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Constant mean curvature hypersurfaces in Hn � R

with small planar boundary

Barbara Nelli and Giuseppe Pipoli

Abstract. We show that constant mean curvature hypersurfaces in Hn � R, with
small and pinched boundary contained in a horizontal slice P , are topological disks
provided they are contained in one of the two halfspaces determined by P . This is the
analogous in Hn � R of a result in R3 by A. Ros and H. Rosenberg [J. Differential
Geom. 44 (1996), 807–817].

1. Introduction

There is little known about the topological and geometrical structure of constant mean
curvature hypersurfaces with convex boundary.

For example, it is unknown if a surface embedded in R3; with boundary a circle and
constant mean curvature, is isometric to a spherical cap. During the years, there have been
partial results concerning this problem. Let us recall those we consider the deepest.

The result by Brito, W. Meeks, H. Rosenberg and R. Sa Earp in [3] yields that an
embedded constant mean curvature surface, with boundary a circle in a plane P , is a
spherical cap provided it is transverse to P along the boundary. In fact, the authors are
able to prove that the transversality condition forces the surface to stay in one of the two
halfspaces determined by P: Then one can use the Alexandrov reflection method to get
the result.

Notice that Alexandrov’s theorem states that a closed, embedded surface with constant
mean curvature in R3 is a round sphere [5] (see also [7] for a survey about the subject).
In light of Alexandrov’s theorem, it is reasonable to expect that, if the boundary curve of
a constant mean curvature surface M is small, then M is a topological disk. By rescaling,
this is analogous to expect that M is topologically a disk if the mean curvature of M is
small when compared with the curvature of its boundary.

Indeed, A. Ros and H. Rosenberg showed in [11] that if � is a convex curve con-
tained in the plane P , the mean curvature H of an embedded constant mean curvature
surface M is small when compared with the curvature of � , and if M is contained in the
halfspace bounded by P , then M is a topological disk. Their result was extended to the
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hyperbolic 3-space H3 by B. Semmler [13], and to Rn, for all symmetric functions of the
principal curvatures, by B. Nelli and B. Semmler [9].

In this paper we extend the Ros–Rosenberg result to constant mean curvature hypersur-
faces in Hn �R. Namely, we prove the following theorem (see Theorem 4.1). The notion
of rext (exterior radius) and rint (interior radius) in the statement are intuitively clear. For
a precise definition, as well as for the definition of horoconvexity, see the beginning of
Section 4.

Theorem. Let M be a n-dimensional compact hypersurface of Hn � R embedded in
Hn � Œ0;1Œ with constant mean curvature H > .n � 1/=n and boundary @M D � .
Assume that � is a closed .n � 1/-dimensional horoconvex hypersurface of the slice
P D Hn � ¹0º satisfying the pinching 2rint > rext. Then there is a constant ı.n;H/ > 0,
depending only on n and H , such that if rext � ı.n;H/, then M is topologically a disk.
Moreover, eitherM is a graph over the domain� bounded by � , orN DM \ .���0;1Œ/
is a graph over � and M n N is a graph over ���0;1Œ with respect to the lines ortho-
gonal to ���0;1Œ:

We emphasize that the assumption H > .n � 1/=n in the previous theorem is not
restrictive because the following theorem holds.

Theorem. Let � be a connected domain in a horizontal section P of Hn � R, with
horoconvex boundary � D @�. If M is an embedded compact constant mean curvature
hypersurface with boundary � and mean curvature H � .n � 1/=n, then M is a graph
on �. In particular, M is a topological disk.

The previous theorem is proved for n D 2 by B. Nelli, R. Sa Earp, W. Santos and
E. Toubiana in Theorem 2.2 of [8], and for n > 2, by P. Bérard and R. Sa Earp in The-
orem 3.3 of [2].

Ros and Rosenberg’s proof relies on a crucial rescaling theorem (see Theorem 1
in [11]). In trying to adapt their proof to Hn �R, however, one is faced with the first obsta-
cle that rescalings are not available in Hn. This obstacle was overcome by B. Semmler
in [13], where she uses constant mean curvature horizontal half-cylinders as barriers to
give a different proof of Theorem 2 in [11]. In order to be able to use Semmler’s type proof,
we need horizontal cylinders, i.e., constant mean curvature hypersurfaces invariant by
hyperbolic translations in Hn �R: Such cylinders for n D 2 are described by J. M. Man-
zano and I. Onnis [6,10], and by P. Bérard and R. Sa Earp [2] for n > 2: Then, one is faced
with the second obstacle that, when H ! .n � 1/=n, compact constant mean curvature
and invariant by rotations hypersurfaces in Hn � R converge to a complete non-compact
graph different from a slice (see Remark 3.1). In order to overcome this second obstacle,
we need two ingredients:

• a precise estimate of how much we can go beyond the boundary ofM , when doing an
Alexandrov reflection: limaçon construction, see Section 2;

• the use as barriers of immersed constant mean curvature hypersurfaces in Hn � R
invariant by rotation and horizontal cylinders.
The paper is organized as follows. In Section 2, we describe the construction of the

hyperbolic limaçon and study its geometry. In Section 3, we describe all the comparison
hypersurfaces that we need in the following. In Section 4, we prove our main theorem. To
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simplify the reading, in Appendix A we summarize the principal notations introduced in
the article. Throughout the article (except in a part of Section 3.2), we will use the Poincaré
disk model for the hyperbolic space. Moreover, we will use extensively the Alexandrov
reflection method, which is explained in details in Chapter 7 of [5] and in [7].

2. The limaçon in the hyperbolic space

In this section we describe a family of hypersurfaces of the hyperbolic space Hn; ana-
logous to the classical curve in the Euclidean plane known as limaçon of Pascal. Such
hypersurfaces will be convenient to estimate radii of disks appearing in the proof of the
main theorem.

Definition 2.1. We call hyperbolic limaçon the hypersurface L of Hn defined in the
following way. Fix two points A ¤ C 2 Hn and a positive constant c, and let C be
the geodesic sphere of center C and radius c. For any P 2 C , let AP be the reflection
of A across the totally geodesic hyperplane of Hn tangent to C at P . Then L D ¹AP 2

H2 j P 2 Cº. See Figure 1 below.

Figure 1. Hyperbolic limaçon for n D 2, a > c.

In what follows, we want to describe the main proprieties of L. It is evident by defin-
ition that L is invariant under rotations around the geodesic passing through A and C ,
therefore it is enough to study only the case n D 2.

Remark 2.2. Since H2 is homogeneous, up to isometries of the ambient space, L depends
only on two positive parameters: a WD d.A;C / and c.

In the following, a and c will be called the parameters of the limaçon, and A the base
point of it.
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Remark 2.3. The name of this curve is justified by the fact that the same construction in
the Euclidean plane produces the classical limaçon parametrized, up to isometries, by

L.#/ D .�a cos.2#/C 2c cos.#/;�a sin.2#/C 2c sin.#//:

It is well known that the Euclidean limaçon can be defined in many equivalent ways. For
example, it is the pedal curve of a circumference. The pedal curve of a circumference in
the hyperbolic plane is the subject of [14].

The following result says that the shape of the hyperbolic limaçon is qualitatively
analogous to the shape of the Euclidean one.

Lemma 2.4. Let L be the hyperbolic limaçon with parameters a and c, and base pointA.
Let C be the sphere defining L, and let C 6DA be its center. Then L is a closed continuous
curve, which continuously depends on a and c: It is symmetric with respect to the geodesic
through A and C . If a < c, L is a simple curve. If a D c, L has a cusp in A. If a > c,
L has two loops, one inside the other, and it crosses itself only in A.

Proof. From the very definition, it is evident that L is an immersion of a S1 in H2, that
continuously depends on the parameters a and c, and that is symmetric with respect to the
complete geodesic joining A and C .

Note that, for any choice of a and c, L has no multiple points except, possibly, A.
In fact, take any point B 2 L, B ¤ A, let AB the geodesic segment joining A and B ,
and let M be its middle point. Reversing the construction of Definition 2.1, the geodesic
passing through M and orthogonal to AB has to be tangent to C . Let X be the tangency
point. Then B D AX , and X is uniquely determined by this procedure. Moreover, by
Definition 2.1, we have that A 2 L if and only if there is a geodesic tangent to C contain-
ing A. After these general facts, we need to distinguish the three cases.

If a < c, the point A lies in the disk bounded by C . In this case, A … L, otherwise
there would be a geodesic passing through A and tangent to C . Therefore, L is a simple
curve.

When a > c, A is clearly outside the disk bounded by C ; then there are two distinct
geodesic passing though A and tangent to C . Hence A is a double point for L and, as
showed above, it is its only multiple point. Now let  be the complete geodesic joining A
andC :  intersects C in exactly two points. Denote byP the closest toA, byQ the second
one, and let AP and AQ be the corresponding points on L. Since  and C are orthogonal
in P and Q, we have that  \L D ¹A;AP ; AQº. Moreover, walking along  from A in
the direction of C , we will meetA,AP andAQ exactly in that order. Suppose now that we
walk along C clockwise starting from P ; then in L we will meet AP , A, AQ and A, again
exactly in that order. Since L is continuous, and by the order of the points A, AP and AQ
on  , it follows that L has two loops branching inA, one inside the other. By construction,
d.A; AP / D 2d.A; P / and d.A; AQ/ D 2d.A;Q/, therefore the smaller loop is the one
passing through AP .

The case a D c can be thought as the limit case when a > c and a converges to c: in
this case, P converges to A, and then the smaller loops shrinks to A producing a cusp.

For applications, we would like to estimate the size of L, with particular attention to
the case of small c.
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Lemma 2.5. Let L be the hyperbolic limaçon with parameters a > c and base point A.
Let C be the sphere defining L, let C be its center, and let P be the point of C closest
to A. Then we have the following.

(1) The smaller (respectively, the larger) loop of L is contained in (respectively, con-
tains) the disk with center P and radius a � c.

(2) If a > 2c, then the smaller loop of L bounds the disk with center C and radius
a � 2c.

(3) The whole L is contained in the disk with center C and radius aC 2c.

Moreover, for any fixed a, C and A, when c converges to zero, L converges to twice
the sphere with center C and radius a.

Proof. Since a > c, by Lemma 2.4, L has two loops.
(1) Let AP be as in the proof of Lemma 2.4, and let C1 be the geodesic sphere of

center P and radius a � c. We claim that C1 \L D ¹A; AP º. In fact, A;AP 2 C1 \L

trivially. For any pointB 2 C1 withB ¤A;AP , letAB be the geodesic segment joiningA
and B , and let M be its middle point. See Figure 2 for a picture of the construction. For
the choice of B , we have that M ¤ P . Let  be the geodesic through M and P . The
geodesic triangles AMP and BMP are congruent, hence  is orthogonal to AB in M .
Now suppose that there exists a B 2L\C1 with B ¤ A;AP ; then, by the construction of
Definition 2.1,  should be tangent to C , but we know that P 2 C \  , hence we would get
B D AP , having a contradiction. From this claim it follows that the smaller (respectively,
the larger) loop of L is inside (respectively, outside) C1.

(2) Now suppose that a > 2c. Let C2 be the geodesic sphere with center C and radius
a � 2c. We want to prove that the smaller loop of L bounds C2. By construction, we have
AP 2 C2 \L. We claim that C2 \L D ¹AP º. In fact, fix X 2 C2, X ¤ AP , let  be the
unique geodesic tangent to C and orthogonal to the geodesic ˛ containing the segmentXA,
and let Y D  \ C be the tangency point and let Z D  \ ˛. See Figure 2 for a picture of
the construction. In order to prove that X … L, by Definition 2.1, we need to prove that Z
is not the middle point of XA. If Z 62 XA; we are done, hence we assume Z 2 XA: Since
X ¤ AP , we have that the following triangle inequality is strict:

d.X; Y / < d.X;C /C d.C; Y / D a � c:

On the other hand, since Y 2 C and by definition of P , we have

d.A; Y / � d.A;P / D a � c:

Therefore

(2.1) d.X; Y / < d.A; Y /:

Now let us consider the right-angled hyperbolic triangles XYZ and AYZ. Let ˇ (respec-
tively, ˇ0) be the angle of XYZ (respectively, AYZ) with vertex X (respectively, A).
By (2.1) and some hyperbolic trigonometry (see for instance Theorem 7.11.2 of [1]),
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we get

tanh2 d.X;Z/ D tanh2 d.X; Y / cos2 ˇ D tanh2 d.X; Y /
�
1 �

sinh2 d.A; Y /
sinh2 d.X; Y /

sin2 ˇ0
�

< tanh2 d.A; Y / cos2 ˇ0 D tanh2 d.A;Z/:

It follows that
d.X;Z/ < d.Z;A/;

hence Z cannot be the middle point of XA and therefore X … L. The result follows
noticing that C2 is a continuous curve and that the antipodal point of AP in C2 is in the
compact domain bounded by the smaller loop of L, therefore the closed disk bounded
by C2 is inside this domain as well.

Figure 2. Estimate of the diameter of the smaller loop. Green: hyperbolic limaçon with a > 2c. Red:
the construction in the proof of Lemma 2.5 (1). Blue: the construction in the proof of Lemma 2.5 (2).

(3) The proof is similar to that of the previous case, but this time the inequalities are
reversed. Let C3 be the geodesic sphere with center C and radius a C 2c, let X a point
of C3, and define Y and Z analogously to the previous case. We have that d.X; Y / >
aC c > d.A; Y /. Therefore either Z … XA or d.X;Z/ > d.Z;A/. In any case, Z is not
the middle point of XA, hence X … L.

Finally, when c converges to 0, we have that P converges to C , and then, for any
i D 1; 2; 3, we get that Ci converges to the geodesic sphere with center C and radius a.

3. Constant mean curvature comparison hypersurfaces

There are many examples of constant mean curvature hypersurfaces in Hn � R invariant
by some ambient isometry. In this section we describe some of them, that will be mainly
used as barriers in the proof of our main theorem.

3.1. Rotationally invariant hypersurfaces

P. Bérard and R. Sa Earp [2] classify the rotationally invariant hypersurfaces of Hn � R
with constant mean curvature. Following their notations, for any m 2 N, for any H > 0
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and for suitable choice of the parameter d; we define

Im.t/ D

Z t

0

sinhm.�/ d�;

�H;d .�/ D

Z �

�0

nHIn�1.t/C dp
sinh2n�2.t/ � .nHIn�1.t/C d/2

dt;(3.1)

where �0 � 0 is the infimum of the interval where the integrand function exists. The
rotation around the axis ¹0º �R of the graph of the function �H;d produces, up to isomet-
ries of the ambient space, all the rotationally invariant hypersurfaces with constant mean
curvature H . The case of n D 2 has been studied in detail in [8, 10, 12].

In this section we describe only the three types of hypersurfaces in this class that are
most relevant for our purposes. We refer to the bibliography cited above for an exhaustive
discussion about the topic.

Case 1. The spheres �H .
When H > .n � 1/=n and d D 0, �H;0 is defined for � 2 Œ0; R� �, where R� is the

solution of the equation

(3.2) sinhn�1.�/ � nHIn�1.�/ D 0:

The graph of the function �H;0 is tangent to the plane t D 0 when � D 0, and it has
a vertical tangent at � D R� . Let h� D �H;0.R� / be the maximal height of such curve.
Let �H be the hypersurface generated by rotating the graph of �H;0 and the graph of
the function ��H;0 C 2h� around the t -axis. According to Theorem 2.3 in [2], �H is a
compact embedded smooth hypersurface with the topology of the sphere. When n D 2

(and hence H > 1=2), we have the explicit expression

�H;0.�/ D
4H

p
4H 2 � 1

arcsin
1

2H
�

4H
p
4H 2 � 1

arctan

s
1 � 4H 2 tanh2 �

2

4H 2 � 1
;

for � 2
h
0; cosh�1

�4H 2 C 1

4H 2 � 1

�i
:

Case 2. The complete graphs �.n�1/=n.

WhenH D .n� 1/=n and d D 0, the curve �H;0 is defined for any �� 0. Let �.n�1/=n
be the hypersurface generated by rotating �.n�1/=n;0 around the t -axis. According to
Theorem 2.1 in [2], �.n�1/=n is a simply connected entire vertical graph, contained in
a half-space and tangent to the hyperplane t D 0 at � D 0. Moreover, when n D 2, (3.1)
can be solved explicitly and one has

�1=2;0.�/ D 2
�

cosh
�

2
� 1

�
:

Case 3. Immersed annuli Ad .

When H D .n � 1/=n and d < 0, the curve �.n�1/=n;d is defined for any � � r0;d ,
where r0;d is the unique solution of the equation

(3.3) sinhn�1.�/C .n � 1/In�1.�/C d D 0:
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Moreover, �.n�1/=n;d has a vertical tangent at r0;d , it is negative for � close to r0;d ,
and lim�!C1 �.n�1/=n;d .�/ D C1. From (3.1), it easy to see that �.n�1/=n;d has only
one critical point at � D r1;d , where r1;d is the unique solution of the equation

(3.4) .n � 1/In�1.�/C d D 0:

Let Ad be the hypersurface generated by rotating the graphs of �.n�1/=n;d and��.n�1/=n;d
around the t -axis. According to Theorem 2.1 in [2], Ad is a complete hypersurface, sym-
metric with respect to the hyperplane t D 0 with self-intersection along a sphere of this
hyperplane. Moreover, Ad \R˙ are vertical graphs outside a disk of Hn � ¹0º with cen-
ter in the origin and radius r0;d .

Remark 3.1. We sum up some important relations between the hypersurfaces described
above.
• When d ! 0, then the hypersurfaces Ad tend to the union of �.n�1/=n with its reflec-

tion with respect to the slice ¹t D 0º:
• When H ! .n � 1/=n; the spheres �H tend to the complete graph �.n�1/=n: Notice

that, differently from the Euclidean case, here the spheres do not converge to a hori-
zontal slice.

For future use, we need to estimate various quantities associated to the hypersur-
faces �H , �.n�1/=n and Ad . In particular, we would like to compare r0;d and r1;d defined
above with ��H defined in the following way: for fixed d and H � .n � 1/=n, ��H is the
radius of �H at height h�, where h� is defined in (3.7) below and it is a suitable approxim-
ation of the height of the portion of Ad between r0;d and r1;d . In particular, ��H satisfies
the equation

(3.5) �H;0.�
�
H / D h

�:

Lemma 3.2. With the notations introduced so far, we have the following limits for any
H � .n � 1/=n:

lim
d!0

r0;d D 0; lim
d!0

r1;d D 0 and lim
d!0

��H D 0:

Moreover,
lim
d!0

r0;d

r1;d
D 0 and lim

d!0

r1;d

��H
D 0:

Proof. The first two limits follow directly by the definition of r0;d and r1;d . Now note
that, by standard computations, we have that for any m 2 N,

(3.6) lim
t!0

.mC 1/Im.t/

tmC1
D 1:

It follows that

lim
d!0

r1;d

jd j1=n
D

� n

n � 1

�1=n
and lim

d!0

r0;d

jd j1=.n�1/
D 1:

Therefore we get limd!0 r0;d=r1;d D 0:
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Using again (3.6), �.n�1/=n;d .r1;d / can be estimated for jd j very small as follows:

�.n�1/=n;d .r1;d / � �h
�
WD

Z r1;d

r0;d

.n�1/In�1.t/Cd

sinhn�1.t/
dt �

Z r1;d

r0;d

n�1
n
tnCd

tn�1
dt(3.7)

D
n � 1

n
.r21;d � r

2
0;d /C

d

2 � n
.r2�n1;d � r

2�n
0;d /

� �
1

n � 2

�n � 1
n

�1=.n�1/
r
n=.n�1/

1;d
;(3.8)

By using (3.6) and the definition of h� in (3.7), when jd j is close to zero we have

h� D

Z ��H

0

nHIn�1.t/q
sinh2n�2.t/ � n2H 2I 2n�1.t/

dt � H

Z ��H

0

t dt D
H

2
.��H /

2;

Together with (3.8) this implies that, as d ! 0, ��H � cn;H r
n

2.n�1/

1;d
, where

cn;H D

s
2

H.n � 2/

�n � 1
n

� 1
2.n�1/

:

Hence the results involving ��H follow easily.

3.2. Horizontal cylinders

In [2], P. Bérard and R. Sa Earp describe constant mean curvature hypersurfaces of Hn �R
which are invariant under hyperbolic translations of Hn: Following their notations, for any
m 2 N, for any H > 0 and for suitable choice of the parameter d; we define

Jm.t/ D

Z t

0

coshm.�/ d�;

�H;d .�/ D

Z �

�0

nHJn�1.t/C dp
cosh2n�2.t/ � .nHJn�1.t/C d/2

dt;(3.9)

where �0 � 0 is the infimum of the interval where the integrand function exists.
The graphs of the functions �H;d are the generating curves of hypersurfaces construc-

ted as follows. Let  be a complete geodesic through the origin of the hyperbolic space
Hn � ¹0º; parametrized by the signed distance � to the origin. Let � be the hyperplane
of Hn � ¹0º orthogonal to  at the origin. Consider the curve .�; �H;d .�// embedded
in the plane  � R. For any �, let �� be the vertical translation of � in the slice Hn �

¹�H;d .�/º. The desired hypersurface is obtained translating each point .�;�H;d .�// along
any geodesic of �� passing through the origin of ��. By [2], such hypersurface has con-
stant mean curvature H .

The case of n D 2 has been studied in detail in [6, 8, 10, 12].
In this paper we are only interest in the case H > .n � 1/=n and d D 0. For any

fixed H , we denote with CH such hypersurface. The value of n will be clear from the
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context. The function �H;0 is defined for � 2 Œ0; RC �, where RC is the unique solution of
the equation

(3.10) coshn�1.�/ � nHJn�1.�/ D 0:

When n D 2, CH was explicitly parametrized by J. M. Manzano in [6]: using the half-
space model for H2, we have that, up to isometries of the ambient space,

CH .u; v/ D
� ev sinu
p
4H 2 � 1

; ev;
2H

p
4H 2 � 1

tan�1
cosup

4H 2 � 1C sin2 u

�
;

where u; v 2 R. In this case it is evident that CH has the topology of the cylinder and it
is a bi-graph on the non-compact domain of H2 bounded by the two equidistant curves of
constant geodesic curvature �1=.2H/:

CH \ ¹t D 0º D
°�

˙ev
p
4H 2 � 1

; ev; 0
�
j v 2 R

±
:

The distance between these two curves is 2RC , hence for fixed v D 0, we can compute

(3.11) RC D
1

2
dH2

��
�1

p
4H 2 � 1

; 1
�
;
� 1
p
4H 2 � 1

; 1
��
D
1

2
ln
�2H C 1
2H � 1

�
:

Figure 3. Horizontal cylinder CH in H2 �R in the disk model, H D 0.77.

When n � 3, we do not have an explicit parametrization for �H;0, but part 1 of
Theorem 2.4 in [2] can be easily extended to the case H > .n � 1/=n proving that
hC WD lim�!RC

�H;0.�/ is finite, and that �H;0 is a strictly increasing and convex func-
tion with a vertical tangent at � D RC . Therefore the reflections of �H;0 with respect to
� D 0 and t D hC produce a compact strictly convex simple curve. It follows that the
hypersurface CH is embedded and it is symmetric with respect to a horizontal hyperplane,
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and the parts above and below this hyperplane are vertical graphs. Moreover, CH has
the topology of S1 � Rn�1: Note that limH!.n�1/=n RC is infinite for n D 2 and finite
otherwise.

We conclude this section comparing the radius of the cylinder CH and of the compact
sphere �H with the same mean curvature.

Lemma 3.3. For any n � 2 and for any H > .n � 1/=n, we have

R� > RC ;

where R� is the solution of equation (3.2) and RC is the solution of equation (3.10).

Proof. We start by introducing the following iteration formula taken from [2]:

(3.12)
J0.x/ D xI J1.x/ D sinh.x/I

mJm.x/ D sinh.x/ cosh.x/m�1 C .m � 1/Jm�2.x/; 8m � 2I

Notice that Jm.x/ > 0 for any m and any x > 0. Fix n and H as in the statement. Let
us define the real functions

'.x/ D sinhn�1.x/ � nHIn�1.x/ and  .x/ D coshn�1.x/ � nHJn�1.x/:

By trivial arguments, we have that the unique strictly positive critical point of ' is

QR WD tanh�1
�n � 1
nH

�
;

and that QR < R� .
When n D 2, by (3.11), we have that QR D RC , and the result holds.
Now let n � 3. By (3.12) and definition of QR, we have that

 . QR/ D coshn�1. QR/ �
nH

n � 1

�
sinh. QR/ coshn�2. QR/C .n � 2/Jn�3. QR/

�
< coshn�2. QR/

�
cosh. QR/ �

nH

n � 1
sinh. QR/

�
D 0 D  .RC /;

where, in the inequality, we use that Jn�3 > 0: Therefore RC < QR holds because  is
strictly decreasing.

4. Main theorem

In this section, we prove the generalization of the Ros–Rosenberg theorem, stated in the
introduction.

A closed hypersurface � in the hyperbolic space Hn is said horoconvex if all the
principal curvatures of � are strictly larger than 1. Given a horoconvex hypersurface � , we
call the exterior (respectively, interior) radius of � the minimum (respectively, maximum)
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of the radii � such that for any p 2 � there exists a geodesic sphere S with radius � tangent
to � in p and such that � lies in (respectively, encloses) the closed disk bounded by S .
We denote by rext the exterior radius and by rint the interior radius. It is clear that, for
any � , we have rext � rint and that the equality holds if and only if � is a geodesic sphere
of radius rext.

The main result of the paper is the following.

Theorem 4.1. Let M be a n-dimensional compact hypersurface of Hn � R embedded
in Hn � Œ0;1Œ with constant mean curvature H > .n � 1/=n and boundary @M D � .
Assume that � is a closed .n � 1/-dimensional horoconvex hypersurface of the slice
P D Hn � ¹0º satisfying the pinching 2rint > rext. Then there is a constant ı.n;H/ > 0,
depending only on n and H , such that if rext � ı.n;H/, then M is topologically a disk.
Moreover, eitherM is a graph over the domain� bounded by � , orN DM \ .���0;1Œ/
is a graph over � and M n N is a graph over ���0;1Œ with respect to the lines ortho-
gonal to ���0;1Œ:

Remark 4.2. (1) In the case � is a geodesic sphere and M satisfies the assumption of
Theorem 4.1, it is easy to prove that M is rotationally symmetric, by using Alexandrov
reflections with respect to vertical hyperplanes. Hence M is a portion of a vertical trans-
lation of the hypersurface �H ; defined in Section 3.1.

(2) Notice that a pinching assumption for the boundary of constant mean curvature
surfaces in H2 �R is also considered in [4].

From now on, we suppose that � is not a geodesic sphere, hence rext>rint: The strategy
of the proof of Theorem 4.1 is inspired by the one in [9,13], and it is divided into two cases
according to the following definition.

Definition 4.3. A hypersurfaceM of Hn �R with constant mean curvatureH>.n�1/=n
is called short if it is contained between two slices at distance smaller than the height of
the cylinder CH with the same mean curvature, defined in Section 3.2. M is called tall
otherwise.

When M is short, the proof of Theorem 4.1 is more direct because shortness yields
thatM is a graph over�. WhenM is tall, we will prove thatM is a union of pieces, each
one graph in some system of coordinates.

In [11], the authors introduced the notion of small surface with constant mean curva-
ture H : a hypersurface contained in a ball of mean curvature larger than H . Here, the
vertical and the horizontal directions are not homogeneous, hence the suitable notion is
that of short hypersurface.

The first step, common to both cases short and tall, is to show that in a small vertical
cylinder, M is a graph. This will be proved in the following lemma, that is the analogous
of Lemma 3 of [11]. Differently from [11], we need a quantitative estimate of the radius
of the cylinder, that will be evaluated using the limaçon described in Section 2 .

In the following, we let W be the domain in Hn � R bounded by M and �, and we
will denote by D.�/ any disk with radius � in a slice Hn � ¹tº, where the value of t and
the center of D.�/ will be clear from the context.
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Lemma 4.4. LetM and � be as in the statement of Theorem 4.1. Then, there exists a disk
D.rmin/ in Hn � ¹0º; where rmin depends only of the principal curvatures of � D @M;

such that M \ .D.rmin/ � R/ is a graph. In particular, since � satisfies the pinching
2rint > rext, then 2rint � rext < rmin < rint holds.

Proof. Consider the Alexandrov reflection with horizontal hyperplanes coming down. If
we can arrive to P WDHn � ¹0º without having a contact point betweenM and its reflec-
tion, then M is a graph over � and the result holds. Otherwise there is a height t0 > 0

where the reflected hypersurface touches � for the first time. Let q 2 � be the first touch-
ing point. So ¹qº��0;1/ intersects M exactly once and ¹qº � .0; 2t0/ � int.W /. Notice
that the part of M above Hn � ¹t0º is a vertical graph.

Now let v be a unit horizontal vector and Qv be a vertical hyperplane orthogonal to v
such that Qv \M D ;. Fix any x 2 Qv and let v be the geodesic passing through x
with tangent vector v. We will do an Alexandrov reflection with the family of hyper-
planes orthogonal to v . Note that these hyperplanes are parallel by construction. We can
move Qv parallel to itself along v until it touches M for the first time.

Keep moving Qv (by abuse of notation we call Qv any parallel translated of it) and
let M � be the reflection, across Qv , of the part of M behind Qv . Continue moving Qv
until there is a first touching point betweenM andM �. Since for any p 2 � the domain�
bounds a disk of radius rint tangent at p to � , then we could do Alexandrov reflections at
least until Qv is at distance rint from p 2 � . In fact, let p0 2 � behind a Qv; where Qv
is at distance less than rint from p 2 �: Then the disk of radius rint tangent to � at p0 is
contained in � and its center is on the side of Qv not containing p: Hence, the reflection
of p0 is inside the disk, and then it is inside �.

In order to avoid the dependence on the point q, we stop to do reflection earlier, pre-
cisely whenQv becomes tangent to C , where C is defined in the following way: let Cext be
the geodesic sphere of P with radius rext and tangent to � in q which encloses �; then C

is the geodesic sphere with the same center of Cext and radius rext � rint.
For any unit horizontal vector v, let qv be the reflection of the point q 2 P with

respect to Qv tangent to C . Let L be set of all such points qv . Since Qv is vertical and
Qv \ P is a totally geodesic hyperplane of the hyperbolic space P , then qv 2 P and L

is a hyperbolic limaçon as in Definition 2.1 with base point q and parameters a D rext and
c D rext � rint. Since a > c, L has two loops by Lemma 2.4. Moreover, as shown in the
proof of Lemma 2.5, the smaller loop of L is bounded by the sphere of radius a� c D rint,
tangent to � in q, and such sphere is contained in �.

Furthermore, for any p in the smaller loop of L, the vertical rectangle qp � .0; 2t0/ �
int.W /. The result will follow taking rmin as the largest radius of a disk bounded by the
smaller loop of L. Note that rmin depends only on a and c, i.e., only on the curvature of � ,
and not on q.

Finally, since � satisfies the pinching 2rint > rext, by Lemma 2.5 it holds that

2rint � rext < rmin < rint:

Remark 4.5. By the construction described in the proof above of Lemma 4.4, and by
Lemma 2.5 (2), the centers of Cext, C and D.rmin/ coincide. Up to isometries, we can
suppose that it is .�; 0/ 2 Hn �R, where � is the origin of Hn.
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Proof of Theorem 4.1. The strategy is to prove that M is the union of components, each
graphical above some domain. At the end of the proof, it will be clear that this determines
the fact that M is topologically a disk. Denote by hM the maximal height of M above
the plane P WD Hn � ¹0º: Fix any point A 2 � and consider a disk D.rext/ of radius rext
tangent to � at A: We divide the proof into two cases, depending on whether M is tall or
short, as defined in Definition 4.3.

Case 1 (M short): hM < 2hC :

Claim 1A. M is contained in D.rext CRC / � Œ0; 2hC Œ.
Consider the horizontal cylinder CH and let � be hyperplane defined in Section 3.2.
Denote by … the vertical hyperplane containing �: Denote by CCH the intersection

of CH with one of the two halfspaces determined by …: Notice that @CCH is the union of
two hyperplanes, each contained in a slice. Up to a vertical translation, we may assume that
the lower boundary is on the slice t D 0 and the upper boundary is in the slice t D 2hC . By
abuse of notation, we will call CCH any horizontal translation and any horizontal rotation
of CCH . Since M is compact, we can translate horizontally CCH in such a way that M \
CCH D ; and M lies in the side of CCH \ .H

n � Œ0; 2hC �/ which contains the axis of CH .
Then, we translate CCH towards M and by the maximum principle, CCH and M cannot
meet at an interior point. As hM < 2hC ; one can translate CCH till its lower boundary on
t D 0 touches the boundary of D.rext/: The same can be done for CCH with any horizontal
axis in the slice t D hC ; hence M is contained in D.rext CRC / � Œ0; 2hC Œ.

Claim 1B. For � sufficiently small, M is contained in the vertical cylinder above �.
By Lemma 3.3, we know that, for any n� 2 and anyH > .n� 1/=n,R� >RC holds.

Choose � small enough such that R� > rext C RC : Let �H be the sphere with constant
mean curvature H . Translate it vertically such that �H � Hn � Œ�h� ; h� � and denote
by �CH the part contained in t > 0. Translate �CH vertically so that it is above M . Then
translate �CH down. By the maximum principle, there can not be an interior contact point
between M and the translation of �CH : Moreover, as M � D.rext C RC / � Œ0; 2hC Œ and
R� > rext C RC ; the boundary of �CH will not meet M before coming back to t D 0.
Hence M is below �CH . As R� > rext; by translating horizontally �CH one can touch all
the points of � with �CH \ ¹t D 0º: By the maximum principle, M stays below all such
translations of �CH : That is, M is contained in the vertical cylinder above �:

This concludes the proof of Theorem 4.1 in the case M short. In fact, since Claim 1B
holds, using Alexandrov reflections with horizontal hyperplanes, it is easy to prove thatM
is a graph over �, hence M is topologically a disk. Moreover, we have that ı.n; H/ D
R� �RC . Notice that, in the case M short, we do not use the assumption on the pinching
for �:

Case 2 (M tall): hM � 2hC :

Using Alexandrov reflections with horizontal and vertical hyperplanes, one gets that
the part of M above the plane t D hM=2 is a graph as well as the part of M outside the
cylinder over �: Then, we have only to understand the topology of M \� � Œ0; hM=2�:
In what follows we will show that there is no point of M in � � Œh�; hM=2�: Actually,



Constant mean curvature hypersurfaces in Hn �R with small planar boundary 1401

we get event more: there is no point of M in D.R/ � Œh�; hM=2�; where R will be fixed
later and � � D.R/: Then, we use the latter to prove that there is no interior point of M
in � � Œ0; h��:

The bound ı.n; H/ on the size of � will be determined by a careful choice of the
parameter d of the family of immersed annuli Ad described in Section 3.1. Let us explain
first how the choice of d affects the other quantities involved in the proof. Fix any d < 0
such that

(4.1) 2rint � rext < r0;d < rmin;

where r0;d is the solution of the equation (3.3) and rmin is the radius found in Lemma 4.4.
The reasons of the bounds in (4.1) will be clear in the following. The choice of d determ-
ines the hypersurface Ad discussed in Section 3.1, together with the radius r1;d , i.e., the
solution of equation (3.4). Consequently, the height h� defined in (3.7), and ��H , the radius
of the spherical cap of �H of height h�, i.e., the solution of equation (3.5), depend on the
choice of d as well.

We point out that the choice of d is determined by � through the inequality (4.1), in
particular if rext! 0, which means that � shrinks to a point, then d ! 0. Moreover, when
d ! 0; then all the radii and height h� tend to zero by (3.8) and Lemma 3.2. It follows that
if rext is small enough, we have h�� 2hC : Furthermore, since � is compact and pinched,
then there exists an " > 0 such that 2rint � .1C "/rext. By Lemma 4.4, we have

"rext � 2rint � rext < r0;d

hence ��H=rext > "��H=r0;d . Finally, taking d , and hence � , smaller if necessary, by
Lemma 3.2 one has

(4.2) ��H > 3rext:

Claim 2A. The compact domain bounded by M \ ¹t D hM � h
�º contains a geodesic

segment of length at least ��H .

Using Alexandrov reflections with respect to horizontal hyperplanes, we can prove that
the reflections with respect to ¹t D hM=2º of the points at maximal height of M belong
to the closure of �. Up to horizontal isometries, we can suppose that one of these points
belongs to the t -axis, that is, it is of the form .�; hM /, where � was defined in Remark 4.5.
The claim is proved once we show that there is a point p 2 M on the hyperplane ¹t D
hM � h

�º, at distance at least ��H from the t -axis. Denote by M 0 the part of M above
the plane ¹t D hM � h�º. M 0 is a graph of height h�. Assume, by contradiction, that the
distance between @M 0 and the t -axis is smaller than ��H . Cut �H with a suitable horizontal
hyperplane such that � 0H , the spherical cap above this plane, has height h�. Translate � 0H
up until � 0H \M D ;, then move it down. By the maximum principle, there is no interior
contact point between the spherical cap andM 0 till the boundary of � 0H reaches the height
t D hM � h

�: Then, M 0 has height less than h�: This is a contradiction.

Claim 2B. The compact domain bounded by M \ ¹t D hM � h�º bounds a disk D.R/
with R > ��H � 3rext and center .�; hM � h�/.

Enclose � with the geodesic sphere Cext defined in Lemma 4.4, and reflect the point p
found in Claim 2A with respect to any vertical hyperplane tangent to Cext in Hn � R. In
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this way we have a hyperbolic limaçon L in ¹t D hM � h�º defined by the base point p
and the vertical translation of Cext at height hM � h�. Therefore, the parameters of L are
a > ��H � rext and c D rext. In fact, the distance between p and .�; hM � h�/ is larger
than ��H ; where � was defined in Remark 4.5. Estimate (4.2) implies that a > 2c > c,
hence, by Lemma 2.4, L has two loops. Arguing as in the proof of Lemma 4.4, we have
that the smaller loop is contained inW . The claim follows by Lemma 2.5 and Remark 4.5.

Claim 2C. M \ ¹D.R/ � Œh�; hM � h��º D ;.
By Claim 2B, D.R/ � W , and by our choice of h� � h� , the plane ¹t D hM � h�º

is above the plane ¹t D hM=2º. By doing Alexandrov reflections with horizontal planes,
the reflection D�.R/ of D.R/ with respect to ¹t D �º will be contained in W , for all
� 2 ŒhM=2; hM � h

��. Therefore, M \ ¹D.R/ � Œh�; hM � h��º D ;.

Claim 2D. M \ ¹0 � t � h�º is outside the cylinder � � ¹0 � t � h�º.
Denote by† the embedded part of the annulus Ad contained in .D.r1;d / nD.r0;d //�

Œ0;h��. By construction, the hypersurface† has two boundary components, denoted byC0
and C1, both geodesic hyperspheres in the hyperbolic space. In particular, C0 � P and
C1 � ¹t D h�º. By inequality (3.7), we have that the radius of C1 is smaller than r1;d .
Moreover, up to horizontal translations, we can suppose that the center of C0 is .�; 0/.
By the pinching of � and Lemma 3.2, we can take � small enough such that R > r1;d
holds, where R is the radius found in Claim 2B. Therefore, by Claim 2C, we can translate
vertically † such that † � W . We recall that our choice in (4.1) yields r0;d < rmin � rint
and that the mean curvature of † is strictly smaller than that of M . By the maximum
principle, it follows that we can translate † down, until C0 reaches P again, without
having an interior contact point between † and M . Moreover, by translating C0 in �,
we can touch every point of �; while C0 remains in �. Furthermore, by Claim 2B, the
pinching of � and Lemma 3.2, we can take jd j small enough such that

(4.3) R > rext C r1;d � r0;d :

In fact, by Claim 2B we have that R > ��H � 3rext and ��H � 3rext > rext C r1;d � r0;d
holds because, when d ! 0, the left-hand side tends to zero slower than the right-hand
side.

Claim 2C and (4.3) imply that when translating C0 inside �, the circle C1 remains
inside the disk D�.R/ � ¹t D h�º, hence the upper boundary of † will not touch M:
Notice also that † is a vertical graph over the exterior of D.r0;d /, hence, translating
horizontally C0, † and M cannot meet at an interior point otherwise we would have a
contradiction with the maximum principle. Therefore M \ .� � Œ0; h��/ ¤ ;.

This completes the proof of Theorem 4.1.

A. Appendix: list of notations

To simplify the reading we summarize the principal notations introduced.
(1) Hypersurfaces of Hn �R:

�H : compact rotationally symmetric hypersurface with constant mean curvature
H > .n � 1/=n, see Section 3.1;
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�.n�1/=n: complete rotationally symmetric entire graph with constant mean curvature
H D .n � 1/=n, see Section 3.1;

Ad : rotationally symmetric annulus with self-intersection and constant mean cur-
vature H D .n � 1/=n, see Section 3.1;

CH : horizontal cylinder with constant mean curvature H > .n � 1/=n, see Sec-
tion 3.2.

(2) Heights:
h� : height of the half sphere �H , see Section 3.1;
h�: approximated value of the height of the portion of Ad between r0;d and r1;d ,

see (3.7);
hC : height of half of the cylinder CH , see Section 3.2;
hM : height of M .

(3) Radii:
R� : radius of �H , it is the unique solution of (3.2);
r0;d : the minimum radius for which Ad is defined, it is the unique solution of (3.3);
r1;d : the radius for which Ad has horizontal tangent plane, it is the unique solution

of (3.4);
��H : radius of the spherical cap of �H with height h�, it is the unique solution of

equation (3.5);
RC : radius of CH , it is the unique solution of (3.10);
rint: interior radius of �;
rext W exterior radius of �;
rmin W the minimum radius on which M is a graph, it is determined by Lemma 4.4.
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