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Growth of Sobolev norms for 2d NLS
with harmonic potential

Fabrice Planchon, Nikolay Tzvetkov and Nicola Visciglia

Abstract. We prove polynomial upper bounds on the growth of solutions to the 2d
cubic nonlinear Schrodinger equation where the Laplacian is confined by the har-
monic potential. Due to better bilinear effects, our bounds improve on those available
for the 2d cubic nonlinear Schrodinger equation in the periodic setting: our growth
rate for a Sobolev norm of order s is 126~1D/3% ¢ for s = 2k and k > 1 integer.
In the appendix we provide a direct proof, based on integration by parts, of bilinear
estimates associated with the harmonic oscillator.

Dedicated to Professor Vladimir Georgiev for his 65’s birthday.

1. Introduction

In recent years, the growth of Sobolev norms for solutions to nonlinear dispersive equa-
tions generated a huge interest, in relation with weak turbulence phenomena. Concerning
upper bounds, we quote the pioneering work of Bourgain [2] and its extension in a series
of subsequent papers ([6,8,9,14,18,19,21], to quote only a few of them). On the other end,
growth of Sobolev norm cannot occur in settings where the dispersive effect is too strong.
For instance, consider the translation invariant cubic defocusing nonlinear Schrédinger
equation (NLS) on R2. Then [10] proved the long standing conjecture that nonlinear solu-
tions scatter to free waves when time goes to infinity and hence no growth phenomena is
possible in such setting.

We are interested in the growth of solutions to the following nonlinear Schrédinger
equation:

(1.1)
u(0,x) = p(x) € H°,

{iazu +Au+ulul>=0, (t,x)€RxR?,
where x = (x1, x2), the operator A is the usual Laplacian with a harmonic potential,

A=—-A+|x>, where A= 8)251 + 92 |x|* = x? + x2,

X2’
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and ||¢|| g5 = ||A/%¢]| .2, where in general we use the notation L? = LP(R?). We shall
also denote Lﬁ . = L?(R x R?) to emphasize the Lebesgue space of space-time depend-
ent functions, and N* = N \ {0} will denote the set of non-zero positive integers.

Let us first comment briefly about the local Cauchy theory associated with (1.1). By
combining preservation of regularity for the linear flow ||e?*4¢|| gs = ||¢| ¢5, and that F*
is an algebra for s > 1, one proves the existence of a local solution to (1.1) by fixed
point methods; its local time of existence depends on the #* norm of the initial datum.
Moreover, the solution map is Lipschitz continuous. In order to globalize our solution, one
can rely on the Brezis—Gallouét inequality (see [4]) provided that

(1.2) sup l[u (2, x)[| g1 < o0,
t€(=Tmin (@) Trmax (0))

where (—Tinin(¢), Tax(¢)), With Ty (@), Tnax (@) > 0, is the maximal time interval of
existence of the solution associated with (1.1). In particular, assuming (1.2), Tiax (@) =
Tmin(¢) = oo and a double exponential bound holds:

(1.3) (@, x) || 5es = Cexp(Cexp(Clt])).

Solutions to (1.1) satisfy the conservation of the Hamiltonian:

1 1 1 1
S @030 & 5 . 0NEs = 51013 £ 7 el

Therefore, in the defocusing case, (1.2) is automatically satisfied, while in the focusing
case it is not granted for free. Of course, by using more sophisticated tools, e.g., Bourgain’s
spaces X %P associated with 19, + A, one can deal with initial data at lower regularity
than #'7¢. These X*? spaces will play a key role in our analysis, as they allow us to
exploit a bilinear effect associated with the propagator ¢?*4. They will be defined in Sec-
tion 2, where we also provide more useful facts about the Cauchy theory.

Our main goal is to improve (1.3) and prove polynomial upper bounds for the quant-
ity |lu(z, x)|| gs when t — doc0, with s > 1. Along the rest of the paper, the following
equivalence of norms will be useful: for every s > 0, there exists C > 0 such that

1
(1.4) c (ID*ulZ> + 1{x)*ulZ2) < llolZes = C(ID%ullZ2 + I1{x)ull72),

where with D¥ we denote the operator associated with the Fourier multiplier |£|°, and
(x) = (1 + x2 + x2)!/2. The proof of the equivalence (1.4) is a special case of a more
general result proved in [1, 1 1]. In particular, establishing growth upper bounds on the #*
norm of the solution is equivalent to establish polynomial bounds on the classical Sobolev
norms H* and the corresponding moments of order s. We now state our main result.

Theorem 1.1. Let ¢ > 0 and k € N*. For every global solution u to (1.1) such that
u(t,x) € €(R, #2) and

(1.5) sup [lu(z, x) || ger < oo,
teR

there exists a constant C such that

ID%u(t, x)l|> + 1{x) 2 ut, x)llL2 < C(1 + |¢[)>@D/3Fe,
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Our bound may be compared to the corresponding bound for solutions to NLS on a
generic compact surface M2, and more specifically on the torus T?2. In fact, at the best
of our knowledge, the best known upper bound available on the growth of the classical
Sobolev norm H 2¥(T?2) for solutions to cubic NLS on T2 is (1 4 7)2k~1%¢_ as proved
in [14,21]. Notice also that in our case we control the growth of the moments as well (see
also [20] for a different perspective on the moments).

Theorem 1.1 may also be compared with Theorem 2 in [6], where the same bound on
the growth of Sobolev norm was achieved for the translation invariant cubic NLS posed
on R?, at a time where Dodson’s definitive result was not available. As already mentioned,
unlike the situation considered in Theorem [.1, where in general scattering theory is not
available, in the Euclidean setting one can deduce uniform boundedness of high order
Sobolev norms, at least in the defocusing situation. Nevertheless, the bounds provided in
Theorem 1.1 are still meaningful and non-trivial in the flat case either, if one considers
solutions to the focusing NLS such that the H! norm is uniformly bounded. In fact, under
this assumption, it is not true in general that the solutions scatter to a free wave and hence
the uniform boundedness of Sobolev norms is not granted.

It would be very interesting to construct solutions to the defocusing equation (1.1) such
that the H* norms do not remain bounded in time for some k > 1. Unfortunately, such
results are rare in the context of canonical dispersive models (with the notable exception
of [12]).

2. X*? framework and linear estimates

We first define the X*? spaces associated with the harmonic oscillator in dimension two:
the spectrum of the 2d harmonic oscillator is given by the following set: {2n 4+ 2|n € N}.
We shall denote by IT, the orthogonal projector on the eigenspace associated with the
eigenvalue 2n + 2. Then the X*? norm associated with the 2d harmonic oscillator A is
given by the expression

luller = Y@ +2)° [z + 20 +2)° Frs e (Mau e, )| 72
neN

where u(¢, x) is a function globally defined on space-time and ¥;_,, denotes the Fourier
transform with respect to the time variable. Along with the X **? spaces, which are defined
for global space-time functions, we also introduce its localized version for every 7' > 0.
More precisely, for functions v(z, x) on the strip (=7, T) x R?, we define
Uy = inf Ul ys.b-
[0l nf ol
v(t,x)=5(t,x)‘(7T’T)xR2

The main result of this section is the continuity of some suitable linear operators in the
Bourgain spaces X ;’b.
Proposition 2.1. For every § € (0,1/2) and b € (0, 1), there exists C > 0 such that we
have the following estimates for every T > 0:

2.1 ||Lu||X71/2+5,1/275+25b < C||M||X1/2+8,1/2—8+28b
T T
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and
(2.2) ||Lu||X§,(1—8>b < C||u||X}+5,(1—a)b,

where L can be either 0y, fori = 1,2, or multiplication by (x).

Proof. We prove Proposition 2.1 without the time localization. The corresponding version
in localized Bourgain spaces is straightforward. We will prove the following bounds:

2.3) | Lullgos < Cllullyrs. b€ [0.1],
(2.4) [ Lullx1o0 < Cllulx2o.

Notice that (2.2) follows by interpolation between (2.3) and (2.4). Moreover, we get
2.5) [Lullx-10 < Clluflxoo

by duality from (2.3) for b = 0, and we also get

(2.6) [ Lullx-1/2.172 < Cllullxi/2.172

by interpolation between (2.5) and (2.3) for b = 1. Then (2.1) follows interpolating (2.3)
and (2.6). Hence we focus on (2.3) and (2.4). Since the proof is slightly different depend-
ing from the operator L that we consider, we distinguish two cases.

First case: proof of (2.3) and (2.4) for Lu = 0x;u.
First we prove that, for space-time dependent functions u(z, x), we have

27 s llxo0 < Clllyro.

This estimate is a consequence of the following one for time independent functions v(x):
19x,v22 < ClIVAV] 2.

that in turn follows by ||v/Av| .2 = ||v]| g1 and by recalling (1.4) for s = 1. Next we prove

2.8) lullxor < Cllullys,

and by interpolation with (2.7), (2.3) will follow for L = dy;. As ||w(Z, x)||xo.1 is equival-
entto ||[(id; + A)w”fo + ||w||L%x, in order to get (2.8) we estimate

@9)  lGd, + A)dulpz, + logulz,
= 1102, (90 + A+ [xP B Julz + 10ulz
< 10, (00 + Aullz -+ 2lIxlul 2, + [0 ull2

By combining (2.7) with the identity

IV AV, = (Av,v) = [Vavll7s + x| 0],
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we can continue (2.9) as follows:
() < G0 + Dullxro + 3V Aullz < lullxr + 3llullxro < 4lullxrs.
and (2.8) for L = d,,; follows. Next we prove (2.4) (where L = 0dy,), namely
105 ullx10 < Cllullx20.
This estimate is a consequence of the following one for time independent functions v(x):
IVAdx, vl 2 < CllAv]Lz,
that in turn is equivalent to
(A0x,v,0x,v) < C(Av, Av).

As on the right-hand side we get ||v||=2%,2 by (1.4) and elementary considerations it is
sufficient to prove

(2.10) f X235, 0> < CUID?v]|Z2 + [[{x)?v72)-

In turn, this last inequality follows by combining integration by parts and the Cauchy—
Schwarz inequality:

/|x|2|3x,-v|2 z—/lxlzaiivﬁ—Z/x,-axivﬁ

2 2
195, vll2 [x["vllL2 + 2[l[x|9x vl L2 [lv]l L2

A

IA

1 1 1
SID2UlEs + 5 I ol + 5 xlos vl + 21020l 2,

from which we easily conclude moving %H |x|0x; v ”12} to the left-hand side.

Second case: proof of (2.3) and (2.4) for Lu = (x)u.

The proof follows the same steps as in the case L = dy,, with minor modifications.
First notice that, for space-time dependent functions u(¢, x), we have the following:

(2.11) [{x)ullxoo < Cllullxro.
This is a consequence of the following estimate for time independent functions v(x):
lx)vllze < ClIVAv] L2,

that in turn follows by noticing that ||~/Av||;2 = ||v||g: and recalling (1.4) for s = 1.
Moreover, we have

[{x)ullxor < Cllullxrr.
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that by interpolation with (2.11) implies (2.3) for L = (x). In order to prove this estimate,
recall again that ||w(z, x)|xo.1 is equivalent to ||i d, w + Aw||L%x + ||w||L%x and hence we
compute ’ ’

163+ A ()l + 1 (ullzz, = 160D, + A+ (A @)ulz, + [ oulz,
< 1) GD, + Aullz, + 12V () - Vu+ Az, + [l 2,
< C(Ix)D, + Al + Va2 + 1 (xullz ).

By combining (2.11) with the identity ||\/Zu||L%x = ||u|| g1 and by recalling (1.4) for
s = 1, we can proceed with our estimate above: ’

() < C(IG0 + Aullyro + [VAulz ) = Cllullyrs + lullxro) < Clullxur.
Next we prove (2.4) (where L = (x)), namely
[{(x)ullxro = Cllullxz2o.

This estimate is a consequence of the following one for time independent functions v (x):
IVA(x)V)llz2 < Cll vz,

that in turn is equivalent to
(A({x)v). (x)v) = Cllv] g2

By (1.4), this is equivalent to

IV((x)0) 72 + [1(x) [x[v]72 < CUID?v]|Z2 + [[{x)?v]Z2)-

In turn, developing the gradient on the left-hand side, the estimate above follows from
[ V0P < Dol + 1007,

whose proof proceeds by integration by parts and the Cauchy—Schwarz inequality, as we
did for (2.10). [ ]

3. The Cauchy theory in X*’ and consequences

We first obtain a trilinear estimate, whose proof heavily relies on the analysis of [16]
(also available as [17]); for the sake of completeness, we provide a relatively elementary
proof of the crucial bilinear estimate from [16] in the appendix, using the bilinear virial
techniques from [15]. The only novelty in our trilinear estimate is that we prove a tame
estimate, while such an estimate was not needed for the low regularity analysis of [16]. We
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first recall the following key bilinear estimate (see Theorem 2.3.13 in [16]). There exists
80 € (0, 1/2] such that for every § € (0, §¢] there exist b’ < 1/2 and C > 0 such that

G.1) [[AN ) Apr (V) 22¢0,1):22)

< C(min(M, N))S(M 1/2-8

/ —
A u /A v /,
W) AN @l 181 @)l
where Axy and Ay are the Littlewood—Paley localization operators associated with A,

and N and M are dyadic integers.

Proposition 3.1. Let0 < T < 1 and ¢ > 0 be fixed. Then there exist C > 0, b > 1/2 and
y > 0 such that, for s > ¢,

b

6o | O iy (a1 (1) |

X7
<CT” Z IIMo(l)IIX;,b ”uo(z)”X%b ||u0(3)||X;»b~
0633

Proof. Using standard arguments (see for instance Proposition 3.3 in [5]), it suffices to
prove that

herwaiisllys s < € 3 o llygs o lyes o llyes
0’€S3

for some b > 1/2 and b’ < 1/2 such that b + b’ < 1. Using duality, the last estimate is
equivalent to

| [ miaiaiio] < Cluallyor 3 tallgs o lyge o e

0€S3

where [| denotes a space-time integral on (—T, T') x R? with respect to the Lebesgue
measure dxdt. We now perform a Littlewood—Paley decomposition in the left-hand side
of the last inequality, and using a symmetry argument, we are reduced to obtaining a
bound on

(33) X X ] Anel) s ) s z) A )

N1=N>2>N3 No

where the summation is meant over dyadic values of Nj, N>, N3 and Ny. The other
possible orders of magnitudes of Ny, N, and N3 provide all permutations involved in
the sum of the right hand-side of (3.2). Next we split the analysis of the terms in the
expression (3.3) depending on the relation between Ny, N1, N, and N3.

First case: Ny > N11+pf0r some p > 0.

In this case, we can apply the 2d version of Lemme 2.1.23 in [16] to obtain that for
every K, there is Ck such that

[ Axti0) A, ) B 2) A )

—-K
< Cr Ny ™ 1Anguollyo AN s | Anyuallyss | Anyuallyos.
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where b’ < 1/2. And hence we get

> [ Ao A o) Ay a2) A )

N1=N>>N3

No=N,**

< ). _x [ANouolly—sp AN ULl yspr | AN U] o0 | Ansusllyos

- Ni12N;>N3 No<*N} CE b A P
No=Nt°

and thus, by choosing K > s, we can successively sum in N3, N>, Ny and Ny to get
() = Clluolly—sw el lluzllyer llaeslyes -

Second case: N1 < Ny < NIH”, with 0 < ps < &.

We have, by combining Cauchy—Schwarz and (3.1),

‘ S st Av ) B ) An, @)

N{*P>No
No=N1=N>>N3

NaNay1/2-¢/2 2
< C(N,N3)®/? (m) 1‘[ [Ny (”i)”x%”/
j=0

(N2N3)'/27¢ Noys
- W(N—l) 180 (140l s 18w, Ge1)

X NAN, )l 1AN; 3) e

Summing over N>, N3 < Np and using Ny < N11+”, we get
11—2»3
LAY —_—_— ps
() = C opmitirmmars N 1AN 0o o 18, @)l Tzl sl
= Mol oo lunllyss luzllyer lusllyer
where at the last step we summed over Ny > N and then used that ps — ¢ < 0 in order to

sum on Nj.

Third case: N» < Ny < Nj.
Again by combining Cauchy—Schwarz and (3.1), we get

Z // AN, (o) Ay, (u1) AN, (u2) An, (%))

N1=No=N>>N3

NaNsy1/2-¢/2 2
= CNN3)P? (252 AN, ) o
< CaNY” (7)) R
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and from N, N3 < N02, we get

C (NO)S+1/2—9/2

)= Wanay Ny

180 000) g ANy Gy a2y g
where we can sum over N, and N3, and then sum on Ny < Nj by Schur’s lemma, as
s+1/2—¢/2>0.

Fourth case: Ny < N,.
We have, by combining Cauchy—Schwarz and (3.1),

) > //ANo(ﬁo)AN1 (MI)ANz(u2)AN3(1Z3))

N1>N>>N3
N2>Ny

N1N;

No\ 1/24+s—¢/2
= CnuN)? ()

NoNsy1/2-¢/2 2
= CoN) (T57) TTIAN @)y
j=0

; 20 00y

12w, ) s 1883 002) g 180, 1) o
where we used that Ny < N, and N3 < N,. We can then sum as in the third case to get
() = Clluolly—sw leallyse lleallyer luslyer

which concludes our proof. ]

As a standard consequence of Proposition 3.1 (see, e.g., Proposition 3.3 in [5]), we
can obtain the following well-posedness result.

Proposition 3.2. For R > 0, there exist T = T(R) > 0 and b > 1/2 such that (1.1) has
a unique local solution u € X;O’b for every ¢ € #H5°, 5o > 1, with ||¢| g1 < R. Moreover,
for every s € (0, so] there exists C = C(R, s) such that

(3.4) (@, 2 s = Cllplles-

Our next proposition reduces studying the growth of the #2* norm of the solution
u(t, x) to the analysis of the growth of ||0¥u(z, x)| 2. In fact, this last quantity is easier to
handle, as d; has better commutation properties with the nonlinear Schrédinger flow than
the operator A.

Proposition 3.3. Let s,k € N and R > 0. Set T = T(R) and so = 2k + s in Proposi-
tion 3.2, and let u(t, x) € X;O’b be the unique local solution to (1.1) with ¢ € J*°. Assume
moreover that sup,e_r,1y |u(t, x)|l 31 < R. Then there exists C = C(R, so) such that

(3.5) Vi e (=T.T), |[[8%u(t) — ik A%u(@)||ges < Cllu)| gps0-1.
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Proof. We temporarily drop the dependence on ¢, since the estimates we prove are point-
wise in time. We start from the identity

h—1
(3.6) fu=i"A"u+ Y " c;j o] AT wlul?),
j=0

that holds for every integer 4 > 1 and for suitable coefficients ¢; € C. Its elementary proof
follows by induction on %, using the equation solved by u(z, x).

Next we argue by induction on k in order to establish (3.5). For k = 0 and all s € N,
there is nothing to prove, as the left-hand side vanishes: 3% —i°4% = 0. Assuming
that (3.5) holds for all s > 0 integers and for all integers up to rank k, we shall prove that
the same estimate is true for k + 1 and for every integer s > 0. Indeed, by (3.6), where we
choose h = k + 1, the estimate (3.5) for k + 1 reduces to

197 [ul?) | ook s s < Cllutllggssoess. j =0.....k. s€N.

Recalling (1.4), we have to prove

(3.7) ID*=2+58 ulul?)|| 2 < C |ullgps+aks1.  j =0,....k, s €N,

(3.8) ()29 uul®) |2 < Cllullgpssaesr. j =0.....k, s €N.

We may now replace the operator D by the usual gradient operator V, as we are operating
on L?; then, to prove (3.7), we expand the time and space derivatives on the new left-hand
side, using the Leibniz rule. Hence, by expanding the space-time derivatives and by using
Holder, we can estimate as follows the left-hand side in (3.7):

> [T 1v9o/ule <cC > [T 107 ull g

J1ti2+j3=J 1=1,2,3 Jiti2+j3=j 1=1,2,3
s1+s2+s3=2k—2j+s s1+s2+s53=2k—2j+s

<cC > [T el gezivs .

Jitj2t+j3=]j 1=1,2,3
s1+s2+s3=2k—2j+s
where we used the (non-sharp) Sobolev embedding and the induction hypothesis.
We proceed with a trivial interpolation argument, with 6;(s + 2k + 1) + (1 — 6;) =
2j; 4+ 51 + 1, to get

[’ (1-6)) 2
TT Mmoo < [T el Gogsness el ™ < Nl gesarces 231 -
1=1,2,3 1=1,2,3

As 0; = (2j1 + s1)/(s + 2k), we observe that ) _; 6; = 1. This closes the induction argu-
ment.

We can deal with (3.8) in a similar way: by using the Leibniz rule with respect to
the time variable, and the Sobolev embedding, we estimate the left-hand side in (3.8) as

follows:
> [T 1x)%0/ulls <C > TT 107 ull s+ -

Jit+i2+j3=j 1=1,2,3 Jit+i2+j3=j 1=1,2,3
s1+s2+s53=2k—2j+s s1+s2+853=2k—2j+s
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Then we are reduced at the same situation as above in order to get (3.7), which concludes
the proof of the proposition. ]

The next proposition will be crucial in the sequel. It allows to estimate the norm of

time derivatives of the solution in the localized X ;’b spaces, by using suitable Sobolev
norms of the initial datum.

Proposition 3.4. Let ] € N, R > 0 and s € (0,2). Set T = T(R) and s9 =2l + 2 in
Proposition 3.2, let b satisfy Proposition 3.1 and let u(t, x) € X%H_Z’b be the unique local
solution to (1.1) with initial condition ¢ € H**2, |¢|lz1 < R.
Assume moreover that
sup  |Ju(t, x)|l g1 < R.
te(-=T,T)

Then there exists C > 0 such that

(3.9 ||3iu||X;,b < Clelss @l if s €(0.1]
and
(3.10) ||3£MIIX;,b < Cllolpis lelSpmiea.  if s € (1,2).

Proof. We shall prove separately (3.9) and (3.10) by induction on /. In the case [ = 0,
the estimates (3.9) and (3.10) follow from (3.4). Consider the integral formulation of the
equation solved by 8£u:

t
du(t) = e 9u(0) + / e 49 (u(r) [u(o)?) dr.
0

Then, by standard properties of the X spaces,

X*b>'

T

t
G Wl = C (IO + | [ M P de]

Next we argue by induction to show that (3.9) is true for / provided that it is satisfied for
all integers up to / — 1. Expanding the time derivative in (3.11) and using Proposition 3.1,
we get

1 I 1
(312 19Oy = C(1uO e +T7 3" 10 ullyes 107ull s 197 ullys).
L+l +13=l
By interpolation and Proposition 3.3, we also have
(3.13)  [|195(0) [l e = 1052(0) I 105260 [12° < C [ (O) st 14(0) [ 20
< Cllolparer 91 3ot -

Therefore, estimating the second term on the right-hand side in (3.12) is sufficient. We
deal with three cases: the first two are lower order terms and use the induction hypothesis,
the third one leads to a bootstrap argument to close the estimate.
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First case: 0 < min{lq, [, l3} < max{ly, 5,13} <.

We use our induction hypothesis on /1, [ and /3 and estimate as follows:

1 I I
S 0wl 10Ul 100l

L+l +13=l
max{h ,lz,l3}<l
min{h ,12,13}>0

<C Y el lels el 19015 el llelpn

Lh+h+13=I
max{ly,l»,l3}<l
min{ll 12,13}>0

1— +n2+ 1-s)(3— 01+6>+6 3—6 —0
<C||(p||( =s)(m+n2+n3) ”90”( —5)(3—n1—12—13) ”(p”S(l >+63) ” ”S( 1—62 3),

Je2! Je2+1
where
21771+1—771=211, 91(2l+1)+1—91=211+1,
2[7’}2+1—7’]2=212, and 92(2]+1)+1—92=212+1,
2ln3 + 1 —n3 = 213, ;2L +1)+1—-65; =23+ 1.

Noting that 61 + 6, + 63 = land n; + 12 + 3 = n < 1, we get

1— 1—s5)(3—n)+2 1 1—
(=) = Cllel 5" 1ol %S 2 gl pas < Cllel G 1ol % ™ e lpars -

where we used our bound on J#! to subsume a factor ||¢ ||¢2%,1 into the constant. Using that
J2' c J¢1, we conclude that

1 I I
S 10wl 10Rullyss 10Pullgss < Clel Il

L+l +13=l
max{h ,lz,l3}<l
min{ll ,lz,l3}>0

Second case: 0 = min{ly, [, I3} < max{ly,[5,[3} <.

We can assume /; = 0. Then we argue exactly as above except that, since ||¢| 521, =
ll@llz2 is bounded (since we assume a control on the ! norm of the initial datum), it is
not necessary to introduce the parameter 7;. Hence we need only 15, 13, 61, 6, and 63.
The conclusion is the same as above.

Third case: max{ly, [, [3} = [.
We estimate the terms in the sum at the right-hand side of (3.12) as follows:

! ! !
||u||§;,b 1952ll s = ”u”;},b 1952ll s = CllelZe 192l s

where we have used (3.4) for 5o = 1.
Collecting (3.12), (3.13) and the estimates above in the three cases, we get

llaiU(t)IIX%b < C(ll5pai ll@ll s + TV 18l x3t)-

We conclude by choosing a time 7 > 0 small enough in such a way that the second term
on the right-hand side can be absorbed by the left-hand side. Notice that the bound that
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we get on the short time T can be iterated since the constants depends only from the J¢'
norm of the solution, and hence we get the desired bound (3.9) up to our chosen time T
after a finite iteration of the previous argument.

Next we proceed with proving (3.10) again by induction on /. By developing as above
the time derivative in (3.11) and by using Proposition 3.1, we get

l I I
G.14) 195u(®) o =C (10 @l +T7 Y2 10 ull o 197ullg-en 105 ully2-ss ).
Lh+h+13=I

We first notice that by interpolation and Proposition 3.3 (see the proof of (3.13)),

187 O) s < Cllg 5t 1Stz

Next we estimate the sum on the right-hand side of (3.14) by again considering three
cases.

First case: 0 < min{ly, [, 13} < max{ly,l>,13} < [.

Using our induction claim on [y, I3, /3 and (3.9), we get

! I I
Do 10Ul 0P ully2-en 107 ull 2o

h+l+13=I
max{l,l,l3}<I
min{ly,l5,l3}>0

<C el el lelSya el llel 2, o llel 2,

L+l +13=I
max{ly,l»,l3}<l
min{l1,l5,l3}>0

2— +62+6 —1)(61+n2+ —1)(3—61—n2— 2—s)(3—n1—6>—0
< Clloll ™ T ol als” T g G VT T ) G VT,

where we used the convexity of Sobolev norms, with

mel+1D)+1—-n =24 +1, 02 +2)+1—-6, =21 +2,
772(21 +2)+ 1 — N2 = 212, and 92(2[ + 1)+ 1 —92 2212+ 1,

By direct computation, n; + 6, + 63 = 1 and 0; + 1, + n3 = u < 1. Hence, using
F21+2 < 3¢ on the next to last factor and discarding the last one, we deduce that

I I I
> 197 2l 1972l 2 197724 ]y 20

h+l+13=I
max{ly,l2,l3}<l

(s—1Du

1)(1— 2(s—1)+2(2—
< Cllolzg el 52 el 5 " Jel5s Ve

< CliolZ llasa-

Second case: 0 = min{ly, [, 3} < max{ly,[5,[3} <.

If /; = 0, then our previous proof is valid since we have to deal with the norm
¢l o2, +1 and hence we have regularity ! and the interpolation argument above can be
applied. However, in the cases /; = 0 or /3 = 0, the proof needs to be slightly modified.



F. Planchon, N. Tzvetkov and N. Visciglia 1418

We can assume /, = 0. Then in this case [|¢|| 521, = [|@| 12 is bounded, since we assume
a control on the ! norm of the initial datum, hence it is not necessary to introduce the
parameter 7, in the interpolation step. The conclusion is the same as above.

Third case: max{ly, [,13} = [.

We have to consider three cases: (I1,z,13) = (1,0,0), (I1,/2,13) = (0,1,0) and
(11,13,13) = (0,0,1) (the last two cases are similar). Notice that we have, as a consequence
of (3.4) (where we choose s¢ = 1),

(3.15) [ully2-s6 < Cllgllger
T
Start with one of the later two: for (I1,/5,/3) = (0,/,0) by Proposition 3.2, (3.15) and (3.9),
Il 185l Tl gmeo

I
= Cligllges 103l y2-s0 = Clellges 11521 91501
AFT 2T e 2
= C”(p”;;ll-%—Z ”90” A1 ||‘p||3(21+1 = C||¢||;€;ll+2 ”(p”e;{?zﬂz ”‘/’”J(ﬁﬂa

where we used, again, the convexity of Sobolev norms, the fact that #2/*1 c #2! and
the a priori bound on the #! norm of ¢.
In the first case we have, using again (3.15),

I I
1952l s letll 2o el y2-s < ClO Ul gss.

We then conclude by choosing 7" small enough, exactly as we did along the proof of (3.9).
This concludes the proof of (3.10). [

4. Modified energies and proof of Theorem 1.1

The aim of this section is to introduce suitable energies and to measure how far they are
from being exact conservation laws. Those energies are the key tool in order to achieve the
growth estimate provided in Theorem 1.1. Along this section we denote by | the integral
on R? with respect to the Lebesgue measure dx, and || the integral on R? x R with
respect to the Lebesgue measure dxdt.

Proposition 4.1. Letu(t,x) € €((—T,T); #***2) be a local solution to (1.1) with initial
datum ¢ € H**12_ Then we have

d /1
@D (IR + Saea(u(t X)) = Raicaa(u(t, ).

where Syi42(u(t, x)) is a linear combination of terms of the following type:

(4.2) /8’,‘Lu08:”1Lu1 07" uy 9P us, my +my+mz =k,
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and Ry 42(u(t, x)) is a linear combination of terms of the following type:
(4.3) /a’;LuO M Luy 0%uy 0Pus, L+bL+lL=k+1, [ <k,

where in (4.2) and (4.3) we have ug,ui,uz,us € {u,u} and L can be any of the following
operators:
Lu=0xu i=12, Lu=(x)u, or Lu=u.

Proof. We have
10,3V Au) + AV Au) £ VA u?) = 0.
Next we multiply the equation above by 8’; 1. /A and we take the real part:

1d

3 0k Atz = FRe [0 VAGP) VT,

By the symmetry of the operator /A, we have
Re /a’;ﬂ(u|u|2) T/ Al = Re /a’;(u|u|2) 1 an
— _Re /a’;(u|u|2) 1AL 4 Re /a’;(u|u|2) L (\x|20),

and we proceed by integration by parts:
2
44)  (+)=) Re / 0., (ulu|?) 0519, + Re / |x|2 0% (u|u|?) 05 a.
i=1
Next notice that the first term on the right-hand side in (4.4) can be written as follows:

2
S Re [ka, ) o0
i=1
2
_ Z<2Re[|u|28]t‘8xiu8]t‘+18xiﬁ+Re/uzafaxiﬁ 8’,‘+18xiﬁ)
i=1
+ > Re(ay g, 01 0xu 0P 020 0K 0

h+lh+13=k
maX{ll ,lz,l3}<k

l l I —- ak+1 -
+ by, 1505 0 0x,u 071 07 0, 1 8t+ 8xiu)

where ay, 1, 1, and by, 1, 1, are suitable real numbers.
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Rewriting,
d & 1
k 20,12 4 — ka =y2,2
e = g ([ Wl + 3R [dtanare)
2
- ([ s o,y + S Re [ @an a7 0,00)
i=1
+ > Re(ay s 07 g u 0 970 9K 0

Lh+h+13=k
ll<k

[ I l = ak+1 -~
+ b1y 1y 05 07 01 02 072 0,1 0 10, 11).

By elementary manipulations on the last line, we get

d & 1 _
() = EZ(/wfaxiuPW + 7 Re /(a’;axiu)zﬁ)
i=1
2

-y /|8k8xlu|28 (|ul? )+ 3 L Re /(akax,u)za (uz))

i=1

+ % > Re (0,0, 07 0 020 026 0¥ 01+ by, 1,0, 07w 02w 872 D 1 0K D, 1)

h+hL+13=k

li<k
+ Y Re(d 1,07 0 udPu0F AN 0,11 + by, 11,00 u0PUDF Oy, 10 D, i1).
h+h+13=k+1

l] Sk
This last expression is a sum of two terms: a linear combination of terms with struc-
ture (4.2) with Lu = dx,u, and a time derivative of a linear combination of terms of
type (4.3) with Lu = d;u. We proceed with the second term on the right-hand side
in (4.4): it can be rewritten as

Re/|x| O (ulul?) 0Fla —Re/8k Yulu|?) 9K ((x)ir) — Re/ak(u|u 2y ok +1q,

and arguing as above one checks, by first expanding the derivative of order k with respect
to time, that we get again a sum of two terms: a time derivative of terms of type (4.2),
where Lu = (x)u or Lu = u, and a linear combination of terms with structure (4.3)
where Lu = (x)u or Lu = u. This concludes the proof of Proposition 4.1. ]

Next we estimate the energy R, 4, we just introduced.

Proposition 4.2. Let k € N and R > 0 be given, and let u(t,x) € X %k“’b be the unique
local solution to (1.1) with initial condition ¢ € H**2 and ||¢|| 31 < R, with T = T(R)
and so = 2k + 2 in Proposition 3.2. Assume moreover that sup, e,y |[u(t,x)|| 1 < R.
Then for every § > O there exists C = C(8, R) > 0 such that:

| [ Roper2u(r, 1)) dr| < C o] H525.
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Proof. We have to estimate integrals like (4.3), namely /[ (alt‘Luo)(ai‘ Luy) 8i2u2 8£3u3,
under the condition
h+bh+L3=k+1, [ <k.

Here and below, abusing notation, we denote by [ a space-time integral on (=7, T') x RZ.
Using the equation solved by u, and noticing that with the imposed conditions on [y, />
and /3 we may assume [, > 1 (as [ and /3 play symmetric roles), we get

4.5) )//(a’;Luo) (O Lun)diuz 0 us|
< | [f @ Lo @ ) @ ) 0|

+ [ 1@ o) 16 L)1 1@ Pl ).

The second term on the right-hand side is estimated, by Cauchy—Schwarz, as
r k 1 Ir—1 I
([ 195 Luolzaloh Lunlade) 6% uluP)oeqryzos 100wl mqorison
0

T
! I~ 1
S(/O ||3]fLMo||L2||3t1LMl||L2df)||(3t2 YY) oo 0.1y 901453 1971 | Loo (0,7 901+

where we used the Sobolev embedding. Using that X;’b C E€(-T,T); #%), (1.4), (3.9)
and (3.10), we proceed with

1-8 8 -1 2
() = Cligllgearsr 9 geats 1 191 gz s 190N paicea 1 OF ™ @elat )| o 0,701 572

+n1+(1-8 —8—(n+m+n3)+8 8 Ir—1
< Cllg|"hmFa=5ms RIS | 118 e 182 (u

3 2
Jo2k+2 ”(/)”](1 |ul )||L°°((0,T);J€1+5/3)7

where
n2k +2)+ (1 —n) =2k+1,
ik +2)+ (1 —mn)=2L+1, i=12,3
and hence, by using that #2%¥*2 c #!, we can continue the estimate above as follows:

2k+21; +213 3_g_2k+2l 420 5 o 5
) = Cllel st Nelger > ol Gara 10077 @l Looo,7:5014813) -

Expanding 82! (u|u|?) and using that J¢1+3/3 is an algebra, we get

I—1 2 J
107 (uful M zeoo,y;9e1+513 = C Z ||3z“u||L°o((o,T);J€1+5/3)
Stz +jz=l—1
X 197wl Loo (o, 7y: 014873y 10771 [l oo ((0,7:501+5/3)

and using the convexity of Sobolev norms and (3.5), we proceed with

1-§/3 1-§/3 1-6§/3 E)
(-)=C Z ||¢||J€2j{+l ”(p”;gzj'éﬂ ”90”3{2]4“ ||(p||g(2k+2
Ji+i2+j3=l—1
(1-8/3)(01+6,+6 1-8/3)(3—60;—6,—0 8
<C Y el DOt ) G PR g s,

J1ti2t+j3=l—1
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where
0;2k+2)+(1—-6)=2j;+1, i=1,2,3.

Using that #%%+2 C J¢! and writing
(1-8/3)3—01—0—03) =(§/3)(1 + 02+ 03) +3 -6 — 01 — 6, — 03

to compensate the (1 — §/3) on the #2K*2 factor with part of the #! factor, we conclude
that -
I— 22245
1027 Qulul®) ) oo o, 7y:e1+5) < Cliel gt
By combining the estimates above, we get that the second term on the right-hand side
in (4.5) can be estimated by

3_g_2kt2l 420y 2k+20y +2p+213—2

+6
Cllelyen " w =Cligl

1 4k 8k+1
T8 e k42 768

||¢||J€2k+2 F1 ||¢||J€2k+2 S Cl|¢| J€Zk+2 4

where we have used the uniform bound on #! along with the inclusion #2¥+2 ¢ #1,
and

_2k+2]1+2[3>3_8 4k 4 5>

|
3-4 — =1 —
%1 - w1l T2 ik 12

+56.

We now focus on the first term on the right-hand side in (4.5). In this case, we shall use a
Littlewood-Paley decomposition, and we are reduced to estimating

> //ANO(E)’,‘LuO)ANl(8lt1Lu1)ANZ(B?_lAuz)AM(E)?m).

No,N1,N2,N3

Here Ap denote the localization operator associated with the operator A at dyadic fre-
quency N. We split the sum in several pieces, depending on the frequencies Ny, N1, N,
and N3, and we shall make extensively use of the following bilinear estimate (see Propos-
ition 2.3.15 in [16]): for every § € (0,1/2] and b > 1/2, there exists C > 0 such that

min{N, M}

1/2—6
_—— A A .
(v M}) |Anullyos [18a0] g0

6) AN (Anv)llz2o,ryzn = € (

We point out that an alternative proof of (4.6) can be obtained following Section 5, where
a key bilinear estimate is established via integration by parts.
Next we consider several subcases.

First subcase: min{ Ny, N} > max{Ny, N3}.
By Cauchy-Schwarz,

] A3 o) A 8 L) A, 02 ) A )

! I— I
< (1A Ny (9% Lug) A, (37 Luv) | L2 0.7y 22) | AN, (07 Au) An, (320 [ L2(0.7):2)
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and by (4.6) we can continue as follows:

(NyN3)/278 |
(NoNo)1/2=8
X (| A, (07" Aua)ll oo | Aw, (970) s

1/2-8
1
= C 375 18N @F L) ggo |18, 07 L)y
2

(-)=C | A (B Lat) oo 1A, (87" L)oo

Ir— l
X1 AN, @7 Auz)llgos 188, 3710 oo
1
< Cll AN @F L)oo |1 AN, (37 L) g0

Ih—1 I
X ||AN2(3,2 Au)||X—1/2+8,b ||AN3 (8z3u)||X1/2—8,b.
T T

Summarizing,

S| [ Aw @ Lo Av, @ L) A @ ) A s

No,N1,N2,N3
min{No,N2}>max{N1,N3}

1 -1 1
< C LS ulyss LIl oo 1A0R ™l yorrmos 1071 Ny

l -1 l
< Cllalt‘ullx;w,b 197 vl 1000 11977 320 119770 Ml 1240

where we used Proposition 2.1 at the last step, assuming we chose b > 1/2 in such a way
the estimate at the last line fits with Proposition 2.1.

Second subcase: min{ N1, N>} > max{Ny, N3}.

We can argue as above and we are reduced to the previous case by noticing that
NoN3/(N1N,) < N3/N,, since in this subcase Ny < Nj.

Third subcase: min{ N3, N} > max{Ny, Ny }.

Arguing as above, we are reduced to the first subcase by noticing that NoN; < N3
and hence N()Nl/(NzNg,) < N3/N2.

Fourth subcase: min{ Ny, N3} > max{No, N»}.

Again, we can argue as above and we are reduced to the first subcase by noticing that
NoN>/(N1N3) < N3/N,, as NON22 <N N32, which clearly holds in that subcase.

Fifth subcase: min{Ny, N3} > max{Ny, Na}.

Once more, we can argue as above and we are reduced to the first subcase by noticing
that Ny N»/(NoN3) < N3/N;, as Ny N22 < NoN2, which clearly holds in this subcase.

Sixth subcase: min{ Ny, N1} > max{N,, N3}.

One more time, we can argue as above and we are reduced to the first subcase by
noticing that N;N3/(NoN1) < N3/N, which in turn follows from N22 < NoN; which
holds in that subcase.
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We are therefore left with proving

8k+1
k I I—1 I k2 +8
07l resn 197 wllgrean 107 wllyzzenn 197 ull 2080 < Cllg] s

Using (3.9) and (3.10), we can control the left-hand side with

1-§ 1-§ 1/2—68 1/24+68 1/2—6 1/2+68 §
(2 o e v 0 e vl i LA LA

which in turn, using that # 2k+2 < ge2hi+1 for the next to last term, is bounded by

1-8 1/2+8 1-268
1/2
(ngon ol o2 el o112, Tl ;eﬁﬁﬂ) @135

Again by embeddings in the # scale, we get an upper bound

1/2 1/2 1/2 )1—28

(”‘p”,}'ﬂkﬂ ”¢”}€211+1 ||¢||J€212 1 ||§0||J€zzz ||(P||3€213 ||¢||J€213+1 ||(p||ggzk+2

and

[L=28+8+8+26+28 = 85.
We will have to deal differently with /3 = 0 and /3 > 1. By interpolation and recalling the
a priori bound on #! norm, the quantity inside (---)'~2% can be estimated as

2 2 2 63/2
Clllpaena 101500k s 10172080 0120200 02 ol ohz o

where C contains some power of ||¢|| #1 (recall our quantity has four factors of u) and

02k +2) + (1—0) = 2k + 1,
012k +2) + (1—6y) =21y + 1,
032k +2) + (1 — 05) = 205 + 1,
22k +2) + (1 —y2) =20 — 1,
22k +2) + (1 —n2) = 205,
n3(2k +2) + (1 —n3) = 213,

except when /3 = 0, where no interpolation takes place and therefore one sets 13 = 0. We
conclude by computing 6, 01, 03, y2, 12 and 13, and noticing that, for /3 > 1,

9+9+1 +1 +1 —I—IO— 4k
1 23/2 2772 2773 23_2k+1’

while for I3 = 0,

PR VS BN DARRE 1 8k+1
Lty s T T okt T sk +2

For I3 > 1, we may trade a bit of # ! norm to get the same exponent as for /3 = 0. Then,

8k +1 8k + 1 8k +1 8k+1 8k+7
1-26)+ 86 = 4 — 28 = ,
w28 = s () B = e
8k+1
and we get our final bound C ||¢ ||;éf;§i2 , up to relabeling g’,zﬁ 8 tobed. |
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Next we estimate S, ., using its expansion as introduced in Proposition 4.1.

Proposition 4.3. Letk € N, R > 0 be given, and let u(t,x) € X %k“’b be the unique local
solution to (1.1) with initial condition ¢ € H#***2 and ||| 301 < R, where T = T(R) and
so = 2k + 2 as in Proposition 3.2. Assume moreover that sup,e_r 1y |[u(t, x)[ 51 < R.
Then for every § > 0, there exists C > 0 such that

2£‘1§>1+8
sup  |Sox42(u(t, X)) = Clloll goesn -
te(~T,T)

Proof. We prove the desired estimate for every expression with type (4.2). Indeed by
Holder we have for every fixed t € (—7,7T),

| [ 8 Lo 0 Laey 3 0] < 08 Lul 107" Lun 2 107wl 10

and by the Sobolev embedding and (1.4), we proceed with

k 8 8 8
() < ClI9F Lull 2 197" Laall o 19720l 3 11972015 110722 5 1197 |2

k § §
< Cll05ullger 1197 2l gor 10720l 3 10720150 11972 2ll 50 11977224152
Then, using (3.5), we get
1-9)

(- = Cllul geaesn el gezmsr el Ggmgen N gy 1 1011 g2 o2 N1t Gy 2
-c (1-5) (1-5) 5 5
< Cllell geze+1 @l gezmi+r (@1 gpamy 1 191 gp2ms1 €1 5p2ma42 €1l 5p2ms 42,
where we remark that the bound holds irrespective of the value of m, and m3 (which may
be zero). The last step follows from the embedding X ;’b CEe((-T,T); #5) forb > 1/2
and (3.4). Next we choose 0, 61, 65, 03 € [0, 1] such that
0k +2)+(1—-60) =2k + 1,
0:;2k+2)+(1—-6;)=2m; +1, i=1,2,3
(again, m, = 0 or m3 = 0 are admissible, as then 8, = 0 or 83 = 0), and by further
interpolation,

0+61+(1— 5)(02+93)+5(92+93+2k+1)
Je2k+2

| / 0 Lug 07 Luy 05 87 us| < Cllg|

The exponent turns out to be

28 4k N 28
2k+1 2k+1 2k+1°

0+4+61+6,+ 65+

and this concludes the proof by relabeling §.

Note that, since the constant C has a factor ||| s1 from the interpolation steps, we
may trade part of it to increase the power 4k/(2k + 1) to (8k + 1)/(4k + 2), to have
matching exponents in both Propositions 4.2 and 4.3. |
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Proof of Theorem 1.1. It will follow as a consequence of Propositions 4.1, 4.2 and 4.3.
Let

4.7 sup  lu(t, x)||z1 = R.

t€(—00,00)

Then R < oo, by (1.5). By integration of the identity (4.1) on the strip (0, 7'), we get
1 k 2
5 197 Au(T.x) 72 + S2k+2(u(T. X))

1 T
= 310001 + Stz O + [ Ropsalu(r. 1)
0

where T = T(R) is the local time of existence as defined in Propositions 4.2 and 4.3.
Then we get, taking advantage of the remark at the end of the proof of Proposition 4.3 to
match both exponents on the right-hand side,
1 1 Sktlys
5 197 Au(T )17z = 5 197 Au (0. x) 172 < Cllu0, ) 53"
One easily checks that by (4.7) the bound above can be iterated with the same constants,
giving
Lok T 2 SSRg,
5 ”az Au((n + DT, x)”Lz - 5 ”at Au(nT, x)”Lz < Cllu(nT, x)ll}gszrz
for every n € N. By summing up for n € [0, N — 1] (subsuming the data at n = 0 on the
left-hand side into the constant and n = 0 term on the right-hand side), we obtain

Stl4s
I0f Au(NT. )7, <C > [u@T.x)||2525"
ne{0,...,.N—1}
and then,
et
sup ||81,‘Au(nT,x)||iZ§CN( sup ||u(nT,x)||Jg2k+2)
nefo,N] nel0,N]

By (3.5) (§ may change from line to line but can always be chosen arbitrary small),

sup [u(nT, x)|| gokr2 < CN3@KFTDHS,
nefo,N]

and therefore s
[u(NT, x)|| gozrs> < CN3ICH+HDFS  yN e N*,

Using (3.4), we easily obtain

sup lu(t, x)|| gozk+2 < CN3Ck+D+8
te[NT,(N+1)T]
provided that we suitably modify the multiplicative constant C. Summarizing, we get that,
forallt > 0,
2
(e, ) | earsz < C(1 4 [¢)3GFFDFS,

The same argument works for # < 0, concluding the proof of Theorem 1.1. ]
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5. Appendix

We intend to provide a direct proof, based on integration by parts, of the crucial bilinear
estimate from [16], for solutions to

(5.1) i0;u— Au + |x*u =0.

Theorem 5.1. Let 1 < M < N be dyadic numbers. For T € (0, c0), there exists Ct such
that

(5.2) lunvam 220702y < CrMN " un ()75 lon 0172

where uy and vy are spectrally localized solutions to (5.1) (namely, Ayuy = uy and
Aprvy = vag) with initial datum u n (0) and vy (0), respectively.

Such bilinear estimates were first obtained for solutions to the classical linear Schro-
dinger equation in [3], using direct computations in Fourier variables. In [7], the so-called
interaction Morawetz estimates were introduced for the 3D nonlinear Schrédinger equa-
tion, relying on a bilinear version of the classical Morawetz estimate. Here, we rely on
the bilinear computation from [15], that not only extended such bilinear virial estimates to
low dimensions, but also allowed to recover Bourgain’s estimates from [3]. We will fol-
low the strategy from [13], where bilinear estimates on bounded domains were obtained,
bypassing the need for Fourier localization. We split the proof in several steps.

First we prove the following: for a given 7' € (0, 00),

T
(5.3) /O (//|x_y<1/M My (x)Vy oag () + EM(y)quN(x)|2dxdy) dt

< CrN|lunO)[|7> lvm (017
Next we deduce from (5.3) that

T
64 [ ([ 19somunP dx) de = CrMN fu O Toar O
0

Estimate (5.4), along with a companion easier estimate for fOT (f |x|?|vprun |2 dx) dt,
implies

T
(5.5) / loag @2 di < CrMN [y (02 [uar (02
0

Finally, by a spectral localization argument, we prove that (5.5) implies (5.2).

Proof of (5.3)

We first remark for later use that once (5.3) will be established, then we are allowed to
replace vy by Avy (which is still a localized solution to (5.1)), and we get

T
s [ ([ M om (s + i) Ve ) drdy s

< CrNM?*|un (0)|7- lva (0)]7--
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Next we focus on the proof of (5.3). From now on, 7" is fixed in (0, +00). Let p: R2 > Rbe
a C! function whose derivative is piecewise differentiable, with H, denoting the bilinear
form associated to its Hessian (as a distribution), H,(a, b) = Zk’l(ailp)akbl; all Bilp
are actually piecewise continuous functions, and under such assumptions, all subsequent
integrations by parts are fully justified in the classical sense. We claim that, for any couple
of solutions u, v of (5.1),

T
(] 063GV #9500, 0090+ 700, 000 iy )

5.7 = CrlIVollze(lv )72 (O l2 11w (O) [l ger + [l (O)[IZ2 [0 O) 2 [0 (O)lger ),

where we dropped time dependence for notational simplicity. Following [13], we define a
convex function ppr: R — R,

M 1
p(z) = 25 T FISUM.
|z, |z| > 1/M,

and we use (5.7) with p(x — y) = pp(x1 — y1): we get, by direct computation of the
Hessian Hp,

[OT (// ‘ I/MM|(ﬁ(y)ax1u(X) +u(x)8ylﬁ(y)|2dxdy> dt
X1—Y1I<

= Cr([v )72 1u(0) 2 4Ol ger + Nu(O)Z2[1v(©)2 100l ger),

where there is no contribution in the region |x; — y;| > 1/M as H, = 0 there, and we
used that [|pj,(z)[[L~ < 1. Of course, by choosing p(x — y) = pp(x2 — y2), we get a
similar estimate where x1, y; are replaced by x5, y», and by combining the two estimates
we get (5.3), where we noticed that |x — y| < 1/M C max{|x; — y1],|x2 — y2|} < 1/M.
Replacing v and v by uy and vy and using spectral localization, we get (5.3).

‘We now go back to the proof of (5.7), with a generic weight p. We compute the second
derivative with respect to time of the functional

1(1) = / @) p(x — y) ()] dxdy.

where for simplicity we have dropped the time dependence of u, v. In order to do so,
recall that by the classical virial computation we get for a solution w(z, x) to (5.1) (we
drop again time-dependence of w and set p, (x) = p(x — y) to emphasize that y is a fixed
base point here), the following:

d
(5.8) E[/oy(x)|w(x)|2 dx = 2/pr(x)-lm(Vu')(x)w(x)) dx
2

(5.9) e

[ py () [P dx = 4 / Hy, (Vi (x), Vi (x)) — / Apy () Aw()]?) dx

—4 [ x-Vp,@lo@ldx.
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where we emphasize that we will not be using more than two derivatives on p,. Next,
using (5.8) we get

d
() = z/f Vol — y) - Im (Vy () u(x)) [v(07) dx dy

=2 [ Vot = ) 1m (9, 50090 )y

Using that |[Vw]||;2 < C|lw| g1 at fixed time, followed by the conservation of mass and
energy for (5.1), we get

d
(5.10) |$1p(z)1 <2 Vpllze (10125 lullzz 1Vullzz + llZallvllz2 [Vollz2)
< C|IVpllzes (10O 1u©)llz2 [14(O) 1361 + 26O 2 [0(0) 2 [[0(O) | 1)

For later use, notice also that using (5.8) on both mass densities,
d d
G [ ( [otr -3 L dx) S dy
=2/(/v (x —y)-Im (V ﬁ(x)u(x))dx>i|v( )2 d
o y x T y y
= —4/ Hy(Im (Vyu(x)u(x)), Im (Vyo(y)v(y)) dxdy.
On the other hand, by combining (5.9) and (5.11), we get
d? _ 2
Wlp(t) = 4/ Hp(x — y)(Vu(x), Vu(x)) [v(y)|
+ 4// Hy(x — y)(Vo(y), Vi(y)) [u(x)|* dx dy
~ [ A0t = AtV dxdy
— [[ Aptc = R AP dxdy
- 8/ Hp(x — y)(Im (Vu(x)u(x)), Im (Vo(y)v(y))) dxdy

—4Re/ (x = ¥) - Vplx — M@ P dxdy
=]+II+II+1IV+V+ VL

Following [15], we rewrite Ap(x —y) = —Vx - V;,p(x — ¥) and integrate by parts with
respect to to x and y to obtain

nr+1v=3s // Hy(x — y)(Re (u(x)Vu(x)),Re (v(y)Vv(y))) dxdy.
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Now, thinking about just one direction of derivation, we have the following identity:

4v P (»)9ul?(x) + 4[ul?(x) |dv[*(y)
(W3 + D) (y) Wdid + adu)(x) _ (V3D — 29v)(y) (@du — udi)(x)
+8 2 2 -8 2 2
= 4|v|?(y) [0u|*(x) + 4|u[*(x) [9v]|*(y) + 4v 9T (y)u dii(x) + 45 Jv(y)it Ju(x)
= 415(y) du(x) + u(x) 2o ()|,

which allows to recombine I + IT + III + IV + V, to get

d2
=4 // Hy(x =) B0 Vu () +u(@)Vi(y). v(y) Vii(x) + () Vo() dxdy

—4Re /[ Volx = y) - (x = )P ux)[* dxdy.

After integration in time of the identity above, and by recalling (5.10), we get

T
4/0 (/ Hap(x =) (00 Ve (x) +u(x) Vo 5(0), 0(0) Vit (x) + (1) Vy 0 (y) dxdy )
< CIIV el (10172 )22 1) et + O] 0Ol = [v(O)lc1)
T
— _ 2 2
+4[0 (//Wp(x Wy = X )P () dxdy)dr

< C|[Vpllze (Iv(O)IZ2 1u©) 2 1 ©) [l ger + [ (O)[IZ2 0(O) |2 [[v(0) ] ¢1)

+ CrlVpllLe e (@72 v @)z 1y v@) 2 + [0 ONZ2 1 @)l L2 [ xu@)]1Z2)-
1e(0,T
Using that ||yw]|z2 < ||w| g and, again, the conservation of mass and energy for (5.1),
this estimate implies (5.7).

Proof of (5.3) = (5.4)

We need a suitable local elliptic estimate for our operator A = —A + |x|? to reproduce
the computation from [13]. The next lemma is a modification of Lemma 4.2 in [13].

Lemma 5.1. There exist C > 0 and Ao > 1 such that, for any smooth function ¢ in R?
and A > Ay, the following pointwise estimate holds:

B < €A Agldy+cat [ jgldy. vxew?.
[x—yl<A~! |x—yl<a~!

Proof. Without loss of generality, we may restrict to real-valued ¢. The lemma is proved

in [13] if we replace in the right-hand side the operator A by —A, and the domain of integ-

ration by the smaller domain |x — y| < (44)~! (this fact follows from classical elliptic

theory and the Sobolev embedding for A = 1, and then any A > 0 by rescaling). Thus we

conclude provided that we prove

(5.12) A7 |Ap|?dy < CA™2 |A¢|2dy+C)t2/ |p|>dy.
lx—y|<(4A)~! [x—y|<A~1 [x—y|<A~1
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In order to prove this estimate, we expand the square [ |Af|?> = [ |Af — |y|>f|*, and
after integrations by parts we get

6130 [UASP+ IR+ PSP dy = [QAFE + 415y
for any real-valued function f € C{°(R?). Next we pick f(y) = xa(»)$(y), where
x2(y) = x(A(y — x)), with y(|z]) = 1 on |z| < 1/4 and y(|z]) =0 on |z| > 1/2. All

subsequent cutoffs with respect to y will be centered at x. Expanding [ |A(x 29)|? and
J |A(x2¢)|? and replacing in the previous identity, we get

/(I){AI2 1AG12 + [y 1* 1xa P 1o ? + 2y IV (a9)I?) dy

(5.14) = /(Imlzlflvl2 + 4|l ¢ dy — 2/ X192V 0 -V + Axad)dy.

By Cauchy—Schwarz and elementary manipulations, we estimate the last term on the right-
hand side as follows: for every p > 0 and with a universal constant C > 0,

2
| [y 6@V V6 + 910 dy|
C
< CM/|Y|4|XA|2|¢|2dy T ;/(IVXA-V¢|2+ AxaP 16P) dy.

If we choose the constant 4 small enough, then we can absorb [ |y|*|x,v|*dx on the
left-hand side in (5.14), and by neglecting some positive terms, we get, abusing notation
for the constant C,

/|XA|2|A¢|2dyEC/(|XA|2|A¢|2+4|XA|2|¢|2+|VXA'V¢|2+|AXA|2)|¢|2dy7

and by elementary considerations,

/ |A¢|2dysc/ |AI2 dy
[x—yl<(41)~1 [x—yl<(2A)~1

+cx2/5mw>|2dy L O+ A% 1612 dy.
[x—y|<(A)~!

where J; is a suitable enlargement of y;, namely 7(y) = ¥(¥5*), with 7(|z]) = 1 on
|z] < 1/2and x(|z]) = 0 on |z| > 1. Then (5.12) follows provided that

/ 7 IVel2dy < A~ g dy + CA2 / 1612 dy.

[x—y|<A~1 [x—y|<Al

In order to do that, we write (either integrating by parts or replacing —A by A — |x|?)
2 [mossdy =2 [ mivepay - [ ataloray
=2 [ Tapdpdy =2 [ P 2 loF .
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and hence
2/)?A|V¢|2dy +2/ VP 7 l6lP dy = 2/@¢A¢dy + / N

<CA2 |A¢2dy + C(1 + A?) 91> dy.
[x—y|<A~1 [x—y|<A~1

where we used Cauchy—Schwarz at the last step. ]

We now proceed to prove that (5.3) = (5.4). The first term in the square at the left-
hand side of (5.3) turns out to be of lower order: we compute, by change of variable, the
Cauchy—Schwarz inequality and the Strichartz estimate,

[()T(// | I/M|”N(x)vy17M(J’)|2dxdy)dz
x—y|<

T
= / / lun (x)Vyip (x —2)|* dxdzdt
0 lz|<1/M

(5.15) < / a1 s 1900 oz 42 = Crllu OIF s O
z|<1

where at the last step we used that |Vvas||lpa¢o,7):4) < Ct M ||var(0)| 22. In turn, this
bound follows by noticing that Vv is solution to the inhomogeneous equation associated
with (5.1) with forcing term 2xvys. Hence by the inhomogeneous Strichartz estimate,
placing the forcing term in L ((0, T'); L?),

(5.16) IVuamllzao,my;zey < ClIVUp (0|22 + Clllx[va 1 o,7):22)
< Crllvm0)|g1 < CrM|luayr 0)| 22,

where we used the conservation of energy for (5.1) and the bound |||x|w]| ;2 < C||w|| g1
for every time independent function.

Recall that (5.15) holds with vys replaced by Avyy (it is still a solution to (5.1)). Hence
we get

T
S [(ff - vV, (s 002 dxdy) de < Cr b fun O low O
[x—y|l<1/M

We now proceed using the Lemma 5.1, and we get

[T ([ wtomanmeorasa =c [ ( I, v
-y

L
+ 3 140w () V(1) dxdy) d,
that by (5.3) and (5.6) implies

(-++) < CrNM lun ()17 llvar 0117

T 1
O (], MO0 g ey (0% (AT dxdy .
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Combining the above estimate with (5.15) and (5.17), we obtain

T
[ ([ 1wV o2 dx) de < Cra? s+ NaDux O o O
(5.18) < CrNM lun (01172 llvar (01172

On the other hand, by Cauchy—Schwarz, the Strichartz estimate and (5.16), we have

/OT (/ |uN(x)Vx17M(x)|2dx> dt

< llun ”%/‘((O,T);L“) [Vup ”I%“((O,T);L“) = CTMZHUM(O)”%; ”uN(O)”iz

Therefore, combining this last estimate with (5.18), we get (5.4).

Proof of (5.5)

Due to (5.4), it suffices to prove

T
G190 [ ([ P owan? dx) e < CrMN Ju O To O 1.
0

By Holder’s inequality, we have

T
(5.20) /0 ( / P foag iy P dx) dt = 11xlom 3 aqo,r0) 140 07900y

Next notice that |x|?vyy is solution to the inhomogeneous equation associated with (5.1),
with source term —4vps — 2x - Vups. Again, using Strichartz and placing the source term
in L'((0,7): L?),

.21 1xPPomllLao,ryiesy < ClIxPom )2 + ClloallLio,ry:2)

+ Cllx - Vo Loy < Crllom 0)|lze2 < Cr M [lup (0)]|2,
where we used the time independent estimate || x - Vw| ;2 < Cllw| g2 (see (5.13)) and
the conservation of the 2 norm for (5.1). Interpolation between (5.21) and the Strichartz
estimate [|vps [ L4((0,7);24) = C lumr (0) [ 2 implies [||x[vas (| 4 (0,7);24) SCM [|var (0) | 2.

Combining this estimate, Strichartz for u ; and (5.20), we obtain (5.19) (in fact, a stronger
version of (5.19), as on the right-hand side we get M?).

Proof of the implication (5.5) = (5.2)
We can write

||UMMN||1%2((0’T);L2) = Z ”AK(UMMN)||1242((0,T);L2)-
Ke2N
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If K > N, we may forget about Ag and use (5.5) in order to get

Y 1Ak @aum) 207922
K>N

<C Y+ K7 lomun 1320 ry:5e1) < CrMN " uw 01132 [l (013
K>N

For K < N, denote

Sy= )Y Ag

K<N

and write directly
(5.22) Sn(vmun) = Sy (vm N> Aiiw),

where uy = A ~NUp, and the localization operator A N was chosen so that N —24A N 1S
the identity on the support of A ;. We may now write

v Ay = A(vyruiy) + iy Avyr + 2Vuoy - Viy,
and hence by (5.22), the uniform boundedness of Sy and N “1JAS N on L2, we get

1SN (varun)|72
< CN2|N"'VASN (VA@uiin) |72 + CN~*(liin Ava |32 + Vv - Vit [122)
< CN7?|VA@umin) |72 + CN | Avag|Falliin 174 + CN ™4[ Vop |74l Viiw |17

After integration in time, using the Strichartz estimates to control L* norms (use (5.16) to
control | Vups ||L;¢ and a similar argument to control || Vi y ||L? ) and (5.5), we get

T
f 1Sy (oagun) |2, di
0

T
=N [ fowin [ di + CrMNTH M + N2 o O law )1
0
< CrMN " oy (0)|71liin (0172 + Cr M>N 72 |[oar (0) |17 lliin (0)]172 -
and we complete the proof with ||z 5 (0)||z2 < C|lun (0)] 2. |
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