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On the uniqueness of multi-breathers of the modified
Korteweg—de Vries equation

Alexander Semenov

Abstract. We consider the modified Korteweg—de Vries equation, and prove that
given any sum P of solitons and breathers (with distinct velocities), there exists a
solution p such that p(¢) — P(¢) — 0 when t — 400, which we call multi-breather.
In order to do this, we work at the H 2 Jevel (even if usually solitons are considered
at the H! level). We will show that this convergence takes place in any H* space and
that this convergence is exponentially fast in time. We also show that the constructed
multi-breather is unique in two cases: in the class of solutions which converge to the
profile P faster than the inverse of a polynomial of a large enough degree in time (we
will call this a super polynomial convergence), or when all the velocities are positive
(without any hypothesis on the convergence rate).

1. Introduction

1.1. Setting of the problem

We consider the modified Korteweg—de Vries equation (mKdV) on R:
(1.1) ur + (xx + ) =0, (1,x) €R?,
. u(0) = uo, u(t,x) e R.

The mKdV equation appears as a model in a variety of physical studies, such as plasma
physics [9, 39], electrodynamics [38], fluid mechanics [22], ferromagnetic vortices [46],
and more.

In [24], Kenig, Ponce and Vega established local well-posedness in H*, for s > 1/4, of
the Cauchy problem for (1.1), by a fixed point argument in LY L type spaces. Moreover,
if s > 1/4, the Cauchy problem is globally well posed [12]. Recently, Harrop-Griffiths,
Killip and Visan [21] proved local well-posedness in H* for s > —1/2. However, in this
paper, we will only use the global well-posedness in H 2.

Equation (1.1) is an integrable equation (like the original Korteweg—de Vries equation)
and thus it has an infinity of conservation laws, see [1,37]. We will use three of them (the
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first two of them are called mass and energy; the third is sometimes called second energy):

Mul(t) := %/Ruz(t,x) dx,
Eul(t) = %Aui(l,x)dx—%/l;u“(t,x)dx,
Flul(t) .= %Auix(t,x)dx—;/Ruz(t,x)ui(t,x)dx—i— %/Ru‘s(t,x)dx.

Observe that if u is a solution of (1.1), then —u and (¢, x) — u(t, x — xg), for any
Xo € R, are solutions of (1.1) too.

Equation (1.1) is a dispersive nonlinear equation, which is a special case of a more
general class of equations: the general Korteweg—de Vries equation (gKdV), where the
nonlinearity u> is replaced by f(u) for some real-valued function f. The particularity
of (1.1) in comparison to other gKdV equations is that it admits special nonlinear solu-
tions, namely, breather solutions.

The most simple nonlinear solutions of (1.1) are solitons, i.e., a bump of a constant
shape that translates with a constant velocity without deformation, that is, solutions of
the form u(t, x) = Q.(x — ct), where c is the velocity and Q. is the profile function
that depends only on one variable. The function Q. € H!(R) should solve the elliptic
equation

(1.2) "=cQ.— 02

We can show that necessarily ¢ > 0 and that, if ¢ > 0, equation (1.2) has a unique solution
in H'(R), up to translations and reflection with respect to the x-axis. Actually, one has

the explicit formula
2¢ 1/2
xX)i=—5—
Q) (coshz(cl/zx))

Observe that we chose Q. so that it is even and positive.

A soliton is a solution of (1.1), parametrized by a velocity parameter ¢ > 0, a sign
parameter k € {—1, 1} and a translation parameter xo € R (it corresponds to the initial
position of the soliton) that has the following expression:

Re(t, x;x0) 1= kQc(x — x0 — ct).

When « = —1, this object is sometimes called antisoliton. Notice that solitons are
smooth and decaying. The generalized Korteweg—de Vries equation (gKdV) also admits
soliton type solutions, and so does the focusing nonlinear Schrédinger equation (NLS).
Solitons have been extensively studied, in particular, their stability. Cazenave, Lions and
Weinstein in [7, 8, 44, 45] were interested in orbital stability of gKdV and NLS solitons
in H'. A soliton of (1.1) is indeed orbitally stable, i.e., if a solution is initially close to a
soliton in H !(R), then it stays close to the soliton, up to a space translation defined for
any time in H ! (R). General results about orbital stability of nonlinear dispersive solitons
are presented by Grillakis, Shatah and Strauss in [20]. The result about orbital stability of
a soliton can be improved in a result of asymptotic stability, as it was done in the works
by Martel and Merle [29,31,33], see also [17].
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A breather is a solution of (1.1), parametrized by «, 8 > 0, x1, x, € R that has the
following expression:
B sin(ay;)

B (1, x:x1,x2) 1= 2v/2 0y [arCtan(E m)]

where
Y1 :=x 468t +x1, Yyai=x+yt+xy, withs:=a®>—38%andy :=3a?— B>

It corresponds to a localized periodic in time function (with frequency «, and exponen-
tial localization with decay rate §) that propagates at a constant velocity —y in time. Like
solitons, breathers are smooth and decaying in space. Unlike solitons, breather’s velocities
can be positive, zero or negative. The parameters «, 8 are the shape parameters and x1, x5
are the translation parameters of a breather. Note that if we replace the parameter x; by
x1 + m/a, we transform B g(-,-;x1, X2) in =By g(+,; X1, x2) (therefore, we do not
need to talk about “antibreathers”).

Breathers were first introduced by Wadati in [42], and they were used by Kenig, Ponce
and Vega in [25] to prove that the flow map associated to (1.1) is not uniformly continuous
in H* for s < 1/4: the point is that two breathers with close velocities can be very close at
t = 0 and can separate as fast as we want in H® with s < 1/4, if « is taken large enough.

Breathers for (1.1) and their properties, as well as breathers for other equations, are
well studied by Alejo and Muiioz and co-authors in [2-6].

Let us singularize a result of H? orbital stability for breathers established in [3], and
improved to H ! orbital stability in [4]. In this last paper, a partial result of asymptotic sta-
bility is also given, for breathers travelling to the right only, with positive velocity —y > 0;
asymptotic stability for breathers in full generality is still an open problem.

When o — 0, By g tends to a solution of (1.1) called double-pole solution [43]; the
methods employed in this article as well as the proof of orbital stability made by Alejo
and Muiioz seem not to apply for this limit, which is expected to be unstable according to
the numerical computations in [18].

An important result regarding the long time dynamics of (1.1) is the soliton-breather
resolution [10]. It asserts that any generic solution can be approached by a sum of solitons
and breathers when ¢ — 400 (up to a dispersive and a self-similar term). Together with
their stability properties, the soliton-breather resolution shows why solitons and breath-
ers are essential objects to study. This resolution was established for initial conditions in a
weighted Sobolev space in [10] (see also Schuur [40]) by an inverse scattering method; see
also [40] for the soliton resolution for KdV. Observe that (1.1) breathers do not decouple
into simple solitons for large time (it is a fully bounded state as it is called in [3]); therefore,
they must appear in the resolution. The soliton-breather resolution is one of the motiva-
tions of the study of multi-breathers, which we define below.

There are works in the literature about a more complicated object obtained from
several solitons, that is, a multi-soliton. A multi-soliton is a solution r(¢) of (1.1) with

the following property: there exist 0 < ¢; < ¢ < --- < ¢y, K1,...,kny € {—1,1} and
X1,..., XN € R such that
N
li t)— Rei i (2,5 =0.
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This definition is not specific to (1.1) and makes sense for many other nonlinear dis-
persive PDEs as soon as they admit solitons. This object is introduced by Schuur [40] and
Lamb [26], see also Miura [36], where explicit formulas are given; these were obtained
by an inverse scattering method thanks to the integrability of the equation. Multi-solitons
were first constructed in a non-integrable context by Merle [34] for the mass critical NLS.
Martel [28] constructed multi-solitons for mass-subcritical and critical gKdV equations
and proved that they are unique in H'(R), smooth and converge exponentially fast to
their profile in any Sobolev space H®. Similar studies were done for other nonlinear dis-
persive PDEs. Martel and Merle [32] have proved the existence of multi-solitons for the
NLS in H!, Céte, Martel and Merle extended this construction to the mass supercritical
gKdV and NLS in [15]. Friederich and Céte in [14] proved smoothness, and uniqueness
in a class of algebraic convergence. Céte and Mufioz constructed in [16] multi-solitons
for the nonlinear Klein—Gordon equation. Ming, Rousset and Tzvetkov have constructed
multi-solitons for the water-waves systems in [35]. Valet has proved in [41] the existence
and uniqueness of multi-solitons in H! for the Zakharov—Kuznetsov equation, which gen-
eralizes gKdV to higher dimensions.

1.2. Main results

We prove in this article that given any sum of solitons and breathers with distinct velocit-
ies, there exists a solution of (1.1) whose difference with this sum tends to zero when time
goes to infinity. This solution will be called a multi-breather. Let us make the definition
more precise.

Let J e Nand K, L € N be such that / = K + L. We will consider a set of L solitons
and K breathers:

+ the breather parameters are o > 0, fx > 0,x?, e RandxJ, € Rfor1 <k < K.

« the solitons parameters are ¢; > 0, x; € {—1, 1} and xgl eRforl <l <L.
We define for 1 < k < K, the kth breather

(1.3) Bi(t.x) 1= Boy g (1. 139 1 X2 )
and for 1 <[ < L, the [th soliton
(1.4) Ry(t,x) := Ry (1. X3 0 )).

We now define the velocity of our objects. Recall that for 1 < k < K, the velocity
of By, is

(1.5) vl =~y = B — 302,
and for 1 </ < L, the velocity of R; is
(1.6) V] 1= ¢y
The most important assumption we make is that all these velocities are distinct:

(1.7) v,lz # v,lz/ forall k # k', vj #vj, foralll #1', v £ forallk, L.
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This implies for any two of these objects to be far from each other when time is large, and
this assumption is essential in our analysis.

It will be useful to order our breathers and solitons by increasing velocities. As these
are distinct, we can define an increasing function

vi{l,. Y= 2 1<k <KyU{ui,1<I<L}

The set {vy,..., vy} is thus the (ordered) set of all possible velocities of our objects.
We define P;, for 1 < j < J, as the object (either a soliton R; or a breather By) that
corresponds to the velocity v;. Hence, Py, ..., Py are the considered objects ordered by
increasing velocity.

We will need both notations: the indexation by k and /, and the indexation by j, and
we will keep these notations to avoid ambiguity.

We will denote by x; the centre of mass of P;, that is,

 if P; = By is a breather, we set x; () := —xgk + v t;
« if P; = Ry is a soliton, we set x; (1) := x , + v; 1.
We denote

L K J
(1.8) R=> R, B=) B.. P=R+B=) P,
=1 k=1 =1

We can now define a multi-breather: as solitons are objects which can be studied nat-
urally in A1 (R), it turns out that breathers are best studied in H?(R); therefore, it is in
this latter space that we develop our analysis.

Definition 1.1. A multi-breather associated to the sum P of solitons and breathers, given
in (1.8), is a solution p € €([T*, +00), H?(R)), for a constant T* > 0, of (1.1) such that

lim ||p(t) = P(®)]lg> = 0.
t—>—+o00

We will prove two results in this article. The first one is the existence and the regularity
of a multi-breather, the second one is the uniqueness of a multi-breather. The uniqueness
is established in two settings: in the case when all velocities are positive, and without
any assumption on the sign of the considered velocities. However, in the last case, the
uniqueness is obtained in a narrower class of functions.

Theorem 1.2. Given solitons and breathers (1.3), (1.4) whose velocities (1.5) and (1.6)
satisfy (1.7), there exists a multi-breather p associated to P given in (1.8). Moreover,

pECPRxR)NE®R, H°(R)) foranys >0,
and there is 0 > 0 such that for any s > 0, there exist Ag > 1 and T* > 0 such that
(1.9) Ip(t) — P)|gs < Ase™ " forallt > T*.

Remark 1.3. We will also show that 6 does only depend on the shape parameters of
our objects: &g, Br and c;. Moreover, if there exists D > 0 such that for all j > 2, we
have x;(0) > x;_1(0) + D, then A; and 7™ do not depend on xik, x(z),k’ x(()),l but only
on o, Bk, ¢; and D. Finally, if D > 0 is large enough with respect to the problem data,
then (1.9) is true for T* = 0. See Section 3.2 for further details.
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Theorem 1.4. Given the same set of solitons and breathers as in Theorem 1.2 whose velo-
cities satisfy (1.7) and vy > 0 (so that all the velocities are positive), the multi-breather p
associated to P by Theorem 1.2, in the sense of Definition 1.1, is unique.

Proposition 1.5. Given the same set of solitons and breathers as in Theorem 1.2 whose
velocities satisfy (1.7), there exists N > 0 large enough such that the multi-breather p
associated to P by Theorem 1.2 is the unique solution u € €([Ty, +00), H2(R)) of (1.1)
such that

1
lu@) — P®)|g2 = O(t_N) ast — +oo.

In [43], there exists a formula for a multi-breather, obtained by an inverse scattering
method, that in some sense already gives the existence of a multi-breather. However, the
proof of the Theorem 1.2 from this formula is rather involved.

In this paper, we give a different approach to prove the existence of a multi-breather,
and we clearly show that we have convergence of the constructed multi-breather to the
corresponding sum of solitons and breathers in H*, that this convergence is exponentially
fast in time and that the constructed multi-breather is smooth. To do this, we use the vari-
ational structure of solitons and breathers. This is why we give a proof that is potentially
generalizable to non-integrable equations, and that uses similar type of techniques as in
the proof of the uniqueness (the latter cannot be deduced from the formula). In any case,
uniqueness of multi-breathers is new.

In this paper, we adapt the arguments given by Martel and Merle [32], by Martel [28]
and by Cote and Friederich [14] to the context of breathers. To do so, one needs to under-
stand the variational structure of breathers, in the same fashion as Weinstein did in [45]
for NLS solitons. Such results were obtained by Alejo and Muiioz in [3]: a breather is
a critical point of a Lyapunov functional at the H? level, whose Hessian is coercive up
to several (but finitely many) orthogonal conditions, see Section 2 for details. As we see
from [3], the H? regularity level is the most natural setting to study breathers, and the H !
regularity level is natural for the study of solitons (as we see in [28,32]). One important
issue we face is therefore to understand the soliton variational structure at H? level, and to
adapt the Lyapunov functional in [3] to accommodate for a sum of breathers (and solitons).
Notice that arguments based on monotonicity may be adapted only if we suppose that all
the considered velocities are positive. Because [14, 32] are not based on monotonicity
(these are results for the NLS equation, which is not well suited for monotonicity), we
can adapt their arguments to obtain existence and uniqueness results for our case without
any condition on the sign of velocities. The uniqueness result obtained in this setting is
however weaker than the one that is obtained with monotonicity arguments.

1.3. Outline of the proof

The proof of Theorem 1.2 (the existence of multi-breathers) is split into two main parts:
the construction of an H 2 multi-breather and the proof that this multi-breather is smooth.

1.3.1. An H? multi-breather. Let us start with the first part. We consider an increasing
sequence (Ty) of R4 with T,, — +oo0, and for n € N, let p, be the unique global H?
solution of (1.1) such that p,(T,) = P(T},) (recall that the Cauchy problem for (1.1) is
globally well-posed in H?).
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We will prove the following uniform estimate.

Proposition 1.6. There exist T* > 0, A > 0 and 6 > 0 such that, for any n € N satisfying
T, =T
I pn(t) — P(t)|l g2 < Ae™®" forallt € [T*, T,],
With this proposition in hand, we can construct an H 2 multi-breather which converges
exponentially fast to its profile, which is the first part of Theorem 1.2, as stated below.

Proposition 1.7. There exist T*€R, A>0, >0 and a solution p € C([T* +o00), H*(R))
of (1.1) such that

Ip(t) — P(t)||g> < Ae™®"  forallt > T*,

Proof of Proposition 1.7 assuming Proposition 1.6. We show that the sequence (p, (T™))
is L.2-compact, in the following sense.

Lemma 1.8. For any ¢ > 0, there exists R > 0 such that

/ pA(T*,x)dx <e foralln € N.
[x|>R

An analogous lemma has already been proved on p. 1111 of [28], which is the proof
of formula (14) (and can also be found in [32]). The same proof works here. We need to
use Proposition 1.6 for 7T}, large enough and then make a time variation to obtain the result
in 7*. We can first find R that works for P?(fo) instead of p2(T*) for a fixed to > T*
large enough. From Proposition 1.6, we see that if we take 7y large enough, we obtain the
desired lemma for p2(fo) instead of p2(T*). To finish, with the help of a cut-off function,
we control time variations of f| x|>R p2(t) dx, where R is taken larger if needed. This is
why we obtain the result at r = T*.

As a consequence of Proposition 1.6 above, (|| p»(T*)||g2) is a bounded sequence.
Thus, there exists p* € H?(R) such that, up to a subsequence,

pn(T*) =~ p* in H?.
Thus, from Lemma 1.8, we have the strong convergence
pn(T*) — p* in L2,
Therefore, we obtain, by interpolation,
pn(T*) = p* inH!'.
Now, let us consider the global H! (even H?) solution p of (1.1) such that p(T*) = p*
As shown in [28], the Cauchy problem for (1.1) has a continuous dependence in H! on
compact sets of time. Let ¢ > T*. By continuous dependence, we deduce that p, (1) —
p(t)in H'. The sequence (p,(t) — P(¢)) is bounded in H?2, which admits a unique weak
limit, and so
pa(t) = P(t) = p(t) — P(1) in H?.
By weak convergence and from Proposition 1.6, we obtain

Ip(@) = P(@)| > < liminf|| p, (1) — P(0) || > < Ae™®".
n—+o0o

As this is true for any ¢ > T*, this completes the proof of Proposition 1.7. [
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It remains to prove Proposition 1.6, for which we rest on a bootstrap argument. More
precisely, we will reduce the proof to the following proposition.

Proposition 1.9. There exist T* > 0, A > 0 and 6 > 0 such that, for any n € N satisfying
T, >T* and any t* € [T*, Ty], if

1pn(6) = POl g2 < Ae™ forallt € [t*, Ty],
then 4
1Pn (@) = POlla2 < e % forallt € [t*,T,).
The proof of Proposition 1.6 then follows from a simple continuity argument.
Proof of Proposition 1.6 assuming Proposition 1.9. We define ¢, in the following way:

tr = inf{t* € [T*, T) : | pu(t) — P02 < Ae™? forall t € [t*, T,,]}.

n

The map ¢ +— || p,(t) — P(?)| g2 is a continuous function and || p,(T,,) — P(Ty)||g2 = 0.
This means that there exists 7* < t* < T, such that

I pn () — P()|| 2 < Ae™ % forallt € [t*, Ty],

Therefore, we have that
T* <t; <Th.
We would like to prove that ¢ = T*. Let us argue by contradiction and assume that
ty > T*. Proposition 1.9 allows us to deduce that

A
| pn(t) — P() | g2 < 56_9’ forall ¢ € [t¥, T,].

This means that
0tk

n

A _
12n3) = PG Na2 = 5%,
which means that ¢, could be chosen smaller, by continuity. This is a contradiction. ]
Hence, we are left to prove Proposition 1.9, which will be done in Section 2.

1.3.2. The H? multi-breather is smooth. We now turn to the second part of The-
orem 1.2, which is strongly adapted from [28]. The heart of this part is to prove uniform
estimates in H* for p, — P, for any s > 0.

Proposition 1.10. There exist T* > 0, 0 > 0, and Ag > 1 for any s > 0, such that for any
n € N satisfying T, > T,

I pn(t) — P(0)|lms < Ase™®" forallt € [T*, T,).

With this improved version of Proposition 1.6, one can prove, by the same reason-
ing as in the proof of the Proposition 1.7, that for any s > 0, p actually belongs to
L*®([T*, 4+00), H*(R)) and that the convergence of p(¢t) — P(¢) occurs in H* with an
exponential decay rate. More precisely, the following holds.

Theorem 1.11. For any s > 2, we have that p € €([T*, +00), H’(R)) and, furthermore,
Ip(t) = P(O)llas < Ase™® forallt > T*.

It remains to prove Proposition 1.10, which will be done in Section 3.
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1.3.3. The uniqueness result. We denote p the multi-breather constructed in the pre-
vious sections, the existence of which is established. Let u be a solution of (1.1) such
that

(1.10) lu—Pllg2 =0 ast — +4oo0.

Equivalently, we have
lu—pllgz =0 ast — +oo.

‘We denote
zZ:=u—p.

The goal is to prove that z = 0. We prove it in two configurations: when all the velocities
are positive (Theorem 1.4), and without any assumption on velocities (Proposition 1.5),
but in this last case we need to assume a stronger convergence than given in (1.10).

The proof of Theorem 1.4 will be carried out in two steps.

We start with Proposition 1.5, which is adapted from [14]. For this, we do not study
u — P anymore, we deal only with z = u — p, the difference of two solutions of (1.1),
which is much more precise than ¥ — P. Thus, we do not modulate parameters of the
solitons, as it is needed in other parts of the proof, in order to deal with the soliton part of
the linear part of the Lyapunov functional, and we avoid some difficulty. In order to prove
our inequalities, we need again to use coercivity of the same type of quadratic forms. In
order to do this, we replace z by 7 = z + Z/!=1 cjKj,where K;, j =1,...,J,isawell
chosen basis of the kernel of the quadratic form, in order to have Z orthogonal to any K.
An important idea is to use slow variations of localized functionals with adapted cut-off
functions of the form ¢( xg—t”t), which provides an extra O(1/¢) decay when derivatives
fall on the cut-off, and ultimately explain why algebraic decay comes into play.

In the context of Theorem 1.4, we actually prove that
vi=u—P

converges exponentially fast to 0. This is the purpose of Proposition 4.10, which uses
some ideas of [28]. Due to Proposition 1.5, we deduce immediately from there that an
exponential convergence is trivial, that is, z = 0.

To prove Proposition 4.10, we use monotonicity properties combined with the coer-
civity of an energy type functional very similar to that used for the existence result. This
is why we also need to modulate, and the choice of the orthogonality condition is essen-
tial: it allows to bound linear terms in w that appear in the computations. An issue of the
mixed breathers/solitons context is that one cannot build a functional adapted to all the
nonlinear objects at once, as it is done in [28]. Instead, we carry out an induction and we
argue successively around each object, soliton or breather, separately.

1.3.4. Organisation of the paper. Sections 2 and 3 are devoted to the proof of the exist-
ence of a multi-breather. Proposition 1.9 is proved in Section 2 and Proposition 1.10 is
proved in Section 3. Section 4 gathers the proofs of the uniqueness results. Section 4.1 is
devoted to the proof of Proposition 1.5, and Sections 4.2 and 4.3 are devoted to the proof
of Theorem 1.4.
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2. Construction of a multi-breather in H?(R)

We set

Bi=min{fr,1 <k < K}U{J/c/,1 <] <L},

2.1 . .
Ti=min{v; 4 —v;, 1 < j <J =1},

Our goal in this section is to prove Proposition 1.9.

2.1. Elementary results

Let us first collect a few basic facts that will be used throughout the article. One may check
an exponential decay result for any of our objects.

Proposition 2.1. Let j = 1,...,J, n,m € N. Then there exists a constant C > 0 such
that for any t,x € R,
|97 8™ P (1, x)| < CePlx—vitl,

Corollary 2.2. Letr > 0. For t and x such that v;t +r < x < vji1t —r, we have that
|P(t.x)| < Ce™P".
The same is true for any space or time derivative of P.
We will also use the following cross-product result.
Proposition 2.3. Leti # j € {1,...,J} and m,n € N. There exists a constant C, that
depends only on P, such that for any t € R,
)/3;"Pi 3;Pj‘ =< Ce_ﬂ”/z.

There is also an orthogonality result for breathers that will be useful.

Lemma 2.4. Let B := B, g be a breather. We denote By := 0y, B and B, := 0y, B. Then

/3312/33220.

Proof. Note that Span(B;, By) = Span(By, B;). Therefore, it is enough to prove that

/BBX=/BBt:O.
/BBX=%/(BZ)X=0.

_1 2 _ld 2
/BB,—EﬂB)t—EE B2 =0,

by mass conservation and because a breather is a solution of (1.1). ]

Firstly,

Secondly,



Uniqueness of multi-breathers of the mKdV equation 1257

2.2. Almost-conservation of localized conservation laws

From now on, we will fix n € N. This is why, for the simplicity of notations, we can
write T for T, and p for p,. The goal will be to find constants 7*, A > 1 and 6 that do
not depend on 7, nor on the translation parameters of the given objects, and that will be
chosen later (7* will depend on A and 8), such that Proposition 1.9 is verified. We will
take t* € [T*, T'], and we will make the following bootstrap assumption for the remaining
of the article:

(2.2) Ip(t) — P(0)||g2 < Ae™%" forallt e [t*,T],
where p(T) = P(T).

Remark 2.5. We have the following property for solutions of (1.1): there exists Co > 0
such that for any solution w of (1.1), w is global and

lw()| gz < Col|lw(T)||g2 forallz € R,

Therefore,

J
Ip@ll2 < Col P(Tlg2 < Co Y | Pj(T)|g2 < CoC  forallt € R,
j=1

where C is a constant that depends only on the problem data (because the H*-norm of
solitons or breathers can be easily bounded).

Let 6 := Bt/32. Let min(1, t/4) > § > 0 be a constant to be chosen later. This part
of the proof is adapted from [32]. Let ¥ (x) be a C* function such that

0 forx < -1,

0<y <l d v >0 R, =
=¥= and -y = on v {1 forx > 1,

and satisfying, for a constant C > 0, for any x € R,

W' @) <Cylx), WE)P<CcU-y(x) and [¢"(x)]¥? < Cy'(x).

Note that it is enough to take v equal to (1 + x)* on a neighbourhood of —1 and equal
to 1 — (—1 + x)* on a neighbourhood of 1. These conditions on v will be needed for the
proof of Proposition 2.19.

Forany j =2,...,J,let

1
0j = E(Uj—l + vj).

Forany j =2,...,J — 1, let

2.3) i (1.x) = w(x ;fjt)—‘ﬂ(%fﬂ)’
and let
24) g1t x) = 1- w(x_g—;m) ¢s(t,x) = ‘”(xjs—;m>
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so that the function ¢; corresponds obviously to the object P;. We will also use the nota-
tions ¢; and (p}g , which represent the same functions, and where ¢; corresponds to the

soliton R; and (p}c’ corresponds to the breather By.
We will also denote, for j =2,...,J —1,

(2.5) 01 (t.x) = W/(x —Slajt)_w,(x—gﬂt)’
and
(2:6) pr1(t.x) 1= —l/f/<x _Gﬂ), @17, x) = w,(x _S;TJI)

Of course, the notations (p{’ P (pf ] OT @2, will be used with similar obvious definitions.
We have that, for j =1,...,J,

3/4
o1l < Co}'.

Remark 2.6. If § < /4,

ojt+68t ojt+8t 1
/ e—Zﬂ\x—vjt\ dx = e—2ﬂvjt/ e2ﬂx dx = ﬁe—Zﬂvjteﬂ(vj+vj_1)te2ﬁ8t

—0oQ —00

< Ce—ﬂ‘rt eZﬁSt < Ce—ﬂ‘[t/Z’

and

+o00
[ e—2ﬁ|x—vjt| dx < Ce—ﬂrt/Z
gj41t—6t

J

for the same reason, and if i # j,e.g.,j > i,

ojy1t+68t ) . 280; oj+11+8t )
/ e 2Bl—vitl gy — ﬂv’t/ e 2Px gx
o

jt—0t ojt—8t
< % o2Bit =B+, 2880 =BTt 2B _ CpBTl/2,
Finally, we set, forall j = 1,...,J,

1
M0 = [ 370000 dx = [P0
2.7)

1
E;(t) == /(%pi(t,X) - Zp“(t,X))wj(tVX) dx =: E;[p](®).

The notations M, M?, Ef. E? will also be used.

These are local versions of the mass and the energy of the solution p considered (loc-
alized around each breather or soliton). We will prove the following result for the localized
mass and energy.

Lemma 2.7. There exist C > 0 and T} := T, (A) such that if T* > T, then for any
j=1,....J,andanyt € [t*,T],

C
[M;(T) = M; (0] + | B (T) = E;(0)] = 55 A%,
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Proof. We will use the results of the computations made on the bottom of p. 1115 and
p- 1116 of [28] to claim the following facts:

d 1 2. 3 5,3 4\ 4o "
dlz/pf—/(—sz+zp)f /pxpf,
d r, 14, 1 332 2 22| ¢ ”
1 I:pr_zp ]f: I:_E(Pxx+l7) —DPxx +30xp ]f = [ Pexpx S

where f is a C? function that does not depend on time.
For M (t), which is a sum of quantities of the form 2 5 Ip w(x it ), see (2.7), (2.3),
we compute

2 [P () = [ g ()

“p [ ) =3 [y (557)

The function w’(x_s—(tm) is zero outside of Q;(¢) := (=0t + o,t, 8t + o;t). Thus, for
x € Qj(t), |x/t| <loj| +|8] <|oj| + 1, this means that |x /7] is bounded by a constant
(that depends only on the given parameters). We can deduce that

d 1 ps c
Ei/pzw(c Sf]l)‘ = %(/Qj(t) e +fszj(t) p4+/ﬂ,~(r) p2>'

‘We bound ffz,- @ p*, using the Sobolev embedding and Remark 2.5, as follows:

/ p“snpniw[ pzscnpn;p/ pzsCf P
Qi) Q0 Q; () Q; ()

J ] J

Thus, for any ¢ € [t*, T], we have

d 1 s c
EE[”ZMX &Gﬂ)) = E([Qj(t)pi+/gj(t)l’2)‘

For E; (), which is a sum of quantities of the form f[% Di— p4]1/f(x ot ), see (2.7)
and (2.3), we compute

o [Gr- i ()
1

= 57/ (=3 e+ 27 = 302 |0 (52

g [ ey (52) = [l 3l (O57)

We deduce from this, by using similar arguments as for the mass, that for any ¢ € [t*, T,

—0; c
T o = S e )
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Now, we write p(t) = P(t) + (p(¢t) — P(t)) and use the triangular inequality to obtain

/ (P2 + P2+ 20 52/ (P24 P2+ P2) + 2| p— P|2a.
Q;(2) Q;(?)

We have assumed that || p — P||§_I2 < A%e729% 50 we need to study P on Q;(t). The
following computations work also for the derivatives of P:

/;2-0) /sz (t)(z Pt x)) dx = Z / P (2, x) Py (2, x) dx

1<m,l<J

<c ¥ / o—Blx—vmtl y—Blx—uitl g

1<m,l<J 2;()

where we used Proposition 2.1.
We assume that m > j (we argue similarly if m < j — 1). Then

x €Qj(t) < Ot +o;t <x <0t+ojt
& 0t +(0j —vm)t S X — vyt <6t + (0 —Um)t.

We note that 6; — v, < —7/2 < 0. We can thus deduce from the condition on § that
0j —Vm + 8 < —1/4 < 0. We deduce that x — v, ¢ is negative for x € Q;(¢). Similarly,
if m < j —1,then x — vyt is positive for x € Q;(¢). We will now make calculations for
different cases. If m,l < j —1,

/ o—Blx=vmt| g=Blx—vitl g < / o Bl—vmD) y=BG—uit) g
Q) Q; (1)

1
_2/3

< Ceﬁt(—vj—v‘,'fl+vm+v1+28) < Ce—ﬂ‘tt/Z.

ﬂt( Vi —Vj—1+Vm+vr) (€2B8t 2/38t)

Similarly, it m, 1 > j,
/ e—Blx=vmt| y=Blx—vitl g < Co—Brt/2,
Qi(1)
And,ifm < j—1land! > j,

/ e—mx—vmne—ﬂ\x—vmdxff o~ Be—vmD) B—uit) g
20 2;(0)

< 281eP1m=vD) < CohTI/2,

/ PZ < Ce*ﬁ‘rt/2’
Q; (1)

and the same is valid for the derivatives of P.

Thus,
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Thus, for ¢ € [t*, T],

d 1 5, (X —0jt d 1, 1, X —ojt ‘
Z‘dzzfp v 51 ))+‘dtf[2px 4’ ]W( 51 )
C 2 —20t C —Btt/2 c 2 —20ty ,—206t c 2 —20t
EEAG,’ +E€ T EE(A + e )€ E(SZ_tAe .
Thus, for j = 1,...,J,t € [t*,T],
T C C T
M) =My + 1B = B0 = [ oate ™ ds = o [T e s
: : : : . 325 )
C o2l 560 o0t C 2 20
= EA %( —e ) < EA e . n
2.3. Modulation
Lemma 2.8. There exist C > 0 and T = T (A) such that if T* > TS, then there

exist unique C' functions xy;: [1*, T] > R, xo4:[t*,T] > R, for 1 <k <K, and
Xo1.€01:[t*.T] = R, for 1 <1 < L, such that if we set

e(t,x) = p(t,x)— E(t,x) — E(l,x) = p(t,x) — ﬁ(l,x),
with

K
B(t.x) =) Br(t.x). Bi(t.x) =By g, (t.x:x])  +x14(1). X3 1 +x24 (1)),
k=1

L
R(t.x) =Y Ri(t.x). Ri(t.x) = k1Qu; 1o (00 (X = xg + X0, (1) — c10),
=1

and

J
P(t,x):= R(t,x)+ B(t.x) = ZP}(r,x),
j=1

where there is the usual correspondence between i;j and Ek or El, then () satisfies, for
anyk =1,...,K,anyl =1,...,Landanyt € [t*,T],

/ Rie) Jor ) = f 0 Ry (1)e(t) Jor () = 0.
f D, B (0)e(0) /gl (1) = [ D, Be(t) £(t) [l (1) = 0.

Moreover, foranyt € [t*, T},

(2.8)

K L
29)  e®laz + Y (xia @] + 2. @) + D _(1x01()] + lcos()]) < CAe™

k=1 =1
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and
K L
2.10) > (X} O]+ x5, 0D + D (x5, O] + leg () < Clle@) ]2 + Ce™®.

k=1 I=1

Finally, B
p(T) = P(T) = P(T)
and
e(T) = x0,1(T) = x1,k(T) = x2%(T) = cou(T) = 0.

Proof (see, for example, [13]). Let
Ft : LZ(R) x RZK x RZL — R2K+2L fort € [t*, T]

be such that
(wvxl,k’XZ,k’XO,l»CO,l) = gob(th) axlBak,ﬂk(t7X;x;)k + xl,k’xgk + x2,k)6’
k » s
b(t,x)0,,B t,x;x? 0
G 1, X2 Otk,ﬁk( D XX g T X1k X g T X2k) €,
/ 0
[ @7 (1, x) axK,QCWO,, (x — X + X0 — crt)e,
0
/ VO €, x) k1 Qcpeq, (X —Xg; + Xo, —clt)e),

where

K
€ =w— B (t 3 3 g o 4 )
T mBm "x’xl,m xl’m’x2,m X2,m
m=1

L
_ Z kn Qen+con (X = XQ.5 + Xon — Cnl).

n=1

We observe that F; is a C! function and that F;(P(¢),0,0,0,0) = 0. Now, let us
consider the matrix which gives the differential of F; (with respect to x1 , X2k, X0,7, Co,1)
in (P(¢),0,0,0,0) (we consider diagonal and extra-diagonal terms for each block):

Bl:,k Bl?,k X X X X X X
Bg’k Blf’k X X X X X X
X X B,i/,k/ Bl?/,k/ X X X X
X X B;,,k, Bl%’,k’ X X X X
bf: = X X X X Rll,l R;‘J X x |’
X X X X R?, Rlz,l X X
X X X X X X Rllf,l’ R?’,l’
X X X X X x  Rp, Rj,
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where

Bli,k = _/(axlBak,ﬂk)2 ¢II;’ Bl?,k = _/(8X2Bak,ﬂk)2 (p]l;’

B, = _/ax, B 02 Bag i 00

REyi= = [0:000807 Jol. RSy i= = [ 000808200681
Ry i= =50 [ 0a080(0a 8 + 8,000 081) ol

Ry i= =50 [ 8:00080(Qa 08 + 8,004 081) ol

T3 WA L)

denoting y(()),l =x - x(()),l —qt, an.d sign “x iqdicates equnentially decaying terms
when ¢ — +o00; and where we consider variables in the following order: x1,1, X2,1, X1,2,
X2,2,X1,3,X2,3,...,X1,K,X2,K+X0,1,€0,1- - - - » X0,L Co,L, and we order the coefficients of
the function in a similar way. This is a matrix with dominant diagonal blocks.

Note that Bli,k is exponentially close to — [(dx, Bak,ﬂk)2, because if P; = By is a
breather, then

ojt+8t +oo
/(8x13(xk,ﬂk)2(1 Y, (0115) =< / (axlBak,ﬂk)z +/ (axl Bak,ﬁk)z
—o0

~
~

ojy1t+68t
ojt+8t +oo
fcf e—2ﬁ|x—vjt| +/ e—2ﬂ|x—vjt\
—00 O’j+1t+5t
< Cvefﬁ‘rt/Z7

and the same is true for the other dominant diagonal terms of the matrix (we can get rid
of ¢s).
Therefore, the determinant of the matrix is exponentially close to

K
det(DF;) = H(/(axl Bak,ﬂk(th;x?,k’xg,k))z /(8szak,/;k(t,x;x?,k,x(z),k))z
k=1

- (/ axlB“kaﬂkBXZBakaﬂk)z)

L
1
x 1=1_[1<2_cl [Qc, (70,)(Qe, (991 +0,0x Oc, (yg,,))/(ax 0. (yg,l))Z),

because [ Oc, (v9)3x Qe (vg,) dx = 0.
By the Cauchy—Schwarz inequality and the fact that

L0 0 L0 0
Oxy By i (1, X3 X7 o X5 1) and  Ox, By g, (1, X5 X7 g X5 1)

are linearly independent as functions of the x variable, for any time ¢ fixed, we see that
the first product is positive. Since each member of the product is periodic in time, the first
product is bounded below by a positive constant independent from time and translation
parameters.
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For the second product, by translation of the variable in the integrations, for any time #
fixed, we see that we can replace yg ; by x. Then, by integration by parts,

/chl(x)Bchl(x) dx = —%[ch(xf dx.

By scaling, if ¢ denotes the soliton with ¢ = 1, i.e., ¢ = Q1, then

[or=vafe [a0y=c"[e
Therefore,

1
@.11) e / 00 (78 Qe 601) + 78105 Qe (V2))) / (0 0e, (Y2))?

1 1
= ZCI/QZ/(Qx)ZZ g minfen, 1< EL}/qZ/qi-

This means that the second product is bounded below by a positive constant independent
from time and translation parameters.

Therefore, if 7, is large enough, the considered matrix is invertible.

Now, we may use the implicit function theorem (actually, we use a quantitative version
of the implicit function theorem, see Section 2.2 in [11] for a precise statement). If w is
close enough to P (t), then there exists

(2.12) (X1, X2,k Xo,1, Co,1)
such that
Fr(w, X1k, X2k, Xo,1, €0,1) = 0,

where (2.12) depends in a regular C! way on w. It is possible to show that the “close
enough” in the previous sentence does not depend on ¢; for this, it is required to use a
uniform implicit function theorem. This means that for 77" large enough (depending on A4),
Ae™?" is small enough for ¢ € [t*, T], thus for ¢ € [t*, T], p(z) is close enough to P(r)
in order to apply the implicit function theorem. Therefore, we have, for ¢t € [t*, T], the
existence of x; x (t), X2 x(¢), X0, (t) and ¢ (¢). It is possible to show that these functions
are C! in time. Basically, this comes from the fact that they are C! in p(¢) and that p(¢)
has a similar regularity in time (see [13] for more details).

Now, we prove inequalities (2.9) and (2.10). We can take the differential of the implicit
functions with respect to p(¢) for ¢ € [t*, T]. For this, we differentiate the following
equation with respect to p(¢):

Fi(p(@). x1,k(p(1)), X2, (p(1)). X0, (P(1)). o1 (p(1))) = 0.

We know that the matrix that gives the differential of F; (with respect to xy g, X2k, Xo,;
and cg ;) in

(P(0), X1, (p(0)), X2k (P(1)), X0,1 (P(1)), co.1 (p(1)))
is invertible and its inverse is bounded in time (from the formula giving the inverse of a
matrix from the comatrix and the determinant). The differential of F; with respect to the
first variable is also bounded. Thus, by the mean value theorem,

Ix14] < Cllp—P| < CAe™®".

The same is true for x, x, xo; and cg ;.
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By applying the mean value theorem (inequality) for Q., with respect to xo; and cg;
or for By, g, with respect to x1 x and x; , we deduce that

1P;(2) — P; ()| g2 < C(1x1.4(0)] + %24 (0)])
if P; = By is a breather, and
1P (1) — P; (1) g2 < C(|x00 ()] + |cos(0)])

if P; = Ry is a soliton.
Finally, by the triangular inequality,

le@)llzz < I p) — P@) gz + |1 P(t) — P (@)l g2
K L
< ||p<r)—P(r>||Hz+c(Z<|x1,k(r)|+|xz,k(r)|>+2(|xo,l(r)| + |Co,l(l)|))
k=1 =1

<Clp@)—=P@)|lg2 < CAe™ Y

This completes the proof of (2.9).

For (2.10), we will take time derivatives of the equations (2.8). From now on, we write
Ekl for 0y, Ek and Ekz for 0, Ek. Firstly, we write the PDE satisfied by ¢ (knowing that
p,Bi1,...,Bg,Ry,..., Ry are solutions of (1.1)):

K K
06 = —Exxx— [ (s +36‘ZP +3 Z P; P; )} D X OB =) Xy () Bra
k=1 k=1

i,j=1

L L
- c J(t) - - -~~~
_Zx('),z(t)Rlx - § 2 + cor ) j'rc ) (R; + you(t)Ryx) — E (P P; Pj)y,
I=1 I=1 ! 0./ h#iori#j

where yg;(¢) == x — xg ; + Xo0,1(¢) — c;t. Now, we will take the time derivative of the

equation [ §k1 8,/90,? = 0 (and perform integration by parts):

e = [B) e - [Bu X BBPJob+ 5,0 [Beeo}

h##i or g#h
1 d o
1,k
+ 55 Bkla(s +382P +3 ZP;,P) :
i=1 hi=1 Pr
+ [Bse(2 +3ezp +3 thp),/w;;
hi=1
b
Y1k
B B ’
25l2/ k1€ 28l/ k1Exx —F—
\/ Ve
b
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K K
= in,m([) /Bleml\/fﬂ,f + Z Xy m(0) | Bi1Bmay @}
m=1 m=1

L L /
~ ~ cp (1) ~  ~ ~
+ ) x| BeiR P> 2 By (Ru+You(0)R b,
n:lx"’"() VT e a(e, +e0n(0) 1 (Rntyon (O Rn )y

Similarly, taking the time derivative of | Ekzs,/ go,l(’ =0,

(2.14) —/ B}),, \/E /Bk2 > (PhPPg)xf+x2k(z)/Bkzzsf

h#i or g#h
! B, 8(8 +3SZP +3ZPP)¢?
28 “ i=1 h,i=1 ! §01€
J J
+ [Boe(2 +3e Y B3 Y0 B ol
i=1 hi=

b
+%8[/Bk25xx¢1_’kb_zi&/3k2x3x qol]; +%81/Bk2xx5 l,b
Vol Vol Vol
1 5 (pi),k ’ >3 b
_W/Bk2€x\/7 +xl,k(l)/Bk128\/;
k

K

K
Z 1,m(0) | B2 Bm1 <P1€ + Z Xy (1) | B2 Bma <.0;€
m=1 m=1

L
+ 2% /Bsznxf Y 0+"c(0,)1 5 [ Bt yon R
Similarly, taking the time derivative of f R, x(t)a(t)\/g)_ls =0,
2.13) —/ N ) 0, /(R}x+yo,z(t)ﬁzxx>e\/?;
(c1+co,1 (1))
+x01(z)/1e,xxe o +28tfR1x (a +3EZP +3 thp) a

i=1 hi=1 @i

J J
b [Rive(2 433 Bt 3 Y BB) ol

i=1 hi=1

s
1,

T T 10 1 (= 1
__— IR L~ | R _ IR JLL
2812 Ix €X \/(P—ls 2&/ Ix €xx \/(/)_; 28[/ Ixx €x \/(P_Zs
L e (s T
+ Z—&/Rlxxx Eﬁ — [ Rix Z (P P;i Pg)x (0;

h#i or g#h
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L
_ ot _ Ca® [ =
- Z On(t)/Rlanx + 2(Cn+C()n(l)) Rix(Ry +y0,n([)Rnx) %

£ 3 ) [ BB Joi + 5 50 [ FrsBna
m=1 m=1

Finally, taking the time derivative of | ﬁ;e,/gols =0,

Ol(t) > n K
(2.16) —f \/7+ 3@ + o) (R +y0,l(f)Rlx)8\/Z

+X6,l(l)/§lx5\/¢7;+$ Rls(s +3£ZP +3 Z PhP) ls

i=1 hi=1 ¢
+fR1xe(€2+38ZP,~+ ZPP)\/7
i=1 i=1

1 @1 1 ~ 9 1 ~ 7
ll+ Rlxx 1,/ ll

—— [ R
2612 fof 281 fof 281 Ix xS /o]
7 / ~ ~ ~ ~
281/Rlxx8 L R, Z (PhPin)xV(p}Y

h#i or g#h

L
Z (t) leRnxf + 2(6’ Cj_ncf) )(l)) El(ﬁn + yo,n(t)ﬁnx)\/;f
+ Z X’l,m(t)/ﬁzﬁml\/;,w Zx/z’m(t)/ﬁlﬁmz\/;f_
m=1 m=1

By Proposition 2.10 below (that follows from the first part of the lemma we prove) and
its corollary, several terms of equalities (2.13), (2.14), (2.15) and (2.16) are bounded
by Ce™%"; other terms are O(||¢]|.2). We recall that O(||¢]|.2) < CAe~%". From the basic
properties of ¢; (see Section 2.2), ¢1,;/,/@; is bounded. Because of the compact support
of ;, T¢1,j//®; is bounded independently of x and ¢. Using these bounds, and after
several linear combinations, we obtain the desired inequalities. [

Remark 2.9. As a consequence of Lemma 2.8, there exists a constant C > 0 such that,
forall ¢ € [t*,T],

K L
D (kO] + P2 OD + D (1xX0s(D] + leo (1)) < CAe™T".

k=1 =1

This means that if we take 75" eventually larger (which we will assume in the following
of the article), we may extend Proposition 2.1 to 13} in the following way, by integration
of the bounds given by modulation (the constant C is a bit larger in a controlled way, we
write /2 because the shape of the solitons is a bit modified in a controlled way).
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Proposition 2.10. Ler j = 1,...,J, n € N. If T* > T, then there exists a constant
C > 0 such that for any t,x € R,

~ s
9B (1,)] < Ce=Sheui
We will also use that any [|3” P; || 2 is bounded by C.

Corollary 2.11. Leti # j € {l,...,J}and m,n € N. If T* > T, then there exists a
constant C that depends only on P such that for any t € R,

)/a;ﬂﬁi 0P| = ceuls,

2.4. Study of coercivity

In [3], the Lyapunov functional that was introduced to study the orbital stability of a
breather is the following conserved-in-time functional:

F[pl(t) +2(B* — &®) E[p](1) + (& + B> M [p](0).
The functional that we will consider here is adapted from the latter. For ¢ € [t*, T], we set
K

Hpl(t) := Flpl(t) + Y (2B — ) ELLPI(1) + (@F + B7)* M [p)(1))

k=1
L
+ 37 e EfIpl0) + 2 M7 [p)(0)).
=1

For simplicity of notations, for j €{1,...,J}, a; will denote o if P; is the breather By

or 0 if P; is a soliton, and b; will denote ﬁk if P; is the breather By or cl 2 if P; is the
soliton Rl With these notations, we may write

J
HIpl() = FIpl() + Y _(2(b7 —a}) E;[p)(t) + (aj + b})> M;[p](1)).
j=1

We would like to study locally this functional around the considered sum of breathers
and solitons. The aim of this section will be to prove the two following propositions.
Proposition 2.12 (Expansion of H? conserved quantity). There exists T, > 0 such that
if T* > T/, forallt € [t*, T], we have that

J

Hplt) =Y (F[P)(1) + 2(b} — a})E[P;](t) + (a} + b)) M[P;](1))

j=1
+ Halel(t) + O(le()[32) + 0™ |e(0) ]l g2) + O(e72%"),

where

1 5 [~ 5 [~ ~ ~ 15 [ ~
H,[e](t) := E/S)ZCX—E/PZS)ZC#—E/szez—{—S/PPxx82+T/P“sz

+Z(b}—a})(/e§<p]~—3/1)282%) Z(“ +b2)% - /82%.
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Proposition 2.13 (Coercivity of H»). There exist j > 0 and Ty = T3 (A) such that if
T* > T, then we have, for any t € [t*,T],

H[)(0) = plle() 2 - ﬁkf( / eBi\for)
=1

Propositions 2.12 and 2.13 will be used in the next concluding subsection to prove
Proposition 1.9.
Firstly, let us prove Proposition 2.12.

Proof of Proposition 2.12. We would like to compare [P + €](t) and H[P]() (recall
that p = P + ¢) by studying the difference asymptotically when ¢ is small. First, let us
see how we could simplify the expression of #[P](¢).

Claim 2.14. If T* is large enough, for all z € [t*, T'], we have that

J
HIPY(e) = Y (FIPj)(t) + 2(b] — a)) E[P;](t) + (a} + b7)>M[P;](1)) + O(e~>").
j=1

Proof. We prove that, for ¢t € [t*, T,

J
|JeP) = Y (FIP)] + 2057 — a])EIP)) + (@} + b)*MIP))| = Ce™".
j=1

Let us compare F; [ﬁ] and F[f)j]:
51 152 S35, 15
Fi[P] = f(szx — S PP+ 2 P%)g (1.3 dx.
~ 1~ 5~ ~ 1~
FIP,] = /(Eszxx - PP+ ZP-6> dx.

We compare the corresponding terms of these equalities. Let us start with the first one:

[P - P
= [Balt-genl+ Y [1PnPadee
(r,9)#(, 1)
B B
< C/e_f‘x_”f”eﬁ”/”“ —gi(t,x)|dx+C Z/e_flx_”"tleﬁ”/ﬁ‘ﬂj(t,x) dx
i#]

ojt+8t +o00 8 oj+11+8t P
=< Ceﬂ”/32[</ +/ )e—flx—vﬂl dx + Z/ ezl dx]

—00 0j+lt—5[ itj G'jt—(?t
< Ce—ﬁ‘rt/lG’

by Proposition 2.10 and Remark 2.6. For the other terms of the difference to be bounded,
we reason in a similar way. This completes the proof of the claim. ]
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Therefore, when we will be able to compare J[p](¢) and K [P](r), we will also be

able to compare J[p](t) and

J
Y (FIPA@) + 267 — a}) E[P})(0) + (a? + b2 M[P})(1)).

j=1
We compute the Taylor expansion of #[p] = H[P + ¢]:

(2.17) Jf[ﬁ+8]=%/(ﬁ+8)§x—g/(ﬁ+8)2(ﬁ+8)§+i/(ﬁJrs)(’

" é[@;_a;)( [ oo -5 [#+ot)]

~

+3 [(af + b})zé [(ID‘ + E)Z(p_/]

|
i
™
N
|
—
~
N
w0
+
—
~
[=)}
+
—
P
~
&
™
+
W
=N \
™
« L
N
)

—Z/ﬁxsq)j,x—Z/ﬁ%qoj +/8)2C(pj—3/ﬁ282(0j)

J
1, [~ _
+;(a?+bf)25(/P2¢j +2/P€<pj +/82¢,).

We can observe that the sum (2.17) is composed of Oth-order terms in ¢, of 1st-order
terms in ¢, of 2nd-order terms in &; 3rd and larger-order terms in & are contained in
0(||8(t)||;_12). The sum of the Oth-order terms is actually J[P]. The sum of 2nd-order

terms in ¢ is H,[g](1).
Let us study more closely the 1st-order terms:

~ ~~ ~ o~ 3 ~
H, :/P(4x)8+5/PPfs+5/P2Pxx8+E/PSs
J B B J B
+ 2:(1912 —a]?) (Z/szx(pj — 2/P3s<pj) + Z(af + b]z)Z/Papj.
j=1 j=1
From [3], we know that a breather A = A, g satisfies for any fixed 7 € R, the following

nonlinear equation:
3
Ax) —2(B* = o®)(Axx + A%) + (@® + B?)?A + 5442 + 547 Ay + EAS =0.
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This equation is also satisfied for 4 = By with @ = o and B =prforanyk=1,...,K
(the shape parameters of a breather are not changed by modulation).

For a soliton Q = R, ., we know from Qyx = ¢Q — Q3 that Q satisfies, for any fixed
t € R, the following nonlinear equation (see Appendix A.1):

Q@m—dem~+Q%+w2Q+5QQ§+5Q%Lx+§Q5=0

This equation is not exactly satisfied for Q = ﬁ; forany / =1,..., L (the shape paramet-
ers of a soliton are changed by modulation). The exact equation satisfied by Q = R; is

OQux) —2¢1(Qxx + 0%) +¢7Q +5003% +50%Qxx + %Qs
=2¢01(t)(Qxx + Q3) —2c1¢0,0(1)0 — CO,I(I)2Q.

We will compare H; and

J J J
~ ~ ~ ~ o~ 3 ~
H| ::/P(4x)e+52/PjP]-2x8+5Z/P]-2xijxa+EZ/PJ-Sa
Jj=1 Jj=1 Jj=1
J _ _ J _
—2Z(b}—a})(/P,~xxe+/Pj3e) +Z(a}+b})2/f>ja
j=1

Jj=1

Firstly, let us compare [ PP2¢and Zle / P; }'5']_2x &

J J J
~ ~ ~ ~ 2 ~ ~ ~ ~ o~
/PPX%;:/(ZPJ)(E Pi)e=3 :/P,-szxs+ 3 /PhPixP,-xs.
ji=1 ji=1 =1 h#iorid)

To succeed, we need to find a bound for a term of the type | ﬁh Py 13} x & Where h #£ i or
i # j. We can perform the following upper bounding (where, without loss of generality,
we suppose thati # j):

‘/ﬁhﬁixﬁjxg‘ < Ceﬂn/le/e—%\x—vm o~ l=vitl g
< C||8||Looeﬂ‘rt/16/e—%|x—vil‘\e—%|x—vjt| < C||8||H28—ﬂrt/8,

by Sobolev embeddings and Proposition 2.3.

The bounding is quite similar for [ P2P,.eand i P5¢. We observe that — / f’] rx €=
[ Pjx &x. To compare [ Pyexg; and [ Pjx ex, and for similar terms, we can use com-
putations that we have already performed at the beginning of this proof. Therefore,

)/ﬁxgxﬁoj_/ f)jxgx
R

This enables us to bound the difference between H; and H {:

—Btt/16

< C|le|l e

|Hy — H{| < C|le(t)|| g2ePT/1C.
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Now, because our objects are not only breathers, H| is not equal to 0. Actually, we have

L L L
H| =22c0,1(t)(/Rlxxs+/‘Rl38)—2Zc1c0,1(t)/R18—Zc0,1(1)2/Rls.

Now, we introduce

L
H{/ zzzco,l(t)(/Rlxxe,/gaf +/Rl38,/<pls)
=1
L L
—2) a0 [ Riefor = cos? [ Reefoi.
=1 =1

By reasoning the same way as for H; and H/, we see that
[H{ = H{| < Clle)]| 27",
Because of (2.8) and because of the elliptic equation satisfied by a soliton, we have that
H{ = 0. Thus,
|H\| = [Hy = H{| + |H] = H]| + |H]| = C|le@)]| g2 7"".
The proof of Proposition 2.12 is now completed. ]

Now, we would like to study the quadratic terms in ¢ of the development of [ﬁ + ¢€].
They are contained in H;[g](t).

Let A = Bq g be a breather (we denote Ay := 0y, 4 and Ay := 0dx, ). We define a
quadratic form associated to this breather:

1 5 5 15
@) 4le] = 5/6)2”‘ - E/Azefc + E/Aiez +5/AAxx€2 + T/A462
1
+ (ﬂz—az)(/ei — 3/A2€2) + (@*+8%)? 3 /62 =: Qqple].

From [3], we know that the kernel of this quadratic form is of dimension 2 and is spanned
by 0x, Be,g and dx, B, g, and that this quadratic form has only one negative eigenvalue
that is of multiplicity 1.

Proposition 2.15 (Proposition 4.11, [32]). There exists /L{;, g > 0 that depends only on a
and B (and does not depend on time), such that if € € H?(R) is such that

/A16:/A26:O,

1 2
@0 el =l pllelys — ——( [ ea)’
Ko g

Remark 2.16. MZ, p 1s continuous in &, B. Note that the translation parameters are implicit
in (,‘22 ’E

then
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Let Q = R, be asoliton. We define a quadratic form associated to this soliton:

@l =; [a.-3 [ord+] [ore s [ooue+ 3 [0t

+C(/E§—3/Q262)+C2%/62 =: @, scle].

By the same techniques, such as those presented in [3], adapted to the quadratic form of a
soliton, we may establish that the kernel of this quadratic form is of dimension 2, and it is
spanned by d, Q and d. Q, and that this quadratic form does not have any negative eigen-
value (see Appendix A.2). After that, from Appendix A.3, we deduce that the coercivity
still works when € is orthogonal to Q and d, Q. More precisely, we have the following.

Proposition 2.17. There exists 3 > 0 that depends only on ¢ (and does not depend on
time) such that if € € H*(R) is such that

/Q6=/Qxe=0,

Qilel = pllelzp-

Remark 2.18. pJ is continuous in c. Note that the translation and sign parameters are
implicit in the notation @3.

then

We would like to find a similar minoration for H, (which is a generalization of @).
For j =1,...,J,letus define, for € € H?,

1 5 ~ 5 ~
Qj[e]iz§/€§x¢j_§/P12532¢¢j+§/Pj2x€2(pj
55 2 15 [ 54 5
+5 Pj jxx € ng—I-I Pjé ©;j

- 1
+(b_,2—af)(/e§<pj —3/P]?ezgo_,-) +(a_,?+b})2§/ez<pj,

and
1 5( ~ 5 ~
Qle] = E/G)fxw—gff’zeiwj +§/Px262<pj
~~ 15 ~
+5/PPxx62§0j+T/P462q0j
~ 1
+(bf—af)(/e§¢j—3/P262<pj) +(a_,2+b./2)2§/62<pj.
We have that

J
Hale()] = ) @) e(0).

Jj=1

The notations (,‘22, ((,‘22)/, @) and (@;)" will also be used.
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We note that the support of ¢; increases with time, so that @; is near a (Qak B OF
a @, when time is large (note that (Qa B, 1s the canonical quadratic form associated to the
breather By, but the canonical quadratic form associated to the soliton R, is @ e1co (0)-
However, firstly, let us study the difference between @; and (,‘2; Using the computa-
tions carried out at the beginning of this part (those done for the linear part) and Sobolev
inequalities, we obtain

Q516 — @[]l < Ce " el ey,

Lemma 2.19. There exists . > 0 such that for p > 0, there exists T, such that for T* >
Ty, any e € H*(R), and any t € [t*,T), if

/ Bty Job () = / Bia(e\Job (1) = 0.

then

1 ~ 2
0t = 1 [+ & + ek — ([ eBofelw) = el

Proof of Lemma 2.19. The idea is to write Q‘Zb[e] as Qg g, l€ <p,’§] plus several error

terms. Let j be such that P; = By. We will denote ¢, j := 9’ (x Oty _ (AL Uf“t)

and @3 := 1//”(x Gly (X0t 0’“’) as defined by (2.5) and (2.6), Wthh will be use-
ful to write the denvatlves of ¢;. We recall that they have the same support and bounding
properties as ¢;. We have that

01 93, 1 [ & o
Vi) i+ (81)2 (5:)4 16 60* ¢?

1 62 (pZ,j(pl j €Exx €x €xx €
2 =TSy ) XXX
/ Gn* 7 5o 0T oz
_1 €x€ Py [ x€ @i, 1 [ exe 9,
G2 g e e 2] G g

We observe that, for 75 large enough and by using the inequalities that define y, the error
tarms can be bounded by £ 5 ||e|| > = 1% llell? 472+ The computation for the other terms is
similar and the same bound can be used for the error terms.

Because 6,/<p]f satisfies the orthogonality conditions, we can apply Proposition 2.15

and obtain that
1 N2
Ou ool ) 2 eyt~ ([ /o)
k

To complete the proof, we note that [|e \/¢? 17,2 is [(€* + €2 +€2,) 9% (1) plus several
error terms as in (2.18). [ ]
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Lemma 2.20. There exists 1 > 0 such that for p > 0, there exists T; such that, for T* >
T}, any e € H*(R), and any t € [t*,T), if

[ Biwe o) = [ Riatve Joio =0,

Qe > u/(fz L2200 (0) - plele.

then

Proof. As in the previous proof, we write Qj[e] as @7, [e \/¢;] (with O = R) plus sev-
eral error terms that are all bounded by ,o||e||1%12 if T} is chosen large enough. However,
Q¢,[€ \/¢;] is not appropriate in order to have coercivity, the appropriate quadratic form
is @7, o 0 l€v/¢7]. This is why we need to bound the difference between Q¢ [€ \/¢;]
and Q7 .. € v/¢;]- This difference is

- 1
Co,z(t)(/G)chﬂj—3/R12€2¢j) +CzCo,1(f)/€2</>j +Co,1(f)2§[€2<ﬂj,

which, because of the bound for cg;(¢), for 75" large enough (depending on A4), can be
bounded by pll€l|7,.

Now, e\/?f satisfies the orthogonality conditions we need, and as in the previous
proof, we may apply coercivity. ]

Proof of Proposition 2.13. We will now use Lemma 2.19 and its version for solitons (Lem-
ma 2.20) for € = &(¢). From this, we deduce that for p > 0 small enough, we have that

J | X 5 )
> @) = ulel ([ ewBiyfel )

=1 gyt
J
for a suitable constant & > 0. This means that for 75 large enough, by taking, if needed,
a smaller constant pu,

Hle()] > pllellz. — ikXK: (/ SEk\/;ﬁ)z.
=1

The proof of Proposition 2.13 is now completed. ]

2.5. Proof of Proposition 1.9 (Bootstrap)

We recall that p, from Proposition 1.9 is denoted by p and T}, is denoted by 7" in what
follows in order to simplify the notations. We do the proof that follows under the assump-
tion (2.2), so that the propositions proved above are true for ¢ € [t*, T'.

The aim of this subsection is to complete the proof of Proposition 1.9 by using Pro-
positions 2.12 and 2.13.

We note that by Lemma 2.7, the conservation of F[p](¢) and the definition of #[p],
we have, for any ¢ € [t*, T], that

2
H[PI(T) — H[pI()] < % 200,
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Thus, forany ¢ € [t*, T,
CA?
(2.19) HIp)e) < HIPIT) + - 7"

From Proposition 2.12,

(2.20) ‘Jf[ﬁ +£](1) — Hale](r)
J
= Y (FIPI) + 207 — a) EIP1(0) + @ + b MIP)0)|

< Ce ™ 4 Cllell e + Cllel3. < Ce™ + muanm

In order to obtain the last inequality, we use the fact that ||&(¢) || 2 < CAe ™%, and we take
T* > T for TX large enough (depending on A) so that ||¢||g2z < C and Clle(t)|| gz <
/100, and thuSCHE([)”HZ < 100 le@132-

We remark that if P; = By is a breather, then F [f)j], E [f)j] and M [f)j] are all con-
stants in time. If P; = Rl is a soliton and we denote ¢ the basic ground state (i.e., the
ground state for ¢ = 1), we have the following:

MIR)(t) = (c1 + coa (1) /> Mq],
E[R))(t) = (c1 + co1(1))*2E[q],
FIR](t) = (c1 + co1())*/*Fq).
Using that, we can simplify R; (1) := F[R;](t) + 2¢c; E[R;](1) + ch[ﬁl](t) as follows:
2.21) Ri(t) = (c1 + o1 (1))*/?Flg] + 2¢;(c; + co (1)) ?Elq]
+ cHer + coz(z>)1/2M[q]
5/2 o1 (1) 5/2 co,1(2)\3/2
(1+ o ) Flq] +2¢, <1+T) Elq]
/
+ cls/z(l + Cocll(t))l 2M[q].

Note that from Lemma 2.8, |cg;(1)]® < CA3e= 9729t That is why, if we take T even-
tually larger, |co (1) < C e~29% For this reason, we will do Taylor expansions of order 2
of (2.21):

£)\5/2 5 t 15 1)?
<1+Co,l()> :1+_C0,l()+_co,l(2) 1+ 02,
C] 2 ¢ 8 ¢
1)\ 3/2 3 t 3 1)?
(1+Co,l()> =1+_Co,l() _Co,l(z) 1+ 02,
cl 2 ¢ 8 ¢
H\1/2 1 ) 1 1)?
(1+Co,l()> =1+_Co,l()__Co,l() +0(e—20t).
2 ¢ 8 Cl2

€l
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This allows us to write
Ri(t) = c5/2<F[q1+2E[q1+M[q1) + ¢V 2e0,10(5 Flal+3Elg)+ 5 Mg))
4007 (L Flal + S Elal — sMlg)) + 0",

Now, cls/ 2(F [¢] + 2E[q] + M|q]) is constant in time. For both other terms, we use that
Mlq] =2, E[q] = —2/3 and F[q] = 2/5, and we see that gF[q] +3E[q] + %M[q] =0
and %F[q] + %E[q] — %M[q] = 0. This allows us to write

16
Ri(t) = 1z " + 0.

From this, we deduce that
Ri(1) = Ri(T) = O(e?").
By using H [p](T) = H[P|(T) = =7€[13'](T) equations (2.20) and (2.19), Claim 2.14,
and the fact that for t > T, O(||s(t)||H2) < 100 ||8||H2, we have that

Halel(0) < H[p)(0) + Ce™ 4 < le(0) ]2

J
= Y (FIPj)) + 2(b] — a})E[P;)(t) + (a} + b)) M[P;](1))
j=1
2

~ A
< HIPT) + € (557 +1) e + o le0)

(FIP1(t) + 2067 — a?)E[P)(1) + (a2 + b2 M[P;](1))

Mx

Jj=1

HIPNT)+C (e t1) e 100||s<r>||H2+Z<£1<T) R (1))

82
=1
J
= > (FIPAT) + 2003 — ) E[P|(T) + (a? + b})*M[P})(T))
j=1
A? b
< C (55 +1) e + 1 lle®le:

From Proposition 2.13, we deduce (by taking a smaller constant ) that

R e - Z(/ “Bifo} )

We now need to establish a result close to Lemma 2.7. We set, forany j = 1,...,J,

my(©) = [ 3520000 dx =y [p100).
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Lemma 2.21. There exist C > 0 and T = T (A) such that if T* > T, then for any
j=1,....J,andanyt € [t*,T],

C -
jmj (T) = mj ()] < 55— A%,
Proof. We compute

1 3 3 ®1,j / (,02]
t, i(t,x)dx = — z LY _>
p( DY dx = o5 ( 2px+4p)J¢_j 2(5t)2 r

1 §01]‘ 1 s X Q1

t s [P =5—5 | P s =
481.‘2/ 3/2 4/ 8t2 Jo;
(81) ®; ®j

From the inequalities that define v, we find that

dt

C
t,x i(t,x)dx 5—/ 21 %24+ p%).
‘dtf PPt x)\/9;(t,x) ) 52, Qj(t)UQjH(t)(px r +r7)

From now on, we can follow the proof of Lemma 2.7. ]

Now, we observe the following:

(2.22) /([5+5)2,/¢}g =/§,§+2/Eks <p,§+/sz p + E,

where Err stands for the other terms of the sum, which we consider as error terms, and we
will show that they are bounded by Ce~?".
Fori # j and any & (if P; = By is a breather),
o 8t+oj 1t P
‘/P,-P,,J@‘ < C/ e"2hvitl gy < e

—8t+ojt

and

‘/13, &/(pj‘ < \/(/f’?goj)</82) < Ce_9’/2||8||Hz < CAe~ 9o 01/2 < Ce_et,

where 7% > T, with 7 being large enough depending on A. If we use the calculations
we have made in the proof of Claim 2.14, we see that

[ [7 ]z een

This proves the bound for the error terms.

Now, we study the variations of (2.22). We know that [ P2 / Ez has no vari-
ations. We can apply Lemma 2.21 for [ (P +¢)? J%j- By wr1t1ng the dlfference of equa-
tion (2.22) between ¢ and T, and using that £(T') = 0, we deduce, for T* > max(T¢", "),

‘/P eV (1) = c(— +1) ™ 4+ el = c(; +1) e+ o0l e
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Thus,

A2 —20 ~ 2

el < € +1) e + - Z(/gpjm)
A4 —26’t
= C (57 +1) e + 1o lle®le:
Therefore,
A4 _

(2.23) el < € (557 +1) e

By using (2.23), the mean value theorem and Lemma 2.8, we deduce, for ¢ € [t*, T,

Ip(t) — POl < ez + 1P(t) = PO 2

<o 1)e +C(iqxl,k(rm|x2,k(t)|)+i(|xo,z<t>| T |Co,l(f)|))
<c( /;4 +1) _er+cz ‘/ xlk(s)ds)—i-‘/ xzk(s)dsD

+CZ<‘ft xf),,(s)ds‘ + ‘/; c('),l(s)ds‘)

<c(8AT+1) _Gt+C(/tTHS(S)“HZdS+/tTe_93ds> <C(ST+1) e b,

We take A = 4C (where C is a constant that can be used anywhere in the proof above)
and

T :=max(T}, T, T3 . T . T3, T¢ . T Ty)
(depending on A), where T := Ty (A) is such that for t > 7", we have ﬁ—t < 1. Thus,

forany ¢ € [t*, T},
4

c(;—t+1)§2C=§,

which is exactly what we wanted to prove.

3. p is a smooth multi-breather
Our goal here is to prove Proposition 1.10.

3.1. Estimates in higher order Sobolev norms

Firstly, we notice that the proposition is already established for s = 2. We note also that
if this proposition is proved for an s > 2 with a corresponding constant A, then it is also
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valid for any s’ < s with the same constant A;. This means that A can possibly increase
with s and that this proposition is already established for 0 < s < 2. From now on, we will
denote (as before) p, by p, T, by T and p, — P by v, and make sure that the constant A
that we will obtain in the proof does not depend on n (although it will depend on s). For
the constant 6, we will take the usual value: 0 := B1/32. For the constant 7*, we will
also take the value that works for Proposition 1.6.

We will prove the proposition by induction on s (it is sufficient to prove it for any
integer s). Let s > 3. We will prove the proposition for s, assuming that it is true for any
0<s' <s-—1.

Let us deduce from (1.1) the equation satisfied by v:

J
= —(vxx + @+ P)?— 2; P]?’)x
=

J
= —(vex + 07 +302P +30P2 + PP =3 P}) .
=t 7
Firstly, we compute % J(35v)? by integration by parts:
d S . \2 K s
7 (0%v)° =2 [ (35v:)(03v)
J
= _2/ a;“(vxx +07 +302P + 3P+ PP Pﬁ)(a;v)
j=1

J
=2(=1)*" [P (PP =) PP u—2 [ 85 (0P)(3v)
E G|
—6 [mre2p -6 [ 5@,
because [(35T3v)(05v) = — [(35T2v) (851 v) = 0.

We will now bound above each of the terms of the obtained sum. By the Sobolev
embedding, Proposition 2.3 and Proposition 1.6,

‘/aim(ﬂ—ipf)v‘ < ||v||Loo/ 8§S+1(P3—in3)‘
Jj=1 j=1

< C”v”Hle—ﬂrt/2 < CAe—é’te—ﬁrt/Z

< CAe™? < CAZ e,

where C > 0 is a constant that depends only on s.
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We observe that
BT w3) = 305 v)v? + 6(s + 1)(@50)vxv + Z1 (v, vy, ..., 05 M),
BT W2 P) = 2(E M v)vP + 2(s + 1)(350)(VP)x
+ Za(v,vx,..., 05 0, P, Py, 03T P),

where Z; and Z, are homogeneous polynomials of degree 3 with constant coefficients.
Now, let us look for a bound for / 3571 (v3)(35.v). Firstly, by integration by parts,

/a;+1(v3)(a;v) %/((a;v)z)xvz +3(s + 1)/(a§v)2(v2)x +[(a;v)zl

6(s+1)—3
=203 oot + [z,
Then we bound above each of the terms of the obtained sum:

| [@oren] < clolis o [ @2

<Clvl2 / @0 < Clpllaz + | Pllg) Ae™ / (@ 0)?
< CCoAe™? / ()% < CAs_1e7 % / (3 v)2.

We have actually shown in the computation above that ||v||§12 can be bounded above
by ||v| g2 (with a constant that depends only on the problem data), and therefore the
degree of ||v|| g2 can be lowered without harm in the upper bound. We will use this fact
again for the rest of the proof. In fact, all what it means is that, for several terms, what we
have is more than what we need.

By the Cauchy—Schwarz and Gagliardo—Nirenberg—Sobolev inequalities,

s—1 s 5 ]/23—1 . 1/2
3.1) ]/(a;um] fc/|a;v|(2|a;v| ) gc(/|a;v| ) Z(/|a;v| )
s'=0 s'=0
—1
=c( fiwr)” SZ([|a;’v|2)([|a;’“v|2)”2
s'=0
-1
e ( fumer)( fimor+ [l
s'=0
< CA%_ e 4 CAs_ 17" /|a;v|2.
Similarly, we bound [ 3571 (v?P)(35v). By integration by parts,

/8;+1(v2P)(8;v) = /((8fcv)2)va +2(s+1) /(Biv)z(vP)x + /(aiv)Zz
=25+ 1)/(8;v)2(vP)x + /(8;1))22.
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We bound above each of the terms of the obtained sum, starting by

| [@orwn

< Cllvlooe + sl [ @) = Cae™ [ @02
The upper bound of | [(35v)Z>| is similar to (3.1):
‘/(a;v)zz‘ < CAZ 7 4 CAg_je¥" /|a;v|2.
The term [ 951 (vP?)(3%v) remains to be bounded. By integration by parts,
[oreryem = - [wrererty
— - [@oE P -6+ e e,
— w /(Biv)(ai_lv)(Pz)xx + /(E);_lv)Zg(v, Uy ooens 856_11))

=3 [(@or)p2+ 6+ e,

_ S(S: . / ((037"0)?) (P?)xx + / @'V Z3(w, vy, .. 97 )
- 23;1/(3551))2(1’2))5+/(3;1”)23(”’%7-~"8§C_lv)’

where Z g’ and Z3 are homogeneous polynomials of degree 1 whose coefficients are poly-
nomials in P and its space derivatives. We have that | Z3| < C (Zi;lowilv |). Therefore,

‘/(a;—lv)zgj < CA2_ 72",

Thus, by taking the sum of all those inequalities, we obtain

d — — K

)E/(chv)2+3(2s+1)/(Biv)z(Pz)x < CA2 e L CAyye™ /|8xv|2.
Next, we perform similar computations for % / (@5 1v)2 P2

d _ _ _ -

E/(a; )2 P2 :2/(3; Yu,) (0% lv)P2+2/(a; )2 P, P

J
_ /a;(v” + 03 +302P +30P? + PP- ) P_,?)(a;—lv)PZ

j=1
J
— 2/(3;—1v)2(Pxx +y Pf)xP.
j=1

Let us study each of the obtained terms.
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Firstly,

2 [@roetnrt =2 [@ro@n e v [@Foe e
=3 [ @ -2 [ @oer e,
=3 [ @R+ [P

Indeed,
< CA26—201‘ .

[ @02
Secondly,

J
‘/a;(PLZP;)(a;—lv)PZ‘ < CAZ_ e,
=1

which can be obtained similarly to the first part of the proof (starting by an integration by
parts with 35~2v in the place of 35~ 1v).
Thirdly,

/8§(v3)(8;_1v)P2 = 3/(afcv)(afc_lv)va2 + / Z4(,vx, ..., v) P?
3
=3 [arrrerrd. s [z
where Z,4 is a homogeneous polynomial of degree 4 with constant coefficients. Both terms
are easily bounded by C A?fle_zet.

Fourthly, for [ 3% (v2P)(35 1v) P2 and [ 35.(vP?) (95 'v) P2, we reason similarly.
Fifthly, it is clear that

J
| [(a;—lv)z(Pxx +3P7) P|=caz e
j=1
Therefore,
d B _
‘E/(a; lv)2P2+3/(8§Cv)2(P2)x‘ < CA2_ 72",
We set

F(t) = [(a;v)z—(2s+ 1)[(3;—1v)2P2.

By putting both parts of the proof together,
d
)EF(Z)‘ < CAZ e 4 CAg e /|a;v|2.
Because | [(3571v)2P2| < CA%e72%, we can write the following upper bound:

[@or < 1Fo+ caz e,
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Therefore, we have, for a suitable constant C > 0 that depends only on s,
d
‘EF(t)‘ < CA2 e 4 CA_1e™ " |F(1)).
For ¢t € [T*, T], by integration between ¢ and T (we recall that F(T) = 0),
T d T d
wmvﬂnn—thﬁf —Fwwﬂs/ |- F(0)| do
; dt ; ldt
T T
< CA%, / e 2% do + CAs_y / e 9| F(0)|do
t t
T
< CA2 e72% 4 CA,, / e % |F(0)|do.
t
By Gronwall’s lemma, for all € [T*, T,

T o
|F(t)| < CAf_le_zat—i—CAs_l/ e‘eUCA§_16_29“ exp(/ CAg_1e du) do

t t

CAy_ d CAy_
< CAZ e pcAd exp(Ts1 e_et) /t e300 exp(—TS1 e_o"> do

CAs1y [T
< CA%_ e Al exp( GS 1)/ e 3% do
t

CAs—
<CAZ_ e LAl exp( 95 l)e_39’

CAs—
<CA_, exp(TS1> e 201,

Therefore,

[@or < a2,

where Ay := CA3_, exp(CAs—1/6) and C is a constant large enough that depends only
on s. This conclude the proof of Proposition 1.10, and so of Theorem 1.2.

3.2. Uniformity of constants

We conclude this section with an explanation regarding Remark 1.3.

In the proof above, the constants that we obtain A, 7* and ¢ do depend on P;(0)
(1 < j < J). Actually, we may characterize this dependence. In fact, they do not depend
on the initial positions of our objects in the case where our objects are initially ordered in
the right order and sufficiently far from each other.

Theorem 3.1. Given parameters (1.3), (1.4), (1.5) and (1.6) which satisfy (1.7), there
exists D > 0 large enough that depends only on oy, B, ¢; such that if

(3.2) xj(0)>x;_1(0)+ D forall j > 2,
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then the following holds. We set 6 := Bt/32, with B and t given by (2.1), and let p(t) be
the multi-breather associated to P by Proposition 1.7. There exists As > 1 for any s > 2
that depends only on oy, By, c; and D such that

Ip(t) — P(t)|lgrs < Ase™® forallt > 0,

Initially, we will prove that for any D > 0, if (3.2) is satisfied, then the constants A
and T* do only depend on a, B, ¢; and D. Then we will prove that if D > 0 is large
enough with respect to the given parameters, then we can take T* = 0.

To establish the validity of this theorem, it is enough to read again the whole article
and to make sure that on any step of the proof, there is no dependence on initial positions
of our objects when our objects are initially far from each other for the constant C. This
will allow to claim the same for the constants A and T* (but these constants may depend
on D). This works, but we should change a bit the way we write our results.

For Proposition 2.1, we should write

9797 P; (1, x)| < Ce Plrvit=x O,

Therefore, in Proposition 2.3, we have nothing to change, but the constant C depends
on D. This will also be the case in the following propositions and lemmas of this proof.

We should replace ot by g;¢ + (xj—1(0) 4 x;(0))/2 in the definition of ¢; in (2.3)
and (2.4) to take into account initial positions. More precisely, forany j =2,...,J — 1,
we will have

X —ojt— xi71(0)2+xf(0) X —0j1l — x.i(0)+;i+1(0)
@it x) =y T - o ,

and similarly for other definitions.
After having done the modulation with C and T* depending on D, for Proposi-
tion 2.10, we should write

107 B, (1. x)| < Co— 5 1x—vit=x; (0] ,Br1/32.

Therefore, with these adaptations, the same proof works for proving that As; and 7*
do depend only on oy, Bk, c; and D.

Now, given ok, Bk, ¢;, we choose Do > 0 in an arbitrary manner. Therefore, we get
Ag(Dg) and T*(Dyg) associated to Dg. Let A := vy — v; be the maximal difference
between two velocities. We set D := Do + A - T*(Dy). Therefore, if we suppose (3.2)
int = 0 for D, then we have (3.2) in t = —T*(Dy) for Dg. Therefore, by applying the
intermediate result for Dy, we obtain the desired conclusion with D and A depending
on Dy.

4. Uniqueness
Let p be the multi-breather constructed in the existence part. The goal here is to prove that

if a solution u converges to p when ¢t — +oo (in some sense), then ¥ = p (under well
chosen assumptions).



A. Semenov 1286

We prove here two propositions. For both of them, we assume that the velocities of all
our objects are distinct (this was also an assumption for the existence). The first propos-
ition does not make more assumptions on the velocities of our objects, but it is a partial
uniqueness result as we restrict ourselves to the class of super polynomial convergence to
the multi-breather. The second proposition assumes that the velocities of all our objects are
positive (this is a new assumption and it is needed because this proof uses monotonicity
arguments).

4.1. A super polynomial convergence of a solution to a multi-breather is trivial
The goal of this subsection is to prove Proposition 1.5.

Remark 4.1. Note that in Proposition 1.5, we do not make any assumptions on the sign
of vj or v,. This uniqueness proposition has the same degree of generality as Theorem 1.2.

Proof of Proposition 1.5. Let p(t) be the multi-breather associated to P by Theorem 1.2.
Recall that for any s,

4.1) Ip(t) — P(t)||ms = O(e™?")

for a suitable 6 > 0.
Let N > 2 to be chosen later. We take u(¢) an H? solution of (1.1), such that for a
constant Cy > 0 large enough, for any ¢ large enough,

&
lu@) = POz < -

From that, we may deduce that for ¢ large enough (namely, # > 2Cy along with the previous
condition),

1 1
4.2) ) = POz < 5 -
Our goal is to find a condition on N that does not depend on u, such that condition (4.2)
on u for ¢ large enough implies that u = p.
Because of (4.1), the condition (4.2), for ¢ large enough, is equivalent to

1
(@) = pW)llgz = x=

We denote z(¢) := u(t) — p(t). Our goal is to find N large enough that does not depend
on z, for which we will be able to prove that z = 0, given

1
(4.3) lz@) g2 = N-T

for ¢ large enough. Because z is a difference of two solutions of (1.1), we may derive the
following equation for z:

(4.4) Zt+ (Cxx + C+p)P = pPe=0.
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We divide our proof in several steps.

Step 1. Modulation on z. For j =1,...,J,if P; = By is a breather, we denote

R axl Bk
K/ R (aszk 5

and if P; = R; is a soliton, we denote
Kj = 0xR;.
‘We may derive the following equation for Kj:
(Kj)e + ((Kj)xx + 3Pj2Kj)x = 0.

For j = 1,...,J,if P; = By is a breather, let ¢; () € R? defined for ¢ large enough
and if P; = R; is a soliton, let ¢;(¢) € R defined for ¢ large enough such that for

J
4.5) 20) = 2(0) + ) i (OK; (),

Jj=1

where ¢; K; is either a product of two numbers of R or a scalar product of two vectors
of R2, the following condition is satisfied: for any j = 1,..., J, for ¢ large enough,

(46) [zox0 /o0 =0,

where ¢; is defined in Section 2.2 (in this proof, we can take § = 1). It is possible to do
so in a unique way, because the Gram matrix associated to K; (t)/¢; (), 1 < j < J,is
invertible; which is the case because K;(¢)/¢;(t), 1 < j < J, are linearly independent.
This is why ¢;(¢), 1 < j < J, are defined in a unique way. For the same reason, c¢;(¢) is
obtained linearly from [ Ky (1)z(t) /@i (t), 1 <k < J, with coefficients that depend only
on Ky, 1 <k < J. This is why, from Cauchy-Schwarz, we may deduce the following
lemma.

Lemmad.2. Forany j =1,...,J andfort large enough, there exists C > 0, which does
not depend on z, such that

lejO] = Cllz@)ll2 and ZO)]|g2 < Cllz(0)]| g2

The Gram matrix is C! in time and invertible. This is why its inverse is C! in time.
Because [ Kz ,/g; are C! in time, we deduce by multiplication that ¢; () are C' in time.

By differentiating in time the linear relation that defines c;(¢), we see that ¢/ (¢) is
obtained linearly from [ Ky (¢)z(t)/¢x(t), 1 <k < J, and from % [ Ke(@)z(t) /i (1),
1 <k < J, with coefficients that depend on K, 1 <k < J (and their derivatives). Because
itis easy to see that % [ Ki(t)z(t) /@i (1) may still be bounded by C ||z (¢)|| .2, we deduce
thatforany j = 1,...,J and for 7 large enough, there exists C > 0, which does not depend
on z, such that

4.7 lcj ()] < Cllz (@) 2
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We may derive the following equation for Z:

(4.8)  Z 4 Gax +32p%)s

J J
=—B22p+ )+ Y (K =3 cr()(PZ = p*)Ki)x-
k=1 k=1

Step 2. A bound for |cJ’. (t)|- The goal here is to improve (4.7).

Lemmad4.3. Forany j = 1,...,J, and for t large enough, there exist C > 0 and 6 > 0,
which do not depend on z, such that

i (O] < CIZO a2 + Ce ™ 20| g2 + Clz(0) 2.
Proof. We may differentiate (4.6):

d -
0= 4 [zKive
Z/EtKj\/ff#j‘i‘/E(Kj)t\/‘Tj‘i‘/%Kj( Pj)t
—— [Cu + K - [0+ 20K
J J
+ Y @0 KoK 5 -3 Y a0 [(en) (P - 1K) Ky V57
k=1 k=1

- f (K )xx + 3K; PP)s i + / K (o).

We know that (,/@;)x and (,/@;); are bounded (from inequalities established in Sec-
tion 2.2). This is why, for any ¢ large enough,

‘ /EKj (V@)

For the same reason, after eventually doing an integration by parts, for any ¢ large enough,

= ClIZO) |-

| [ G 32020 K, V55 | + | [ H(Kas + 3K P21 | < CIEO) e

The term [(3z?p + z°) K ./@; is clearly bounded by C ||z(t)||§_12. Finally, we see that
(sz — p?) Ky is exponentially bounded in time (in Sobolev or L norm), and using
Lemma 4.2, we deduce that

[ (e (22 = P KKy 77 = Ce =0,
for a suitable 6 > 0 that does not depend on z. This is why we deduce, forany j =1,...,J

and for ¢ large enough, that there exist C > 0 and 6 > 0, which do not depend on z, such
that

J
) > / (€t (1) - KK /i | < CIEOm2 + Ce Nzl g2 + Cllz ()12
k=1
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We recall that for any (e;,es) € (R)? or (R?)2, e3 € R or R?, we have the following
equality between two elements of R or R? (where vectors are columns)

(e1-e2)es = (e] (e2 €3T))T,

where T denotes the transpose.

First of all, because [ Kx K ]-T /¥;j converges exponentially to [ KkK T fork # j,we
conclude that [ Kx K jT is exponentially decreasing, and from (4.7), we may write that for
any j = 1,...,J and ¢ large enough, there exist C > 0 and 6 > 0, which do not depend
on z, such that

T
(0" [ K&)' | < CIE@L + Ce 0l + CL0l

Now, when K; € R?, using the fact that its components are linearly independent and the
Cauchy—Schwarz inequality, we deduce the desired lemma. ]

Step 3. Coercivity. We define the following functional, which is quadratic in Z:

1 [ 5 - 5 - - 15 ~
H(l‘)=E/Z)%x—E/pzZi-i-E/p§22+5/ppxx22+7[p422
J J 1
+) (b7 —a}) ([2§¢,~ —3/p222¢,-) +Y (a} +b})2§/z2¢j.
j=1 j=1

We will prove the following lemma.

Lemma 4.4. There exists C > 0, which does not depend on z, such that fort large enough,

IZ@)l3. < CH@) + C i(fzzy)z.

Jj=1

Proof. We denote @; the quadratic form associated with P;. We recall that
1 2 9 22 0 2.2 2
Qj[&‘] 2=§ Sxx_i Pj 8x+§ (Pj)xé‘ +5 Pj(Pj)xxs
15 4.2 2_ 2 2 2.2 2 221 2
+: Ple —i—(bj—aj)( e —3 Pj8)+(aj+bj)§ g,

In any case, we have that forany j = 1,..., J, there exists u; > O such thatif e € H 2
satisfies f Kje =0, then we have

1 2
. . 2 - .
Qlel = el M(/sp,) .

Here, we apply this coercivity result with ¢ = Z, /;, for which the orthogonality condi-
tions (4.6) are satisfied. Thus,

2
EVal: < caEvm+c( [z va)
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We denote
’ 1 2 5 2.2 5 2.2 2
Q;le] =g et — 5 | Prexei 5 | PxeTgi + 5 | PPxxETg)

1
- —/p &2 gj +(b}—a<,2-)(/8§<ﬂj —3fp282</>j) +(a_?+b})25/82<ﬂ;,

and we observe that
J
H(t) =Y Q).
j=1

In @}[Z(¢)], we may replace p by P; with an error bounded by C e 0t IZ(1) 13, because
of (4.1) mainly. After that, the expression obtained may be replaced by @;[Z(¢)+/¢; (¢)]
with an error bounded by % 1Z(2) ||§_I2 (cf. calculations done in the proof of Lemma 2.19).
For the same reason, ||Z,/@; ||§_I2 may be replaced by [(Z% + Z2 + Z2,)¢; with an error
bounded by % IIZ(2) ||§12. Therefore, because of

||z||Hz—Z/(z +22422)0;,

the fact that P; , /g; converges exponentially to P;, and the fact that C /¢ may be as small
as we want, if we take 7 large enough, we deduce the desired lemma. ]

Step 4. Modification of H for the sake of simplification. We define

- 1 _ _
H(t):= /[2 Tr— ((Z +p)? G+ p);— p*p:—2Zpps — 2% p°px)

J
1, - 1 ~
+ Z((Z +p)¢ —p®— 6zp5)] +3 Z(ajz- + bf)Z/zz(pj
j=1
+ 22(1)2 — az)/ Z - = (Z + p)4 — p 4Zp3)]<pj.
j=1
We observe that the difference between H and H is bounded by 0(||Z(t)||z2). We can

thus claim the following.

Lemma 4.5. There exists C > 0, which does not depend on z, such that for t large enough,

IZ0)3. < CA@) +C i( / =p,)’.

j=1
Step 5. A bound for dH /d.

Lemma 4.6. There exist C > 0 and 6 > 0, which do not depend on z, such that for t large
enough,
dH

= _”Z(t)”Hz + Ce M Z@) 222 + CIZ@ 2112032
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Proof. We develop the expression of H (1), we differentiate each term obtained, we use
equation (4.8), the fact that p is a solution of (1.1) and the fact that (¢;); = —7(¢))x,
where x/¢ is bounded independently from z because of the compact support of ¢;. We
obtain several sorts of terms after doing several integrations by parts and several obvious
simplifications.

Several terms are clearly bounded by one of the bounds of the lemma, because in these
terms, the accumulated degree of z and 7 is larger than 2. As an example, we show how
to deal with [ zZyyx zZyxx p. We use the fact that z = Z — Z}Zl cj Kj, and we obtain the
following:

J
foxeZxxP = /Exxxggxxp_/Exxx(ZCjKj)Exxp
j=1
J J J
_/(ch(Kj)xxx)EExxp‘f‘/(ch(Kj)xxx)(chKj)Exxp'
i=1 i=1 i=1

It is easy to see that any of these terms is bounded as we want in the lemma (several
of them are bounded by %||Z(t)||§2, the last one is bounded by CI|Z(t)| g2z (1) ]13,,).
because of Lemma 4.2 and (4.3).

Other terms contain Z quadratically and contain (¢;). In addition, (¢;) is bounded
by C/t. This is why such terms are bounded by % IZ(2) ||%_12

Several other terms can be, by doing suitable integrations by parts transformed in one
of the two following expressions:

J
~~ 3
6 E /Z pr[pxxxx_z(b]z_ajz')(pxx +P3) +(ajz +b]2)2p +5pp)2c +5p% pax+ EPS]‘P]”
Jj=1

J
~ 3
3y /Zsz [pxxxx —2(b?—a?)(pxx+ PP)+ (@2 +b1) p+5pp2 +5p pax + 5195]%-
j=1
To deal with these two expressions, we use the elliptic equation satisfied by P;:
4.9) (Pj)xxxx — Z(bj2 - a]z)((Pj)xx + Pj3) + (a_]z + b})zpj
3
+ 5P (P + 5P (P)ex + 5P =0,
and the fact that

3
[Pxxxx —2(b7 — a;)(pxx + P°) + (] +b7)? p + 5pps + 5p prx + EPS](PJ'

converges exponentially to

3
(Pj)xxxx =207 =a3)(Pj)xx+P}) + (a; +b7)? Pj + 5P; (P;); + 5P7(Pj)xx + EP,-S,

which is a direct consequence of (4.1). This is why such terms are bounded by % ||Z(t)||§12.
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Other terms contain (P2 - p?K; 7, which is bounded exponentially, with ¢; bounded
by ||z|| g2. Those terms are obV10usly bounded by Ce™% | Z(t) || g2 ||z (1) g2

Other terms contain K (or a derivative) and ¢; with j # k. In this case, this product
gives an exponential decreasing, and such a term is bounded by Ce =0 ||Z(¢)|| g2 11z (?) || g2
using (4.7).

Therefore, we are left with the following terms:

Zc (t)/ (K Yax Zxx — 10K;Zx ppx — 5K;Zp2 — 10(K;)x Z ppx — 5(Kj)x Zx P2
j=1

15  _ ~
+ K Zpt 4 2(0] = a)(K))xEe = 607 — aDKyEp? + (@] + b)K; z]
We may replace p by P; in the preceding expression with an error bounded by

Ce P Z@W) g2 2@l g2

because of (4.7) and (4.1). This is acceptable, knowing the result we want to prove. By
integration by parts, we obtain several terms of the form cj/. (1) [(K;j)xxZx(¢j)x, Which

are bounded by % |C; OI|Z (@) g2- Now, from Lemma 4.3, we deduce that they are bound-
ed by

C . 0 1~ ~
7||Z(t)||j‘;1,2 + Ce " Z0) 2 |zl + CIZO a2 12032
which is exactly the bound that we want. We are left with the following terms:

J
5200 [ [(Rhann+ 10K Py (P )+ 5K ()2 + 10K, By (P + (K s P
j=1

15
+ 5K P =207 = a})(K))ax — 607 —a})K; P + (@} + 52K | 2.

The last expression equals zero, because of the elliptic equation satisfied by K, which
we may derive by differentiating (4.9). ]

Step 6. A bound for & [ZP;.

Lemma 4.7. There exist C > 0 and 6 > 0, which do not depend on z, such that for t large
enough, forany j =1,...,J,

d [. _
& [ 78] = ce izt + 0

Proof. We observe that

[ENEE Z() [ e

/Kij =0,

Firstly, for k = j,
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and for k # j,
d
Glaw [ Ker] = o [ Kt +a) [&op; + a0 [ K,

and it is obvious, from Lemma 4.2 and (4.7), that the latter is bounded by Ce ™% ||z (¢)| z2.
It is left to bound % [ zPj. We use (4.4) and we obtain

d

Efzpj :_/(Zxx+(Z+P)3_P3)xpj_/Z((PJ)XX+PJ'S)X'

Several terms are immediately boundable by C ||z(t)||§_12, we kill several others by
integration by parts and we are left with

[ == P
which is obviously bounded by Ce ™% ||z ()| g2, because of (4.1). |

By differentiation of a square, we obtain the following.

Lemma 4.8. There exist C > 0 and 6 > 0, which do not depend on z, such that for t large
enough, and forany j = 1,...,J,

d _\2 B 3
’E(/ZPJ) ‘ <Ce"IZO g2z g2 + CIEZO a2 llz0) 13-

Step 7. A bound for ||z(t)| g2 in terms of Z(t). Because we have chosen N > 2 and
because of (4.3), we may claim that for ¢ large enough, the following integral is finite:

+o00
/ 12(5) 12 ds.
t

Because of Lemma 4.2 and (4.3), we deduce that
cj(t) >0 ast — +4oo.

From this and Lemma 4.3, we deduce by integration that

+o0
ey (1)) < / ¢! (s)] ds
t
+o00 +o00 +o0
<cC [ 12l ds + C / 05 2(5) g2 ds + / 12) 1132 ds.
t t t

Knowing this and using (4.5), we may deduce that
+o00
Iz g2 = CIZO B2 + C/ IZ() | 2 ds
t
+o00 +oo
wC [Tl ds+ [ 16 ds
t t
+o0
=ClZONa2 + C/ IZ(s)l| 2 ds
t

+o00
+ Csuplz0) e + Csuplz@ [ 126) 2 ds,
5> §= t
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which implies, because

+o0 0 +oo
| O s szl e swplzl [ 126 ds
t §= t

s>t

are decreasing in time, that

+o0
supllz)l = € suplZ6) 2 + € [ IEG) w2 ds + € suplz6) 1z e
= t s>

s>t Ky
“+o00
4 C supllz ()] 2 / 125)]| 2 ds.
s>t t

Since e?* and /, t+°° Iz (s)|| gz ds may be as small as we want for ¢ large enough (depend-
ent on z), we may deduce the following.

Lemma4.9. There exists C > 0, which does not depend on z, such that for t large enough,

+o00
lz(O)lz2 < supllz(s)[|g2 = C supllZ(s) ||l 2> + C/ IZ(s) | a2 ds.
s>t s>t t

Step 8. Conclusion. By integration, from Lemmas 4.5, 4.6 and 4.8, for ¢ large enough
(depending on z), with constants C and 6 that do not depend on z,

+o0 1 “+o00
120N < € f SIZ@G2ds +C / P IZ) 212 12 ds
t t
+o00
e / 12 a2 12(5) e dis
t

_ oo 1 _ 0 )
< CswplEOle [ (FIEOe + P 20z + 1262 ds.
5= t

Because the right-hand side of the inequality above is decreasing in time, we deduce, after
taking the supremum of the previous inequality and after simplification, that for ¢ large
enough,

_ +oo 1 _ +o00 0
suplZ@) <€ [ LEG s +C [ ez lna ds
t t

s>t
+o0
e / 12122 ds
t
+o0 _ s
<cC / Lz @) e ds + € supllz() | aze
t S s>t
+o00
4 C supllz ()] 2 f 1) 12 ds.
s>t t

Using (4.3), the fact that N — 1 > 1 and the fact that e %7 is decreasing faster than 1/¢V 2,
we deduce that for ¢ large enough,

~ +o0 1 _ 1
suplZ(s) g2 < C / LIE@) g2 ds + C —— suplz(s) | 2.
s>t t s ! s>t
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Using Lemma 4.9, we deduce that
_ +oo 1 _ 1 _
SuplZ@)llez < € [ SIE@laz ds + C =g suplZ) o
s>

s>t t

1 +o0 _
+CZ‘N__2/ ”Z(S)”szS.
t

And because 1/¢Y 2 can be as small as we want for ¢ large enough, we deduce that for ¢
large enough and for a constant C > 0 that does not depend on z or on N,

_ _ +o00 1 1 400 _
(4.10) [|Z()llg2 < SuIt)”Z(S)”HZ =< C/ ;”Z(S)”HZ dS"i‘C[N—_Z/ IZ(s) | 2 ds.
5= t t

Let us pick 7" > 0 large enough such that for # > T', inequality (4.10) works (i.e., T is
large enough so that every part of the preceding proof works). From (4.5) and Lemma 4.2,
we know that for ¢t > T (by taking T larger if needed),

(4.11) IZO a2 <

tN_l ’

This is why the following quantity is well defined:

(4.12) A= sup{tNTHZ(@) | g2}
t>T

which means that for¢ > T,

(4.13) IZO a2 < T

Now, using (4.11) and (4.13), we deduce from (4.10) that for t > T, with C > 0 that
does not depend on z, N or A4,

CA 1 CA 1
(4.14) 1IZO a2 < < ,
N—1tN-1 N _22N-4 = N_2N-1

if we assume that N > 3. Now, from (4.12), we deduce that there exists 7* > T such that

+

* 1= * A
THY T2 = 5

This is why, by evaluating (4.14) int = T*, we find that
A - CA 1
Z(T*)N_l - N-=2 (T*)N—l’
which, if we assume that A > 0, after simplification yields
N —-2<2C.

This means that if we assume that N >2C +2 and N > 3, the assumption A >0 leads to
a contradiction. Therefore, A=0 under that assumption on N, which implies ||Z(¢)|| z2=0,
and from Lemma 4.9, this implies that z = 0. This means that the condition that we have
established for N, namely,

N > max(2C + 2, 3),

does not depend on z and allows us to deduce that under (4.3), we may establish that
z = 0. Proposition 1.5 is now proved. ]
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4.2. A convergence of a solution to a multi-breather is always exponentially fast,
in the case when all the velocities are positive

Proposition 4.10. Let u(t) be an H? solution of (1.1) on [T, +00), for T € R. We assume
that
lu(@) — p@llg2 -0 ast — +oo,

where p is the multi-breather constructed in Section 2. If v > 0, then there exist w > (),
To > T and C > 0 such that for any t > Ty,

lu(@) = p(O) g2 < Ce™™".

Note that in the formulation of the proposition above, we may replace p by P without
changing its content (this is a consequence from (1.9)).

Proof. We setv(t) := u(t) — P(t), such that |v(¢)|| gz — 0 ast — +o0.
We denote

U(x) = %arctan(exp(—\/gxﬂ)),

where o > 0 is small enough (with precise conditions that will be mentioned throughout
the proof). By direct calculations,

-0

Vi) = 27 cosh(Jox/2)

Thus,
|W'(x)| = C exp(—/olx]/2).

We have the following properties: lim4oo W = 0, lim_oo ¥ = 1, and ¥(—x) = 1 — ¥(x),
W'(x) <0, [W'(x)] < Vo |¥'(x)]/2, [V (x)] < Vo |¥"(x)]/2, |¥'(x)] < /oU/2 and
W' (x)] < /o(1—W)/2forall x € R.

Forj =2,...,J,let
Vi1tV

> .

Let us denote 79 > 0 the minimal distance between a v; and an m;.
We define for j =2,...,J,

mj; =

D, (1, x) := W(x —mjt).

We may extend this definition to j = 1 and j = J + 1 in the following way: &; := 0
and ® ;4 := 1. Thus, the function that allows us to study the properties around each
object P; (for j =1,...,J)is yj := ®; 41 — P;.

The goal is to prove that, for ¢ large enough,

(4.15) lo@)lg> < Ce™™",

where @ > 0 is a constant to be deduced from the constants of the problem. Proposi-
tion 4.10 follows from this, because of Theorem 1.2.

We will prove (4.15) by induction. In particular, we will prove, for j =2,...,J + 1
and for ¢ large enough, that [(v? + v2 + v2,)®; < Ce 27" holds, in the knowledge of
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S +v2 +v2)P;_; < Ce 2" (note that this assumption is empty when j = 2). This
implies the desired inequality. (Note that it is OK if @ becomes smaller after a step of this
induction, as long as it stays positive.)

Let us write the j-th step of our reasoning by induction (where j € {2,...,J + 1}).
Thus, j is fixed in the rest of the proof. We assume that

(4.16) /(v2 +v2 + 02 )Djy < Ce ™.

We divide our proof in several steps.

Step 1. Almost-conservation of localized conservation laws. We define quantities that are
similar to quantities defined in Section 2.2. We note that we localize around the first j — 1
objects, not only around the (j — 1)-th object. The notations given in Section 2.2 should
not be considered in the proof and should be replaced by the following notations:

M; (1) = / A0 (1).  Ej(r) = / [%ui—iu“]cbjm,
2 2

Lemma 4.11. Let w,, wg > 0 be as small as desired. There exist Ty > T and C > 0 such
that fort > Ty,

1 5 1
Fi(1) := f[— u)zcx - = uzui + 1 MG] D (1).

> M[P]—M;(t) = —Ce ™",

i=1

j-1

Y (E[Pi]+ o2 M[Pi]) — (Ej(t) + 02 M (1)) = —Ce™>7",

i=1

j-1

Y (FIPi]+ wsM[Pi]) = (F;(t) + w6 M; (1)) = —Ce ™",

i=1
Proof. We will use the results of the computations made at the bottom of p. 1115 and at
the bottom of p. 1116 of [28], as well as in Appendix A.5 to claim the three following

facts:
dzZ/ W f = /—§u2+ s /zﬂf’”,

g J13a- 5l = [t adosid]r e 5 [

and
d 1 5 1
ai | G5 qu)s
3 9 1 3 45
:/(—Euﬁxx+9u§xu2+15u,2€uuxx+16u + Ut + S Uxxu ——u4u2)f

47 "2 4
1
+ 5/u2uxuxxf" + E/ufm .

where f is a C3 function that does not depend on time.
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For the mass: If j < J,
d 2 2 3 4 2
22 M;(0) = - <3ux +mj® =S )q>,~x(z) + [ U2 B (0).
‘We recall that

iy

(o o
|q>jxx| = T|q)jx|, |q)jxxx| = Z|q)jx|» CDj = O,
where we can choose o as small as desired. For this proof, we assume
0 <o <my <mj.

Thus,

d > 30 , 3 4
ZEM,(t)z/<3ux+Tu ~Su >|CI>]x(t)|.

By Corollary 2.2, for r > 0, if ¢, x satisfy v; 1t +r < Xx < vjt —r, then
lu(t.x)] < [P(t.x)| + [[v(@)llze < Ce ™ + Cllv(®)l|g2.

and the same could be said for u .

We can thus deduce, for r and 77 large enough, and for x € (vj_1t 4+ r,v;t —r), that
|u| is bounded by any fixed constant, that can be taken as small as desired. Here, we will
use the latter to bound 3u?/2 by o/4.

Fort > Ty and x <v;_it +rorx>vjt—r, wehave |x —m;t| < 1ot —r, and
therefore for such ¢, x,

|@)x (. %)| < C exp(=+/olx —m;t]/2) < Cexp(—v/or01/2) exp(v/o7/2).

Because [ u* is bounded by a constant for any time and exp(/07/2) is a fixed con-
stant (r is already chosen), we have, for ¢t > T7,

d 3 o _ _
S0 = [ (G4 Gu) @] - 2 = —cee,

where w is chosen as a suitable function of o and tg.
By integration, we deduce that for any #; > ¢, with a constant C > 0 that does not
depend on ¢, we have

(4.17) Mj(t) — M;(t) > —Ce ™",

We note that this conclusion is immediate when j = J + 1, because we have exactly the
conserved quantity.
We have that

Jj—1 =
Vfp2 1 [p2 : ’ ’
‘;M[P,-]—Mj(rlﬂfgifpi —3 o]+ [P e- [ e
< Ce—/c(ﬂ,tr,ro)zl + %[|P2—u2|q)j(tl)

< Ce*Bomn 4 ¢ /|P2 —u*| >0 ast; — 4oo.
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This means that when we take the limit of (4.17) when t; — 400, we obtain, for

t>T1,
-1

D M[P]—M;(t) = —Ce™>™",
i=1
which is exactly what we wished to prove.

For the energy: If j < J,

d
2 Ej(1) = / [ = Cxx + u?)? =203, + 6uTu?] @) (1)

1 1
_m]/(ui—iu“)d)ﬂ(t)—l—z/ui q)jxxx(t)
3\2 2 30 2 mj 4
> [(uxx—i—u) +2uxx—6u ur + — 2 > —u ]|d>jx(t)|.

We can do the same reasoning as for the mass to bound above m ju?/2 by w;, a con-
stant that we can choose as small as desired, and to bound above 6u? by /4. We obtain

that if 77 is large enough (dependently on the chosen constant w;),

d
2 EEj(t) > /[(uxx +u?)? + 2”;2@ + %ui —a)luz] |Djx ()] — Ce 271,

By using what we have performed for the mass, if we take w; small enough with

respect to w, /2, we have that
d —2wt
7 (Ej + waM;)(t) > —Ce

Then, by integration, in a similar manner as for the mass, we obtain that the desired con-
clusion is true for any j.

For F:1f j < J,

d

2 —

dt
9 1 45

/( 3u2 .+ 18uZ u* +30u3 uuxx+8u +2ux+3uxxu —?u ) D;x (1)

Fj()

1
_mjf(uix—Sului—i-zu ) Dy (1) + IO/u Uxx Uy jxx(t)—i—/ + Pjxxx(?)
/(3u +£u u —18u u2—15u2u 1502 u%. — —ub
XXX 2 X 7TXxXx 8
1 3 3 o
— gt = Skt = Su) 0] + [ (oo + G = 5myua) [0,

_Sfuzu)zc|cbjxx(t)|_5/u2u)2cx|q)jxx(t)|_/u;zcx|cpjxxx(t)|'

By the same reasoning as for the energy and the mass, if we set w3, w4, @5 > 0, con-
stants that we can take as small as desired, and if 7} is large enough depending on these



A. Semenov 1300

constants, for + > T, we have that
30 , o

d 45
ZEF/U) > /(3%25” + 7”4”)% T Wt DU

— a)3u§x —a)4u§ — w5u2)|CI>jx(t)| —Ce 21,

By using what we have done for the mass, if we take w3, w4, s small enough (with
respect to wg), we have that

d
= (B + o6M;) (1) = —Ce™ ™!,

Then, by integration, similarly, as before, we obtain that the desired conclusion is true for
any j. ]

Remark 4.12. If j = J + 1, we have that

J J J

Y M[P] =My (1) =0. Y E[P]—Ej41(t) =0, Y F[P]—Fy41(1) =0.
i=1 i=1 i=1

Step 2. Modulation. The notations that were given in Section 2.3 should not be taken into
consideration in the following proof and should be replaced by new ones provided below.

Lemma 4.13. There exist C >0, T, > T and unique C 1 Sfunctions y1, y:[T2,+00) > R
such that if we set 5
w(t,x):=u—P,

where
J
P(t.x):=)_ Pi(t.x)
i=1
with
Pi(t,x):= Pi(t.x) fori#j—1,
and either

Isj_l(t,x) =K1 Q¢4 (x — xg’l + y2(t) —cit) if Pj—1 = R; is a soliton,
or
f)j_l(l,x) = Bo g (6, x: X1k +y1(8), X2k +y2(t)) if Pj—y = By is a breather,

then, w(t) satisfies, for any t € [T,, +00), either

(4.18) /E_ll(z)w(t) = f Pi_12(t)w(t) =0 if Pj_y is a breather,
or

(4.19) /ﬁj_l(t)w(t) = / f’j_lx(t)w(t) =0 if Pj_y isasoliton,
where in the case Pj_1 is a breather, we denote

]’5j—11(l‘,x) = 8)mﬁj—l» 1’5j—12(l’x) = axzﬁj—l'
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Moreover, for any t € [T, +00),

(4.20) lwOllaz + 1]+ [y2(0)] = Cllv@O) ]| a2,

and, if w is small enough,

2 1/2
@21 Ao+ 50l < 0 [ wm?e) "+ e

Proof. The proof that has to be performed is similar to the proof of Lemma 2.8, which is
a consequence of a quantitative version of the implicit function theorem. See Section 2.2
in [11] for a precise statement. The proof of (4.21) is also similar: as in the proof of
Lemma 2.8, we take the time derivative of [ Pj_11(t)w(t) = [ Pj—12(t)w(r) = 0. For
completeness, let us perform this proof.
Fort € [T,, +00), let
F;: L?>(R) x R? — R?

be such that if P;_; = By is a breather,
U, y1,¥2) »—>(/ 3xlBak,ﬁk(t,x;x?’k + yl,xg,k + y2)edx,

/8szak,ﬂk (t,x:x0  + v x5 + y2)€ dx),

where
e =U—-P+P_,— Bak,ﬂk(f,X;X?’k + yl,xg,k + y2),

and if P;_; = R; is a soliton,
(U, y1,y2) H([Kch,erl (x —xg; + y2 —cit)edx,

/Bxlecl+yl(x —xg,l + y2 —cyt)e dx),
where
€e=U—-P+Pi_1—k1Q¢+y (x _x(()),l + ya —cyt).

We observe that F; is a C! function and that F;(P(t),0,0) = 0. Now, let us consider
the matrix which gives the differential of F; (with respect to y1, y2) in (P(¢), 0, 0).
In the case when P;_; = By is a breather, this matrix is

DF, = ( — [ (0, By)? dx — [ 9x, By 0x, Bk dx)
t —faxlBk 0x, Bx dx _f(aszk)z dx

whose determinant is

2
det(DF,) = / (3x, Bx)? dx / 0+, Bx)? dx — ( / 3y, B dx, B dx) .

By the Cauchy—Schwarz inequality and the fact that 0, By and 0, By are linearly inde-
pendent as functions of the x variable, for any time ¢ fixed, we conclude that det(DF;)
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is positive. Since each member of its expression is periodic in time, det(DF;) is bounded
below by a positive constant independent of time and the translation parameters of By.

In the case when P;_; = R; is a soliton, denoting yg; := x — xg,l + y2 —cyt, letus
recall that

1
dy; Qci+y: (Vo) = 2_CI(QC]+y1(y0,l) + 50,10x Q4. (Vo,1))-

Thus, denoting Q, (x — —cyt) by Qg and x — x —cyt by y0 I

zc, f Qe (Qe) + 30,05 0c)dx = [ 0c0xQc dx
DF; =
201 f8 Qc;(Qc; + yo,lachz)dx _f(achz)z dx

whose determinant is
1
detDF) = 5 [ 0a(Qer + 38,05 0 dx [ (0200 d.

because f 0¢,0x Q¢ dx = 0. And, from the computations made to obtain (2.11), we have

1
det(DF;) = ZCI/QZ/%%,

where g denotes the soliton with ¢ = 1,1.e.,g = Q.

This means that det(DF;) is bounded below by a positive constant independent of time
and the translation parameters of R;. Thus, in any case, DF; is invertible.

Now, we may use the implicit function theorem. If U is close enough to P(t), then
there exists (y1, v2) such that F;(U, y1, y2) = 0, where (y1, y») depends on a regular C'!
way on U. It is possible to show that the “close enough” in the previous sentence does not
depend on ¢; for this, it is required to use a uniform implicit function theorem. This means
that for 7, large enough, ||v(¢)| g2 is small enough for ¢t € [T3, +00), thus for t > T,
u(t) is close enough to P(¢) in order to apply the implicit function theorem. Therefore,
we have, for t € [T,, +00), the existence of y;(¢) and y,(¢). It is possible to show that
these functions are C! in time. Basically, this comes from the fact that they are C! in u(¢)
and that u(¢) has a similar regularity in time (see [13] for more details).

Now, we prove inequalities (4.20) and (4.21). We can take the differential of the impli-
cit functions with respect to u(t) for t € [T, +00). For this, we differentiate the following
equation with respect to u(t):

Fy(u(t), y1(u(1)), y2(u(r))) = 0.

We know that the matrix that gives the differential of F; (with respect to y;, y») in

(1), y1(u()), y2(u(1)))

is invertible and that its inverse is bounded in time. The differential of F; with respect
to the first variable is also bounded (from its expression, F; is linear in U). Thus, by the
mean value theorem (given (y1, y2)(P(t)) = (0,0)),

1@ + |y2u@)| = Cllu(®) = PO = Cllo@) | g2
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By applying the mean value theorem (inequality) for O, or B,, g, with respect to y;
and y,, we deduce that

1P;—1(6) = Pj—y ()| 2 < C(Uy1 ()] + [y2(0))).

Finally, by the triangular inequality,

lw@)lla2 < lu@) = P@Olla> + I1P0) = P(0)| a2
=< [lu@) = P(Ollg2 + C(y1(0)] + [y2(0)D)
= Clv(®) | 2.

This completes the proof of (4.20).
For (4.21), we will take time derivatives of equations (4.18) and (4.19). Firstly, we
may write the PDE satisfied by w:

J J
Dot = — g — [w(wz Y Ee3 Y ﬁiﬁm)} — Y (BBBa.-E
i=1 i,m=1 X h#iori#m
where, if P;_; = By is a breather,
E = y{(t)Bi1 + y5(t) Bia.

and if P;_; = Ry is a soliton, denoting yg ;(t) 1= x — xgl + y2(t) — ¢yt

10
©2(a+10)

If Pj_y = By, we start by taking the time derivative of [ Bjyw =0and perform some
integrations by parts to obtain

_/(Ei)lxw+yi([)/§kllw+y£(t)/§k12w

J J
+/§k1xw(w2+3w2ﬁi+3Zﬁhﬁi)—/ékl S (BB By
i=1

h,i=1 h#i or g#h

(R; + yo () R1x) + yy(t) Ry

= yi(t)/ff/fl +y£(t)/§k1§k2»
then, we take the time derivative of f Ekzw =0:

_/(Ei)wa+yi([)/gk12w+yé(t)f§k22w

J J
[ Bow(w? + 0 R+3 Y BP) - [Be X BiEP

i=1 h,i=1 h#i or g#h

= Yi(l)/§k1§k2+yﬁ(f)/§132-
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If Pj_y = R;, we start by taking the time derivative of [ Ryw = 0 and perform some
integrations by parts to obtain

—/(E?)xw L a0 /(ﬁz + you () R 0)w + y;(z)/ﬁlxw

2¢;
7 7
+/R1xw(w2+3wZPi +3 Z PhPi>_/Rl Z (PpPi Pg)x
i=1 h,i=1 h#i or g#h
y1(0)

= s [ B s OR + 350 [ Rifi

then, we take the time derivative of f El xw = 0:
53 y1 () ~ ~ , ~
- (Rl)xxw+2_cl (Rlx+y0,l(l)Rlxx)w+y2(t) Rixxw

J J
b [ Rw(w? 430y Pes 3 BE) - [R 3 (BEF,
i=1 hi=1 h#i or g#h
1)

I A D = ~ ’ ~ 5
= St sy ) BB 30iOR) 350 [ R

As a consequence of (4.20), we see that |y;(t)| + |y2(¢)| tends to 0 when t — +o0.
This is why we may use Proposition 2.10 and Corollary 2.11 here, if 7> is large enough.
So, several terms of the four equalities above are obviously bounded by (w(t)?>® j)l/ 2

or e~ @ for w > 0, a constant chosen small enough. Using these bounds, and after several
linear combinations, we obtain (4.21). ]

Step 3. Quadratic approximations of localized conservation laws.

Lemma 4.14. Let w > 0 be as small as we want. There exist C > 0, Tz > T such that the
following holds fort > Tj:

)Mj(t)—gM[IB}]—g/ﬁiw—%/wZQj‘ < Ce 271
)Ej(t)—gE[ﬁi]—S/[ﬁixwx—13i3w]—/[%wi—%lszwz]@j‘

i=1

< Ce?™! +w/w2c1>j,

j—1 ji-1
~ ~ ~ ~ ~ o~ 3~
’Fj(t) -3 FIRI-Y /[Pixxwxx 5P P2 w—5P2P; w, + EP"SW]
i=1 i=1
1 5 = U 5 15 ~
—/ [5 wl, - SwPE = 10Pw P, — 3 PPl + P4w2] <I>_,~(t)‘

<Ce?™' a)/(w2 + w?)®;.
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Proof. For the mass, we compute
1 ~ 1 ~ ~ 1
M;(t) = E/(P+w)2c1>,- =§/P2<1>,+/qu>,+§/w2q>,.

As in step 1, we can show that % / P2o ; converges exponentially (we choose w with

respect to this exponential convergence) to le =_11 M [13;] Similarly, the difference between

/ P w®; and le;ll Piw converges exponentially to O (the velocity of a soliton is not
modified a lot by modulation, this is why it works in any cases).

For E and F, we perform similar basic computations with the only difference being
that there will also be terms of degree 3 or more in w. We know that ||w(t)| g2 — O as
t — o0, this is the reason why for 7 large enough, such terms are boundable by o [ w? ®;
orw [(w2d;. "

Step 4. Approximation of the Lyapunov functional. By analogy with the existence part,
we introduce the following Lyapunov functional:

Hj (1) = Fj(0) + 2065y — aj_) E; (1) + (aj_y + b]_1)* M; (0).

We will use the previous steps to approximate J¢; ().

Lemma 4.15. There exists T4 > T such that the following holds for t > Ty:
j—1 j—1 Jj—1

0y = S FIB]+ 207, - 3_) Y EP) + @3y + 2% Y M[P]

i=1 i=1 i=1
+ Hj(1) + 0(™*7") + 0(/(w2 + w§)¢,~),

where

1 5 ~ 5 ~ ~ ~ 15 ~
Hj(l‘) = /[szzcx_zwachjzﬂ+§w2Pj2—1x+5w2Pj—1Pf—1xx+Tw2Pf—1]®j(I)

~ 1
+ (b7, —a}_l)/[w,%—3w2Pj2_1]q>,-(z)+ 5 (@7 +b}_1)2/w2c1>,-(z).

Proof. This lemma is obtained from the summation of the facts established in the previous
lemma. We get rid of the linear terms in the following way, by integrations by parts:

= = 5 52 525 355
O [ (Prxxwan = SPiPRw = SP? Prywy + 5 Piw)

i=1

j—1 Jj—1
+2(b7_ —aj_y) Z/(Pixwx = PPw)+ (@ + 0] ) ) Piw
i=1

i=1

Jj—1
~ ~ ~ ~ o~ 3~
ZZ/(Pixxxx+5PiPi2)C+5/Pi2 ixx+§Pi5)w

i=1

Jj—1 j—1
+207~ ) Y [P = P+ @y + 877 Y [ B

i=1 i=1
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If we consider that this sum goes fromi = 1 to j — 2, we see that for 1 <i < j — 2, this
sum is exponentially bounded by the induction assumption (we use that fori < j —2,a
polynomial in 13, and its derivatives are bounded by C®;_;,andw =v + (Pj_; — ﬁj_l)).
It is left to consider the sum of the terms with i = j — 1. 5

For i = j — 1, we have nearly the elliptic equation satisfied by P;_;. It is actually
exactly this equation in the case when f;j_l is a breather. When ﬁj_l is a soliton, its
shape parameter is modified by modulation. This is why, in this case, the sum of the terms
withi = j — 1 is equal to

231(0) / (=B 1ex — P2 pw + 262131 (1) [ Brovw + 310 / P,

which vanishes because of the orthogonality condition from the modulation (Lemma 4.13)
and the elliptic equation (1.2) satisfied by a soliton.

The term Hj; is obtained as the sum of the quadratic parts of the previous lemma on
which we have performed some integrations by parts, and some simplifications based on
the fact that fori > j, P® i (1) is exponentially decreasing, and the fact that fori < j — 2,

/ Piw? is exponentially decreasing by the induction assumption (4.16). Therefore, H;
corresponds to the sum of the quadratic parts of the previous lemma to which we have to
add5 [ w? P P, ®j, which is bounded exponentially. |

Step 5. Bound from above for H; (). Because vy > 0, we have that b7, —a7_; > 0. By

taking w, and we small enough (with respect to (a]z._1 + bj?_l)Z), we obtain, by the facts
of Lemma 4.11, the following inequality:

j—1 Jj—1 Jj—1
Hi (1) =Y F[P]=2(b7_y —a}_) Y E[P]—(aj_y +b]_)* Y M[P]<Ce>"".

i=1 i=1 i=1
From Lemma 4.15, for t > T3,
Hj(t) < F[Pj1] = F[Pja] +2(0}_, — aj_)(E[Pj1] = E[Pj 1))
+(@?_ + b7 )AMPi—q] — M[Pj_1]) + Ce ™' + o [(w2 +w?)®;.
If P;j_; is a breather, we obtain immediately that
Hi(t) < Ce ™" + a)/(w2 + w2)d;.
The case when P;_; is a soliton needs more inspection. As in the existence part, we
have the following relations:
M[P;a](t) = (b7, + y1(6)' /2 M [g].
E[Pj1](t) = (bf -y + y1(1)*Elg).
FPi1)(t) = (b7 s + y1(0)*? Flq).

We set 5 5 5
Rj-1(t) == F[P;1](t) + 2b7_ E[P;1](t) + b}_  M[P;_1](1).
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and we simplify it as follows:

_ y1(1)\5/2 y1(1))3/2
Ri_1(t) = bf_1<1 + 2 ) Flg] + 2bf_1<1 + b,z__l) Elq]
+ b5, (1+ ylz(t))l/zM[q]-

b,

After making a Taylor expansion as in Section 2.5,
(4.22) Rj-1(t) = F[Pj—] = 2b7_E[Pj—] = b}_ M[P;—] = O(y1(1)?).

Therefore, if T4 is large enough, ||v(?)||z2 can be as small as we want, and for t > Ty,
if P;_1 asoliton, we may write

Hi(t) < Ce?™" + a)/(w2 + w2)®; + wy (t)>.

Step 6. Coercivity. The term H; can be seen as the quadratic form associated to 13}_1
and evaluated in w\/a , modulo several terms that can be bounded by C /o [ (w? +
w2 + w2 L )@; (because these terms depend on derivatives of ®;). Let us prove that we
can apply Appendix A.4 for w \/_

More precisely, we need to prove that, for v > 0 small enough (from Appendix A.4),

[ ov® B+ | [ 0v® B < vl

if P;_1 is a breather, or that

)/w\/a,@_lh\[w@fu}_u < vllw /B |12

if P;j_; is a soliton. In any case, the proof is the same and let us write K at the place of
Pj 11, Pj 12, Pj 1 or PJ 1x. This means that we want to bound f w,/P;K.
From (4.18) and (4.19), we can see that it is enough to bound f w(l - ®;)K by

v||lw,/®, | g2. The reasoning that follows works for j < J;for j = J + 1, the result is
immediate because ® ;41 = 1. Since ®; is a translate of W, using the fact that

VJIi+v=1+0() asv—0,
we have
1V =1-VI+U—1=1-1-U(—x) = O(¥(—x)),

which means that

1-— \/E] <C min(l,exp(M)).
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We may deduce now that
| [wa-vapk|=| [wya =X Y%

Nen
1- /%,
< HW\/-_]K Lz||w/3j||Lz < CeVomm-D |y /B2

if \/o/4 < B/2. And so, if ¢ is large enough, we get the bound we want.

Thus, there exists i > 0 such that for t > 75 (where T is large enough and depends
ono),

1 - 2
wllw /@113, < Hi(t) + Cﬁ/(wZ + w2 + w2 )P + ;(/ P,-_lw,/@,-)
< Ce™2™! +a)/(w2 +w2)®; + C\/E/(w2 +w?+wl,)d;

1 - 2

+ oy (1) + ;(/Pj—lw\/@j) :

where the term —( / PJ 1w /®;)? is present only if P] 1 is a breather and the term
wy1(t)? is present only if P] 1 is a soliton.
For o and w small enough, we deduce that

~ 2
(4.23) /(w2 + w2 + w2 )P < Ce 27 +wy (1)* + C(/ Pj_lw\/cpj) .

We set Ty := max(Ty, Tz, T3, Ty, T5s).
Step 7. Bound for | [ E_lw \/3, | (in case 13]-_1 is a breather). We would like to prove
that [ 13;4 w \/3, is exponentially decreasing. To do so, we would like to get rid of \/3, .
Itis clear that | }3}-_1 w(l — \/3] ) is exponentially decreasing. Thus, it is enough to prove
that [ 13}_1 w is exponentially decreasing.

Ifi <j —2, weknow that [ Pwis exponentially decreasing by the induction assump-
tion (4.16). Thus, it is enough to prove that Zl_l i Piwis exponentially decreasing.

From the mass approximation of Lemma 4.14 and Lemma 4.11, we have, for t > T,

Z/Pw—0(e—2m)+M(r)—ZM[P]—-/w ®;

i=1

< Ce—Z‘w’l‘_%/qu)j < Ce—lwt

Now, we use the fact that the sum of the linear parts of our localized conservation
laws is exponentially decreasing, which we have established in the proof of Lemma 4.15.
Therefore, the linear terms of F; + 2(1912_1 — af_l)E ; are equal to

0(e™™") — (@2, + b7 ozz / B,
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Now, from the energy and F approximations of Lemma 4.14 and Lemma 4.11, and
from (4.22), we observe that (we recall that b]?_l —a? 1 = 0), fort > T,

j_
j—1
— (a2, +b}_1)2Z/P,~w
i=1
= 0(e 2™ + o(/(w2 + w)zc)@j)

j—1 Jj—1
+ Fj(1) + 2(]912—1 _a?—l)Ej(t) - Z F[P;] — z(bjg—l _a]z—l) ZE[Pi]
i=1 i=1
1 5 - 5 - 15 ~
- /[wam — S w? P2 = 10Pw Py -3 PPwl + 2 ‘w?]a
1 3~
—2(b7_ —al_y) /[Ewi -3 P2w2] ®; +o(y1(1)?)

= 0(e™2™") + o(/(w2 +w2)®;)

j—1 Jj—1
+ Fj () + w6 Mj (1) = 3 FIPil—ws ) M[Pi]

i=1 i=1

j—1 j—1
+2(b7 —d? ) [E,- )+ M; (1))=Y E[P]—wr Y M[Pi]}
i=1 i=1

i—1
T (w5 + 20267 — a}_o)(z MIP] - M, (t))
i=1

1 5 ~ ~ o~ 5~ 15 ~
— /[5 w2, — szPx2 —10PwPywy — 3 PPw? + TP“wz] d;
1 3~
—2(b;_, —a;_y) /[Ewﬁ -3 Pzwz] ®; +o(y1(1)?)

<Ce ™' 4 C /(w2 +w2)®; +o(y1(t)?)

j—1
~ 1
— (w6 + 2w2(b7_, —a}_l))(Z/P,-er §/w2q>,),
i=1

where the term o(y1(¢)?) is present only if Pj_; is a soliton. And therefore, for @, and wg
small enough,

-1
—Z/ Piw < Ce™2™' 4 C /(w2 +w)®; +o(y1(t)?).
i=1

Thus, we deduce the following bound:

‘/ﬁj—lw\/q)j ‘ <Ce?7' 1 C /(w2 +w)®; +o(y1(1)?).



A. Semenov 1310

Because ||w(?)|| g2 — 0 ast — 400, we deduce that

(4.24) ([ f)j_lw\/aj>2 =o0(e 27" + 0(/(w2 + w)zc) d>j) +o(y1(1)?).

Step 8. Conclusion. From (4.23) and (4.24), we deduce, for t > Ty, that
[+ ut)o; = 0™ 4o +of [P +ud)ey)

This means that if we take Ty large enough, we have

(4.25) [ w2+t @ = 0010 + 06,

where the term o(y1(7)?) is present only if P;_; is a soliton.

Before completing the proof, we need to find a better bound for y;(¢) than just a
convergence to 0 given by the modulation (in the case when P;_; is a soliton). For this,
we study M; (¢):

M; (1)

! / 005 0) =+ / (B(t) + w(t)? ®; (1)

3 [ FOr00+ [ Founo,0 + 5 [wore,o
1=t =t 1

— Pi(t)* + Piyw(t) + 0@ 2@ + = [ w(@)*>®;(t)
2 ;/ ;/ 2/ /
-3 / B + / B w(t) + 0(e>™")

j-2
+ %/w(t)zq)j(t)-f- %;/Pi([)z,

by the induction assumption (4.16). Then

1 [ = B 1 13
M0 =5 [ Fra@? + 0@+ 5 [were,0+ 5 > | P
by the orthogonality condition from the modulation (Lemma 4.13). Therefore,
2 1/2 2wt 1 2 12 2
M; (@) = (bj 1 + y1(1) “MIgl + O™ + 5 [ w(t)"@;(1) + EZ Pi(1)".
i=1

Now, if we take t; > ¢, we obtain from (4.25) that

(4.26) M;(t1) = M;(t) = [(03_; + y1()"/? = (b_; + y1(1)/*|M[q]
+ 02 + o(y1(1)?) + 01 (11)?).



Uniqueness of multi-breathers of the mKdV equation 1311

By doing a Taylor expansion of order 1, as in the existence part, we obtain

y1(t1)
2 bz

B3+ 31" = by (142 20 4 0, 1)2).

Therefore,
BF_; + y1(E)V? = (b2 + yi1(t)?

(1(t1) — y1(®) + O(r1(t1)*) + O(¥1(1)?).

= 2b;

Now, we recall that when t1; — +o00, we have y;(¢1) — 0. Therefore, by taking the limit
of the previous formula when #; — +o00, we obtain

byt — 0y + )" =~ 29 1 00,02,
“2b

Therefore, from (4.26), with 11 — +o00,

el L lgl+ 062 + 00102

(4.27) Z M[P;]— M;(t) = —

i=1

The second step is to study E; () (we do the same reasoning as for M;):

Ej(t) = /[;ui - %” ]ij(t)

=/[%ﬁj—%ﬁ“]@,-(:ﬁ/[ﬁxwx—ﬁ3w]<1>,-(z)+ O(/w2<1>j(t)),

and after simplifications by ®; due to exponential convergences, the induction assump-
tion (4.16) and orthogonality conditions (Lemma 4.13),

Jj—2

£ = EIP 0]+ 3 ELP1+ 0@ ) + 0( [ w?@,0))
i=1

= 021+ 0@ PEl) + 3 ER+ 0™ + 0 [ure,0)
i=1
j—2

= (b, + 11())Elg] + Y E[P;]+ 0(e7>™") + 0(y1(1)?),
i=1

by (4.25). And then, by taking the difference for#; > 1,

Ej(t) — E;(t) = [(02_; + y1(1))*/* — (b2_; + »1(1)**]Elq]
+ 027" + o(y1(t1)*) + o(y1(2)?).
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By taking a Taylor expansion of order 1, we obtain

3 y1(f1)
a0 =5 (145 557+ 0 0)).
.
Therefore, after taking 1; — +o00, we obtain
Jj—1 3
428 Y E[P] - Ej() = =bimni(E[g] + 07 + 001 (1)),

i=1

This is why, from (4.27), (4.28) and Lemma 4.11, we obtain

(4.29) _nl) [g] + O(e™>™") + O(y1(1)*) = —Ce ™",
2bj—

and

(4.30) —% i—1y1(DElg] + 0(e27") + O(y1(1)*) = —Ce™ ™",

Because M [¢q] = 2 and E[q] = —2/3, we rewrite the previous inequalities (4.29) and
(4.30) in the following way (and we pass O(e~2®") on the other side of each inequality):

4.31) —Z‘—(t) + 0(y1(1)?) = —Ce 27!,
j—1

and

(4.32) bi—1y1(t) + O(y1(1)*) = —Ce ™",

Because y; () — +00, by taking Tj larger if needed, O(y1(#)?) can be bounded above
by any positive constant multiplied by |y ()|, so by taking this constant small enough (by
taking Ty large enough) and combining both previous inequalities (4.31) and (4.32), we
obtain

ly1(t)| < Ce ™",

Therefore, we have obtained a better bound for y;(¢) in the case when P;_; is a soliton.
Thus, we may conclude that in any case, for ¢ > Ty, and Ty large enough,

/(w2 + w2 + w2 )P, (1) = 0(e™>™").
Then we deduce from (4.21) that

V1O + [y = O™™").
Because |y1(¢)| + |y2(t)| — 0 ast — 400, we obtain by integration

1] + 2] = 0(e™™").
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And so, by the mean value theorem,
1Pj—1 = Pj—1llm> < Uy (@) + [y2()]) < Ce™™".

Fromv = w + E_l — Pj_1, we deduce

/(v2 + o7 +03)® = C /(w2 +wi +wi)® +C /[(f’,-_l ~ Pi)?
+ (Pjoy = Pi) + (Pjoy — Pi1)2,]®; < Ce™™",

and this completes the induction. ]

4.3. Proof of Theorem 1.4

Proof of Theorem 1.4. We suppose that v; > 0. Let p be the associated multi-breather
given by Theorem 1.2. Let u be a solution of (1.1) such that

lu@)— p)|gz =0 ast — +4o0.

From Proposition 4.10, we deduce that there exist constants C > 0 and w > 0 such
that for # large enough,
lu() = p@)|| 2 < Ce™™".

This implies that u satisfies the assumptions of Proposition 1.5. Thus, ¥ = p and
Theorem 1.4 is proved. ]

A. Appendix

The first two subsections of the appendix show that a soliton has similar properties as a
“limit breather” of parameter & = 0. Firstly, the corresponding elliptic equation is satisfied
by a soliton. Secondly, the corresponding quadratic form is coercive for a soliton, and we
see that its kernel is spanned by d, Q and d. Q. In the third subsection, we prove that it is
possible for € to be orthogonal to Q and 0, Q (instead of d,, Q and d. Q) in order to satisfy
a coercivity for the quadratic form. We will use this fact for the proof of the existence, as
well as for the first part of the proof of the uniqueness. In the fourth subsection, we prove
that we can have coercivity for quadratic forms when the orthogonality condition is not
exactly satisfied. We will use this result for the proof of the uniqueness. The last subsection
is about computations for the third conservation law. It will be useful for the monotonicity
property for the localized F that we need in the proof of the uniqueness.

A.1. Elliptic equation satisfied by a soliton

Lemma A.1. A soliton Q = R, satisfies, for any time t € R, the following nonlinear
elliptic equation:

(AD  Qun—20(Qux + 0% + 20 45002 +50°0sc + 5 0° =0,
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Proof. In order to derive this equation, we will use the equation that defines a soliton (and
that is satisfied by Q at any time):

Qxx =cQ—Q°.

We will also need the following equation:
1
07 =cQ*— 3 04

that can be derived by taking the space derivative of Q2 — cQ? + %Q“, and by showing
that this derivative is zero. From this, we deduce that 02 — cQ? + %Q“ is constant, and

by taking its limit when x — o0, we see that this constant is zero. More precisely, the
derivative of 02 —cQ? + 1 0% is

20x0xx —2c00x + 2Q3Qx =20x(Qxx —cQ + Q3) =0.

From now on, the derivation of (A.1) is straightforward. It is sufficient to take space
derivatives of Qxx = ¢Q — Q3 and to inject them into the right-hand side of equa-
tion (A.1), which we want to prove that is equal to zero. By doing this, we make the
maximal order of a derivative of Q present in the right-hand side of the equation lower. In
the end, we have only zero and first order derivatives. To have only a polynomial in Q, we
have to use Q2 = ¢Q? — 3 0*, and the calculations show that this polynomial is zero. m

A.2. Study of coercivity of the quadratic form associated to a soliton

In this article, we adapt the argument for the breathers in [3] to the soliton case. We
consider

1 5 5 15
@l =; [a-3 [ord+] [ores [oone+ ] [0t

+C(/6)2C—3/Q262)+02%/62 =: Qo sclel-

Firstly, we prove, by simple calculations, as in the previous section, that QO and
O + xQy are in the kernel of this quadratic form. It is easy to see, by asymptotic study,
that these two functions are linearly independent.

The self-adjoint linear operator associated to this quadratic form is

Li[€] := €ax) — 2cexx + c2e4+50%€, + 1000, €
15
+ (502 +1000ux + = 0* — 6c0?)e,

so that @S[e] = [ € £3[€], where &£2 is a compact perturbation of the constant coefficients
operator:
Mle] := €x) — 2Cexx + C€.

A direct analysis involving ODEs shows that the null space of M is spawned by four
linearly independent functions:

e:tﬁx xeiﬁx'

3
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Among these four functions, there are only two L2-integrable ones in the semi-infinite line
[0, +00). Therefore, the null space of £7|f4(r) is spanned by at most two L?-functions.
Thus,

ker(£7) = Span(9,Q, QO + x5 Q).

Lemma A.2. The operator £} does not have any negative eigenvalue.

Proof. The operator £ has
> dimker W[Q, Q + xQ.](t, x)
xeR

negative eigenvalues, counting multiplicities, where W is the Wronskian matrix:

W[Qx, O + x04](t,x) := |:QQxxx (QQ—:_;CQQxx)x] .

For this result, see [19], where the finite interval case was considered. As shown in several
articles [23,27], the extension to the real line is direct.

Thus, it is sufficient to see that det W[Qx, O + xQx](¢, x) is never zero. For this, let
us simply calculate this determinant:

0x20x +x0xx) —(Q +x0x)0xx = 2Q)zc — Q0 0xx
=2c0’-0*-0(c0-0>)=c0*>>0. m

A.3. Coercivity of the quadratic form associated to a soliton

For O = R., let

@l =; [a.-3 0@+ [oiess[oone+ ] [ote
+C(/€§—3/Q2€2)+02%/62.

Lemma A.3. There exists j.c > 0 such that for any € € H? satisfying [€Q = [€Qy =0,
we have that

Q] = pellellZ

Proof. From Section A.2, we know that if f €00 = f €d.Q = 0, then, for a con-
stant v, > 0, we have that
(Qi[e] = Vc”e”?{z-

Lete € H? be such that [€Q = [ €3, Q = 0. There exista € R and €, belonging to
Span(d, Q, 3. Q) such that
€=ad.0 +e€].

From [ €Q = 0, we have that

a/3cQ~Q+/qQ=O,
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%/Qz-l-/GLQ:O,

fﬂQ
sz

Because d. Q is in the kernel of @7, we have that

thus,

which allows us to derive

Qile] = @ler] = vellerlzo-

Now, from
Yty
f Q2 aCQ + 6J.7
we have, by the triangular and Cauchy—Schwarz inequalities, that
|/ e 0Ol
lellmz < lerllme +2 = =7~ / 10 Ol a2
o117
9 Oll g2 19 Ol 2
< llewl +2 = el < (142 552 Y ey o,
1912 191l

Therefore, we may derive a constant u. (independent of €) such that

Qle] = pcllellZo- n

A 4. Coercivity with almost orthogonality conditions (to be used for the uniqueness)

For B := B, g or any of its translations, we define the canonical quadratic form associated
to B:

1 5 5 15
b .
Q, plel = E/eix—E/Bzei—l—E/Biez—i—S/BBxxez—k7/3462
1
+(,32—a2)(/e§—3/3262)+(a2+,32)2§/62

and we know that dy, B and dy, B span the kernel of (,‘22 p- More precisely, there exists
[Lg 5> 0 such that if € is orthogonal to d,, B and d,, B, we have that

1 2
@b 4lel = b g el — ——( / B).
Ko g

We would like to prove the following lemma (adapted from Appendix A of [30]).
Lemma A.4. There exists v := v? wp > 0 such that, for e € H*(R), if

| [ s Bagre|+ | [@nBapre] < vieln.
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then ,
Ka,p 2 4 2
T2 el = ([ eBas)”

a.B

where By g denotes the breather of parameters o and B or any of its translations (in space
or in time).

(22,;9 [e] >

Proof. Take v > 0 (we will find a condition on v later in the proof) and take € satisfying
the assumption of the lemma. Then (denoting B = By g)

(A.2) €e=¢;+aB; +bBy = €1 + €3,
where [€1B1 = [€1B, = [€162 = 0.

By performing a I.2-scalar product of (A.2) with By and B5, we obtain, by assumption,
that

‘a/Bf—i—b/Ble‘ <vlelly> and (a/Bleer/B;‘ < vlellg.

Therefore, by making linear combinations of these two inequalities, using the triangular
and Cauchy-Schwarz inequalities, we obtain that

la| +1b] < Cv|l€] 2.
We can take space derivatives of (A.2). And thus, we obtain, for v small enough, that
1 2 2 2
5”6”1-12 = ”61”112 =< 2”6”112«

Because of [ BBy = [ BB, =0,

[en=[as

@2 yle] = @ yle1] + @ 4fea] + / €1 €200 — 5 [ B2, e

By bilinearity,

5 15 4
+5 Bx6162+10 BBxx61€2+7 B €1€2
+ (B _a2)<2/61,x62,x —6/ BZem) + (? +ﬂ2)2/6162.

We know from the coercivity of @Z 8 that

b
1 2 M 2 2
@ el =t plealis = ——( [@B) = “22 el - ——( [ eB)”
M‘X,ﬂ /'Lot,ﬁ
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Moreover, if we denote by éﬁg P the self-adjoint operator associated to the quadratic
form (22 e

Q) glea] = a> @} 4[B1] + b* QL 4[Bo] + 2ab / £h 4[B11By < Cv €|

Actually, in this case, (,‘23, B [e2] = 0, because ¢, is in the kernel of (,‘22 8 (however, when
we adapt this proof for solitons, we can only write the bound).
Now, we recall that [ €1 €, = 0, and study the other terms by using Cauchy—Schwarz:

)/el,xx €2,xx—5/3261,x62,x +5/B§6162+ 10/BBxx €1€2

15
+ 5 / Beien + (,82 —(xz)(2/el,x €25 — 6/ Bzelez))
< C(lal + [bDlellaz < Cvllel2gy-
We observe that if we take v small enough, the claim of the lemma is proved. ]

We prove in the same way that we have similar lemmas for solitons.

Lemma A.5. There exists v := v5 > 0, such that, for e € H*(R), if

| [Gerenrd] +] [ @cRere] < vieln.
then s
He
4
where R, . denotes the soliton of parameter ¢ and sign k or any of its translations.

Lemma A.6. There exists v := v5 > 0, such that, for e € H*(R), if

)/Rc,Ke

Q:le] = = llell3

+ ‘/(ach,K)e) < vlellg2,

then s
0
aslel = £ el

where R denotes the soliton of parameter ¢ and sign k or any of its translations.

A.5. Computations for the third localized integral (to be used for the uniqueness)

Lemma A.7. Let f:R — R be a C? function that does not depend on time and u a
solution of (1.1). Then

d 1 5 1
g [ G 3w+ )1
3 9 1 3 45
= /(—Euﬁxx +9uZ u® + 15uuury + —ub + —ut + Supu’ — —u4u§)f’

16 4°* 2 4
1
S/MZMXMXXf” E/uixfm'
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Proof. We perform by doing integrations by parts when needed and basic calculations:
& [ Gude —3utud + uo) f
= futxxuxxf _Sfutuu;ch _Sfuzutxuxf + %f“tusf
= _f(uxx + u3)xxxuxxf + Sf(uxx + ”3)xuu;2¢f
+ 5f“z(uxx + u3)xxuxf - %f(uxx + u3)xu5f
= f(uxx + MB)xxuxxxf + f(uxx + ua)xxuxxf, + Sf(uxx + u3)xuu)25f
+5 [ u?(uxx + u)xxux f — %f(uxx +ud)u’ f
= _% fuyzcxxf/ + f(u3)xxuxxxf + f(uxx + u3)xxuxxf’
+ 5 [uxxxur2 f+5 [@d)sur? f 45 [ wPryxxxux f
+ 5 [u? () xxux f — %fuxxxusf — %f(u3)xu5f
= —% Ju2 o S+ [Qxx + u)xxtixx [/ + [ Guyxt® + 6uu)uxyy f
+ 5 [uxxxuu? f + 15 [udu [+ 5 [ uPurxxtix f
+ 5 [u?Buyxu® + 6uu)uy f — %fuxxxusf — %fuxu7f
= _% fu)zcxxf/ + f(uxx + u3)xxuxxf/ + 3fu2uxxuxxxf + Sfuzuxxxxuxf
+ 11 [ urPuxxx [+ 45 [udud [+ 15 [utusus f — %fuxxthSf + %fusf’
= _% fu)zcxxf/ + f(uxx + u3)xxuxxf/ + 19_6.[”8]” - 2fu2uxxuxxxf
+ [ uruxex f =5 [uPustigxx [/ 445 [uiud f+ 15fu4uxuxxf—%fu5uxxxf
= —% fuyzcxxf/ + f(uxx + u3)xxuxxf/ + 19_6fu8f/ - Sfuzuxuxxxf/
_fuz(uyzcx)xf + fuuyzcuxxxf +45fu3u)3€f + 15fM4uxuxxf - %f“suxxxf
= _% fuyzcxxf/ + f(uxx + 1)t 1+ 19_6.["‘8]” - Sfuzuxuxxxf/
+ [P [ 42 fuuxul, f— [udus f =2 [uuzui, f
— [urPusx f/+45 [uPud f +15 [utususs f — %fu5uxxxf
L U 4 e+ 0t £ B [0S =5 [Pttt £+ [0
_fuu)zcuxxf/ - }Tf(ui)xf + 45fu3u;3¢f + %‘/u“(ui)xf + %f”suxxf/
= _% fuixxf/ + f (uxx + u3)xxuxxf/ + 1% fugf/ - Sfuzuxuxxxf/
+ [uPul f = [uiuex [+ 3 [ubf 43 [wtu f1+45 [udud f
—45 [wdud f — % [utul f!
=2 [ [ = [xxxthux [+ 4 [u2 0 [T+ 5 [12usny [/ =5 [P uxtixxx [/
o Jul S+ Sul S+ 5 [t f1 = [utul S
=3[l '+ 92?15 [Wlunns /1 + 2 [ulf 1 fud
+ %f“suxxf/ - % fu“ufcf’ - fuxxxuxxf// + Sfu2uxuxxf//
= f(—%ufcxx + 9u2, u? + 1502 uuyy + 19—6148 + %ui + %uxxu5 — %u“ui)f’
+ 5 [ wPuxusx f" + %fuixf’”.

which is exactly the desired expression. ]
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