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An upper bound on the hot spots constant

Stefan Steinerberger

Abstract. Let D C R be a bounded, connected domain with smooth boundary,
and let —Au = pju be the first nontrivial eigenfunction of the Laplace operator
with Neumann boundary conditions. We prove that

max u(x) <60- max u(x)
x€D x€dD

and we emphasize that this constant is uniform among all connected domains with
smooth boundary in all dimensions. In particular, the hot spots conjecture cannot fail
by an arbitrarily large factor. The inequality also holds for other (Neumann-) eigen-
functions (possibly with a different constant) provided their eigenvalue is smaller
than the first Dirichlet eigenvalue. An example of Kleefeld shows that the optimal
constant is at least 1 4 1073,

1. Introduction

Let D C RY bea bounded, connected domain with smooth boundary, and let u denote the
first nontrivial Laplacian eigenfunction with Neumann boundary conditions on dD, i.e.,

—Au = pu in D,

a_u =0 on aD,

dv
where p; > 0 and v denotes the normal derivative on the boundary. The function u
describes the asymptotic profile of the long-time behavior of generic solutions of the heat
equation.

One might expect that if D is ‘simple’, then the maximum and minimum of u should
be at the boundarys; this is the 1974 hot spots conjecture of Rauch [6]. The conjecture is
widely assumed to be true for convex domains, and possibly even for simply connected
domains if d = 2. This is being actively investigated, and there are many settings where
it is known to hold [3,4, 6-9, 15, 18-20, 28-30, 34, 36].
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Figure 1. A type of domain on which hot spots fails (see [10, 11,21]).

2. Results

2.1. Main result

However, there have to be at least some geometric restrictions on the domain D: Bur-
dzy and Werner [11] constructed a planar domain with two holes where u assumes its
maximum strictly inside the domain. Burdzy [10] later constructed a planar counterexam-
ple with one hole. Kleefeld [21] used high-precision numerics to numerically investigate
examples of domains with one hole: Burdzy-type counterexamples [10] seem to be robust.
Kleefeld also constructs an explicit (numerical) example of a domain for which

lullLoo(py = (1 + 1072) - [|ul| Lo op)-

This leads to a natural question: how ‘wrong’ can the hot spots conjecture be? We show
that it cannot fail by more than a fixed factor.

Theorem (Abridged version). Let D C R4 be a bounded and connected domain with
smooth boundary, and let —Au = piu be the first nontrivial eigenfunction of the Laplace
operator with Neumann boundary conditions. Then

max u(x) < 60 - max u(x).
xeD x€dD

Remarks.

(1) The optimal constant might conceivably be quite close to 1 (at least for d = 2). An
example of Kleefeld [21] shows that it is bigger than 1 4 1073,

(2) The proof leads to better results in higher dimensions: the constant 60 can be re-
placed by 23 in d = 3 dimensions and by 15 in d = 4 dimensions. Asymptotically,
as d — 00, the constant obtained by the argument converges to +/e¢ ~ 3.89. ..

(3) Smoothness of the boundary can be replaced by weaker assumptions; we have not
tried to optimize this condition.

(4) The proof also applies for other (Neumann-) eigenfunctions —Au = pu whose
eigenvalue p is smaller than the first Dirichlet eigenvalue. The strength of the result
then depends on the ratio 0 < u/A < 1 (see §2.2.)
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2.2. Other eigenfunctions

The proof shows a slightly stronger result: we never need —Au = pu to be the first
eigenfunction of the Neumann-Laplacian, we only require that the associated eigenvalue

satisfies 5
V fl#dx
pw<hi = inf —fo| f];|d :
feC&(D) X
120 D

i.e., that the (Neumann-) eigenvalue is smaller than the first nontrivial Dirichlet eigenvalue.
The inequality p; < A is elementary and follows from the variational characterization.
Payne [31] showed that for convex D C R? with C2-boundary, we also have u, < A;.
Levine and Weinberger [24] (see also Aviles [5]) show that for a bounded convex domain
D c R? with sufficiently smooth boundary ity < A1 (see also Friedlander [17]). It is also
not difficult to construct, in any dimension d > 2 and for any n € N, a connected domain
D, C R? for which 1, < 0.5-A; (think of many balls that are connected by very thin
tubes).

Theorem (General version). Let D C R? be a bounded and connected domain with
smooth boundary, and let —Auy = pruy be an eigenfunction of the Laplacian with Neu-
mann boundary conditions. If py < A1, then there exists a constant 0 < ¢ < oo depending
only on the ratio |y /A1 and the dimension such that

max ug(x) < c(pur/A1,d) - max ug (x).

We note that the constant ¢(ug /A1, d) can be explicitly computed for any choice of
parameters (we refer to the proof for details). It could be interesting to understand whether
and to what extent the limitation i < A is necessary or whether this could be further
relaxed.

2.3. Other equations

There is a bigger picture here: to broad families of elliptic equations, it is possible to
associate a drift-diffusion dynamical system. Eigenfunctions of the operator diagonalize
the system and have a profile under the flow which changes multiplicatively —however,
the profile also has a variational characterization from which we can infer that the first
nontrivial Neumann eigenvalue is smaller than the first nontrivial Dirichlet eigenvalue: the
associated drift-diffusion hits the boundary quickly. In order for this to make sense in terms
of the slower decay of the Neumann eigenfunction, the solution at the boundary cannot
be too small. This type of reasoning can be applied to more general elliptic equations
and to the manifold setting —however, getting a uniform constant will require at least
some assumptions on the PDE and/or the underlying geometry. We believe this to be an
interesting avenue for further research.
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3. Proof

We will only give a proof of the abridged version: getting a uniform constant requires
more work, the proof of the general version follows easily from the proof of the abridged
version. The proof decouples into the following steps.

e §3.1 deduces an elementary inequality for solutions of —Au = pu with Neumann
conditions on domains D C R? with smooth boundaries in terms of the (Dirichlet)
heat kernel p;(-,-) : D x D — R.

e §3.2 discusses an estimate on the asymptotic behavior of the optimal constant in the
inequality ;1 < ¢ - A; and how it depends on the dimension. This section does not
require any new ideas and follows from combining existing results: the Faber—Krahn
inequality [13,23], the Szeg6—Weinberger inequality [37,39] and an estimate of Lorch
and P. Szegd [25] concerning the first nontrivial root of a special function.

e §3.3 quantifies the following phenomenon: the heat kernel p;(-,-) decays exponen-
tially at rate exp(—A1¢). This implies that for @ < Ay, it is possible to obtain decay
estimates for €%’ p,(-,-). §3.2 will imply that we can pick o = 1, which will be use-
ful in terms of the inequality proved in §3.1.

* §3.4 combines all the arguments to finish the proof.

3.1. An upper bound on ||u ||z (D)

The goal of this section is to deduce a general inequality for Neumann eigenfunctions.
The argument is not sensitive to the geometry of D; however, we require the boundary to
be sufficiently regular so that reflected Brownian motion exists (smoothness is more than
sufficient).

Lemma 1. Let D be a bounded, connected domain with smooth boundary and let u be
a nontrivial solution of —Au = pu with Neumann boundary conditions assuming its
maximum in xg € D. Then, forallt > 0,

lllzeeapy

= e‘”/ pt(XO,y)dere“’(l—/ pz(XO»y)dy) :
D D [ull Lo (D)
where p;(x, y) denotes the Dirichlet heat kernel on D.

Proof. Let us assume, without loss of generality (after possibly replacing u by —u), that u
assumes its maximum inside the domain D and

u(xo) = llu|z=(py > 0.

We will show that the maximum value on the boundary cannot be too small. Solving
the heat equation with u as initial datum and Neumann boundary conditions is simple
because u is an eigenfunction, the solution is u (¢, x) = e *"u(x). The probabilistic inter-
pretation of the heat equation then allows us to write

u(t, x) = Exu(w(t)),
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where the expectation E, is taken with respect to Brownian motions started in x and
reflected on the boundary. We now fix a time ¢ > 0 and use the probabilistic interpreta-
tion to derive an upper bound on u(xo) = ||u||z(p). Let us consider a fixed Brownian
path wy, (s) started in xo and running for time 0 < s < ¢. We distinguish two cases:

(1) wx,(s) never touches the boundary for all 0 < s <,
(2) there exists a first time 0 < 7y < ¢ such that wy,(¢p) € dD.

The first case is naturally related to the evolution of the heat equation with Dirichlet
boundary conditions

9
M _Au inD.
Jt

u=~0 on 0D.

We recall that the Dirichlet heat equation with initial data u(0, x) = f(x) has an explicit
solution

u(t.x) = /D PG ) f(3) dy.

where p;: D x D — R is the heat kernel associated to the Dirichlet heat equation on D.
Using (¢4)32; to denote the sequence of L?-normalized eigenfunctions of —A¢, = A, ¢y,
with Dirichlet boundary conditions, we have an explicit expression for the heat kernel:

pi(x.y) =Y e hu(x) ().

n=1
At the same time, the Dirichlet heat equation has an explicit stochastic representation as
u(t,x) = Eyu(w(t)),

where w(t) is a Brownian motion started in x and running for time ¢ with the additional
rule that, once hitting the boundary, it remains there for all time (the boundary is ‘sticky’).
Since we are dealing with zero boundary conditions, the particles at the boundary do not
contribute to the expectation and the expectation is only taken with respect to Brownian
motion that never touches the boundary. This reproduces exactly the first case in our case
distinction. Moreover, it implies that the density of the particles who have never touched
the boundary is given by p;(xo, -), and the likelihood of Brownian motion starting in x,
running for time ¢ and never hitting the boundary, is given by

P(VOESEIwao(s)?faD):/l;Pz(xo,y)dy-

This shows that we have a very precise understanding of the first case. As for the second
case, we will not derive such a precise representation and instead bound it from above:
suppose wx, (tp) € dD. We can use markovianity and the property that u is an eigenfunc-
tion to take an expectation over all Brownian paths started in ¢y and running for ¢ — 7y
units of time:

Eo ot — o) = e 7 u(wy, (t0)) < [u]lLe@n)-
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Combining both estimates, we have
w0 = [ piGosm)dy + (1= [ putroc ) dy)luliman
<l [ prtxoy)dy + (1= [ pitxo.)ds)ullmn)

Plugging in the explicit solution of the heat equation u (¢, x) = e #’u(x) and using that
u(xo) = ||u||L(p), we obtain the desired inequality

ey = @ lulmeoy [ prsonsydy+ e (1= [ piso,y)dy) Iullman)

which can also be written as

lll=@p)

1< e‘”/ pi(x0,y)dy +e’”(1 —/ pz(xo,y)dy)
D D ||”||L°°(D)

It is clear from the form of the inequality that if we can find a value of # such that

e’”/ pi(xo,y)dy <1,
D

then this inequality implies that the maximum at the boundary cannot be too small com-
pared to the maximum inside the domain. Moreover, for each domain D,

o0
pi(x.y) = e r(x) i ()
k=1
decays asymptotically like ~ e~*1?, and since u < A;, there always exist a ¢ > 0 such
that the desired quantity is less than 1. It remains to show that all these quantities can be
chosen uniformly among all domains D.

3.2. Inequalities for eigenvalues

We discuss an inequality for eigenvalues due to Szegd [37] (refining earlier work of
Pélya [33]). These types of inequalities are now well-studied, we refer to [, 2, 14, 16,
22,24,32,35].

Lemma 2 (Szegd, 1954). If D is a planar domain, then

Proof. The Faber—Krahn inequality [13,23] says that among all domains with fixed vol-
ume the ball minimizes the first eigenvalue of the Dirichlet-Laplacian and thus

2
7'[-

A > ]0’1,
|D|
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where jo,1 ~ 2.404 ... is the first positive zero of the Bessel function Jy. The case of
equality is given when D is a disk. There is a corresponding upper bound for 1, the first
nontrivial eigenvalue of Laplacian with Neumann boundary condition

”'jlz,l
|D|

M1 = ,
where fl,l ~ 1.841 is the first positive zero of J;. This inequality was first proven by
Szeg6 [37] for simply connected planar domains, and then more generally by Wein-
berger [39], who also established the corresponding analogue in higher dimensions. Equal-
ity is again attained on the ball. ]

A corresponding inequality also exists in higher dimensions with an improved con-
stant. The argument is essentially the same: the new ingredient is the need to control roots
of certain Bessel functions.

Lemma 3. Let D C R? and d > 3. We have

d+?2 }'Al'

in {0587, — 4T~
M1 = m‘“{ d/2—2/d)?

Proof. Using again the Faber—Krahn inequality [13, 23] and the Szeg6—Weinberger in-
equality [37,39], we have

2
4
<ﬂ'kl,

= ja%/Z—l,l
where jg/2—1,1 is the first positive root of the Bessel function Jz/,—1(x) and pg/5 1 is the
first positive root of the derivative of x'~4/2J, /2(x). We refer to a paper of Ashbaugh
and Benguria [2], which gives a clear exposition of these inequalities. We have the known

estimate (see e.g. Watson [38])

d
jap-1a = V@2Z=D@2+ D = 5 - g.

It remains to obtain an upper bound on pfi /210 We could invoke bounds of Lorch and
Szeg6 [25] which guarantee

8 2
d+d——}—6<pd/2’l<d+2’

and this proves the desired inequality. However, we can also give an elementary and self-
contained proof of the upper bound. The Szeg6—Weinberger inequality

cd 2/d
m® = (57) Pz

where ¢y is the volume of the unit ball, is attained on the unit ball B;. Invoking the
variational characterization, we have for any f:B; — R with mean value 0,

2
_ Ja IV f)Pdx

p1(B1) = pipy < T frdx
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This allows us to obtain upper bounds on p; by plugging in test functions. Assuming B,
to be centered at the origin, we choose f(x) = x;. Applying Fubini, we get, for a dimen-
sional constant wg > 0,

1
[ |Vf(x)|2dx = [ l1dx = wyq / (1 _ x%)(d—l)/Z dxl

as well as

1
/ F(x)?dx =a)d/ (1 —x3)E@=D/2 32 gy
B, -1

The constant w; cancels out and we arrive at pfi /2.1 <d+2. |

3.3. A decay estimate

The goal of this section is to derive an upper bound on the quantity

6’“’/ pi(xo0, ) dy,
D

where xo € D is the point in which u assumes its maximum. We will not use the fact
that x¢ is the point in which u assumes its maximum and will instead bound the bigger
quantity

e’“’/ pi(x0.y)dy < sup e’“’/ pi(x,y)dy.
D xe€D D

Moreover, the argument does not require that pq is the first Neumann eigenvalue, it only
requires that pq /A; < 1.

Lemma 4. Let D be as above and let i < Ay. Then

|D| .
/\ﬂl)m)d/2

sup/ e pi(x,y)dy <
wentp ' (1 —

Proof. We only consider the special case . = @1 (which then allows us to invoke uniform
bounds on jt1/A; which depend only on the dimension), but it is easy to see that nothing
changes in the proof in the general case. We recall that

pi(x.y) =D e g (x) pe ()

k=1

and that therefore
o0
[ e putnydy = Y e g [ gt
k=1

Using the L?-normalization of the eigenfunctions,

(/l)fﬁk(y))z <|D| -/Dqsk(yy dy = |D|,
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in combination with Cauchy—Schwarz leads to
SR S -2t (02) V23 -t 12
> et g () [ g dy = (Y e TRg(x?) (Y etumRor D))
k=1 b k=1 k=1
This requires us to bound
o0 o0
sup Z 1=t ée(x)> and |D|- Z eW1=At
XeD g k=1

For both these terms, the dimension of D will start playing a role. Recalling Lemma 3,
we will denote the best constant in the inequality by

H1 <oag AL
We note that ¢y < 0.587 and that oy converges to 0 as d — oco. Then

)
Mz BB o —ay).

e Ak A

IA

We can now bound the first term by

IA

(o) o0
sup WM g (x)? < sup e MU gy (x)?

xeD k=1 xeD k=1

SUp  P(1—ay)e(t, X, X).
xeD

At this point we invoke domain monotonicity of the heat kernel: p;(:, -), the heat kernel
associated to the domain D, is bounded from above by the heat kernel in R4:

LT P

1
pe(x,y) £ ——— exp( 4t = (4mt)d/2’

= (4mr)d/2

and therefore

o0
1
(m1—Ag)t 2
sup ) e Pr(x)” < .
sup 2 (1 —ag)mr)i

A similar argument can be used for the second term: using the L2-normalization of the
eigenfunctions shows

o0 o0
|D| - § 1=t — |D| / § e1=Ar)t ¢k(x)2 dx
D
k=1 k=1

= |D| / p(l—(xd)l‘(t»xvx) dx =< |D|2 - sup p(l—ocd)l‘(l’xvx)v
D x€D

which can be bounded by the same term as above. Combining all these estimates, we

arrive at
|D|

—ag)mwt)d/? '

supf e p,(x,y)dy <
xeD JD ! 4@
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3.4. Finishing the argument
Recalling Lemma 1,
u )
1< e‘“t/ Di(x0,y)dy + (e’“’ —e‘“t/ pi(x0,7) dy)—” Iz @p) ;
D D lull Lo (D)

we observe that in the case of interest to us, the quantity ||u || @p)/||u || Lo (D) is strictly
smaller than 1 and we also note that

e‘“’/ pi(xo.y)dy + (e‘“’ —e‘“’/ pz(xo,y)dy) = e’
D D

Thus, replacing the first term by an upper bound on the first term (both times that it appears
in the inequality), leads to an upper bound. Applying this together with Lemma 4, we end
up with

____ 1D (o= 1PL_ylileen
T (40 —ag)mr)d/? (41 —ag)m )2/ ul Lo (D)
We use the Szeg6—Weinberger inequality once more in the form
C2/d
d 2
ni1(D) < W WZTRE

At this point, we can invoke a scaling symmetry which has not been used so far: we
can exchange a dilation of time with a rescaling of time. This is reflected in the fact that
powers of ¢ and | D| are not independent; we exploit this by introducing a rescaling of
time, @ = #|D|~2/% . The inequality then simplifies to, for all & > 0,

1 2/d 2 1 lull L @D)
1< + (exp (c - p a) — ) .
(4(1 — ag)ma)d/? d Fdj21 (1 —ag)wa)?2) |l (D)

This inequality can now be optimized in «, and the results will depend on the values of ay
and pé /2.1- Wealsorecall that cq = 74/2 /T (d /2 + 1) is the volume of the d -dimensional
unit ball. We discuss the first few cases which will illustrate the general pattern. In the
planar case, d = 2, we have pg/»1 ~ 1.841 and oy ~ 0.587. Setting o = 0.258, we
obtain

lullo@py _ 1
lullzeepy — 58.35

For d = 3, wehave pg/»1 ~ 2.081 and oty ~ 0.439. Setting @ = 0.194, we obtain

lllz=@py 1
lullzeopy — 22.03

For d = 4, we have pg/»,1 ~2.299 and ag ~ 0.3602. Setting o = 0.17, we obtain

L@y _ 1
lullLeepy — 14.71

The same computation can be carried out for 5 < d < 20 and we observe that the constants
are monotonically decreasing. It remains to prove the desired result for d > 21 as well as
to derive the desired asymptotic behavior for d — oo.
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3.5. Bounding the constants

We first observe, using standard asymptotics for the Gamma function, that for d > 20,

T 2/d 2 g
L — L <@d+2)— " <18
T2t e =S Papa =+ pos i <

Taking a limit, this also implies that

. 2/d 2
lim ¢ . = 2me.
d—o00 d pd/2,1

Recalling Lemma 3, we have

d+2
_dx2 ),
(d/2—-2/d)?
and thus, for d > 20, we have that oy < 0.23. We now set, in dimension d,
_ 1.1
- 41 —ag)m

from which we infer that « < 0.12 as well as

1 1
< <0.15,
41 —ag)ra)d/2 7 1,120 —

M1 < min {0.587,

o

and therefore,

1 2/d 2 1 lull o @aD)
1< + (exp c;/"-p a) — )
(4(1 — ag)mwa)d/? (“a 4121) (41 —ag)ma)d/2) |lull (D)
<0.15 + (exp (18- 0.12) — 0.15) lullz=@p)
[l Lo (D)
This implies that for d > 20,
lullz>@p) 0.85 1

lullpeepy ~ exp(18-0.12) —0.15 — 11

The pattern continues in the same manner for d = 5, 6, . .. and the constants keep improv-
ing. It remains to understand the asymptotic behavior. As d — oo, there is an easy way to
see the asymptotic behavior. We have oy — 0 and hence for any fixed @ > 1/(4x), one
of the terms become small:

1
d—o0 (4(1 — Old) 7'L’0l)d/2

Ignoring these terms (which can be made precise since they become sufficiently small
for d sufficiently large), we expect that the best lower bound in the limit converges to
exp(—cj/ a. pg /2 ,@) provided that « > 1/(4x). Thus, invoking the limit behavior, we

see that fora = 1/(47) + &,
1
3.89...

T 1 _
W.(d—i—ﬁa)iexp(—%na): ¢ —

This is the best constant that can be achieved with this type of argument.

exp(—
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3.6. A final remark

There is one step in the proof that is guaranteed to be wasteful: when evaluating the second
sum in §3.3, we have the inequalities

o0 o0
|D]| - E 1=t _ |D]| / E e1=A1)t ¢k(x)2 dx
D
k=1 k=1

S |D| / p(l—otd)t(qu) dx f |D|2 : Sup p(l—ad)t(x7x)-
D xeD

It is clear that this estimate is wasteful since an integral is replaced by a pointwise supre-
mum. Indeed, the integral
| petrvyan
D

is known as the heat trace. Luttinger [26, 27] proved that, among all domains with fixed
volume, the heat trace is maximized by the ball; this would lead to a better estimate.
However, we are not aware of any reasonably explicit estimates for the heat trace of the
ball. Asymptotic expansions are available (see e.g. Davies [12]), however, our argument
would require explicit bounds.

Funding. This work was partially supported by the NSF (DMS-2123224) and the Alfred
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