = z,
d} = di,foralli <r,d/ =dy,—1andd/ , = 1.

By construction, Z;’ZO di=nandd;>0forall j €{l,...,n}. Thisimplies thatn € Q.

J
On the other hand, we have that v; ,, = v;, forall j <n—1landv,, =@ —k+1,0)

if vy, = (0,k) or v, = (0,k) if vy, = (n —k + 1,0). Since fi(k(n,n + 1)) =
Ji((n —k + 1,0)), we obtain that fi(m,) = fk(m_]nk). L]

Example 3.10. Letn =6 and k =3. By Example 3.6, we obtain that n3=(1,0,1,1,1, 1
Using the construction of the proof of Corollary 3.9, we obtain that n=(1,0,1,1,1, 1,1,

3.2. J,, € S4, is minimal with respect to f

Lemma 3.11. Let B/, B € N3 be such that B’ < B (recall Notation 1.1). Then
fk(An/g/) =< fk(Anﬁ)-

Proof. This is a straightforward computation. ]

Lemma 3.12. Let B € N3 be such that A, # v + q(1,1) forall v € T,;k and q € N.
Then fi(AnB) > fi(v) forallv € Ty .

Proof. We claimthat f;(v) <k(n—k + 1)< fr(A,p) forallv € T,;k and forall B € N3
with the conditions of the lemma.

We are going to prove the first inequality of the claim. By Definition 3.1, we have
that T, = Toy, U U;'l:l Tjme + iy 1, where o, = (g, )Y g=1> T = 1 - 72(Vj )
and Ty + 1 = i + (p 4+ rin) (A, 1)},0- By Proposition 3.8, we have that
Vnp, = (0,k) or v, 5 = (n —k + 1,0). Moreover, by Lemma 2.5(5), we have that
i = = {072 U{0.9)}H 2]

By definition, T, ,, + rn,,,k_f = {Un,n + n,n (1, 1)}. Since we know the two pos-
sibilities for v, ;, , we obtain that fi (vn,y, + 74, (1,1)) = k(n — k 4 1). On the other
hand, if v € Ty, , we have that v = (g, q) with ¢ < n. Since 1 < k < n, we obtain that
Jk(v) =q <n <k(n—k +1). With this, we only have to check the desired inequality for
Ve U;’;}{vj,nk + (p =+ 1y (1, 1)} 5. This implies that v = vj., 4 (p 4 7)) (1, 1),
forl<j<n—-land0O<p<n-—j.

Suppose that v;,, = (¢,0) for some # < j, and recall that # < n — k. Then

Je@) = fr i + (p+ 7100 D) = fi((2,0)) + p + 7
<kt+n—j<kt+n—t=k-Dt+n
<(k—-1)n—k)+n=nk—k*>+k.
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Now suppose that vj, = (0, s) for some s < j and recall that s < k. Then

Je) = feWjne + (P + 1) (1, D) = fi((0,5) + p(1,1) +n-5(1,1))
= fiGh,n+ 1)+ p<sm—k+1)+mn—-j)
<smh—-k+1)+m—-s)<sm—k+1)+mn—k)+ k—y)
<sm—k+1)+k—s5)n—k)+ (k—s) =nk —k* + k.

This proves the first inequality of the claim. For the second inequality, notice that

Apf = m1(B)(1.0) + m2(B)(1. 1) + m3(B)(n. n + 1)
= (11(B). 0) + (m2(B). m2(B)) + (n73(B). n73(B) + 73(B))
= (m1(B). w3(B)) + (m2(B) + nms(B))(1.1)
= (m1(B) — 73(B).0) + (m2(B) + (n + D73 (B))(1. 1).

Similarly, we obtain the expression

App = (0, 73(B) — m1(B)) + (m1(B) + m2(B) + nw3(B))(1.1)).

Working with the first expression of A, 8 and applying f% to this vector, we obtain that

Ji(AnB) = fi((m1(B) — 73(B), 0) + (m2(B) + (n + D w3(B))(1. 1))
= fi((m1(B) — 73(B), 0)) + m2(B) + (n + 1) w3(B)
= k(m1(B) — m3(B)) + m2(B) + (n + 1) 73(B).
By the hypothesis over f and recalling that {v},,, }7Z} = {(t, 0)}"ZK U {(0,5)}Z1, we

obtain two cases, 71 (8) —n3(8) >n—k + lorn3(p) — 71 (B) = k. If w1 (B) — w3(B) >
n—k + 1, then

Ji(AnB) = k(71(B) — 73(B)) + m2(B) + (n + 1) 73(B)
>k(n—k+1)+m(B) + (n+ 1)m3(B)
>k(n—k + 1).

If 73(B) — m1(B) > k, in particular, 73(8) > k, then

Je(AnB) = k(71 (B) — m3(B)) + m2(B) + (n + D) 73(B)

= (n + D)m3(B) — kmz(B) + km1(B) + m2(B)

= —k+ D)r3(f) +kmi(B) + m2(B)

> (n—k + Dk + kmi1(B) + ma(p)

>nk —k*> + k.
In any case, we obtain that f;(A4,B8) > k(n —k + 1) for all B € N3 with the conditions
of the lemma, as claimed. [
Lemma 3.13. Letv =v;,, +q(1,1) € N?>withl <nandq >n—1+1+r,, . Then
i) 2 fiew) for allu € To, U\Uj_y Tiong + i 1
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Proof. We proceed by induction over /. Consider [ = 1. Then v = vy 4, + ¢(1, 1), with
q > n +ry 5, and we need to prove that fi (v) > fi(u) forallu € Ty, U T1,5, + rl’mj.
IfueTy, + rl,nki, thenu = vy, + (p + r1,5,)(1, 1), with p < n — 1. It follows that

Jk@) = fi(iy, +q(1, 1) = fi(viy) +4¢
> fk(vl,nk) +n+ rl,nk > fk(vl,nk) + )4 + rl,nk
= feWin + P+ 11 (L 1D) = fr(u).
If u € Ty, , then u = p(1,1), with p < n. By Definition 2.2, vy, = (1,0) or vy 5, =

(0,1). Thus, fr(v) =k+g>k+nor fr(v)=(1—-k)+qg>n+ (n—k +1). Since
k € {1,...,n}, in any case we have that

(3.2 Je) >n=p= fi(u).

We conclude that it is true for / = 1.
Now, suppose that it is true for all I’ < [, i.e., fi(vyrp, +¢'(1,1)) > fi(u) for all

ueToy U Uj‘/=1 Tjm + r_,',,,k_f andq' >n—10"+14rpy . Letv=v, +q(1,1)with

g=n—1+1+r, fueTl, + rl,,,kf, we have that u = vy, + (p +175,)(1, 1),
with p <n —[. Then

Je) = fitvig) +9 > fivig) +n—=1+141,,
> fiig) +p+ 11y = kg + 0+ 1), 1) = fi(u).

Thus fi(v) > fi(u) for all u € Tj,, + rl,,,ki. Consider u € Tj_y 5, + r,,k,l_li. By
definition, u = v;_1p, + (p + 11-1,,)(1, 1) with p <n —[ 4 1. By Lemma 3.7 (4),
fk(vl,nk + rl,nk(L 1)) > fk(vl—l,ﬂk + rl—l,ﬂk(L 1)) Then

Je@) = fiig) +q = fi(ig) +n—=1+ 14711,
= fiig +ri, D) +n—14+12> fir(vii,g +ri—1,5,(1, 1) +p
= fi(i—ipy + (P + 112191 1) = fre(u).

-

Obtaining that the statement is true for allu € T 1, + 1714, 1.
Suppose fi (vi,n, + F1.q,(1,1)) = fe(Vi—1,4, + 711,59, (1, 1)) + 1. Obtaining that

fk(v) = fk(vl,r]k + rl,nk(L 1)) +n—-1+1
> fei—1,g + -1, (1L D) +n =1+ 2.

Then, by the induction hypothesis over [ — 1, we have that f;(v) > fr(u) for all u €
To,n U Uj;ll Time + rj,,,ki, obtaining the result.

Now suppose that fi (v, + 71,9, (1, 1)) = fx(Vi—1,5, + 11,5, (1, 1)). For this, we
have two cases, [ =2 or/ > 2.If ] = 2, by (3.2), we have that

fi) = fiap) + 9 > fi(vay) +n—1+r2y,
= fiay + 120, (L)) +n—=1= fi(viy +7r15,0,1)+n—-1
= fk(vl,nk + (l’l -1+ rl,nk)(lv 1)) >n = fk(u)s
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forallu € Ty, . If [ > 2, then forall u € Ty y, UU i1 Tine + 175, ,,kl,wehavethat

fe@) = feig, +rig (L) +n—1+1
> fiimag +ri—2 (L) +n—1 43> fi(u),

where the second inequality comes from Lemma 3.7 (5) and the last inequality comes
from the induction hypothesis over / — 2, obtaining the result. ]

Now we are ready to prove the other important result of this section.

Proposition 3.14. Let 0y € Q2 and its respective Jy, € Sa,. Then forall J € Sy,, we have
that fi(my, ) < fe(my).

Proof. Let J = {B1,...,Bx,,} € Sa,- By the definition of Sy,, det(cg,)1<i<r,, # 0.
where cg, 1= ", _p (—1)"31'_”‘(’?)5/ (recall Notation 1.1).

Fixing the B1-th row of this matrix and using basic properties of determinants, we
obtain that

Any
c

O 7é det(cﬂi)lfiSAZn Z ( l)lﬁz vl (/3 )det .1:92
y<p1 .

CBrrm

Since the determinant is not zero, this implies that there exists 8; < B such that

A, B
cp
det| 7 | #o0.

CBrym

Applying this process for each row, we obtain a set of vectors B = {f; })L2 1 C Az

such that 8 < B; foralli € {1,..., 15 ,} and with the property det(Anﬂi)ls,gZ!n # 0.

The goal is to construct a bijective correspondence ¢: B — T, , such that fi (4,f]) >

Ji(p(B;)). Consider the set vj,, + L :={vjy, + p(1,1) | p € N}. Now, consider the
following partition of B:

Bo ={B;i € B| Aup; € Ty, }.

={p; € B| Aup; € (v, + L)\ T}y, + rj’,,ki for some j € {1,...,n}},
By ={B; € B| AxB; = q(1,1) for some g > n},

={p; € B| Aup; ¢ (vjy, + L) forall j €{0,...,n}},

For all B € By, we define ¢(f]) = A, pB;. Since det(A,B])1<i<n,, 7 0, we have that
0(B)) # (B)) forall B, B, € Bo.
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Now, if By # @, we rearrange B in such a way that {8, 85.. ... B,,} = Bi. Consider
B1 € Bi. By the construction of By, there exist [ < n and ¢ € N such that 4,8 =
vy, +¢(1,1). By Proposition 2.15, we have that

!
Anp] € spanc{ﬁ eChn|ye U ka}
Jj=0
l

— span(c{l') € Chan |ve To,n U U Ty + rj,ﬂki}'
Jj=1

.. . a7 _
This implies that 4,87 = ZUGTo,nk WU, Ty +rimg 1 a,v, for some constants a, € C.

Using again basic properties of the determinant, we obtain that there exists ug: € To,p, U

Uj'=1 Time + rj,nki such that
g
Anfy
det .

#0.
AnB,,
Applying this process for each element of By, we obtain the vectors {u B };”=1. We define

go(ﬂ]’-) =up forall j € {1,...,m}. Now, we need to check that ¢ is injective on By U B;

and fi(AnfB)) = fi((B))).

Notice that, by construction,
ug;

U,

det| ——
AnIB;n+l

£ 0.

AnB,,
This implies that u B! #u Bl forall 1 <i < j < m. In particular, we have that u B! #u Bl
Moreover, using the same argument, we have that u Bl # AnpB; = @(B;}) for all B} € Bo.
Thus, ¢ is injective on By U Bj.

On the other hand, A,f8; = v, +q(1,1) ¢ T;p, + Vl,nki for some / < n. This
implies thatq > n — 1 + 1 4 r; 5, . Then

Ji(AnB)) = fein, +q(1, 1) = fi(vin) +4q
> fxig) +n—1+1+r,
= fe@ip + =1+ 1+ 1)L 1) = fi(ug),

where the last inequality comes from Lemma 3.13, obtaining the desired inequality.
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For all B; € B;, we have that A,8; = ¢(1, 1), for some g > n. By Lemma 2.11, we
have that m = ZUGTo,nk ay,v. Applying the same method for the elements of By, we
can define ¢ with the properties that we need.

Since |T;, | = |B| = A2,n, we have that | B3| = [Ty, \ {¢(B]) | B; € Bo U B1 U Ba}|.
Then we take ¢(B;) = v, with v € Ty, \ {¢(B}) | B; € Bo U B1 U B>}, in such a way that
9(B}) # ¢(B)) forall B, B, € By and B} # /.

By construction, we obtain that ¢ is a bijective correspondence and by the definition
of B3 and Lemma 3.12, we have that f; (4,8]) > fi(¢(B;})) forall B; € B3. Then

femp) =" fil4nBi) = Y fi(AuB))

BieJ B/eB
> > filoB) = Y fiew) = filmy,),
B/eB beTy,

where the first inequality comes from Lemma 3.11 and the second comes from the con-
struction of ¢. [ ]

Now we are ready to prove Theorem 1.8.

Proof. By Proposition 3.4, J,, € S4,. By corollary 3.9, there exists J, € Sy, such that
Jn # Iy and fr(my,) = fi (i’l’ljnk). From Proposition 3.14, we obtain ordy, ((k, 1 — k)) =

Jre(m J,,k). This implies that (k, 1 — k) € oy, sy N Om Iy |
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