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The reconstruction theorem in quasinormed spaces

Pavel Zorin-Kranich

Abstract. We extend the Hairer reconstruction theorem for distributions due to Car-
avenna and Zambotti [EMS Surv. Math. Sci. 7 (2020), 207–251] to general function
spaces satisfying a translation and scaling condition. This includes Besov type spaces
with exponents below 1 and Triebel–Lizorkin type spaces.

1. Introduction

Hairer’s reconstruction theorem, originally proved in [6], Theorem 3.10, in the framework
of regularity structures, gives conditions under which one can construct a distribution
on Rd with a given local behavior. Similarly to the sewing lemma in rough integration,
see e.g. Lemma 4.2 in [4], a reconstruction theorem for distributions, that does not require
regularity structures in its statement, was developed in [3]. In this article, we isolate the
main estimate used in [3] (Theorem 1.1) and formulate sufficient conditions on function
space quasinorms for which the reconstruction theorem for distributions holds (Section 2).

A Besov space version of the reconstruction theorem for regularity structures was
proved in [7]. Our sufficient conditions cover Besov spaces with exponents p; q 2 Œ1;1�,
in which case the result has been independently obtained in [2], Triebel–Lizorkin spaces
with exponents p; q 2 .1;1/, as well as some Besov spaces with exponents below 1. For
Besov spaces with exponents below 1, we observe additional restrictions on the integra-
bility and regularity exponents. Although we do not know if they are always necessary, in
one dimension they are consistent with the restrictions that appear in the sewing lemma
(see Section 4).

We begin with the formulation of the main pointwise estimate for reconstruction. As
test functions, we will use Hölder functions of some order r > 0. Let Qr 2 N with Qr < r �
Qr C 1 be the largest integer strictly smaller than r , and let

Br WD ¹�2C
1
c .R

d / j supp� �B.0;1=2/;8x;x02Rd jD Qr�.x/�D Qr�.x0/j � jx � x0jr�Qrº:

For a function � defined on Rd , we denote by

�.k/x .y/ WD 2dk �.2k.y � x//
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an L1 scaled version of � at scale 2�k centered at x. We use the conventions �.k/WD�.k/0
and Q�.y/ D �.�y/. We denote integral averages by

�
z2Z
D jZj�1

�
z2Z

. We write a . b

if there is a constant C <1, depending only on parameters 
 , ˛, r , ', p, q and N , such
that a � Cb.

Theorem 1.1 (Local reconstruction). Let ' 2 C1c .R
d / with supp ' � B.0; 1=2/ and�

' D 1. Let .Fx/x2Rd be a Borel measurable family of distributions on Rd . Let x 2 Rd ,
k 2 Z and r > 0 be such that

(1.1)

H.k; x/ WD
X
l�0

2�lr
 
jx�yj�2�k

ˇ̌
.Fy � Fx/.'

.kCl/
y /

ˇ̌
dy

C

X
l�0

 
jz�xj�2�k

 
jy�zj�2�k�l

ˇ̌
.Fz � Fy/.'

.kCl/
y /

ˇ̌
dy dz <1:

Let � be a smooth function, supported on B.0; 1=2/, depending only on ' and r , defined
in (3.1). Then, the functions

(1.2) fn.z/ WD Fz.�
.n/
z /; n 2 N;

are integrable on B.x; 2�k/ for n � k and converge, in the sense of distributions, as
n!1, to a distribution f 2 D 0.B.x; 2�k// such that

(1.3) sup
�2Br

j.f � Fx/.�
.k/
x /j . H.k; x/:

The condition (1.3) clearly does not determine the distribution f uniquely; for ins-
tance, it would also hold with Fx in place of f . The main point of Theorem 1.1 is that
the construction of f does not depend on x; k. In particular, if H.x; k/ <1 for all pairs
.x; k/ in some set X , then we obtain a distribution f on the open set [.x;k/2XB.x; 2�k/,
and the estimate (1.3) holds for all .x; k/ 2 X .

The condition (1.1) is a version of the coherence condition in [3], Definition 4.3; it
expresses the idea that the family F varies sufficiently slowly. We formulate some function
space consequences of Theorem 1.1 in Section 2.

Theorem 1.1 is proved in Section 3. In Section 4, we compare the reconstruction the-
orem in Besov spaces (a special case of Theorem 2.1) and the sewing lemma in Besov
spaces. In Section 5, we comment on a version of the reconstruction theorem for spaces
with negative regularity.

2. Function spaces

Let us now describe a class of function spaces in which the condition (1.1) can be con-
veniently verified. For simplicity, we consider function spaces on Rd . One could state
similar results for open domains in Rd , but it is difficult to foresee how much flexibility
regarding the boundary behaviour would be useful.

We consider quasinorms N defined on measurable functions H WN � Rd ! R�0 D
R�0 [ ¹1º and taking values in R�0. A quasinorm is a functional that is homogeneous
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and quasisubadditive:

N .�H/ D j�jN .H/ and N .H1 CH2/ . N .H1/CN .H2/;

for any � 2 R�0 and any arguments H;H1;H2.
The main assumption on N is a scaling condition: there exists 
 > 0 such that, for

every l 2 N, we have

(2.1) Nk;x

 
jz�xj�2�k

H.k C l; z/ dz . 2�l
Nk;xH.k; x/:

In addition to the above quantitative assumption, we also make the qualitative assump-
tions that N satisfies a version of the monotone convergence theorem:

(2.2) Hn % H H) Nk;xHn.k; x/! Nk;xH.k; x/;

and that the finiteness of NH implies the finiteness of the function H :

(2.3) Nk;xH.k; x/ <1 H) H <1 a.e.

Theorem 2.1 (Reconstruction). Let 
 > 0, ˛ � 0, and r > 0 with r > ˛. Let N be a
quasinorm satisfying the conditions (2.1), (2.2) and (2.3).

Let ' 2 C1c .R
d / with supp ' � B.0; 1=2/ and

�
' D 1. Let .Fx/x2Rd be a Borel

measurable family of distributions on Rd , and let A 2 R>0 be such that, for every l 2 N,
we have

(2.4) Nk;x

 
jhj�2�k

ˇ̌
.FxCh � Fx/.'

.kCl/

xCh
/
ˇ̌
dh � 2l˛A:

Then, there exists a distribution f 2 D 0.Rd / such that

(2.5) Nk;x sup
�2Br

j.f � Fx/.�
.k/
x /j . A:

A few examples of quasinorms N to which Theorem 2.1 can be applied are listed
below. The uniqueness of the reconstruction f in (2.5) does not seem to follow from the
abstract properties of quasinorms N stated above, and will be verified in the examples
below separately, cf. Theorem 4.1 in [3].

We note that, as a consequence of (1.2), if the distributions Fx are in fact continuous
functions and the function .x; y/ 7! Fx.y/ is locally bounded near the diagonal, then f
is given by the function f .x/ D Fx.x/.

Proof of Theorem 2.1. In view of (2.3), it suffices to verify Nk;xH.k;x/. A, whereH is
the function defined in (1.1). Since geometric series are summable in quasinormed spaces
(this follows, e.g., from the Aoki–Rolewicz theorem, Lemma 1.1 in [9], which is stated
under additional hypotheses there, but in fact only uses quasisubadditivity), it suffices to
obtain geometrically decaying bounds for the summands in the two sums over l in (1.1).
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For the first sum, this immediately follows from (2.4) and the assumption on r . In the
second sum, we have

Nk;x

 
jz�xj�2�k

 
jy�zj�2�k�l

j.Fz � Fy/.'
.kCl/
y /j dy dz

by (2.1)
. 2�l
Nk;x

 
jy�xj�2�k

j.Fx � Fy/.'
.k/
y /j dy

by (2.4)
. 2�l
A:

2.1. Besov spaces with p 2 Œ1; 1�

The prototypical example, previously studied in [2] (in the case q � 1), are Besov-type
quasinorms

(2.6) Nk;xH.k; x/ D `
q

k
2
kLpxH.k; x/:

Here and later, we denote `q and Lp norms by

`
q

k
H.k/ WD

� 1X
kD0

jH.k/jq
�1=q

and LpxH.x/ WD
� �

Rd

jH.x/jp dx
�1=p

;

when p; q <1, with the usual modification in the cases p; q D1.

Lemma 2.2. Let q 2 .0;1�, p 2 Œ1;1�, and 
 > 0. Then the quasinorm (2.6) satis-
fies (2.1) (with same 
/, (2.2), and (2.3).

Lemma 2.2 tells that Theorem 2.1 can be applied with the quasinorms (2.6).

Proof. To see the condition (2.1), write

Nk;x

 
jz�xj�2�k

H.k C l;z/ dz D `q
k
2
k Lpx

 
jhj�2�k

H.k C l; x C h/ dh

� `
q

k
2
k

 
jhj�2�k

LpxH.k C l; x C h/ dh

D `
q

k
2
kLpxH.k C l; x C h/ � 2

�
l `
q

k
2
kLpxH.k; x C h/:

Condition (2.2) follows from the monotone convergence theorem, and (2.3) is also imme-
diate.

Lemma 2.3 (Uniqueness). Let p, q and 
 be as in Lemma 2.2. Then, for any family
of distributions F , there exists at most one distribution f such that (2.5) holds for the
quasinorm (2.6).

Lemma 2.3 tells that the reconstruction produced in Theorem 2.1 is unique for the
quasinorms (2.6).

Proof. Let � 2 Br with
�
� D 1. If f and Qf both satisfy (2.5), then

Nk;xj.f � Qf / � �
.k/
j.x/ <1:
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On the other hand,

(2.7) .f � Qf / � �.k/
D 0

! f � Qf :

By the definition of N , the left-hand side of (2.7) converges to 0 inLp.Rd /, and it follows
that f D Qf .

2.2. Besov spaces with p 2 .0; 1/

For p < 1, the quasinorms (2.6) do not satisfy the condition (2.1) (even with l D 0), since
Minkowski’s inequality is false in Lp in this range of p.

Instead, we consider the quasinorm

(2.8) Nk;xH.k; x/ D `
q

k
2�kLpx

 
y2B.x;2�k/

H.k; y/ dy:

Interestingly, we can no longer consider all � > 0. In the one-dimensional case d D 1,
the range of allowed � below corresponds to the range of the regularity exponents in the
Besov space sewing lemma [5].

Lemma 2.4. Let q 2 .0;1�, p 2 .0; 1/, and � > d.1=p � 1/. Then the quasinorm (2.8)
satisfies (2.1) (with 
 D � � d.1=p � 1//, (2.2), and (2.3).

Proof. Conditions (2.2) and (2.3) are easy to see. Let us now show that (2.1) holds with
the claimed value of 
 . Indeed,

Nk;x

 
jz�xj�2�k

H.k C l; z/ dz . `
q

k
2�k Lpx

 
jz�xj�2�kC1

H.k C l; y/ dy

D `
q

k�l
2�.k�l/Lpx

 
jyj�2�kClC1

H.k; x C y/ dy:

We can cover the ballB.0;2�kClC1/�Rd byNl DOd .2dl /many 2�k-ballsB1; : : : ;BNl .
Hence,

Lpx

 
jyj�2�kClC1

H.k; x C y/ dy . N�1l Lpx

NlX
jD1

 
y2Bj

H.k; x C y/ dy

D N�1l

� �
Rd

ˇ̌̌ NlX
jD1

 
y2Bj

H.k; x C y/ dy
ˇ̌̌p

dx
�1=p

� N�1l

� �
Rd

NlX
jD1

ˇ̌̌ 
y2Bj

H.k; x C y/ dy
ˇ̌̌p

dx
�1=p

D N�1l

� NlX
jD1

�
Rd

ˇ̌̌ 
y2Bj

H.k; xCy/ dy
ˇ̌̌p

dx
�1=p
D N

1=p�1

l
Lpx

 
jyj�2�k

H.k; xCy/ dy:

Hence, we see that

Nk;x

 
jz�xj�2�k

H.k C l; z/ dz . 2��lN
1=p�1

l
Nk;xH.k; x/ . 2�
lNk;xH.k; x/:
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Lemma 2.5 (Uniqueness). Let p, q, 
 and � be as in Lemma 2.4. Then, for any family
of distributions F , there exists at most one distribution f such that (2.5) holds for the
quasinorm (2.8).

Lemma 2.5 tells that the reconstruction produced in Theorem 2.1 is unique in the cases
covered by Lemma 2.4.

Proof. Let � 2 Br with
�
� D 1. If f and Qf both satisfy (2.5), then

Nk;xj.f � Qf / � �
.k/
j.x/ <1:

As a consequence of the fact that the `1 norm of a sequence is bounded by its `p norm,
we obtain

L1xj.f �
Qf / � �.k/j . 2kd.1=p�1/Lpx

 
B.x;2�k/

j.f � Qf / � �.k/j . 2kd.1=p�1/ 2��k :

Incidentally, this simple estimate is a special case of the reverse Young inequality,
see [1, 10].

The above estimate shows in particular that limk!1.f � Qf / � �
.k/ D 0 in L1.Rd /.

On the other hand, this sequence converges to f � Qf in the sense of distributions, so
that f D Qf .

2.3. Triebel–Lizorkin spaces

The purpose of this section is to illustrate Theorem 2.1 with an example of a function
space norm that is not of Besov type. One of the most natural quasinorms that one might
consider is

(2.9) Nk;xH.k; x/ D L
p
x `

q

k
2
k

�  
jyj�2�k

H.k; x C y/q dy
�1=q

:

A similar norm without the average over y would be even simpler to look at.

Lemma 2.6. Let p 2 .1;1/, q 2 .1;1�, and 
 > 0. Then, the quasinorm (2.9) satisfies
(2.1), (2.2), and (2.3).

Proof. Conditions (2.2) and (2.3) are easy to see. It remains to show (2.1). We begin with
the estimate

Nk;x

 
jz�xj�2�k

H.k C l; z/ dz

D Lpx `
q

k
2
k

�  
jyj�2�k

�  
jzj�2�k

H.k C l; x C y C z/
�q

dy
�1=q

. Lpx `
q

k
2
k

�  
jzj�2�kC1

H.k C l; x C z/ dz
�

. Lpx `
q

k
2
k

�  
jzj�2�kC1

�  
jyj�2�k�l

H.k C l; x C y C z/ dy
�

dz
�

� Lpx `
q

k
2
k

�  
jzj�2�kC1

�  
jyj�2�k�l

H.k C l; x C y C z/q dy
�1=q

dz
�
;
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with the usual modification if q D 1. By the Fefferman–Stein maximal inequality, see
e.g. Theorem 3.2.28 in [8], this is bounded by

Lpx `
q

k
2
k

�  
jyj�2�k�l

H.k C l; x C y/q dy
�1=q

� 2�
lLpx `
q

k
2
k

�  
jyj�2�k

H.k; x C y/q dy
�1=q

:

Lemma 2.7 (Uniqueness). Let p, q and 
 be as in Lemma 2.6. Then, for any family
of distributions F , there exists at most one distribution f such that (2.5) holds for the
quasinorm (2.9).

Proof. If f and Qf are two distributions for which (2.9) holds and � 2Br with
�
�D 1, then

lim
k!1

Lpx

�  
jyj�2�k

j.f � Qf / � �.k/jq dy
�1=q
D 0:

This implies in particular that .f � Qf / � �.k/! 0 in L1.�/ for any bounded measurable
set � � Rd , so that f D Qf .

3. Proof of Theorem 1.1

The entirety of this section is occupied by the proof of Theorem 1.1.

3.1. Approximating functions

In this subsection, we recall the construction of mollifiers and approximating functions
in [3].

By [3], Lemma 8.1, there exists a linear combination of dilated functions '.0/; : : : ;'.Qr/

that has integral 1 and vanishing moments of orders 1; : : : ; Qr . Replacing ' by this lin-
ear combination in (1.1) increases the value of H at most by a multiplicative constant
(depending on r), so we may assume that�

Rd

'.y/ dy D 1 and
�

Rd

y˛'.y/ dy D 0 for 1 � j˛j � Qr:

We use the mollifiers � WD '.1/ � ', so that

(3.1) �.1/ � � D '.1/ �  ; where  WD '.2/ � ':

Note that
�
� D

�
'.1/

�
' D 1 and

�.nC1/ � �.n/ D .�.1/ � �/.n/ D '.nC1/ �  .n/:

This will be used to compare convolutions with �.nC1/ and �.n/.
The mollifiers � are used to define the functions (1.2). The integrability of the func-

tions (1.2) will follow from the bound (3.4) below and smoothness of z 7! Fx.�
.n/
z /.

A novelty of our presentation with respect to [3] is that we deduce both the con-
vergence of the sequence (1.2) and the estimate (2.5) from the same set of estimates
summarized in (3.3).
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3.2. Telescoping sum

We will write the sequence

(3.2) fx;n.z/ WD .fn � Fx � Q�
.n//.z/ D .Fz � Fx/.�

.n/
z /

as a telescoping sum. The difference of consecutive functions in the sequence (3.2) is

fx;nC1.z/ � fx;n.z/ D .Fz � Fx/.�
.nC1/
z � �.n/z /

D

�
Rd

.Fz � Fx/.'
.nC1/
y / .n/z .y/ dy

D

�
Rd

.Fy � Fx/.'
.nC1/
y / .n/.y � z/ dy

C

�
Rd

.Fz � Fy/.'
.nC1/
y / .n/.y � z/ dy

DW g0x;n.z/C g
00
n.z/:

In Section 3.3, we will show that

(3.3) sup
�2Br

jfx;k.�
.k/
x /j C

X
l�0

jg0x;kCl .�
.k/
x /j C

X
l�0

jg00kCl .�
.k/
x /j . H.k; x/:

Since also limn!1 Fx � Q�
.n/ D Fx in the sense of distributions, it follows that the limit

� 7! f .�.k/x / WD lim
n!1

fn.�
.k/
x /

D lim
n!1

.fx;n C Fx � Q�
.n//.�.k/x /

D lim
n!1

�
fx;k C

n�k�1X
lD0

.fx;kClC1 � fx;kCl /
�
.�.k/x /C Fx.�

.k/
x /

D fx;k.�
.k/
x /C

X
l�0

g0x;kCl .�
.k/
x /C

X
l�0

g00kCl .�
.k/
x /C Fx.�

.k/
x /

exists and is bounded by (3.3) for � 2 Br .

3.3. Estimates

It remains to show (3.3). Let � 2 Br be arbitrary. We start with the sums over l , because
the first term in (3.3) will be estimated by quantities that appear in the bounds for these
sums.

Estimate for g0. By definition,

g0x;kCl .�
.k/
x / D

�
Rd

�
Rd

.Fy � Fx/.'
.kClC1/
y / .kCl/.y � z/ �.k/x .z/ dy dz

D

�
Rd

.Fy � Fx/.'
.kClC1/
y / . .kCl/ � �.k/x /.y/ dy:
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As in Lemma 9.2 in [3], using Taylor’s formula of order Qr for � , we see that

j .kCl/ � �.k/x j . 2�lrCkd :

Moreover, this convolution is supported on B.0; 2�k/. It follows that

jg0x;kCl .�
.k/
x /j . 2�lr

 
jy�xj�2�k

j.Fy � Fx/.'
.kClC1/
y /j dy:

This is the .l C 1/-th summand in the first sum in (1.1).

Estimate for g00. Using the support conditions on  and �, we obtain

jg00kCl .�
.k/
x /j .

 
jz�xj�2�k�1

 
jy�zj�2�k�l�1

j.Fz � Fy/.'
.kClC1/
y /j dy dz:

This is bounded by the .l C 1/-th summand in the second sum in (1.1).

Estimate for fx;k . By the support condition on �, we have

jfx;k.�
.k/
x /j .

 
z2B.x;2�k�1/

jfx;k.z/j dz:

For any l � 0, we have
 
jz�xj�2�k�1

jfx;kCl .z/j dz

D

 
jz�xj�2�k�1

ˇ̌̌�
Rd

.Fz � Fx/.'
.kCl/
y / '.kClC1/.y � z/ dy

ˇ̌̌
dz

.
 
jz�xj�2�k�1

 
jy�zj�2�k�l�2

j.Fz � Fx/.'
.k/
y /j dy dz

�

 
jz�xj�2�k�1

 
jy�zj�2�k�l�2

�
j.Fz � Fy/.'

.k/
y /j C j.Fy � Fx/.'

.k/
y /j

�
dy dz:(3.4)

This is bounded by the l-th summands in (1.1). This shows in particular the local integra-
bility of the functions (1.2), and the l D 0 case finishes the proof of (3.3), and therefore
also the proof of Theorem 2.1.

4. Besov sewing and reconstruction

In this section, we show how Theorem 2.1 can be used to recover the main estimate in the
Besov space sewing lemma [5], Theorem 3.1, in the case p � 1, assuming an additional
qualitative regularity condition on the data.

For two-parameter processes AWR �R! R, we use the quasinorms

(4.1) B�p;qA WD `
q

k
2�k sup

jhj�2�k
Lpx jA.x; x C h/j:
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For three-parameter processes GWR �R �R! R, we use the quasinorms

(4.2) NB�p;qG WD `
q

k
2�k sup

jy0j;jy00j�2�kC1
Lpx jG.x; x C y

0; x C y00/j:

The increments of a one-parameter process gWR! R and a two-parameter process
AWR �R! R are defined by

ıg.s; t/ D g.t/ � g.s/ and ıA.s; u; t/ D A.s; t/ � A.s; u/ � A.u; t/;

respectively.

Theorem 4.1 (Smooth Besov sewing for p � 1, special case of Theorem 3.1 in [5]).
Let q 2 .0;1�, p 2 Œ1;1�, and � > 1. Let AWR � R ! R be a smooth function with
NB
�
p;q ıA <1. Then, there exists a function gWR! R with

(4.3) B�p;q.ıg � A/ . NB�p;q ıA:

In [5], most processes are defined on increasing pairs or triples of indices. Given
an A defined on increasing pairs and vanishing on the diagonal, one can extend it to
an antisymmetric function on R �R, in the sense that A.s; t/ D �A.t; s/. Note that if A
is antisymmetric, then ıA is also antisymmetric in all its arguments. The norms (4.1)
and (4.2) of such antisymmetric extensions are equivalent to the norms considered in [5].

However, Theorem 4.1 does not fully recover Theorem 3.1 in [5], because in general it
does not seem possible to approximate a function in the (4.1) norm by smooth functions.
On the other hand, by using Theorem 2.1, we attempt to construct g using smoothed
versions of A.

Another indication that the smoothing occurring in Theorem 2.1 is harmful for recov-
ering the sewing lemma in terms of the quasinorms (4.1) and (4.2) is that our argument
does not easily extend to p 2 .0; 1/, because it is not possible to pull the integral out of
the Lp quasinorm in (4.4). This can be circumvented by considering different Besov-like
quasinorms, as in (2.8), but there does not seem to be any advantage in doing that over
running the sewing argument in [5] directly.

Proof of Theorem 4.1. We will use Theorem 2.1 with 
 D �� 1, the quasinorm (2.6), and
the family of distributions Fx D D2A.x; �/. The function ' can be chosen arbitrarily with
support in B.0; 1=2/. First, we have to verify the hypothesis (2.4). Using that

�
D' D 0,

we obtainˇ̌
.Fx � FxCh/.'

.k/

xCh
/
ˇ̌
D
ˇ̌
.A.x; �/ � A.x C h; �//.D'

.k/

xCh
/
ˇ̌

D 2k
ˇ̌
.A.x; �/ � A.x C h; �//..D'/

.k/

xCh
/
ˇ̌

D 2k
ˇ̌̌�

.A.x; y/ � A.xCh; y/ � A.x; xCh//.D'/
.k/

xCh
.y/ dy

ˇ̌̌
. 2k

 
B.xCh;2�k�1/

jıA.x; x C h; y/j dy:
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Hence,

(4.4)

`
q

k
2
kLpx

 
jhj�2�k

ˇ̌
.FxCh � Fx/.'

.kCl/

xCh
/
ˇ̌
dh

. `
q

k
2.
C1/kClLpx

 
jhj�2�k

 
y2B.xCh;2�k�l�1/

jıA.x; x C h; y/j dy dh

� 2l `
q

k
2.
C1/k sup

jhj;jh0j�2�kC1
Lpx jıA.x; x C h; x C h

0/j D 2l NB�p;q ıA:

This shows (2.4) with ˛ D 1.
Theorem 2.1 with any r > 1 gives us a distribution f such that

(4.5) `
q

k
2
kLpx sup

�2Br

j.f �D2A.x; �//.�
.k/
x /j„ ƒ‚ …

DW�.k;x/

<1:

In the proof of Theorem 2.1, the distribution f was constructed as the distributional
limit of the sequence of functions (1.2). In the current setting, the sequence (1.2) converges
locally uniformly to the function x 7!D2A.x;x/, so that f coincides with this continuous
function. Let g be any antiderivative of f (the qualitative hypothesis that A is smooth is
needed to construct this antiderivative). It remains to show (4.3).

Let Q� WR! Œ0; 1� be a function supported on Œ0; 0:6/ and smooth on .0; 1/ such that

Q�.�/C Q�.1 � �/ D 1Œ0;1�.�/:

Let
�.�/ WD Q�.�/ � Q�.2�/;

so that supp� � Œ0:2; 0:6� andX
l2N

�.2l�/C �.2l .1 � �// D 1.0;1/.�/:

By the fundamental theorem of calculus, we have

g.x C h/ � g.x/ � A.x; x C h/

D jhj

�
R
.f .x C �h/ �D2A.x; x C �h// Q�.�/ d�(4.6)

C jhj

�
R
.f .x C �h/ �D2A.x; x C �h// Q�.1 � �/ d�:(4.7)

For 2�k�1 < jhj � 2�k , we estimate

j(4.6)j �
X
l�0

ˇ̌̌�
R
.f �D2A.x; �// �.2

l .� � x/=h/
ˇ̌̌

.
X
l�0

2�l jhj�.k C l; x/:
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In the second summand, we split

(4.7) D jhj
�

R
.f .x C �h/ �D2A.x C h; x C �h// Q�.1 � �/ d�(4.8)

C jhj

�
R
.D2A.x C h; x C �h/ �D2A.x; x C �h// Q�.1 � �/ d�:(4.9)

Similarly as before, for 2�k�1 < jhj � 2�k , we obtain

j(4.8)j .
X
l�0

2�l jhj�.k C l; x C h/:

In the last term, we use partial integration:

j(4.9)j D
ˇ̌̌ �

R
.A.x C h; x C �h/ � A.x; x C �h//D Q�.1 � �/ d�

ˇ̌̌
D

ˇ̌̌ �
R
ıA.x C h; x; x C �h/D Q�.1 � �/ d�

ˇ̌̌
�

�
R
jıA.x C h; x; x C .1 � �/h/j djD Q�j.�/;

where we use that the distributional derivative D Q� is a finite measure. Collecting the
bounds for (4.6), (4.8), and (4.9), we obtain

`
q

k
2�k sup

jhj�2�k
Lpjg.x C h/ � g.x/ � A.x; x C h/j

. `
q

k
2�k sup

Qk�k

sup
2�
Qk�1< jhj�2�

Qk

Lpx

X
l�0

2�l�
Qk.�. Qk C l; x/C�. Qk C l; x C h//

C `
q

k
2�k sup

jhj�2�k
Lpx

�
R
jıA.x C h; x; x C .1 � �/h/j djD Q�j.�/

. `
q

k
2�k sup

Qk�k

X
l�0

2�l�
QkLpx�.

Qk C l; x/

C `
q

k
2�k sup

jhj;j Qhj�2�k

Lpx jıA.x C h; x; x C
Qh/j:

The last summand is bounded directly by NB�p;q ıA. In the first summand, we have

sup
Qk�k

X
l�0

2�l�
QkLpx�.

Qk C l; x/ D 2�k sup
Qk�k

X
l� Qk�k

2�lLpx�.k C l; x/

D 2�k
X
l�0

2�lLpx�.k C l; x/:

Since geometric series are summable in `q for any q > 0, it remains to obtain an exponen-
tially decreasing (in l � 0) bound for

`
q

k
2�kLpx 2

�k�l�.k C l; x/:

This follows directly from (4.5).
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5. Negative regularity

In [3], a version of the reconstruction theorem is formulated also for 
 < 0. To obtain a
corresponding version of Theorem 1.1, one can replace the second sum over l � 0 in (1.1)
by a sum over l � 0. The bound (3.3) is then replaced by

sup
�2Br

jfx;k.�
.k/
x /j C

X
l�0

jg0x;kCl .�
.k/
x /j C

0X
lD�k

jg00kCl .�
.k/
x /j . H.k; x/;

and the formula for f is different:

f .�.k/x / WD lim
n!1

�
fn �

n�1X
mD1

g00m

�
.�.k/x /

D lim
n!1

�
fx;n C Fx � Q�

.n/
�

n�1X
mD1

g00m

�
.�.k/x /

D lim
n!1

�
fx;k C

n�k�1X
lD0

.fx;kClC1 � fx;kCl / �

n�1X
mD1

g00m

�
.�.k/x /C Fx.�

.k/
x /

D lim
n!1

�
fx;k C

n�k�1X
lD0

.g0x;kCl C g
00
kCl / �

n�1X
mD1

g00m

�
.�.k/x /C Fx.�

.k/
x /

D

�
fx;k C

X
l�0

g0x;kCl �

k�1X
mD1

g00m

�
.�.k/x /C Fx.�

.k/
x /:

It is possible to formulate a corresponding version of Theorem 2.1, which then applies
for instance to Besov spaces of negative regularity (with quasinorm N given by (2.6) with

 < 0). However, a distribution satisfying (2.5) will not be unique in this case, for instance,
this condition is preserved under adding a point mass to f .

Acknowledgments. I thank the anonymous referees for detailed reports that helped to
improve this article.

References

[1] Barthe, F.: Optimal Young’s inequality and its converse: a simple proof. Geom. Funct. Anal. 8
(1998), no. 2, 234–242.

[2] Broux, L. and Lee, D.: Besov reconstruction. Preprint 2021, arXiv:2106.12528.

[3] Caravenna, F. and Zambotti, L.: Hairer’s reconstruction theorem without regularity structures.
EMS Surv. Math. Sci. 7 (2020), no. 2, 207–251.

[4] Friz, P. K. and Hairer, M.: A course on rough paths. Universitext, Springer, Cham, 2020.

[5] Friz, P. K. and Seeger, B.: Besov rough path analysis. (With an appendix by Pavel Zorin-
Kranich.) J. Differential Equations 339 (2022), 152–231.

https://doi.org/10.1007/s000390050054
https://arxiv.org/abs/2106.12528
https://doi.org/10.4171/emss/39
https://doi.org/10.1007/978-3-030-41556-3
https://doi.org/10.1016/j.jde.2022.08.008


P. Zorin-Kranich 1246

[6] Hairer, M.: A theory of regularity structures. Invent. Math. 198 (2014), no. 2, 269–504.

[7] Hairer, M. and Labbé, C.: The reconstruction theorem in Besov spaces. J. Funct. Anal. 273
(2017), no. 8, 2578–2618.

[8] Hytönen, T., van Neerven, J., Veraar, M. and Weis, L.: Analysis in Banach spaces. Vol. I. Mar-
tingales and Littlewood–Paley theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 63,
Springer, Cham, 2016.

[9] Kalton, N. J., Peck, N. T. and Roberts, J. W.: An F -space sampler. London Mathematical Soci-
ety Lecture Note Series 89, Cambridge University Press, Cambridge, 1984.

[10] Leindler, L.: On a certain converse of Hölder’s inequality. II. Acta Sci. Math. (Szeged) 33
(1972), no. 3-4, 217–223.

Received September 7, 2021; revised March 26, 2022. Published online August 3, 2022.

Pavel Zorin-Kranich
Mathematical Institute, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany;

https://doi.org/10.1007/s00222-014-0505-4
https://doi.org/10.1016/j.jfa.2017.07.002
https://doi.org/10.1007/978-3-319-48520-1
https://doi.org/10.1007/978-3-319-48520-1
https://doi.org/10.1017/CBO9780511662447
mailto:

	1. Introduction
	2. Function spaces
	3. Proof of Theorem 1.1
	4. Besov sewing and reconstruction
	5. Negative regularity
	References

