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On complete hypersurfaces with negative
Ricci curvature in Euclidean spaces

Alexandre Paiva Barreto and Francisco Fontenele

Abstract. In this paper, we prove that if Mn, n � 3, is a complete Riemannian
manifold with negative Ricci curvature and f WMn ! RnC1 is an isometric immer-
sion such that RnC1nf .M/ is an open set that contains balls of arbitrarily large
radius, then infM jAj D 0, where jAj is the norm of the second fundamental form of
the immersion. In particular, an n-dimensional complete Riemannian manifold with
negative Ricci curvature bounded away from zero cannot be properly isometrically
immersed in a half-space of RnC1. This gives a partial answer to a question raised
by Reilly and Yau.

1. Introduction

A classical theorem by Hilbert states that the hyperbolic plane cannot be isometrically
immersed in the 3-dimensional Euclidean space R3. Efimov [4] extended Hilbert’s the-
orem by proving that there is no immersed complete surface in R3 with negative Gaussian
curvature bounded away from zero. Independently, Reilly [8] and Yau [11] (see also [12],
problem 56, p. 682) proposed the following extension of Efimov’s theorem:

Question 1.1. There are no complete hypersurfaces in RnC1 with negative Ricci cur-
vature bounded away from zero.

In a well-known work, Smyth and Xavier [9] proved that the question above has
an affirmative answer for n D 3, with the stronger conclusion that the infimum of the
length jAj of the second fundamental form A is actually zero, and provided a partial
answer for n > 3. In this paper, we give the following partial answer to that question:

Theorem 1.2. A complete n-dimensional Riemannian manifold with negative Ricci cur-
vature bounded away from zero cannot be properly isometrically immersed in a half-space
of RnC1.

Theorem 1.2 was obtained as a consequence of the stronger result below. As usual, the
inradius of an open subset V of RnC1, denoted by Inrad.V /, is the supremum of the radii
of the open balls contained in V .
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Theorem 1.3. Let M n, n � 3, be a complete Riemannian manifold with negative Ricci
curvature and let f WM n ! RnC1 be an isometric immersion. If f .M/ is a closed subset
of RnC1 and Inrad.RnC1nf .M// D1, then infM jAj D 0.

Question 1.1 has an affirmative answer for entire graphs M n � RnC1, n � 3, with
negative Ricci curvature, since Chern [2] showed that inf jRicj D 0 for any of these graphs.
As a consequence of Theorem 1.3, one has the following improvement of this result of
Chern (see Corollary 1.7 in [3] for a generalization).

Corollary 1.4 (Corollary 1.6 in [5]). LetM n, n � 3, be an entire graph in RnC1, i.e., the
graph of a smooth function from Rn to R. If the Ricci curvature of M n is negative, then
infM jAj D 0.

A regular algebraic hypersurface in RnC1 is the zero setM D P�1.0/ of a polynomial
function P WRnC1 ! R with the property that the gradient vector field rP of P has no
zeros on M . Since RnC1nM contains balls of arbitrarily large radius (see e.g. [1]), as an
immediate consequence of Theorem 1.3 one has the following result.

Corollary 1.5. Let M n, n � 3, be a regular algebraic hypersurface in RnC1. If the Ricci
curvature of M n is negative, then infM jAj D 0.

In dimension 2, Milnor [7] conjectured (see also [12], Problem 62, p. 684) the follow-
ing: if M 2 is a complete non-flat surface in R3 whose Gaussian curvature K does not
change sign, then inf.H 2 �K/ D 0, where H is the mean curvature of M . If true, Mil-
nor’s conjecture would be an improvement of Efimov’s theorem. In fact, for surfaces in R3

with negative Gaussian curvature, one has inf.H 2 � K/ D 0 if and only if inf jAj D 0.
For partial answers to Milnor’s conjecture, see [6, 10]. Smyth and Xavier [9] proposed a
similar question in higher dimensions:

Question 1.6. If M n is a complete hypersurface in RnC1 with negative Ricci curvature,
then infM jAj D 0.

Clearly, if Question 1.6 has an affirmative answer, then so will Question 1.1. As shown
by Theorem 1.3, the answer to Question 1.6 is yes for a wide class of hypersurfaces
in RnC1, n � 3, namely the class of hypersurfaces whose complement in RnC1 is an
open subset with infinite inradius.

It follows from Theorem 1.3 that if M n, n � 3, is a complete hypersurface of non-
positive Ricci curvature in RnC1 whose complement is an open subset with infinite inra-
dius, then sup Ric D 0. On the other hand, one may ask if a stronger conclusion could
be obtained in the finite inradius case: does Inrad.RnC1nM/ < 1 implies sup Ric D
max Ric D 0?

2. The arguments

Before presenting the proof of Theorem 1.3, let us introduce the notation and recall some
basic facts about isometric immersions.

Given an isometric immersion f WM n ! RnC1 of an n-dimensional orientable Rie-
mannian manifold into the .nC 1/-dimensional Euclidean space, denote by � the vector
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valued second fundamental form of the immersion, and by A the shape operator of M n

with respect to a global unit normal vector field �. The squared norm jAj2 of A is defined
as the trace of A2. It is easy to see that

(2.1) jAj2 D

nX
iD1

�2
i ;

where �1 � �2 � � � � � �n are the principal curvatures functions ofM n with respect to �.
Denote by Ricp.v/ the Ricci curvature of M n at a point p in the direction of a unity

vector v 2 TpM . If ¹e1; : : : ; enº is an orthonormal basis of TpM such that Aei D �iei ,
for i D 1; : : : ; n, it follows from the Gauss equation that

(2.2) Ricp.ei / D
X
j¤i

�i �j D �i .trA.p/ � �i /; i D 1; : : : ; n;

where trA.p/ is the trace of A.p/.
In the proof of Theorem 1.3, we will use the following result from [9].

Theorem 2.1 (Principal curvature theorem). Let M n be a complete immersed orientable
hypersurface in RnC1, which is not a hyperplane, and let A denote the shape operator
with respect to a global unit normal vector field. Let ƒ � R be the set of nonzero values
assumed by the eigenvalues of A and let ƒ˙ D ƒ \R˙.

(i) If ƒC and ƒ� are both nonempty, then infƒC D supƒ� D 0.

(ii) If ƒC or ƒ� is empty, then the closure ƒ of ƒ is connected.

Proof of Theorem 1.3. Since M n has negative Ricci curvature by hypothesis, it follows
from (2.2) that �i .p/¤ 0 for all p 2M and all i D 1; : : : ; n. Moreover, there are principal
curvatures of both signs at each point of M n. By the continuity of the principal curvature
functions, the number of negative principal curvatures (and so also the number of positive
principal curvatures) is constant along M . Therefore, there are two cases to consider:

Case 1. At each point of M , we have n � 1 negative principal curvatures and one
positive principal curvature, or vice versa.

This case was treated in [9]. We will present the argument here for the convenience of
the reader. We may choose the unit normal vector field � so that

�1 � �2 � � � � � �n�1 < 0 < �n;

along M . Since n � 3 and the Ricci curvature of M is negative, by (2.2) we have

�n > �

n�1X
jD1
j¤i

�j D

n�1X
jD1
j¤i

j�j j; i D 1; : : : ; n � 1;

which implies

(2.3) �n.p/ > j�i .p/j; i D 1; : : : ; n � 1; p 2M:
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By the principal curvature theorem, Theorem 2.1, there is a sequence .pk/ inM such that
�n.pk/! 0 when k !1. Using this information in (2.3), we obtain that �i .pk/! 0

when k ! 1, for all i D 1; : : : ; n. It now follows from (2.1) that jAj.pk/ ! 0. This
concludes the proof of the theorem in this case.

Case 2. At each point of M , we have at least two negative principal curvatures and
two positive principal curvatures.

Given r > 0, there exists, by hypothesis, a closed ballBr .p0/ of center p0 and radius r
contained in RnC1 � f .M/. Let hWM ! R be the function defined by

h.x/ D
1

2
kf .x/ � p0k

2:

It is easy to see that

(2.4) dfx.rh.x// D ¹f .x/ � p0º
T ;

and

(2.5) Hesshx.v; w/ D hv;wi C h�x.v; w/; f .x/ � p0i;

for all x 2M and v;w 2 TxM , where ¹f .x/� p0º
T is the component of f .x/� p0 that

is tangent to dfx.TxM/.
Since f .M/ is a closed subset of RnC1 by hypothesis, there exists a point q 2 M

such that h.q/ D infM h. Then rh.q/ D 0, and from (2.4) we obtain that f .q/ � p0 is
orthogonal to dfq.TqM/. Replacing � by �� if necessary, we can assume that

(2.6) �.q/ D
p0 � f .q/

kp0 � f .q/k
�

Since h attains a minimum at q, it follows from (2.5) and (2.6) that

0 � Hess hq.v; v/ D 1C h�q.v; v/; �.q/ih�.q/; f .q/ � p0i

D 1 � kf .q/ � p0khAv; vi;

for any unit vector v 2 TqM . Since kf .q/ � p0k > r (for Br .p0/ does not intersects
f .M/), from the inequality above we obtain

(2.7) �j .q/ �
1

kf .q/ � p0k
<
1

r
; j D 1; : : : ; n:

Let l be the number of negative principal curvatures. Notice that l � 2 in the case we
are considering. Since the Ricci curvature of M is negative, by (2.2) we have

�lC1.q/C � � � C �n.q/ >

lX
jD1
j¤i

j�j .q/j i D 1; : : : ; l;

which implies

(2.8) 2¹�lC1.q/C � � � C �n.q/º > j�1.q/j C � � � C j�l .q/j:
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From (2.7) and (2.8), we obtain

j�1.q/j C � � � C j�l .q/j <
2.n � l/

r
�

Then, by (2.1), (2.7) and the inequality above,

(2.9)
jAj2.q/ D

lX
iD1

�2
i .q/C

nX
iDlC1

�2
i .q/ <

� lX
iD1

j�i .q/j
�2

C
n � l

r2

<
4.n � l/2

r2
C
n � l

r2
<
5.n � l/2

r2
;

and so

infM jAj � jAj.q/ <
3.n � l/

r
<
3.n � 1/

r
�

Since the last inequality holds for every r > 0, we conclude that infM jAj D 0 by letting
r !1. The proof of Theorem 1.3 is now complete.
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