
Rev. Mat. Iberoam. 39 (2023), no. 4, 1443–1492
DOI 10.4171/RMI/1354

© 2022 Real Sociedad Matemática Española
Published by EMS Press and licensed under a CC BY 4.0 license

General ı-shell interactions for the two-dimensional
Dirac operator: self-adjointness and approximation

Biagio Cassano, Vladimir Lotoreichik, Albert Mas and Matěj Tušek

Abstract. In this work we consider the two-dimensional Dirac operator with gen-
eral local singular interactions supported on a closed curve. A systematic study of
the interaction is performed by decomposing it into a linear combination of four ele-
mentary interactions: electrostatic, Lorentz scalar, magnetic, and a fourth one which
can be absorbed by using unitary transformations. We address the self-adjointness
and the spectral description of the underlying Dirac operator. In the non-critical case,
we do so by providing a boundary triple, and in the critical purely magnetic case, by
exploiting the phenomenon of confinement and super-symmetry. Moreover, we jus-
tify our model by showing that Dirac operators with singular interactions are limits
in the strong resolvent sense of Dirac operators with regular potentials.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1443
2. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1447
3. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1454
4. Unitary equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1461
5. Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1467
6. The non-critical case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1468
7. The purely magnetic critical interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1475
8. Approximation of ı-shell interactions by regular potentials . . . . . . . . . . . . . . . . . . . . . 1479
9. Final remark: higher dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1484
A. Lemmata on exponential matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1485
B. Magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1487
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1489

1. Introduction

In the present paper we study the two-dimensional Dirac operator with a singular interac-
tion supported on a closed curve. Our main motivation is to treat the most general local
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interactions. Besides electrostatic ı-shell interactions and the Lorentz scalar ı-shell inter-
actions we include into the analysis the magnetic ı-shell interactions, which correspond to
the magnetic field supported on a curve. The main two questions addressed in the present
paper are self-adjointness of the underlying Dirac operator and its approximation by Dirac
operators with regular potentials.

Recall that the Dirac operator was firstly introduced in relativistic quantum mechanics
to describe the dynamics of spin-1

2
particles (see, e.g., the monograph [68]), and it was

later associated to the evolution of quasi-particles in new materials, such as the graphene
(see, e.g., [28]). Dirac operators with singular interactions supported on sets of lower
dimensions serve as idealized models for Dirac operators with more realistic (regular)
potentials.

Hamiltonians with interactions supported on sets of zero Lebesgue measure have been
studied intensively in the mathematical physics. Initially, the case of Schrödinger oper-
ators with singular interactions was investigated, see, e.g., [2, 15, 33]. In recent years
the focus partially shifted to the Dirac operators with singular interactions. While for
Schrödinger operators quadratic forms are a convenient tool to define the underlying
Hamiltonian [22], in the Dirac setting more subtle techniques are necessary due to the lack
of semi-boundedness. The case of one-dimensional Dirac operators with point-interac-
tions is well understood [2,20,24,39,55]. Three-dimensional Dirac operators with singular
interactions supported on surfaces are considered in, e.g., [4–6, 8, 9, 12, 13, 30]. Finally,
the two-dimensional case without the magnetic interaction has recently been analysed
in [14, 57]. The interest to include the magnetic ı-shell interaction stems from applica-
tions in modern physics [37, 50, 56]. The closely related model of magnetic links in three
dimensions has been recently considered in [58–60].

The approximation of Dirac operators with singular interactions by Dirac operators
with regular interactions provides a justification of the idealized model under considera-
tion. In the one-dimensional setting the analysis is performed in [42, 43, 67, 69], whereas
a generalization to three dimensions has recently appeared in [48, 49]. In the present
manuscript, we modify to our setting some techniques that worked efficiently in the one-
dimensional case.

Recall that the action of the two-dimensional free Dirac operator D0 is given by the
differential expression

(1.1) D0 WD �i� � r Cm�3 D �i.�1@1 C �2@2/Cm�3;

where m 2 R is the mass and �1, �2 and �3 are the Pauli matrices

(1.2) �1 D

�
0 1

1 0

�
; �2 D

�
0 �i

i 0

�
and �3 D

�
1 0

0 �1

�
:

It is self-adjoint on dom D0 WD H
1.R2IC2/ � L2.R2IC2/ and essentially self-adjoint

on C1c .R
2IC2/. The spectrum of D0 is purely absolutely continuous and

�.D0/ D �ac.D0/ D .�1;�jmj� [ Œjmj;C1/:

The interaction under consideration will be supported on the boundary † WD @� of
a C1-smooth bounded simply connected open set � � R2. The curve † splits the Euc-
lidean space into a disjoint union, that is, R2 D �C [ † [ ��, where �C WD � and
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�� WD R2 n x�C. We will call the curve † a shell. Let us denote the outer unit normal
to �C and the unit vector tangent to the boundary † in x 2 † by n � .n1; n2/ D n.x/
and t � .t1; t2/ D t.x/, respectively. For definiteness, we put t1 D �n2 and t2 D n1. For
any C2-valued function f defined on R2, we set f˙ D f � �˙. When it is defined in a
suitable sense, we denote T D

˙
f˙ the Dirichlet trace of f˙ at †, and we define the distri-

bution ı†f by

hı†f; 'i WD

Z
†

1

2
.T D
C fC C T D

� f�/ � ' ds for all ' 2 C1c .R
2
IC2/;

where ds means integration with respect to the arc-length of †.
We are interested in the Dirac operator in L2.R2IC2/ given by the formal expression

� i� � .r C i.�tC !n/ı†/C .�I2 C ��3/ı† Cm�3(1.3)

D D0 C
�
�I2 C ��3 C �.� � t/C !.� � n/

�
ı†;

where �, � , �, ! are smooth real-valued functions, and where we used the notation

(1.4) � � A WD �1A1 C �2A2 for A 2 C2:

For any given x 2 †, the matrices I2, �3, � � t.x/, and � � n.x/ constitute a basis of the
Hermitian 2 � 2 matrices, so at every point there is the most general Hermitian matrix
as a coefficient of ı†. The electrostatic ı-shell interaction �I2 ı† and the Lorentz scalar
ı-shell interaction ��3 ı† describe a distribution of charges and masses on the curve †,
respectively. The novelty in our treatment is the magnetic ı-shell interaction �.� � t/ı†,
which describes a magnetic field supported on †. We remark that the vector potential
associated with the latter interaction is given by A† D �.t1ı†; t2 ı†/, and we will show
in Appendix B that the underlying magnetic field is given by B† D �@n ı†, where @n ı†
stands for the double layer distribution. Finally, we prove that, under some restrictions
on the parameters �, � , �, !, the interaction term !.� � n/ı† can be gauged away in the
spirit of [47,54]; see Theorem 2.1 for details. In particular, this term can be always gauged
away when all parameters are constant. Due to this observation, we may focus on the case
when ! D 0 and the other parameters are smooth real-valued functions.

The self-adjoint operator D�;�;� associated with the formal expression (1.3) with!D0
is constructed in Section 6 rigorously as a self-adjoint extension of the symmetric operator
with infinite deficiency indices acting in the Hilbert space L2.R2IC2/, and it is given by

Sf D .�i� � r Cm�3/f; domS D H 1
0 .R

2
n†IC2/:

To this end, we build an ordinary boundary triple for S�, which is a modification of the
boundary triple constructed in [14]. This modification is necessary to treat the magnetic
ı-shell interaction. In this construction the operator D�;�;� acts as D0 on �˙ and it is
subject to the local boundary conditions on †, which involves the parameters �; �; �, the
tangential vector t, and the normal vector n. The construction boils the question of self-
adjointness of D�;�;� down to self-adjointness of a certain first-order pseudo-differential
operator on †. The latter is shown by conventional techniques under the condition

(1.5)
��2 � �2 � �2

4
� 1

�2
� �2 ¤ 0 everywhere on †:
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The case when the above expression on the left-hand side vanishes is called critical and
needs special treatment. In the present paper we cover in Section 7 the special sub-
case of purely magnetic critical shell interaction (� D � D 0 and � D ˙2), in which
case D0;0;˙2 is defined as a self-adjoint operator by a different and more direct method.
It is also remarkable that the condition �2 � �2 � �2 D �4 is necessary and sufficient
for the confinement to take place, where by confinement we understand that the oper-
ator D�;�;� can be decomposed into the orthogonal sum with respect to the decomposition
L2.R2IC2/ D L2.�CIC2/˚ L2.��IC2/; cf. Section 2.3 for details. In particular, the
choice � D � D 0 and � D ˙2 gives rise to zig-zag boundary conditions.

Finally, we will find in Section 8 approximations by regular potentials in the strong
resolvent sense for the Dirac operator with ı-shell potentials in the non-critical and non-
confining case, i.e., when �2 � �2 � �2 ¤ �4 everywhere on † and (1.5) holds true.
Approximations of ı-shell interactions by more realistic regular potentials provide a justi-
fication for the idealized models, which is necessary to understand the physical nature of
the rather abstract ı-shell interactions. Mathematical consequences of the strong resolvent
convergence comprise the strong convergence of the corresponding unitary propagators
and the principle of non-expansion of the spectrum of the limit operator; see Section VIII.7
of [63] for details. Finally, the strong resolvent convergence is necessary to the norm
resolvent convergence. Proving it would be a stronger result and our results are a step
towards it. In this paper, we explicitly construct regular symmetric potentials V�;�;�I" 2
L1.R2IC2�2/ supported on a tubular "-neighbourhood of † and such that

V�;�;�I"
"!0
���! .�I2 C ��3 C �.� � t//ı† in the sense of distributions;

and we investigate the strong resolvent limit of D0 C V�;�;�I" as "! 0. It turns out that
D0CV�;�;�I"

"!0
���!D O�; O�; O� for appropriate O�; O�; O�2C1.†IR/ that are in general different

from the starting �; �; �, but are expressed explicitly in terms of them. This phenomenon
was observed firstly in the one-dimensional case [67] and then in the three-dimensional
setting [49] – we say in this situation that a renormalization of the coupling constants
occurs.

We finish this introduction by pointing out that when concluding the preparation of this
manuscript, we learnt that the three-dimensional analogue of the magnetic ı-shell interac-
tion introduced here was being considered simultaneously and independently in [18]; the
reader may see Section 9 for more details.

Organization of the paper

In Section 2 we formulate and discuss all the main results of the present paper. Section 3
contains preliminary material that is used throughout the paper. In Section 4 we obtain
spectral relations for the point spectrum of the Dirac operator with ı-shell interactions
under special transforms of the interaction strengths and, moreover, we show how the
fourth interaction !.� � n/ı† can be eliminated by a properly constructed unitary trans-
form. Further, in Section 5 we provide a condition on the interaction strengths, which
gives the confinement. In Section 6 we analyse the non-critical case, prove the self-
adjointness of the underlying Dirac operator and obtain its basic spectral properties. The
self-adjointness and spectral properties of the Dirac operator with purely magnetic critical
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interaction are investigated in Section 7. In Section 8 we construct strong resolvent approx-
imations of Dirac operators with ı-shell interactions by sequences of Dirac operators with
suitably scaled regular potentials. Possible generalization for higher dimensions is briefly
discussed in Section 9.

The paper is complemented by two appendices. In Appendix A we focus on expo-
nentials of 2 � 2 matrices of a special structure. Finally, in Appendix B we compute the
magnetic field associated with the magnetic ı-shell interaction.

2. Main results

We briefly discuss here the main results of this paper, referring to the various sections
below for more detailed results. For an open set � � R2, we define

(2.1) H.�;�/ WD ¹f 2 L2.�IC2/ j � � rf 2 L2.�IC2/º:

For any

f D fC ˚ f� 2 H.�;�C/˚H.�;��/ � L
2.�CIC

2/˚L2.��IC
2/ � L2.R2IC2/;

it was shown in [16] that f˙ admit Dirichlet traces T D
˙
f˙ in H�1=2.†IC2/, see Sec-

tion 3.5 for details.
Given �, � , �, ! 2 C1.†IR/, we define

dom.D�;�;�;!/ WD
®
f D fC ˚ f� 2 H.�;�C/˚H.�;��/ W(2.2)

i.� � n/.T D
� f� � T D

C fC/ D
1
2
.�I2 C ��3 C �.� � t/C !.� � n//.T D

� f� C T D
C fC/

¯
and

(2.3) D�;�;�;!f WD D0fC ˚D0f� for all f 2 dom.D�;�;�;!/:

In (2.2) the condition on T D
˙
f˙ is understood in H�1=2.†IC2/. By means of an integra-

tion by parts, it can be seen (see, e.g., [52]) that D�;�;�;! is the operator representing the
formal differential expression (1.3).

Since most of this article focuses on the case ! D 0, due to the results presented in
Section 4, for the sake of brevity, we also set D�;�;� WD D�;�;�;0, i.e.,

dom.D�;�;�/ WD
®
f D fC ˚ f� 2 H.�;�C/˚H.�;��/ W(2.4)

i.� � n/.T D
� f� � T D

C fC/ D
1
2
.�I2 C ��3 C �.� � t//.T D

� f� C T D
C fC/

¯
and

(2.5) D�;�;�f WD D0fC ˚D0f� for all f 2 dom.D�;�;�/:

Finally, we denote

(2.6) d WD �2 � �2 � �2 2 C1.†IR/:
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2.1. Reduction to ! D 0

In Section 4, we will prove the following result.

Theorem 2.1. Given ! 2 R and �, � , � 2 C1.†IR/ such that d WD �2 � �2 � �2 is a
constant function on †, let X be a solution to

(2.7) dX2 � 4C .4C !2 � d/X D 0

and

(2.8) z WD
dX2 C 4

X.4C d � !2 C 4!i/
�

Then X 2 R n ¹0º, z 2 C satisfies jzj D 1, and D�;�;�;! D UzDX�;X�;X�;0 Uxz , where

Uz ' WD ��C' C z���' . for all ' 2 L2.R2IC2//

is unitary in L2.R2IC2/.

Roughly speaking, Theorem 2.1 implies that a spectral study for D�;�;� D D�;�;�;0

suffices to treat the general case D�;�;�;! , hence the formal term !.� � n/ı† in the ı-shell
interaction is indeed superfluous. In a classical (absolutely continuous) framework, one
would say that this term can be gauged away. This is reminiscent of a similar effect for
magnetic potentials in the Coulomb gauge, see Remark 1.5 of [26], and [21, 27, 35, 36]. In
Section 4 we show that the unitary transform Uz can always be taken different from the
identity except for the case .d;!/D .�4;0/, which corresponds to confining ı-shell inter-
actions, see Section 5. In particular, D�;�;�;! never yields confinement if .d; !/¤ .�4; 0/.

At the end of Section 4 we find some isospectral transformations as a byproduct of our
result, and we describe the charge conjugation properties of the operator D�;�;�.

2.2. The non-critical case

We say that we are in the non-critical case when (1.5) holds true, i.e., everywhere on †,

(2.9) C.�; �; �/.x/ WD
�d
4
� 1

�2
� �2 D

��2 � �2 � �2
4

� 1
�2
� �2 ¤ 0:

In the following theorem we gather the properties of D�;�;� in the case when (2.9) holds
true. We point out that the non-magnetic case (� D 0) has been already treated in The-
orem 1.1 of [14] for constant �; � 2 R.

Theorem 2.2. Let �; �; � 2 C1.†IR/ and let D�;�;� be defined as in (2.4) and (2.5).
Moreover, let either d.x/ ¤ 0 for all x 2 †, or let �; �; � be constant and such that
d D 0. If (2.9) holds true, then D�;�;� is self-adjoint in L2.R2IC2/ with domD�;�;� �

H 1.R2 n†IC2/. The essential spectrum of D�;�;� is

�ess.D�;�;�/ D .�1;�jmj� [ Œjmj;C1/;

and its discrete spectrum is finite.
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The proof of Theorem 2.2 mimics the strategy of the proof of Theorem 1.1 of [14], tak-
ing into account the necessary modifications to treat the additional interaction �.� � t/ı†.
In Section 6, where we also show a Krein-type resolvent formula, we provide an abstract
version of the Birman–Schwinger principle and obtain the spectral properties of D�;�;�.

2.3. Confining ı-shell interactions

If d D�4 everywhere on†, the phenomenon of confinement arises. Physically, this means
that a particle initially located in �˙ can not escape this region during the quantum
evolution associated with D�;�;�. Such phenomenon was firstly noticed in [30] in the
three-dimensional setting. We describe the corresponding Hamiltonian in the following
theorem, which will be proved in Section 5.

Theorem 2.3. Let �; �; � 2 C1.†IR/ and let D�;�;� be defined as in (2.4) and (2.5).
If d D �4 everywhere on †, then D�;�;� decouples into the direct sum

D�;�;� D DC
�;�;�
˚D��;�;�;

with

(2.10)

8̂̂<̂
:̂

domD˙�;�;� WD
®
f˙ 2 H.�;�˙/ W

Œ˙i.� � n/C 1
2
.�I2 C ��3 C � .� � t//�T D

˙ f˙ D 0
¯
;

D˙�;�;�f˙ WD D0f˙ for all f˙ 2 domD˙�;�;�:

Remark 2.4. We expect Theorem 2.3 to hold under weaker regularity assumptions, since
its proof follows from purely algebraic considerations, but we are not investigating this in
the present manuscript to keep the exposition homogeneous. Recall that we assume that
�; �; � 2 C1.†IR/ and † D @� of class C1 in order to exploit the theory of pseudo-
differential operators, but we expect that these assumptions can be weakened. However,
in the case that † has only Lipschitz regularity and in the case that �; �; � are not regular,
different phenomena are expected, see [25, 45, 57], see also [13, 62], where coefficients
with lower regularity are considered in the three-dimensional case.

Let us look closer at DC
�;�;�

, the Dirac operator on �C. If � D 0, d D �4 implies that
there exists � 2 C1.†IR/ such that sin � D ��=2 and cos � D �=2. Since i.� � n/�3 D
� � t and .� � n/2 D I2 (see (3.12), (3.13), and (3.14) below), we may rewrite the condition
for fC in (2.10) as

(2.11) ŒI2 � cos �.� � t/ � sin � �3�T D
C fC D 0:

These are the quantum dot boundary conditions (see [16, 17, 57] and references therein).
In particular, we have the infinite mass boundary conditions when .�; �; �/ D .0;˙2; 0/,
and the zig-zag boundary conditions when .�; �; �/ D .0; 0;˙2/. By means of confine-
ment with the electric and Lorentz scalar ı-shell interactions only, it is possible to realise
the quantum dot boundary conditions (2.11) for � 2 Œ0; 2�/ n ¹�=2; 3�=2º, that is, all
the possible ones except the zig-zag boundary condition, see Remark 4.2 of [14]. Con-
sidering also the magnetic ı-shell interaction allows us to describe every Dirac operator
on a domain with quantum dot boundary conditions as a Dirac operator with a ı-shell
interaction.
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For any choice of parameters �;�;� such that, everywhere on†, dD�4 and .�;�;�/¤
.0; 0;˙2/, the operator D�;�;� is already described in Theorem 2.2. The cases .�; �; �/ D
.0;0;˙2/ are critical, because we have C.�; �;�/D 0. They are discussed in the following
subsection.

2.4. The critical case

The analogous critical case in the three-dimensional setting was firstly described in [11]
and [53] and later in the two-dimensional setting in [14]. In Theorem 1.2 of [14], the
case C.�; �; �/ D � D 0, �; � 2 R is described, namely, the self-adjointness is proved
and the spectral properties are analysed. We complement this result by analysing the case
C.�; �; �/ D � D � D 0, i.e., we prove the self-adjointness and give a detailed description
of the spectrum for purely magnetic critical potentials˙2.� � t/ı†.

Theorem 2.5. The operator D0;0;� with �2¹�2;2º is self-adjoint. The restriction D0;0;��
H 1.R2 n†IC2/ is essentially self-adjoint. We have that domD0;0;� 6� H

s.R2 n†IC2/

for any s > 0. Finally, the spectrum of D0;0;� is characterised as follows:
(i) �.D0;0;�/ D .�1;�jmj� [ Œjmj;1/,

(ii) ˙m are eigenvalues of infinite multiplicity,

(iii) there is a sequence of (embedded) eigenvalues ¹˙
p
m2 C �kºk�1, where �k are

the eigenvalues of the Dirichlet Laplacian on �C enumerated in non-decreasing
order and counted with multiplicities.

The proof of Theorem 2.5 is provided in Section 7. We underline that we do not exploit
the strategies in [11,14,53] but we take advantage of the phenomenon of confinement and
decomposition in Theorem 2.3. To show our result we adapt the analysis of the massless
Dirac operator on a domain with the zig-zag boundary conditions given in [65] to the case
with a mass. This allows us to give a more detailed description. Note that the presence
of embedded eigenvalues was already observed in the non-critical confining case in the
three-dimensional setting in Theorem 3.7 of [5], Proposition 3.3 of [12].

2.5. Approximation of ı-shell interactions by regular potentials

In the present paper, we find approximations by regular potentials in the strong resolvent
sense for the Dirac operator with ı-shell potentials in the non-critical and non-confining
case, that is, for D�;�;� when C.�; �;�/¤ 0 and d ¤�4 everywhere on†. To this end, for
�; �; � 2 C1.†IR/, we construct regular symmetric potentials V�;�;�I" 2 L

1.R2IC2�2/

supported on an "-neighbourhood of † and such that

V�;�;�I"
"!0
���! .�I2 C ��3 C �.� � t//ı† in the sense of distributions,

and we investigate the strong resolvent limit of D0 C V�;�;�I" as "! 0. It turns out that
D0 C V�;�;�I" ! D O�; O�; O� as "! 0 for appropriate O�; O�; O� 2 C1.†IR/ that are in general
different from the starting �; �; �.

In the three-dimensional setting [49], the proof of the strong resolvent convergence
is an adaptation to the relativistic scenario of the approach used in [7] for the case of
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Schrödinger operators with ı-shell interactions. In [7], the co-dimension of the shell is
strictly smaller than the order of the differential operator (the Laplacian). As a con-
sequence, the singularities of the kernels of the boundary integral operators used in [7]
are weak enough to be controlled uniformly along the approximation procedure. This,
in particular, leads to the convergence in the norm resolvent sense in the case of the
Schrödinger operator. However, in the case of the Dirac operator, the co-dimension of
the shell is exactly the same as the order of the differential operator. This has an import-
ant effect on the nature of the corresponding boundary integral operators, which now are
singular integral operators instead of compact. Due to this new obstruction with respect
to the Schrödinger case, the approach used in [7] was adapted in [49] to the Dirac case
to show the convergence in the strong resolvent sense assuming uniform smallness of the
approximating potentials. Nevertheless, the question of strong resolvent convergence can
also be addressed by more direct methods, which do not require any smallness assumption
on the approximating potentials, such as by proving the convergence in the strong graph
limit sense and then applying Theorem VIII.26 of [63], which says that, in the self-adjoint
setting, the strong graph convergence and the strong resolvent convergence are equivalent.

Originally, this approach was used in the one-dimensional setting [42,43]. In this way,
one can find approximating potentials for any type of ı-potential. The norm resolvent
convergence of approximations is harder to tackle. However, since in the one-dimensional
case one can perform very explicit calculations with the resolvents of the approximations
and the resolvents of their limit operators, it can be proved as well [67, 69]. In the present
work, we will modify the ideas of [42] to get the sequence of approximating potentials for
general linear combinations of ı-shell interactions, not only for the purely electrostatic or
purely Lorentz scalar ı-shell interactions as in [49]. It will converge in the strong resolvent
sense, without any smallness assumption on the approximating potentials. We expect that
a similar approach can be applied in the three-dimensional case as well.

Definition of V�;�;�I". In order to describe the approximating potentials V�;�;�I" expli-
citly, we will introduce an additional notation, referring to Section 3.2 for details. For
ˇ > 0, †ˇ WD ¹x 2 R2 j dist.x; †/ < ˇº is the tubular neighbourhood of † of width ˇ.
If ˇ > 0 is sufficiently small, †ˇ is parametrized as

†ˇ D ¹x† C pn.x†/ j x† 2 †; p 2 .�ˇ; ˇ/º:

Furthermore, let

h 2 L1.RIR/; with supp h � .�1; 1/ and
Z 1

�1

h.t/ dt D 1:

The function h will determine the transverse profile of V�;�;�I". For 0 < " < ˇ, let

h".p/ WD
1

"
h
�p
"

�
for all p 2 R:

We have supp h" � .�"; "/ and lim"!0 h" D ı0 in the sense of the distributions D 0.R/,
where ı0 is the Dirac ı-function supported at the origin. For �; �; � 2 C1.†IR/, let

(2.12) B�;�;� 2 C
1.†IC2�2/; B�;�;�.x†/ WD .�I2 C ��3 C �.� � t//.x†/:
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The function B�;�;� will encode the matrix structure of the approximating potentials; for
all x† 2 †, the matrix B�;�;�.x†/ is symmetric. Finally, for any " 2 .0; ˇ/, we define the
symmetric approximating potentials V�;�;�I" 2 L

1.R2IC2�2/ as follows:

(2.13) V�;�;�I".x/ WD

´
B�;�;�.x†/h".p/ if x D x† C pn.x†/ 2 †ˇ ;
0 if x 2 R2 n†ˇ :

It is easy to see that lim"!0 V�;�;�I" D B�;�;� ı† in D 0.R2IC2�2/.
For 0 < " < ˇ, we define the family of Dirac operators ¹E�;�;�I"º" as follows:

(2.14)
domE�;�;�I" WD domD0 D H

1.R2IC2/;

E�;�;�I" WD D0 C V�;�;�I" for all  2 domE�;�;�I":

Since V�;�;�I" are bounded and symmetric, the operators E�;�;�I" are self-adjoint.
We can now state the main result of this subsection.

Theorem 2.6. Let either �; �; � 2 C1.†IR/ be such that d.x/ ¤ k2�2, for all k 2 N0

and for all x 2 †, or �; �; � 2 R be such that d D .2k0/
2�2 for some k0 2 N0. Let

O�; O�; O� 2 C1.†IR/ be defined as follows:

. O�; O�; O�/ D
tan.
p
d=2/

p
d=2

.�; �; �/ if d > 0,(2.15)

. O�; O�; O�/ D .�; �; �/ if d D 0,(2.16)

. O�; O�; O�/ D
tanh.

p
�d=2/

p
�d=2

.�; �; �/ if d < 0.(2.17)

Let E�;�;�I" be defined as in (2.14) and let D O�; O�; O� be defined as in (2.4) and (2.5). If
C. O�; O�; O�/.x/ ¤ 0 for all x 2 †, then

E�;�;�I"
"!0
���! D

O�; O�; O�
in the strong resolvent sense.

The proof of Theorem 2.6 is in Section 8.

Remark 2.7. In the case d D 0, the phenomenon of renormalization of the coupling
constants does not occur. This was already observed in the one-dimensional setting in [69].

Remark 2.8. Thanks to Theorem 2.6, for all � 2 R n ¹.2k C 1/�; .1=2C k/� j k 2 Zº,
� 2 R, we have E�;0;0I" ! D O�;0;0 and E0;�;0I" ! D0; O�;0 as "! 0, with O� D 2 tan.�=2/
and O� D 2 tanh.�=2/. Exactly the same renormalization of the coupling constant appeared
in the one-dimensional [67] and three-dimensional [49] cases. The renormalization of the
coupling constant for a general one-dimensional relativistic point interaction was invest-
igated in [43] and later in [69], where exactly the same formulae for renormalization as
in Theorem 2.6 were discovered. In Theorem 2.6, the relations (2.15), (2.16), and (2.17)
between �; �; � and O�; O�; O� descend from the necessity to satisfy condition (8.4), instru-
mental in the proof.
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Remark 2.9. From (2.15)–(2.17),

Od WD O�2 � O�2 � O�2 D

8̂<̂
:
4 tan2.

p
d=2/ if d > 0;

0 if d D 0;
�4 tanh2.

p
�d=2/ if d < 0:

Since in all the cases Od >�4, Theorem 2.6 does not provide strong convergence to a Dirac
operator with a ı-shell causing confinement (see Theorem 2.3). However, we recover the
case Od D�4 in the limit d !�1. This suggests that it should be possible to get the con-
fining cases by means of an approximation procedure in which we choose the coefficients
� D �", � D �" and � D �" dependent on the parameter " so that the associated parameter
Od D Od" satisfies Od" > �4 and Od" ! �4 uniformly in the limit "! 0. Finally, the fact

that Od > �4 is not a limitation, since for O�; O�; O� 2 C1.†IR/ such that Od < �4, D O�; O�; O� is
unitarily equivalent to D Q�;Q�;Q�, for Q�; Q�; Q� 2 C1.†IR/ such that Qd WD Q�2 � Q�2 � Q�2 > �4,
see Section 4.2.

As a consequence of Theorem 2.6, we get the second result of this section.

Corollary 2.10. Let O�; O�; O� 2 C1.†IR/ be such that Od WD O�2 � O�2 � O�2 > �4 and
C. O�; O�; O�/ ¤ 0 everywhere on †. Let �; �; � 2 C1.†IR/ be defined as follows:

• If Od > 0, then

.�; �; �/ D
arctan

p
Od=2C k�p
Od=2

. O�; O�; O�/ for k 2 Z:

• If Od D 0, and O�, O� and O� are constant, then

.�; �; �/ D . O�; O�; O�/:

In particular, if O� D O� D O� D 0, then .�; �; �/ D . O�; O�; O�/ or �; �; � 2 R are such that
�2 � �2 � �2 D .2k�/2, for k 2 N.

• If �4 < Od < 0, then

.�; �; �/ D
arctanh

p
� Od=2p

� Od=2
. O�; O�; O�/:

Then
E�;�;�I"

"!0
���! D

O�; O�; O�
in the strong resolvent sense.

The proof of Corollary 2.10 is also given in Section 8.

Remark 2.11. In the case Od � 0, the correspondence . O�; O�; O�/ 7! .�; �; �/ is not one-
to-one. One can choose the coupling constants in the approximating potentials arbitrarily
large and still end up with the same limit operator. From the physical perspective, we sup-
pose that this surprising behaviour is possible due to the Klein effect (also called the Klein
paradox). Usually, the Klein effect is related to the scattering on the electrostatic barrier
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when, speaking vaguely, the transmission coefficient does not depend on the height of the
barrier monotonously, see [31] for an overview. Clearly, this effect occurs for the pure elec-
trostatic interaction, for which Od > 0. On the other hand, one can push Od below zero, and
thus eliminate the Klein effect, by switching sufficiently strong Lorentz scalar/magnetic
fields on.

We conclude the presentation of our results by underlining that, in the case O� D
O� D 0 and O� 2 R n ¹˙2º, it is possible to give a simple direct proof of Corollary 2.10,
constructing an alternative sequence of approximations without making use of “parallel
coordinates”, see Section 8.1.

3. Preliminaries

In order to prove our results we need to introduce a number of mathematical objects and
related results. First, we discuss in Sections 3.1 and 3.2 planar curves and their tubular
neighbourhoods. Then in Section 3.3 we provide some identities related to Pauli matrices.
Further, we give in Section 3.4 basic ideas on the Sobolev spaces and pseudo-differential
operators on †. Then we recall in Section 3.5 the concept of the trace operator. After
that, we outline in Section 3.6 the approach of boundary triples to the extensions theory
of symmetric operators. Finally, we recall some properties of the free Dirac operator in
Section 3.7, and define several associated auxiliary integral operators on† in Section 3.8.
In this preliminary section, we partially follow the presentation in [14], which gives the
theoretical background and the technical instruments for our analysis. We refer to it and
the references therein for the proofs of the results in this section and for further details.

3.1. Tangent, normal and curvature of †

We gather here some elementary facts on curves, in order to fix the notations. Details can
be found, e.g., in [1].

We recall that � � R2 is a bounded open simply connected set with C1 boundary
† WD @�. Set ` WD j†j and let 
 WR=`Z!†�R2 be a smooth arc-length parametrization
of † with positive orientation. Let

t
 W R=`Z! R2; t
 .s/ D P
.s/;(3.1)

n
 W R=`Z! R2; n
 .s/ D . P
2.s/;� P
1.s//;(3.2)

where the dot stands for the derivative with respect to the arc-length s. It is clear that
¹n
 .s/; t
 .s/º is a positively oriented basis of R2 for any s 2 R=`Z. Moreover, by the
Frenet–Serret formulas, there exists function �
 , called the signed curvature, such that

(3.3) Pt
 D ��
 n
 ; Pn
 D �
 t
 :

Therefore, we have

(3.4) j�
 .s/j D kPt
 .s/k D k R
.s/k:
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We set t WD t
 ı 
�1;n WD n
 ı 
�1W†! R2, and � WD �
 ı 
�1W†! R. The functions
t; n; � are independent of the particular choice of the positively oriented arc-length para-
metrization 
 ; n is the unit normal vector field along † which points outwards of �C,
t is the unit tangent vector field along †, counter-clockwise oriented, and � is the signed
curvature of †. We remark that we choose the definition of the curvature � so that it is
non-negative for convex domains �.

3.2. Tubular neighbourhoods of †

Below we recall some elementary properties of tubular neighbourhoods of planar curves.
Details can be found in Chapter 1 of [34], and [7,46], see also Sections 1.6 and 2.2 of [1].
For ˇ > 0,

†ˇ WD ¹x 2 R2 j dist.x;†/ < ˇº

is the tubular neighbourhood of † of width ˇ. Let us introduce the following mapping:

L
 W R=`Z � .�ˇ; ˇ/! R2; L
 .s; p/ D 
.s/C pn
 .s/:

The following theorem shows that, for all ˇ small enough, the map L
 is a smooth para-
metrization of †ˇ .

Theorem 3.1 (Theorem 2.2.5 of [1]). There exists ˇ0 2 .0; .max j�
 j/�1/ such that, for
all ˇ 2 .0; ˇ0/, L
 is a bijection of R=`Z � .�ˇ; ˇ/ onto †ˇ .

In the following we will always assume that 0 < ˇ < ˇ0, for ˇ0 > 0 given by The-
orem 3.1. Thanks to the second formula in (3.3), we get

(3.5) rL
 .s; p/ D
�
@sL
 .s; p/ @pL
 .s; p/

�
D
�
.1C p�
 .s//t
 .s/ n
 .s/

�
;

where @sL
 , @pL� , t
 , and n
 should be understood as column vectors. Thanks to (3.2),
we obtain

(3.6) det.rL
 /.s; p/ D det
�
.1C p�
 .s//t1.
.s// C t2.
.s//

.1C p�
 .s//t2.
.s// � t1.
.s//

�
D �.1C p�
 .s//:

We remark that det.rL
 /.s;p/ < 0 for all .s;p/ 2R=`Z� .�ˇ;ˇ/, since jp�
 .s/j<
ˇˇ�10 < 1. Thus, we have

(3.7)
Z
†ˇ

f .x/dxD

Z `

0

Z ˇ

�ˇ

f .
.s/Cpn
 .s//.1Cp�
 .s//dpds for all f 2L1.†ˇ /:

Next, we define

P
 WD .L
�1

 /1 W †ˇ ! R=`Z; P
 .
.s/C pn
 .s// D s;(3.8)

P? WD .L
�1

 /2 W †ˇ ! .�ˇ; ˇ/; P?.
.s/C pn
 .s// D p;(3.9)

Thanks to (3.5), (3.6), and the inverse function theorem, for all x D 
.s/C pn
 .s/ 2†ˇ ,
we have that

(3.10) rP
 .x/ D
1

1C p�
 .s/
t
 .s/; rP?.x/ D n
 .s/:
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Finally, it is also convenient to define

L W † � .�ˇ; ˇ/! R2; L.x†; p/ D L
 .

�1.x†/; p/ D x† C pn.x†/ 2 †ˇ ;

which is a bijection of † � .�ˇ; ˇ/ onto †ˇ , by Theorem 3.1, and

(3.11) P† WD L�11 W †ˇ ! †; P†.x† C pn.x†// D x†:

3.3. Pauli matrices

By an explicit calculation, one can verify that

�23 D .� � n/
2
D .� � t/2 D I2;(3.12)

i.� � n/�3 D � � t;(3.13)
.� � n/.� � t/ D i�3;(3.14)

where in (3.13) and (3.14) we have used the fact that .t1; t2/ D .�n2; n1/.

3.4. Sobolev spaces and pseudo-differential calculus on †

We denote by T the torus T WD R=Z; the space of the periodic smooth functions on the
torus T and the space of periodic distributions on the torus T will be denoted by D.T /D
C1.T / and D.T /0, respectively. For f 2D.T /0, we define its Fourier coefficients using
the duality pairing h � ; � iD.T/0;D.T/ as follows:

yf .n/ WD hf; e�niD.T/0;D.T/; en W t 2 T 7! ei2�nt :

For s 2 R, the Sobolev space of order s on T is defined as

H s.T / WD
°
f 2 D.T /0

ˇ̌̌ C1X
nD�1

.1C jnj/2sj yf .n/j2 < C1
±
:

A linear operator H on C1.T / is a periodic pseudo-differential operator on T if there
exists hWT � Z! C such that:

(i) for all n 2 Z, h. � ; n/ 2 C1.T /,

(ii) H acts as Hf D
P
n2Z h. � ; n/

yf .n/en,
(iii) there exists ˛ 2 R such that for all p; q 2 N0, there exists cp;q > 0 such that

(3.15)
ˇ̌̌� dp
dtp

.!qh/
�
.t; n/

ˇ̌̌
� cp;q.1C jnj/

˛�q;

where the operator ! is defined by .!h/.t; n/ WD h.t; n C 1/ � h.t; n/ for all
.t; n/ 2 T � Z.

The number ˛ is called the order of the pseudo-differential operator H . The set of all
pseudo-differential operators of order ˛ on T is denoted ‰˛ , and we define

‰�1 WD
\
˛2R

‰˛:
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Recall that ` D j†j and that 
 WR=`Z ! † is a smooth arc-length parametrization
of †. We define the map U �WD.T /! D.†/ as

.U �g/.x/ WD `�1g.`�1
�1.x//; x 2 †;

where we have set D.†/ WD C1.†/, and the map U WD.†/0 ! D.T /0 as

(3.16) hUf; giD.T/0;D.T/ WD hf; U
�giD.†/0;D.†/:

The Sobolev space of order s 2 R on † is defined as

H s.†/ WD ¹f 2 D.†/0 j Uf 2 H s.T /º:

For all s � 0, H�s.†/ D .H s.†//0 and the duality pairing h�;  iH�s ;H s is defined for
all � 2 H�s.†/;  2 H s.†/.

A linear operator H on C1.†/ is a periodic pseudo-differential operator on † of
order ˛ 2 R if H0 WD UHU�1 2 ‰˛ . The set of pseudo-differential operators on † of
order ˛ is denoted ‰˛† and we set

‰�1† WD

\
˛2R

‰˛†:

In the next proposition we gather some useful properties of the pseudo-differential
operators on † (for proofs, see Sections 5.8 and 5.9 of [64]).

Proposition 3.2. Let ˛; ˇ 2 R, A 2 ‰˛† and B 2 ‰ˇ†.

(i) For all s 2R,A extends uniquely to a bounded linear operator, denoted by the same
letter, from H s.†/ to H s�˛.†/.

(ii) We have

AC B 2 ‰
max.˛;ˇ/
† ; AB 2 ‰

˛Cˇ
† ; ŒA; B� 2 ‰

˛Cˇ�1
† :

3.4.1. The operator ƒ˛. We describe an example of pseudo-differential operator that is
useful for our purposes. For ˛ 2 R, consider the operator ƒ˛ on C1.†/:

(3.17) ƒ˛ WD U�1L˛U; with L˛u.x/ D
X
n2Z

.1C jnj/˛=2 yu.n/ en.t/; u 2 D.T /:

Thanks to (3.15) and (3.17), one can show thatƒ˛ 2 ‰˛=2† . Due to Proposition 3.2 (i),ƒ˛

extends uniquely to a bounded linear operator fromH s.†/ toH s�˛=2.†/, for any s 2 R;
and such extension is in fact an isomorphism, by the definition of H s.†/. Of course,
ƒ˛ can also be seen as an unbounded operator on H s.†/, for all s 2 R.

In particular, the operator ƒ WD ƒ1 is used repeatedly in the paper, and its action on
vector-valued functions is understood component-wise. It is useful to remark that for all
�; 2 L2.†/, we have ƒ� 2 H�1=2.†/;ƒ�1 2 H 1=2.†/, and

(3.18) hƒ�;ƒ�1 iH�1=2;H1=2 D h�; iL2 :
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3.5. Trace operators

For any open set U � R2, recall the definition of H.�;U / in (2.1). Thanks to Lemma 2.2
of [16], H.�; U / � L2.U IC2/ \H 1

loc.U /, which is a Hilbert space, endowed with the
norm

kf k2H.�;U / D kf k
2
L2.U IC2/

C k�i� � rf k2
L2.U IC2/

:

We recall that � � R2 is a bounded open simply connected set with C1 boundary
† WD @�, and R2 D �C [ † [ ��, where �C WD � and �� WD R2 n x�C. Thanks
to Lemmata 2.3 and 2.4 of [16] (see also Lemmata 15 and 18 of [3]), the Dirichlet trace
operators

T D
˙;0 W H

1.�˙IC
2/! H 1=2.†IC2/

extend uniquely to the bounded linear operators

T D
˙ W H.�;�˙/! H�1=2.†IC2/:

and the following holds.

Proposition 3.3. For f 2H.�;�˙/, T D
˙
f 2H 1=2.†IC2/ if and only if f 2H 1.�˙IC2/.

3.6. Theory of the boundary triples

In this section we review the theory of the boundary triples, referring to [14, 23, 29, 61]
and to the monographs [10, 66] for details.

We start with the definition of a boundary triple for a symmetric operator.

Definition 3.4. LetA be a closed densely defined symmetric operator in a Hilbert space H.
Moreover, let G be another Hilbert space and �0; �1W domA� ! G be linear maps. The
triple ¹G ; �0; �1º is a boundary triple for A� if and only if

(i) for all f; g 2 domA�, we have

hA�f; giH � hf;A
�giH D h�1f; �0giG � h�0f; �1giG ;

(ii) the map f 2 domA� 7! .�0f; �1f / 2 G � G is surjective.

Let ¹G ; �0; �1º be a boundary triple for the adjoint A� of a densely defined closed
symmetric operator A on a Hilbert space H . Then B WD A� � ker�0 is self-adjoint, and
for any z 2 �.B/, one has the direct sum decomposition

domA� D domB PC ker.A� � z/ D ker�0 PC ker.A� � z/:

In particular, �0 � ker.A� � z/ is bijective. We define the 
 -field Gz and the Weyl func-
tion Mz associated to the triple ¹G ; �0; �1º:

Gz W z 2 �.B/ 7!
�
�0 � ker.A� � z/

��1
W G ! H ;(3.19)

Mz W z 2 �.B/ 7! �1Gz W G ! G :(3.20)

For z 2 �.B/, the operators Gz and Mz are bounded, and z 7! Gz and z 7! Mz are
holomorphic on �.B/. Furthermore, the adjoints of Gz and Mz are given by

G�z D �1.B � z/
�1 and M �z DM Nz :
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For A a closed densely defined symmetric operator in a Hilbert space H , the know-
ledge of a boundary triple for the operator A� allows to move the study of its self-adjoint
restrictions and their spectral properties to the (sometimes) easier setting of the Hilbert
space G . This is shown in the next proposition, for which we need to introduce some nota-
tion. Let G… be a closed subspace of G , viewed as a Hilbert space when endowed with the
induced inner product. Denote the projection and the canonical embedding as

… W G ! G… and …� W G… ! G ;

respectively. Let ‚ be a linear operator in G…. We define the operator B…;‚ WD A� �
domB…;‚, where

domB…;‚ WD
®
f 2 domA� j .I �…�…/�0f D 0;(3.21)

…�0f 2 dom‚; …�1f D ‚…�0f
¯
:

Theorem 3.5 (Theorem 2.12 of [14]). The operator B…;‚ is (essentially) self-adjoint
in H if and only if ‚ is (essentially) self-adjoint in G . Furthermore, if ‚ is self-adjoint
and z 2 �.B/, then the following assertions hold:

(i) z 2 �.B…;‚/ if and only if 0 2 �.‚ �…Mz…
�/,

(ii) z 2 �p.B…;‚/ if and only if 0 2 �p.‚ �…Mz…
�/, in which case we have that

ker.B…;‚ � z/ D Gz…� ker.‚ �…Mz…
�/,

(iii) for all z 2 �.B…;‚/ \ �.B/, one has

.B…;‚ � z/
�1
D .B � z/�1 CGz…

�.‚ �…Mz…
�/�1…G�Nz :

3.7. The free Dirac operator

Recall that the free Dirac operator D0 is defined as follows:

D0f WD D0f; domD0 WD H
1.R2IC2/:

For any z 2 �.D0/ D C n ..�1;�jmj� [ Œjmj;C1//, we have

.D0 � z/
�1f .x/ D

Z
R2

�z.x � y/f .y/ dy; f 2 L2.R2IC2/;

where the Green function �z is given for x ¤ 0 by

�z.x/ WD
1

2�
K0
�p
m2 � z2jxj

��
m�3 C zI2

�
(3.22)

C i
�
� �

x

jxj

�pm2 � z2
2�

K1
�p
m2 � z2jxj

�
;

the functions Kj are the modified Bessel functions of the second kind of order j , and we
are taking the principal square root function, i.e., for z 2 C n .�1; 0�, Re

p
z > 0.

We denote by S the restriction of D0 to the functions vanishing at †, i.e.,

(3.23) Sf D .�i� � r Cm�3/f; domS D H 1
0 .R

2
n†IC2/:



B. Cassano, V. Lotoreichik, A. Mas and M. Tušek 1460

It is easy to see that S� is the maximal realization ofD0 in R2 n†, i.e., for f D fC˚ f� 2
L2.R2IC2/ � L2.�CIC2/˚ L2.��IC2/,

(3.24)
domS� D

®
f D fC ˚ f� 2 L

2.�CIC
2/˚ L2.��IC

2/ j f˙ 2 H.�;�˙/
¯
;

S�f D .�i� � r Cm�3/fC ˚ .�i� � r Cm�3/f�:

We finally recall some properties of the essential spectrum of any self-adjoint extension
of S .

Proposition 3.6 (Propositions 3.8 and 3.9 of [14]). LetA be a self-adjoint extension of S .
Then the following hold:

(i) .�1;�jmj� [ Œjmj;C1/ � �ess.A/,

(ii) if domA �H s.R2 n†IC2/ for some s > 0, then the spectrum of A in .�jmj; jmj/
is purely discrete and finite.

3.8. Auxiliary integral operators

We introduce now several integral operators related to the Green function �z .
Let us denote the Dirichlet trace operator inH 1.R2IC2/ on† by T D WH 1.R2IC2/!

H 1=2.†IC2/. It is well known that T D is bounded, surjective, and ker T D D H 1
0 .R

2 n

†IC2/, see Theorems 3.37 and 3.40 of [51]. For z 2 �.D0/, we define

(3.25) ˆ0z WD T D.D0 � Nz/
�1
W L2.R2IC2/! H 1=2.†IC2/

and its anti-dual

(3.26) ˆz WD .T
D.D0 � xz/

�1/0 W H�1=2.†IC2/! L2.R2IC2/;

where the potential operator ˆz is a bounded bijective operator from H�1=2.†IC2/ onto
ker.S� � z/. Moreover, for ' 2 L2.†IC2/, one has the integral representation

ˆz'.x/ D

Z
†

�z.x � y/'.y/ ds.y/ for a.e. x 2 R2 n†:

We denote by C† the Cauchy transform on †. To define it, we identify R2 � C:
writing R2 3 x D .x1; x2/ � x1 C ix2 DW � 2 C and R2 3 y D .y1; y2/ � y1 C iy2 DW
� 2 C. Then we set

(3.27) C†u.�/ WD
i

�
p.v.

Z
†

u.�/

� � �
d� for all u 2 C1.†/; � 2 †;

where the complex line integral is understood as its principal value. Furthermore, let C 0†
be the operator which satisfies .C†u; v/L2.†/ D .u; C 0†v/L

2.†/ for all u; v 2 C1.†/.
The periodic pseudo-differential operators C†; C 0† belong to ‰0† and give rise to bounded
operators in H s.†/, for all s 2 R. Moreover,

(3.28) C 0†C† � I; C†C
0
† � I; C† � C

0
† 2 ‰

�1
†

(see Proposition 2.9 of [14]) and C 2† D C
02
† D I (see Lemma 4.2.3 of [64]).
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For z 2 �.D0/, we define the boundary integral operator

Cz '.x/ WD p.v.
Z
†

�z.x � y/'.y/ ds.y/(3.29)

for a.e. x 2 † and for all ' 2 C1.†IC2/:

The pseudo-differential operator Cz belongs to ‰0†, and, in particular, it gives rise to a
bounded operator in H s.†IC2/, for any s 2 R. Its realization in L2.†IC2/ satisfies
.Cz/

� D C Nz . Furthermore, for the tangent vector field t D .t1; t2/ along †, we denote

(3.30) T D t1 C i t2:

Then one has

(3.31) Cz D
1

2

�
0 C† xT

TC 0† 0

�
C

`

4�

�
.z Cm/I 0

0 .z �m/I

�
ƒ�2 C y‰;

where ` is the length of † and y‰ 2 ‰�2† , see Proposition 3.4 of [14].
The operatorsˆz and Cz are related to each other by the following relation, analogous

in this context to the Plemelj–Sokhotskii formula (see Proposition 3.5 of [14]):

T D
˙ ˆz' D �

i

2
.� � n/' C Cz ' for all ' 2 H�1=2.†IC2/:

4. Unitary equivalences

4.1. Reduction to ! D 0

Recall that the operator D�;�;�;! is defined as in (2.2), (2.3). The purpose of this section is
to show that, in many cases, D�;�;�;! is unitarily equivalent to D Q�;Q�;Q�;0 for certain Q�, and
Q� , Q�W†! R defined in terms of �, � , �, and !. This unitary equivalence is based on the
following simple transformation. Given z 2 C such that jzj D 1, let

Uz W L
2.R2IC2/! L2.R2IC2/; Uz ' D ��C' C z���' for all ' 2 L2.R2IC2/:

It is clear that .Uz/� D Uz and, since zz D jzj2 D 1, that .Uz/�Uz D Uz.Uz/
� D I2.

Hence, Uz is a unitary operator in L2.R2IC2/. With this at hand, we can introduce the
operator

dom.Dz
�;�;�;!/ WD Uz.dom.D�;�;�;!//;

Dz
�;�;�;!f WD UzD�;�;�;!Uzf for all f 2 dom.Dz

�;�;�;!/;

which is unitarily equivalent to D�;�;�;! by construction.
Before addressing the proof of Theorem 2.1, let us make some observations on the

values of X and z, which were introduced in (2.7) and (2.8), respectively, depending on d
and !.



B. Cassano, V. Lotoreichik, A. Mas and M. Tušek 1462

Case d D 0. In this situation, (2.7) and (2.8) rewrite as

X D
4

4C !2
and z D

4C !2

4 � !2 C 4!i
�

Therefore, we clearly have that X 2 R n ¹0º and z 2 C are constant. Also, to check that
jzj D 1 is straightforward.

Case d ¤ 0 and ! D 0. In this situation, (2.7) and (2.8) rewrite as

dX2 � 4C .4 � d/X D 0 and z D
dX2 C 4

X.4C d/
�

Since the number of solutions of the first equation strongly depends on the values of d ,
we must distinguish two cases. On one hand, if d ¤ �4, then we get

X D
1

2d

�
d � 4˙

p
.d � 4/2 C 16d

�
D

1

2d
.d � 4˙ jd C 4j/

and, thus, the solutions to (2.7) are X D 1 and X D �4=d . For X D 1, we get z D 1,
and for X D �4=d , we get z D �1. On the other hand, if d D �4, then (2.7) rewrites as
.X � 1/2 D 0, hence the unique solution is X D 1. In this case, z formally corresponds to

z D
dX2 C 4

X.4C d/
D
d C 4

4C d
D 1:

Case d ¤ 0 and ! ¤ 0. From (2.7), we get

X D
1

2d

�
d � !2 � 4˙

p
.d � !2 � 4/2 C 16d

�
:

A simple computation shows that

.d � !2 � 4/2 C 16d D .d � !2 C 4/2 C 16!2 � 16!2 > 0

and, therefore,X can chosen as either one of the two real, nonzero, and different solutions
to (2.7). In this setting, it is clear that z 2 C is constant because X; ! ¤ 0. Let us now
show that jzj D 1. We have

jzj2 D
.dX2 C 4/2

X2..4C d � !2/2 C 16!2/
D

.dX2 C 4/2

X2..�4C d � !2/2 C 16d/

D
.dX2 C 4/2

..d � !2 � 4/X/2 C 16dX2
D

.dX2 C 4/2

.dX2 � 4/2 C 16dX2
;

where we used (2.7) in the last equality. Therefore,

jzj2 D
.dX2 C 4/2

.dX2 � 4/2 C 16dX2
D
.dX2 C 4/2

.dX2 C 4/2
D 1;

as desired.
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We have checked that we always haveX 2R n ¹0º, and z 2C always satisfies jzj D 1.
This shows the first statement of Theorem 2.1. The rest of the proof of Theorem 2.1
strongly relies on the following result, which requires some notation. We set

(4.1) M˙�;�;�;! WD ˙i.� � n/C
1

2
.�I2 C ��3 C �.� � t/C !.� � n//:

Note that the boundary condition in (2.2) can be expressed as

MC
�;�;�;!

T D
C fC D �M

�
�;�;�;!T D

� f�:

Lemma 4.1. Given �, � , �, ! 2 R, letX and z be as in Theorem 2.1. If .d;!/¤ .�4; 0/,
then, for every x 2 †, M˙

�;�;�;!
and M˙

X�;X�;X�;0
are invertible matrices. Moreover,

(4.2) .MC
�;�;�;!

/�1M��;�;�;!.M
�
X�;X�;X�;0/

�1MC
X�;X�;X�;0

D z I2:

Proof. We introduce the auxiliary matrix

zM˙�;�;�;! WD �i.� � n/C
1

2
.�I2 � ��3 � �.� � t/ � !.� � n//:

Thanks to (3.12) and (3.13),

M˙�;�;�;!
zM˙�;�;�;! D

�
˙i.� � n/C

1

2
.�I2 C ��3 C �.� � t/C !.� � n//

�
�

�
�i.� � n/C

1

2
.�I2 � ��3 � �.� � t/ � !.� � n//

�
D

�
1C

1

4
.�2 � �2 � �2 � !2/� !i

�
I2 D

1

4
.4C d � !2 � 4!i/I2:

Since .d;!/¤ .�4; 0/, we see that 4C d �!2� 4!i ¤ 0. Therefore,M˙
�;�;�;!

is invert-
ible whenever .d; !/ ¤ .�4; 0/, and its inverse is given by

.M˙�;�;�;!/
�1
D

4

4C d � !2 � 4!i
zM˙�;�;�;!

D
4

4C d � !2 � 4!i

�
�i.� � n/C

1

2
.�I2 � ��3 � �.� � t/ � !.� � n//

�
:

A similar computation can be carried out to find .M˙
X�;X�;X�;0

/�1. In this case, one gets

(4.3) .M˙X�;X�;X�;0/
�1
D

4

4C dX2

�
�i.� � n/C

X

2
.�I2 � ��3 � �.� � t//

�
:

Using (2.7) together with the assumption that .d; !/ ¤ .�4; 0/ and the fact that X ¤ 0,
we have

.dX2 C 4/2 D .dX2 � 4/2 C 16dX2 D ..d � !2 � 4/X/2 C 16dX2

D X2..d � !2 � 4/2 C 16d/ D X2..d � !2 C 4/2 C 16!2/ > 0:

Hence, the right-hand side of (4.3) is well defined. This shows thatM˙
X�;X�;X�;0

is invert-
ible whenever .d; !/ ¤ .�4; 0/.
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Let us address the proof of (4.2). The first step is to compute .M˙
�;�;�;!

/�1M�
�;�;�;!

.
We have

.M˙�;�;�;!/
�1M�

�;�;�;!

D
4

4C d � !2 � 4!i

�
�i.� � n/C

1

2
.�I2 � ��3 � �.� � t/ � !.� � n//

�
�

�
�i.� � n/C

1

2
.�I2 C ��3 C �.� � t/C !.� � n//

�
D

4

4C d � !2 � 4!i

�
�4C d � !2

4
I2 ˙ .��3 � �i.� � n/ � �.� � t//

�
and, similarly,

.M˙X�;X�;X�;0/
�1M�

X�;X�;X�;0

D
4

4C dX2

�
�4C dX2

4
I2 ˙X.��3 � �i.� � n/ � �.� � t//

�
:

From these calculations, we obtain

.MC
�;�;�;!

/�1M��;�;�;!.M
�
X�;X�;X�;0/

�1MC
X�;X�;X�;0

(4.4)

D
4

4C d � !2 � 4!i

�
�4C d � !2

4
I2 C ��3 � �i.� � n/ � �.� � t/

�
�

4

4C dX2

�
�4C dX2

4
I2 �X��3 CX�i.� � n/CX�.� � t/

�
:

Given a, Qa 2 R, a computation shows that�
aI2 C ��3 � �i.� � n/ � �.� � t/

��
QaI2 �X��3 CX�i.� � n/CX�.� � t/

�
(4.5)

D .a QaC dX/I2 C . Qa � aX/
�
��3 � �i.� � n/ � �.� � t/

�
:

By taking a D .�4C d � !2/=4 and Qa D .�4C dX2/=4, and using (2.7), we see that

a QaC dX D
.�4C d � !2/X.�4C dX2/

16X
C dX(4.6)

D
.dX2 � 4/2

16X
C dX D

.dX2 C 4/2

16X

and

(4.7) Qa � aX D
1

4

�
dX2 � 4C .4 � d C !2/X

�
D 0:

Plugging (4.6) and (4.7) in (4.5), and combining then with (4.4), we conclude that

.MC
�;�;�;!

/�1M��;�;�;!.M
�
X�;X�;X�;0/

�1MC
X�;X�;X�;0

D
4

4C d � !2 � 4!i

4

4C dX2
.dX2C 4/2

16X
I2 D

dX2 C 4

X.4C d � !2 � 4!i/
I2 D z I2;

where we used (2.8) in the last equality above. Therefore, (4.2) holds and the lemma
follows.
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Proof of Theorem 2.1. We have already shown that X 2 R n ¹0º and z 2 C, with jzj D 1,
see the comments above. It only remains to prove that

(4.8) Dz
�;�;�;! D DX�;X�;X�;0:

Once this is shown, we would get that D�;�;�;! and DX�;X�;X�;0 are unitarily equivalent
through the unitary operator Uz , because Dz

�;�;�;! D UzD�;�;�;!Uz by definition.
Note that (4.8) is obvious if .d;!/D .�4;0/ because thenX D 1, z D 1, and Uz D I2.

From now on we assume that .d; !/ ¤ .�4; 0/. Then Lemma 4.1 yields

(4.9) .M��;�;�;!/
�1MC

�;�;�;!
D z.M�X�;X�;X�;0/

�1MC
X�;X�;X�;0

:

Recalling now (2.2) and (4.1), we have

dom.D�;�;�;!/ D
®
f D fC ˚ f� 2 H.�;�C/˚H.�;��/ W

MC
�;�;�;!

T D
C fC D �M

�
�;�;�;!T D

� f�
¯
:

Therefore, using (4.9) and that zz D jzj2 D 1, we deduce that

dom.Dz
�;�;�;!/ D Uz.dom.D�;�;�;!//

D
®
Uzf D fC ˚ zf� 2 H.�;�C/˚H.�;��/ W

MC
�;�;�;!

T D
C fC D �M

�
�;�;�;!T D

� f�
¯

D
®
Uzf D fC ˚ zf� 2 H.�;�C/˚H.�;��/ W

.M��;�;�;!/
�1MC

�;�;�;!
T D
C fC D �T D

� f�
¯

D
®
Uzf D fC ˚ zf� 2 H.�;�C/˚H.�;��/ W

z.M�X�;X�;X�;0/
�1MC

X�;X�;X�;0
T D
C fC D �T D

� f�
¯

D
®
Uzf D fC ˚ zf� 2 H.�;�C/˚H.�;��/ W

MC
X�;X�;X�;0

T D
C fC D �M

�
X�;X�;X�;0T

D
� .zf�/

¯
D
®
g D gC ˚ g� 2 H.�;�C/˚H.�;��/ W

MC
X�;X�;X�;0

T D
C gC D �M

�
X�;X�;X�;0T

D
� g�

¯
D dom.DX�;X�;X�;0/:

Now, let f 2 dom.Dz
�;�;�;!/ D dom.DX�;X�;X�;0/. Then f D Uz ' for some ' 2

dom.D�;�;�;!/. Recall that, although �, � , and � may be non-constant, we assume that d
and ! are constant along †, which implies that z is also constant in x��. This yields
zD0'� D D0.z '�/ in ��. Hence,

Dz
�;�;�;!f D UzD�;�;�;!Uzf D UzD�;�;�;!UzUz ' D UzD�;�;�;! '(4.10)

D Uz.D0'C ˚D0'�/ D D0'C ˚ zD0'� D D0'C ˚D0.z '�/

D D0.Uz '/C ˚D0.Uz '/� D D0fC ˚D0f� D DX�;X�;X�;0f:

That is, Dz
�;�;�;!f D DX�;X�;X�;0f for all f 2 dom.Dz

�;�;�;!/ D dom.DX�;X�;X�;0/.
Therefore, (4.8) holds and Theorem 2.1 follows.
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4.2. Spectral relations

From the proof of Theorem 2.1 we realize that if ! D 0, we can also allow d to be variable
in † in the conclusion of Theorem 2.1, as long as d.x/ … ¹0;�4º for all x 2 †. This is
because (4.10) holds whenever z is constant in ��, and for ! D 0 and d ¤ 0;�4 we can
always take z D �1, as we explained below the statement of Theorem 2.1. Thus, we can
take X D �4=d , which yields the isospectral transformation of parameters

.�; �; �/ 7! .X�;X�;X�/ D �
4

d
.�; �; �/

for all �, � , � 2 C1.†IR/ such that �2.x/ � �2.x/ � �2.x/ D d.x/ … ¹0;�4º for all
x 2 †, with no more restrictions on d in †. We underline that this correspondence maps
the set ¹.�; �;�/ 2R3 j �2 � �2 � �2 <�4º onto ¹.�; �;�/ 2R3 j �4 < �2 � �2 � �2 < 0º
and ¹.�; �; �/ 2 R3 j �2 � �2 � �2 > 0º onto itself.

Next, we apply the observation above on D�;�;�;0 D D�;�;� with constant parameters.
Moreover, we investigate the spectral relation between D�;�;� and its charge conjugation.

Proposition 4.2. Let �, � , � 2 R, and D�;�;� be defined as in (2.4), (2.5). The following
hold:

(i) if d ¤ 0, then z 2 �p.D�;�;�/ if and only if z 2 �p.D�4�=d;�4�=d;�4�=d /,

(ii) z 2 �p.D�;�;�/ if and only if �z 2 �p.D��;�;��/.

Remark 4.3. The previous proposition reduces to known results if � D 0. In the three-
dimensional setting, the equivalent of Proposition 4.2 was observed for the first time in
Theorem 3.3 and Theorem 3.6 of [5] for the purely electric interaction and in Theorem 2.3
of [41] for the Lorentz scalar interaction. For the proof of (ii) we adapt the strategy of the
proof of Proposition 4.2 (iii) of [14]; the proof of (i) descends from the previous argu-
ments, or it can be obtained by adapting the proof of Proposition 4.2 (i) of [14].

Proof. (i) The case d D �4 is obvious. The case d ¤ �4 follows from Theorem 2.1 with
! D 0 by simply noting that one can take X D �4=d and z D �1.

(ii). Let C be the antilinear charge conjugation operator

C W L2.R2IC2/! L2.R2IC2/; Cf D �1 xf ; f 2 L2.R2IC2/:

The operator C is an involution, i.e., C 2f D f for all f 2L2.R2IC2/. The result follows
if we show that

(4.11) CD�;�;� D �D��;�;��C:

Taking the complex conjugate of the condition in the definition of domD�;�;�, we see that
f 2 domD�;�;� if and only if

�i.x� � n/.T D
�
xf� � T D

C
xfC/ D

1

2
.�I2 C ��3 C �.x� � t//.T D

�
xf� C T D

C
xfC/;

where we denoted x� WD .x�1; x�2/ and x�j is the matrix that has the conjugate entries of the
matrix �j , j D 1; 2. Since x� D .�1;��2/, multiplying the last equation by �1, we get

i.� � n/.T D
� .�1

xf�/�T D
C .�1

xfC//D
1

2
.��I2C��3��.� � t//.T D

� .�1
xf�/CT D

C .�1
xfC//;
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i.e., Cf 2 domD��;�;��. We have showed that dom.CD�;�;�/ D dom.D��;�;��C/. With
an explicit computation, one sees that .�i� � r C m�3/Cf D �C.�i� � r C m�3/f .
Thus, we get (4.11).

We finally mention that the three-dimensional analogue of D�;0;0;! was investigated
in [47], where the same transformation of the coefficients .�; !/! . Q�; 0/ by means of X
and z was discovered. Since here we also admit � , � ¤ 0, and, with a restriction, also
non-constant coefficients, Theorem 2.1 can be understood as a generalization of [47] to
the two-dimensional scenario for more general ı-shell interactions.

5. Confinement

In the following lemma, we describe the properties of confinement and transmission
induced by the boundary condition in (2.4).

Lemma 5.1. Let �; �; � 2 C1.†IR/ and let D�;�;� be defined as in (2.4) and (2.5). Then
the following hold:

(i) If d ¤�4 everywhere on†, there exists an invertible matrix function R�;�;� (expli-
citly defined in (5.6) below) such that every f D fC˚ f� 2H.�;�C/˚H.�;��/
belongs to domD�;�;� if and only if

(5.1) T D
C fC D R�;�;�T D

� f�:

(ii) If d D�4 everywhere on†, every f D fC˚ f� 2H.�;�C/˚H.�;��/ belongs
to domD�;�;� if and only if

(5.2)
h
i.� � n/˙

1

2
.�I2 C ��3 C � .� � t//

i
T D
˙ f˙ D 0:

Proof. Let f D fC ˚ f� 2 H.�;�C/˚H.�;��/. From (2.4), f 2 domD�;�;� if and
only if �

i.� � n/C
1

2
.�I2 C ��3 C � .� � t//

�
T D
C fC(5.3)

D

�
i.� � n/ �

1

2
.�I2 C ��3 C � .� � t//

�
T D
� f�:

Thanks to (3.12), this is equivalent to

(5.4) .I2 CM/T D
C fC D .I2 �M/T D

� f�;

with
M WD �

i

2
.� � n/.�I2 C ��3 C � .� � t//:

Due to (3.12), (3.13), and (3.14), we have

(5.5)
M D �

�

2
i.� � n/ �

�

2
� � tC

�

2
�3;

M 2
D �

d

4
I2; .I2 CM/.I2 �M/ D

4C d

4
I2:
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When d ¤ �4, the matrix I2 CM is invertible, by (5.5), and we get (i) by setting

R�;�;� WD .I2 CM/�1.I2�M/ D
4

4C d
.I2�M/2 D

4

4C d

�4�d
4

I2 � 2M
�

(5.6)

D
4

4C d

�4 � d
4

I2 C i�.� � n/C �.� � t/ � ��3
�
:

If d D �4, then M 2 D I2. Multiplying (5.4) by I2 ˙M , we get

0 D .I2 ˙M/2T D
˙ f˙ D 2.I2 ˙M/T D

˙ f˙:

Multiplying the previous equation by i
2
.� � n/ and using (3.12) we arrive at (5.2). Vice

versa, (5.2) implies (5.3) trivially.

If d D �2 � �2 � �2¤�4 everywhere on†, Lemma 5.1 (i) states that the values of fC
and f� along † are related via the matrix R�;�;�. The presence of the ı-shell implies a
transmission condition for the functions in the domain of D�;�;� across the surface †.

If d D �2 � �2 � �2 D �4 everywhere on †, Lemma 5.1 (ii) implies Theorem 2.3.

6. The non-critical case

In this section we prove Theorem 2.2 stated in Section 2. The operator D�;�;� is defined
again as in (2.4) and (2.5), where in general the condition in (2.4) is understood in the
sense ofH�1=2.†/. We show the self-adjointness and some further properties of the oper-
ator D�;�;�. The strategy of the proofs mainly follows [14], but we need to modify the
boundary triple that we use in order to include the magnetic interaction.

It will be convenient to introduce some extra notation. Recall the definition T WD
t1 C i t2 2 C from (3.30), where t D .t1; t2/ is the tangent vector to † at the point x 2 †.
We define the following matrix-valued functions on †:

(6.1) V WD

�
1 0

0 xT

�
and B WD

�
�C � �

� � � �

�
:

For all x 2 †, the matrix V.x/ is unitary and

(6.2) �I2 C ��3 C �.� � t/ D V �BV in †:

Finally, we have detB D �2 � �2 � �2 D d 2 C1.†IR/, cf. (2.6).
In the following proposition we adapt to our setting the boundary triple constructed

in Proposition 3.6 of [14] for the operator S�, defined in (3.24). In the formulation of the
proposition we extend the operators ƒ and C� defined in (3.17) and (3.29), respectively,
onto two-component functions applying the respective mappings component-wise.

Proposition 6.1. Let � 2 �.D0/ and let �0; �1W domS� ! L2.†IC2/ be defined by

(6.3)
�0f D iƒ

�1V.� � n/
�
T D
C fC � T D

� f�/;

�1f D
1

2
ƒV

�
.T D
C fC C T D

� f�/ � .C� C C N� /V
�ƒ�0f

�
;
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where f D fC ˚ f� 2 dom S�. Then ¹L2.†IC2/; �0; �1º is a boundary triple for S�

such that D0 D S
� � ker�0. Moreover, the corresponding 
 -field is

(6.4) Gz W z 2 �.D0/ 7! ˆzV
�ƒ

and the Weyl function is

(6.5) Mz W z 2 �.D0/ 7! ƒV
�
Cz �

1

2

�
C� C C N�

��
V �ƒ:

Proof. In Proposition 3.6 of [14], it is proved that ¹L2.†IC2/; z�0; z�1º is a boundary triple
for S�, with

z�0f D iƒ
�1.� � n/

�
T D
C fC � T D

� f�/;

z�1f D
1

2
ƒ
�
.T D
C fC C T D

� f�/ � .C� C C N� /ƒ
z�0f

�
; where f D fC ˚ f� 2 domS�:

Moreover, D0 D S
� � ker z�0 and the 
 -field zGz and the Weyl function zMz associated to

the boundary triple ¹L2.†IC2/; z�0; z�1º are defined by

(6.6)
zGz W z 2 �.D0/ 7! .z�0 � ker.A� � z//�1 D ˆzƒ;

zMz W z 2 �.D0/ 7! z�1 zGz D ƒ
�
Cz �

1

2
.C� C C N� /

�
ƒ:

We define �0; �1 as in (6.3). The key observation of our proof is that

(6.7) �0 D ƒ
�1Vƒ z�0 and �1 D ƒVƒ

�1 z�1;

and ƒ�1Vƒ, ƒVƒ�1 are bounded and boundedly invertible on L2.†IC2/, since ƒ W
H s.†/! H s�1=2.†/ is an isomorphism for all s 2 R and V 2 C1.†IC2/ is pointwise
unitary. Consequently, the map f 2 dom S� 7! .�0f; �1f / 2 L

2.†IC2/ � L2.†IC2/

is surjective, i.e., the condition (ii) in Definition 3.4 of the boundary triple is fulfilled. In
order to verify the condition (i) of the definition, we observe that, for all �; 2 domS�,

(6.8) h�0�;�1 iL2Dhƒ�0�;ƒ
�1�1 iH�1=2;H1=2DhVƒ z�0�;Vƒ

�1 z�1 iH�1=2;H1=2 ;

due to (3.18) and (6.7). The last term in the previous equation equals

(6.9) hƒ z�0 �; V
�Vƒ�1 z�1 iH�1=2;H1=2 D hƒ z�0 �;ƒ

�1 z�1 iH�1=2;H1=2 ;

because V �V D I2. Combining (6.8) and (6.9), and using (3.18) again, we get

(6.10) h�0 �; �1 iL2 D hƒ z�0 �;ƒ
�1 z�1 iH�1=2;H1=2 D hz�0 �; z�1 iL2 :

This yields (i) in Definition 3.4. Therefore, we conclude that ¹L2.†IC2/; �0; �1º is a
boundary triple for S�. Since ker�0Dker z�0, it is true that D0DS

� � ker�0. From (3.19),
we get that, for all z 2 �.D0/,

Gz WD .�0� ker.A��z//�1D . z�0 � ker.A��z//�1ƒ�1V �ƒD zGzƒ�1V �ƒDˆzV �ƒ;
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i.e., (6.4). Plugging this result together with (6.7) into (3.20), we obtain

Mz WD �1Gz D ƒVƒ
�1 z�1 zGzƒ

�1V �ƒ D ƒVƒ�1 zMzƒ
�1V �ƒ

D ƒV
�
Cz �

1

2
.C� C C N� /

�
V �ƒ;

for all z 2 �.D0/. This is just (6.5).

The following lemma is a regularity result concerning the boundary triple defined in
Proposition 6.1.

Lemma 6.2. Let f 2 domS�. Then f 2H 1.R2 n†IC2/ if and only if �0f 2H 1.†IC2/.

Proof. The proof is analogous to Lemma 3.7 of [14], reasoning as in the proof of Propos-
ition 6.1.

The following proposition is a modification of Proposition 4.3 of [14] taking into
account the magnetic ı-shell interaction.

Proposition 6.3. Let �; �; � 2 C1.†IR/, and let B be defined as in (6.1). Let the oper-
ator D�;�;� be defined as in (2.4) and (2.5). Then the following hold:

(i) Assume d.x/ ¤ 0 for all x 2 †. Let � 2 ‰1† be given by

(6.11) � WD �ƒ
h
B�1 C

1

2
V.C� C C N� /V

�
i
ƒ;

and let ‚ be its maximal realization, i.e.,

‚' WD �'; dom‚ WD ¹' 2 L2.†IC2/ j �' 2 L2.†IC2/º:

Then

(6.12) domD�;�;� D ¹f 2 domS� j �0f 2 dom‚; �1f D ‚�0f º:

(ii) Assume �; �; � 2 R and � D ˙
p
�2 C �2 ¤ 0. Then there exist

…˙ W L
2.†IC2/! L2.†/ and …�˙ W L

2.†/! L2.†IC2/

such that …�
˙
…˙ are orthogonal projectors and, defining �˙ 2 ‰1† by

�˙ WD �ƒ
h 1
2�

I C…˙
1

2
V.C� C C N� /V

�…�˙

i
ƒ;

and letting ‚˙ be its maximal realization, i.e.,

‚˙' WD �˙'; dom‚˙ WD ¹' 2 L
2.†/ j �˙' 2 L

2.†/º;

we have

domD�;�;� D ¹f 2 domS� j …˙�0f 2 dom‚˙;(6.13)
…˙�1f D ‚˙…˙�0f; .I �…

�
˙…˙/�0f D 0º:
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Remark 6.4. In the case that � D ˙
p
�2 C �2 D 0, D�;�;� is in fact the free Dirac oper-

ator D0, defined in Section 3.7.

Proof. From (6.3), we see that

i.� � n/.T D
C fC � T D

� f�/ D V
�ƒ�0f;

1

2
.T D
C fC C T D

� f�/ D V
�ƒ�1�1f C

1

2
.C� C C N� /V

�ƒ�0f;

so the transmission condition in (2.4) rewrites as follows:

(6.14) �V �ƒ�0f D .�I2 C ��3 C �.� � t//
�
V �ƒ�1�1f C

1

2
.C� C C N� /V

�ƒ�0f
�
:

Multiplying the last equation by V and then using (6.2) together with the identity V �V D
V V � D I2, we get

(6.15) Bƒ�1�1f D �
�
I2 C

1

2
B V.C� C C N� /V

�
�
ƒ�0f:

We prove now (i). In the case that d.x/ ¤ 0, the matrix B D B.x/ is invertible for
all x 2 †. Thanks to (6.15), we obtain the representation in (6.12).

Next, we pass to the proof of (ii). Let

„C; „� W L
2.†IC2/! L2.†/; „C

�
'1
'2

�
WD '1; „�

�
'1
'2

�
WD '2;

and let U be the unitary matrix such that

(6.16) B D U�
�
�C
p
�2 C �2 0

0 � �
p
�2 C �2

�
U :

Finally, let …˙ WD „˙U . One sees immediately that …�˙…˙ are orthogonal projectors
in L2.†IC2/, and that …�˙…˙.L

2.†IC2// � L2.†IC2/ is isometrically isomorphic
to …˙.L2.†IC2// � L2.†/.

We give only a proof in the case � D
p
�2 C �2, the other case being analogous.

From (6.15), we infer that

�ƒ�0f D U�
�
2� 0

0 0

�
U
�
ƒ�1�1f C

1

2
V.C� C C N� /V

�ƒ�0f
�

(6.17)

D 2�…�C…C

�
ƒ�1�1f C

1

2
V.C� C C N� /V

�ƒ�0f
�
:

We will show that this equation is equivalent to (6.13). Multiplying (6.17) by I �…�C…C,
we get

(6.18) .I �…�C…C/ƒ�0f D 0:

Since …C…�C D I, multiplying (6.17) by …C, we get

…C

h 1
2�

I C
1

2
V.C� C C N� /V

�
i
ƒ�0f D �…Cƒ

�1�1f:
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Thanks to (6.18), we have

(6.19)
h 1
2�

I C…C
1

2
V.C� C C N� /V

�…�C

i
…Cƒ�0f D �…Cƒ

�1�1f:

Since �; �; � 2 R, ƒ commutes with …C and …�C. Therefore, taking the bijectivity of ƒ
into account, (6.18) and (6.19) yield

.I �…�C…C/�0f D 0;

…C�1f D �ƒ
h 1
2�

I C…C
1

2
V.C� C C N� /V

�…�C

i
ƒ…C�0f;

that is, we get the conditions in (6.13).

In the non-critical case, C.�; �; �/ ¤ 0 everywhere on †, with C.�; �; �/ defined
as in (2.9), we can show the self-adjointness of D�;�;� using Theorem 3.5 and Proposi-
tion 6.3, together with the self-adjointness of the operator ‚. The proof is an adaptation
of the proof of Lemma 4.5 of [14] that takes the new interaction into account.

Lemma 6.5. Let �; �; � 2 C1.†IR/ be such that C.�; �; �/ ¤ 0 for all x 2 †. Then the
following hold:

(i) if d.x/ ¤ 0 for all x 2 †, then we have that dom‚ D H 1.†IC2/ and ‚ is self-
adjoint in L2.†IC2/,

(ii) if �; �; � 2 R and � D ˙
p
�2 C �2 ¤ 0, then dom‚˙ D H

1.†/ and ‚˙ is self-
adjoint in L2.†/.

Proof. Since the multiplication by V is bounded in L2.†IC2/, from (3.31), we get

(6.20) V.C� C C N� /V
�
D V

�
0 C† xT

TC 0† 0

�
V � C y‰1 D

�
0 C†
C 0† 0

�
C y‰1;

with y‰1 2 ‰�1† .
We start the proof of (i) by putting ‚1 WD ‚ � H 1.†IC2/. Since � 2 ‰1†, the oper-

ator ‚1 is well defined as an operator in L2.†IC2/. To show (i), we prove that ‚1 D ‚
and‚1 is self-adjoint in L2.†IC2/. Since .V .C� CC N� /V

�/� D V.C N� CC� /V
� andƒ is

self-adjoint as an operator in L2.†/,‚1 is symmetric. Moreover, since .‚ � C1/ � ‚1,
we have ‚1 � ‚�1 � .‚ � C1/�. We conclude that ‚1 � ‚ since ‚ is the maximal
realization of � , and so .‚ � C1/� D ‚.

Hence, to show that ‚1 D ‚, it is now sufficient to prove that ‚ � ‚1, that is to
say dom‚ � dom‚1 D H 1.†IC2/. We fix ' 2 dom‚. Thanks to Proposition 6.3 (i)
and (6.20), we have

�' D �ƒPƒ' C y‰2 ';

with y‰2 2 ‰0† and

(6.21) P D
1

d

�
� � � ��

�� �C �

�
C
1

2

�
0 C†
C 0† 0

�
D
1

2

 
2.���/
d

C† �
2�
d

C 0† �
2�
d

2.�C�/
d

!
:
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We have ƒPƒ' 2 L2.†IC2/ and Pƒ' 2 H 1=2.†IC2/ because ƒWH 1=2.†IC2/ !

L2.†IC2/ is an isomorphism. Since C†; C 0† 2 ‰
0
†, these pseudo-differential operators

give rise to bounded operators in H 1=2.†IC2/, and this implies that

1

2

 
2.�C�/
d

�C† �
2�
d

�C 0† �
2�
d

2.���/
d

!
Pƒ'

D
1

d2

 
dC2�2� d

2

4
C†C

0
†C

�d
2
.C†�C

0
†/ �2.�C �/�

�2.� � �/� dC2�2� d
2

4
C 0†C†C

�d
2
.C 0†�C†/

!
ƒ'

belongs to H 1=2.†IC2/. Using (3.28), we conclude that

Mƒ' WD
1

d2

 
�2 � �2 C �2 � d2

4
�2.�C �/�

�2.� � �/� �2 � �2 C �2 � d2

4

!
ƒ' 2 H 1=2.†IC2/:

Note that

(6.22) detM D
1

d4

h�
�2 � �2 C �2 �

d2

4

�2
� 4.�2 � �2/�2

i
D

1

d2
C.�; �; �/

and, by our hypothesis, M is invertible. Therefore, we get ƒ' 2 H 1=2.†IC2/ and ' 2
H 1.†IC2/, because ƒWH 1.†IC2/! H 1=2.†IC2/ is an isomorphism. This completes
the proof of the case (i).

Now we pass to the proof of (ii). Arguing as in the proof of (i), let ‚˙;1 WD ‚˙ �
H 1.†/. It is true that ‚˙;1 � ‚�˙;1 � ‚˙, and so we can conclude the proof if we show
that dom‚˙ � dom‚˙;1 D H

1.†/. By Proposition 6.3 (ii) and (6.20), we have

‚˙' D �ƒ

�
1

2�
I C

1

2
…˙

�
0 C†
C 0† 0

�
…�˙

�
ƒ' C y‰' for all ' 2 dom‚˙;

with some symmetric operator y‰ 2 ‰0†. SinceƒWH 1=2.†/! L2.†/ is an isomorphism,
the last equation implies that

(6.23)
�
1

2�
I C

1

2
…˙

�
0 C†
C 0† 0

�
…�˙

�
ƒ' 2 H 1=2.†/:

For the unitary matrix U in (6.16), we may choose

U D

8̂<̂
:

I2 if � D 0;��
� C

p
�2 C �2

�2
C �2

��1=2  � Cp�2 C �2 �

�� � C
p
�2 C �2

!
if � ¤ 0:

When � D 0 our choice of U gives …˙ D „˙, and from (6.23), we get

(6.24)
�
1

2�
I C

1

2
…˙

�
0 C†
C 0† 0

�
…�˙

�
ƒ' D

1

2�
ƒ' 2 H 1=2.†/:
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SinceƒWH 1.†/!H 1=2.†/ is an isomorphism, we get ' 2H 1.†/. If �¤ 0, then (6.23)
yields�

1

2�
I C

1

2
…˙

�
0 C†
C 0† 0

�
…�˙

�
ƒ' D

�
1

2�
I ˙

�

4�
.C† C C

0
†/

�
ƒ' 2 H 1=2.†/:

Since C†; C† 2 ‰0†, we get�
I �

�

2
.C† C C

0
†/
��

I ˙
�

2
.C† C C

0
†/
�
ƒ' D

h
I �

�2

4
.C† C C

0
†/
2
i
ƒ' 2 H 1=2.†/:

Taking (3.28) into account, we finally obtain

.I � �2/ƒ' 2 H 1=2.†/:

We conclude that ƒ' 2 H 1=2.†/, since for d D 0, the condition C.�; �; �/ ¤ 0 forces
�2 ¤ 1. Since ƒWH 1.†/! H 1=2.†/ is an isomorphism, we get ' 2 H 1.†/ also in this
case.

We are now ready to show the self-adjointness of D�;�;� in the non-critical case.

Theorem 6.6. Let �; �;� 2C1.†IR/ be such that C.�; �;�/.x/¤ 0. Moreover, let either
d.x/¤ 0 for all x 2 †, or let �; �; � be constant such that d D 0. Then D�;�;�, defined by
(2.4) and (2.5), is self-adjoint inL2.R2IC2/ with domain domD�;�;� �H

1.R2 n†IC2/.
Moreover, for all z 2 �.D�;�;�/ \ �.D0/, the operator I2 C .�I2 C ��3 C �.� � t//Cz is
bounded and boundedly invertible in H 1=2.†IC2/ and

(6.25)
.D�;�;� � z/

�1

D .D0�z/
�1
�ˆz

�
I2C.�I2C��3C�.� � t//Cz

��1
.�I2C��3C�.� �t//ˆ0Nz :

Proof. The proof is analogous to the proof of Theorem 4.6 of [14], when we have set the
right framework.

The self-adjointness of D�;�;� follows from the self-adjointness of ‚ and ‚˙ in
L2.†IC2/ andL2.†/, respectively, thanks to Theorem 3.5. Moreover, Lemma 6.2 implies
that dom D�;�;� � H

1.R2 n †IC2/, since, by Lemma 6.5, dom‚ D H 1.†IC2/ and
dom‚˙ D H

1.†/.
We show (6.25) in the case d.x/ ¤ 0 for all x 2 †. By Theorem 3.5 (iii), ‚ �Mz is

boundedly invertible in L2.†IC2/, for z 2 �.D�;�;�/ \ �.D0/, and

.D�;�;� � z/
�1
D .D0 � z/

�1
CGz.‚ �Mz/

�1G�Nz :

From the definition of Mz (6.5), we get

(6.26) ‚�Mz D�ƒV.�I2C ��3C �.� � t//�1.I2C .�I2C ��3C �.� � t//Cz/V �ƒ:

The operator ‚ �Mz is bijective in L2.†IC2/ when defined on dom‚ D H 1.†IC2/,
and .I2C .�I2C ��3C�.� � t//Cz/ is well defined and bounded inH 1=2.†IC2/. Recall-
ing the definition of Gz from (6.4), we get (6.25). The case d D 0 is analogous and will
be omitted.
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In the next proposition we gather some basic results on the spectrum of D�;�;�.

Proposition 6.7. Let �; �;� 2C1.†IR/ be such that C.�; �;�/.x/¤ 0 everywhere on†.
Moreover, let either d.x/¤ 0 for all x 2 †, or let �, � and � be constant such that d D 0.
Let D�;�;� be defined as in (2.4) and (2.5). Then the following hold:

(i) We have �ess.D�;�;�/ D .�1;�jmj� [ Œjmj;C1/; if, in particular, m D 0, then
�.D�;�;�/ D �ess.D�;�;�/ D R.

(ii) If m ¤ 0, then D�;�;� has at most finitely many eigenvalues in .�jmj; jmj/.

(iii) Assumem ¤ 0. Then z 2 .�jmj; jmj/ is a discrete eigenvalue of D�;�;� if and only
if there exists ' 2 H 1=2.†IC2/ such that .I C .�I C ��3 C �.� � t//Cz/' D 0.

Proof. The proof is analogous to the proof of Theorem 4.7 of [14]. Firstly, let us show (i)
and (ii). Thanks to Proposition 3.6 (i), .�1;�jmj�[ Œjmj;C1/� �ess.D�;�;�/. Moreover,
since domD�;�;� �H

1.R2 n†IC2/, by Theorem 6.6, Proposition 3.6 (ii) implies that the
spectrum of D�;�;� in .�jmj; jmj/ is discrete and finite.

We show (iii) only in the case d.x/¤ 0 for all x 2†, the case d D 0 being similar. By
Theorem 3.5 (i) combined with (6.26), z 2 �.D0/ is an eigenvalue of D�;�;� if and only if
there exists  2 dom‚ D H 1.†IC2/ such that

�ƒV.�I2 C ��3 C �.� � t//�1.I2 C .�I2 C ��3 C �.� � t//Cz/V �ƒ D 0;

i.e., if and only if ' D V �ƒ 2 H 1=2.†IC2/ satisfies

.I2 C .�I2 C ��3 C �.� � t//Cz/' D 0:

7. The purely magnetic critical interaction

In this section we give the proof of Theorem 2.5. We consider the case � D 2 only, since
the case � D �2 can be treated analogously. Recall that, by Theorem 2.3, the operator
D0;0;2 can be decomposed into the orthogonal sum

D0;0;2 D DC0;0;2 ˚D�0;0;2 DW D
C
˚D�;

with

domD˙ WD
®
f˙ 2 H.�;�˙/ j Œ˙i.� � n/C .� � t//�T D

˙ f˙ D 0
¯
;

D˙f˙ WD D0f˙ for all f˙ 2 domD˙:

Using that n1 D t2, n2 D �t1, we find

i.� � n/C .� � t/ D
�
0 0

2T 0

�
; �i.� � n/C .� � t/ D

�
0 2 xT

0 0

�
:

Hence, D˙ have the following representations:

DCf D D0f; domDC D ¹f D .f1; f2/
>
2 H.�;�C/ j T

D
C f1 D 0º;

D�f D D0f; domD� D ¹f D .f1; f2/
>
2 H.�;��/ j T

D
� f2 D 0º:
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Using the Cauchy–Riemann differential expressions

@z WD
1

2
.@1 � i@2/ and @ Nz WD

1

2
.@1 C i@2/;

we can represent D˙ as follows:

D˙f D

�
m �2i@z
�2i@ Nz �m

��
f1
f2

�
;

domDC D
®
f D .f1; f2/

>
j f1; f2; @zf2; @ Nzf1 2 L

2.�C/; T D
C f1 D 0

¯
;

domD� D
®
f D .f1; f2/

>
j f1; f2; @zf2; @ Nzf1 2 L

2.��/; T D
� f2 D 0

¯
:

In view of Lemma 18 of [3] (see also Lemma 3.1 of [14]), the domains of D˙ can altern-
atively be given by

domDC D
®
f D .f1; f2/

>
j f2; @zf2 2 L

2.�C/; f1 2 H
1
0 .�C/

¯
;

domD� D
®
f D .f1; f2/

>
j f1; @ Nzf1 2 L

2.��/; f2 2 H
1
0 .��/

¯
:

The operators D˙ can be viewed as bounded symmetric perturbations of the respective
massless Dirac operators. Since, by Proposition 1 of [65], the unperturbed massless Dirac
operators are self-adjoint, we conclude that D˙ are self-adjoint as well.

Next, we will show the symmetry of the spectrum of D˙. For � 2 C such that �2 �
m2 ¤ 0, we introduce the matrix

T� D

0@qmC�
m��

0

0
q
m��
mC�

1A :
Clearly, T� is invertible and T �1� D T�� . Moreover, for any � 2 C n ¹�m;mº, we have
T�.domD˙/ D domD˙ and

(7.1) .D˙ C �/T�� D T�.D
˙
� �/:

Let � 2 �.D˙/ n ¹�m;mº. Then there exists a sequence . n/n in domD˙ such that

lim
n!1

k.D˙ � �/ nk

k nk
D 0:

Let �n WD T �1�  n D T�� n. Then we get

k.D˙ C �/�nk

k�nk
D
k.D˙ C �/T�� nk

kT�� nk
D
kT�.D

˙ � �/ nk

kT �1�  nk

� kT�k
2 k.D

˙ � �/ nk

k nk
! 0 as n!1:

Hence, we conclude that �� 2 �.D˙/. Moreover, if � ¤ ˙m is an eigenvalue of D˙,
then, in view of identity (7.1), �� is also an eigenvalue of D˙.



General ı-shell interactions for the two-dimensional Dirac operator 1477

Now we perform the spectral analysis of DC. First of all, we notice the inclusion

ker.DC Cm/ �
²�

0

f2

� ˇ̌̌
f2 2 L

2.�C/; @zf2 D 0

³
:

Indeed,

DC
�
0

f2

�
D

�
�2i@zf2
�mf2

�
D �m

�
0

f2

�
:

Since the space of square-integrable anti-holomorphic functions on �C is infinite-dimen-
sional, �m is an eigenvalue of infinite multiplicity in the spectrum of DC. In particular,
domDC 6�H s.�CIC2/ for any s > 0, as otherwise the spectrum of DC would be purely
discrete, due to the compactness of embedding of the Sobolev spacesH s.�CIC2/, s > 0,
into L2.�CIC2/. Thus, domD0;0;2 6� H

s.R2 n†IC2/ for any s > 0.
Consider the auxiliary operators

(7.2)
AC D �2i@ Nz ; domAC D H

1
0 .�C/;

A� D �2i@z ; domA� D H
1
0 .��/:

The adjoints of A˙ are characterised in the spirit of Proposition 1 of [65] as

A�C D �2i@z ; domA�C D ¹ 2 L
2.�C/ j @z 2 L

2.�C/º;

A�� D �2i@ Nz ; domA�� D ¹ 2 L
2.��/ j @ Nz 2 L

2.��/º:

The quadratic form for .DC/2 is given by

hCŒf � WD kDCf k2
L2.�CIC2/

; dom hC WD domDC:

Next, we compute

hCŒf � D kDCf k2
L2.�CIC2/

D kmf1 � 2i@zf2k
2
L2.�C/

C k�mf2 � 2i@ Nzf1k
2
L2.�C/

D 4k@zf2k
2
L2.�C/

C 4k@ Nzf1k
2
L2.�C/

C 4mReŒ.f2; i@ Nzf1/L2.�C/ � .f1; i@zf2/L2.�C/�

Cm2kf1k
2
L2.�C/

Cm2kf2k
2
L2.�C/

:

Integrating by parts, we find with the aid of dom hC D domDC that

ReŒ.f2; i@ Nzf1/L2.�C/ � .f1; i@zf2/L2.�C/�
D ReŒ.i@zf2; f1/L2.�C/ � .f1; i@zf2/L2.�C/� D 0:

Thus, the expression for hC simplifies as

hCŒf � D 4k@zf2k
2
L2.�C/

C 4k@ Nzf1k
2
L2.�C/

Cm2kf1k
2
L2.�C/

Cm2kf2k
2
L2.�C/

D kA�Cf2k
2
L2.�C/

C kACf1k
2
L2.�C/

Cm2kf1k
2
L2.�C/

Cm2kf2k
2
L2.�C/

:

The domain of hC can be written as

dom hC D ¹f D .f1; f2/
>
j f1 2 domAC; f2 2 domA�Cº D domAC ˚ domA�C:
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Therefore, we end up with the orthogonal decomposition

.DC/2 D .A�CAC Cm
2/˚ .ACA

�
C Cm

2/;

from which we deduce, using Propositions 2 and 3 of [65], that

�..DC/2/ n ¹m2º D ¹m2 C � j � 2 �.��
�C
D /º;

where ���CD is the Dirichlet Laplacian on �C. Using the symmetry of the spectrum
shown above, we obtain that

�.DC/ n ¹�jmj; jmjº D
®
˙

p
m2 C � j � 2 �.��

�C
D /

¯
:

Hence, (iii) of Theorem 2.5 follows. Moreover, we observe that DC � H 1.�CIC2/ is
essentially self-adjoint provided that H 1

0 .�C/ ˚ H
1.�C/ is a core for DC. The latter

follows from the density of H 1.�C/ in domA�C; cf. Lemma 14 of [3].
Now we perform the spectral analysis of D�. As in the analysis of DC, we notice the

inclusion

ker.D� �m/ �
²�
f1
0

� ˇ̌̌
f1 2 L

2.��/; @xzf1 D 0

³
:

Indeed,

D�
�
f1
0

�
D

�
mf1
�2i@xzf1

�
D m

�
f1
0

�
:

We observe that the space of square-integrable holomorphic functions on �� is also
infinite-dimensional. Indeed, for an arbitrary z0 2 �C, the family of linear independent
functions ¹.z � z0/�kºk�2 is square-integrable and holomorphic in ��. Hence, m is an
eigenvalue of infinite multiplicity in the spectrum of D� and thus, combining with the fact
that �m is an eigenvalue of infinite multiplicity in the spectrum of DC shown above, the
claim of (ii) of Theorem 2.5 follows. Next we consider the quadratic form

h�Œf � WD kD�f k2
L2.��IC2/

; dom h� WD domD�

for .D�/2. Repeating the same type of computation as we did for DC, we get

h�Œf � WD kD�f k2
L2.��IC2/

D kmf1 � 2i@zf2k
2
L2.��/

C k�mf2 � 2i@ Nzf1k
2
L2.��/

D 4k@zf2k
2
L2.��/

C 4k@ Nzf1k
2
L2.��/

Cm2kf1k
2
L2.��/

Cm2kf2k
2
L2.��/

D kA�f2k
2
L2.��/

C kA��f1k
2
L2.��/

Cm2kf1k
2
L2.��/

Cm2kf2k
2
L2.��/

:

The domain of h� can be written as

dom h� D domA�� ˚ domA�:

Hence, we have the orthogonal decomposition

.D�/2 D .A�A
�
� Cm

2/˚ .A��A� Cm
2/;

which implies, in view of Propositions 2 and 3 of [65], that

�..D�/2/ n ¹m2º D ¹m2 C � j � 2 �.��
��
D / n ¹0ºº;
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where ����D is the Dirichlet Laplacian on ��. Taking that �.����D / D Œ0;1/ into
account, we get �..D�/2/ D Œm2;C1/. In view of the symmetry of the spectrum of D�

shown above, we necessarily get that �.D�/ D .�1;�jmj� [ Œjmj;C1/. Hence, (i) of
Theorem 2.5 is shown. The essential self-adjointness of D� � H 1.��IC2/ follows ana-
logously to that of DC � H 1.�CIC2/.

The essential self-adjointness of D0;0;2 � H 1.R2 n†IC2/ follows from the essential
self-adjointness of D˙ � H 1.�˙IC2/. Thus, the proof is concluded.

Remark 7.1. The above spectral analysis of D˙ is reminiscent of the spectral analysis of
three-dimensional Dirac operators with zig-zag boundary conditions on general open sets
performed in [40], which has appeared while the present paper was under preparation.

8. Approximation of ı-shell interactions by regular potentials

In this section we prove Theorem 2.6 on approximation of the Dirac operator with ı-shell
interaction by a sequence of Dirac operators with regular scaled potentials.

Proof of Theorem 2.6. For all 0 < " < ˇ, we define the self-adjoint operators E�;�;�I"
according to (2.14) and we define the operators D O�; O�; O� according to (2.4), (2.5). Since
C. O�; O�; O�/¤ 0 everywhere on†, Theorem 2.2 tells us that these operators are self-adjoint
and domD O�; O�; O� � H

1.R2 n†IC2/. Thanks to Theorem VIII.26 of [63], since the limit-
ing operators and the limit operator are self-adjoint, the family ¹E�;�;�I"º"2.0;ˇ/ converges
in the strong resolvent sense to D O�; O�; O� as "! 0 if and only if it converges in the strong
graph limit sense. The latter means that, for all  2 domD O�; O�; O�, there exists a family of
vectors ¹ "º"2.0;ˇ/ � domE�;�;�I" D H

1.R2IC2/ such that

(8.1) lim
"!0

 " D  and lim
"!0

E�;�;�I" " D D
O�; O�; O�

 in L2.R2IC2/:

Without loss of generality we can assumemD 0, because, by its very definition, the strong
graph convergence (8.1) is stable with respect to bounded symmetric perturbations.

Let  �  C ˚  � 2 dom D O�; O�; O�. From (2.15), (2.16) and (2.17), we observe that
Od WD O�2 � O�2 � O�2 > �4. Therefore, by Lemma 5.1 (i),

(8.2) T D
C  C D R O�; O�; O� T D

�  �;

where

(8.3) R
O�; O�; O�

.x†/ D
4

4C Od

�4 � Od
4

I2 C i O�.� � n/C O�.� � t/ � O��3
�
.x†/:

Clearly, R O�; O�; O� 2 C1.†IC2�2/. Moreover, by Proposition 3.3 combined with the fact
that domD O�; O�; O� � H

1.R2 n†IC2/, see Theorem 6.6, T D
˙
 ˙ 2 H

1=2.†IC2/.
Recall that E�;�;�I" DD0CV�;�;�I", where, for all x in†", i.e., in the "-tubular neigh-

bourhood of †,
V�;�;�I" D B�;�;�.x†/h".p/;

where B�;�;� was introduced in (2.12), and V�;�;�I" D 0 everywhere else, see (2.13).
According to Lemma A.1,

(8.4) expŒi.� � n.x†//B�;�;�.x†/� D R O�; O�; O�.x†/ for all x† 2 †:
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Since, by definition,
R "
�"
h".t/ dt D 1, we can rewrite (8.2) as

exp
h
�i
� Z 0

�"

h".t/ dt
�
.� � n/B�;�;�

i
T D
C  C(8.5)

D exp
h
i
� Z "

0

h".t/ dt
�
.� � n/B�;�;�

i
T D
�  �:

Let us now construct the family ¹ "º"2.0;ˇ/. For all " 2 .0; ˇ/, we put

H" W R n ¹0º ! R; H".p/ WD

8̂<̂
:
R "
p
h".t/ dt; 0 < p < ";

�
R p
�"
h".t/ dt; �" < p < 0;

0; jpj � ":

Note that suppH" � .�"; "/ and H" 2 L1.R/. Since kH"kL1.R/ � khkL1.R/, ¹H"º"
is bounded uniformly in ". For all " 2 .0; ˇ/, the restrictions of H" to R˙ are uni-
formly continuous, so finite limits at p D 0 exist, and differentiable a.e. with derivative
being bounded, since h" 2 L1.RIR/. Furthermore, H" has a jump at the origin of sizeR "
�"
h".t/ dt D 1. Next, we set

(8.6)

U" W R
2
n†! C2�2;

U".x/ WD

´
expŒi.� � n/B�;�;�.P†.x//H".P?.x//�; x 2 †" n†;

I2; x 2 R2 n†";

where the mappings P† and P? are defined as in (3.11) and (3.9), respectively. The matrix
functions U" are bounded, uniformly in ", and uniformly continuous in �˙, with a jump
discontinuity across †, i.e., for all x† 2 †, we have

(8.7) U".x
C

† / WD lim
y!x†
y2�C

U".y/ D exp
h
�i
� Z 0

�"

h".t/ dt
�
.� � n.x†//B�;�;�.x†/

i
and

(8.8) U".x
�
†/ WD lim

y!x†
y2��

U".y/ D exp
h
i
� Z "

0

h".t/ dt
�
.� � n.x†//B�;�;�.x†/

i
:

Finally, we put

(8.9)  " D  ";C ˚  ";� WD U" 2 L
2.R2IC2/:

It is immediate to see, by the dominated convergence theorem, that

(8.10)  "
"!0
���!  in L2.R2IC2/;

since  " �  D .U" � I/ , U" 2 L
1.R2IC2�2/ with a uniform bound in " 2 .0; ˇ/,

supp.U" � I/ � †", and j†"j ! 0 as "! 0.
We show now that  " 2 dom E�;�;�I" D H 1.R2IC2/ for all " 2 .0; ˇ/. To do so,

we verify that  ";˙ 2 H 1.�˙IC2/ and that T D
C  ";C D T D

�  ";� 2 H
1=2.†IC2/. Let


 WR=`Z!†�R2 be, as always, a smooth arc-length parametrization of†with positive
orientation and

A 2 C1.R=`ZIC2�2/; A.s/ WD i.� � n.
.s///B�;�;�.
.s//:
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Thus, we may write (8.6) as

(8.11) U".x/ D

´
expŒA.P
 .x//H".P?.x//�; x 2 †" n†;

I2; x 2 R2 n†";

where P
 is defined as in (3.8). For j D 1; 2, supp @jU" � †" and, thanks to the Wilcox
formula, cf. equation (4.1) of [71], for x 2 †" n†, we have

@jU".x/ D

Z 1

0

�
ezA.P
 .x//H".P?.x//@j ŒA.P
 .x//H".P?.x//�

� e.1�z/A.P
 .x//H".P?.x//
�
dz:

Recall that we have set s D P
 .x/ and p D P?.x/. Using (3.10), we obtain

@j ŒA.P
 .x//H".P?.x//� D @sA.s/
.t
 .s//j

1C p�
 .s/
H".p/ � A.s/h".p/.n
 .s//j :

Therefore, we arrive at

@jU".x/ D �A.s/ h".p/.n
 .s//jU".x/(8.12)

CH".p/

Z 1

0

ezA.s/H".p/ @sA.s/
.t
 .s//j

1C p�
 .s/
� e.1�z/A.s/H".p/ dz

D �i.� � n.x//V�;�;�I".x/.n
 .s//jU".x/CRj I".x/;

where

Rj I".x/ WD H".p/

Z 1

0

ezA.s/H".p/ @sA.s/
.t
 .s//j

1C p�
 .s/
� e.1�z/A.s/H".p/ dz:

The matrix-valued functionsRj I" are bounded, uniformly in "2.0;ˇ/, and suppRj I"�†".
We observe that

(8.13) U"; @1U"; @2U" 2 L
1.�˙IC

2�2/:

Since  ˙ 2 H 1.�˙IC2/, we conclude that  ";˙ D U" ˙ 2 H
1.�˙IC2/.

Thanks to Proposition 3.3, T D
C  ";˙ 2 H

1=2.†IC2/ and, thanks to Chapter 4 of [32],
for a.e. x† 2 †,

T D
˙  ";˙.x†/ D lim

r!0

1

jBr .x†/j

Z
�˙\Br .x†/

 ".y/ dy

D lim
r!0

1

jBr .x†/j

Z
�˙\Br .x†/

U".y/ .y/ dyI

similarly, we have

U".x
˙
† /T

D
˙  ˙.x†/ D lim

r!0

1

jBr .x†/j

Z
�˙\Br .x†/

U".x
˙
† / .y/ dy:

Since U" is continuous on x�C and x��, respectively, we get

T D
˙  ";˙.x†/ D U".x

˙
† / T D

˙  ˙.x†/:

Taking (8.5), (8.7) and (8.8) into account, this yields T D
C  ";CD T D

�  ";� 2H
1=2.†IC2/,

and so we conclude that  " 2 H 1.R2IC2/ for all " 2 .0; ˇ/.
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To finish the proof, it remains to show that lim"!0E�;�;�I" "DD�;�;� inL2.R2IC2/.
Since E�;�;�I" " �D�;�;� 2 L

2.R2IC2/, it suffices to show that lim"!0.E�;�;�I" " �

D�;�;� /˙ D 0 in L2.�˙IC2/. With an explicit computation, we have that

.E�;�;�I" " �D�;�;� /˙ D �i� � r.U" ˙/C V�;�;�I" ";˙ C i� � r ˙(8.14)

D �i

2X
jD1

�j Œ.@jU"/ ˙ C .U" � I2/@j ˙�C V�;�;�I" ";˙:

Applying (8.12) together with (3.12), we get

�i

2X
jD1

�j .@jU"/ ˙ D �i

2X
jD1

�j Œ�i.� � n/V�;�;�I" nj U" ˙ CRj I" ˙�(8.15)

D �.� � n/.� � n/V�;�;�I"U" ˙ � i

2X
jD1

�jRj I" ˙

D �V�;�;�I" ";˙ CQ" ˙;

where Q" 2 L1.R2IC2�2/, with the L1-norm uniformly bounded in " 2 .0; ˇ/, and
suppQ" � †". According to (8.14) and (8.15), we get

.E�;�;�I" " �D�;�;� /˙(8.16)

D �i

2X
jD1

�j Œ.U" � I2/@j ˙�CQ" ˙
"!0
���! 0 in L2.�˙IC2/;

by the dominated convergence, since  ˙ 2 H 1.�˙IC2/, U" � I2 and Q" are uniformly
bounded in " 2 .0; ˇ/ and supported on †", and lim"!0j†"j D 0.

Putting (8.16) and (8.10) together, we obtain (8.1).

The problem of finding regular approximations for D�;�;�;! with �;�;�;! 2R reduces
to the problem of finding the approximations when ! D 0. Indeed, according to The-
orem 2.1, there exist X 2 R n ¹0º and a unitary operator Uz , where z 2 C, with jzj D 1,
is a parameter that may be calculated in terms of �; �; �; !, such that U NzD�;�;�;!Uz D

DX�;X�;X�. We will assume thatX2d > �4, because ifX2d < �4, then, employing The-
orem 2.1 again, we can sandwich DX�;X�;X� by another unitary transform to get D Q�;Q�;Q�
such that Qd D Q�2 � Q�2 � Q�2 >�4. Now, using Corollary 2.10, we find a family of approx-
imating operators E�0;� 0;�0I" such that E�0;� 0;�0I"!DX�;X�;X� in the strong resolvent sense
as "! 0. If, for a 2 R, we define the unitary multiplication operator

WaI" WD

8̂<̂
:

I2 in �C n†";
exp

�
ia
R P?. � /

�"
h".t/ dt

�
I2 in †";

eiaI2 in �� n†":

then, with the help of (3.10), we get

W �aI" E�;�;�I"WaI" D E�;�;�I" C a.� � n/�†" h";



General ı-shell interactions for the two-dimensional Dirac operator 1483

where �†" is the indicator function of †". Note that lim"!0W� arg zI" D U Nz in the strong
operator topology. Recalling that U�1z D U Nz D U

�
z , we conclude that

E�0;� 0;�0I" � arg z.� � n/ �†" h"
D W �� arg zI" E�0;� 0;�0I"W� arg zI" ! Uz DX�;X�;X� U Nz D D�;�;�;! ;

in the strong resolvent sense as "! 0.

Proof of Corollary 2.10. The proof is immediate from Theorem 2.6 and Lemma A.2.

8.1. Alternative approximations for purely magnetic interaction

If O� D O� D 0, and O� 2 R n ¹˙2º, then R
0;0; O�
D diag..2 � O�/=.2C O�/; .2C O�/=.2 � O�//

is constant along†. This makes it possible to construct an alternative sequence of approx-
imations in a remarkably direct way without employing “parallel coordinates” .s; p/.
The strategy will be to apply the method of [42, 43] that works for any type of one-
dimensional ı-interaction. We will restrict ourselves to the case O� 2 .�2;2/, the remaining
cases, including their approximations, may be recovered using unitary equivalences, cf.
Remark 2.9. Let us start with introducing a bounded operator W WD ��CI2 C ���R0;0; O�
in L2.R2IC2/.

Lemma 8.1. We have D0;0; O� DW.�i� � r/W , where the operator at the right-hand side
is defined on ¹ 2 L2.R2IC2/ j W 2 H 1.R2IC2/º.

Proof. Since �i� � r is self-adjoint on H 1.R2IC2/, W� D W , and W together with
W�1 are bounded, W.�i� � r/W is also self-adjoint. Therefore, it is sufficient to show
that D0;0; O� � W.�i� � r/W . Take  �  C ˚  � 2 dom.D0;0; O�/ � H

1.�CIC2/ ˚

H 1.��IC2/. Then T D
C .W /C D T D

C  C and, by (8.2), T D
� .W /� D R0;0; O�T D

�  � D

T D
C  C. Hence, W 2 H 1.R2IC2/, i.e.,  2 dom.W.�i� � r/W/. Finally, using the

fact that for j D 1; 2, R0;0; O� �jR0;0; O� D �j , we get

W� � rW D ��C� � r C C ���R0;0; O�� R0;0; O� � r �

D � � r C ˚ � � r � D iD0;0; O� :

Next, let .g"/">0 be the standard two-dimensional mollifiers, i.e.,

g".x/ WD
1

"2
g
�x
"

�
; with g 2 C1.R2I Œ0;C1//;

such that
supp.g/ � B.0; 1/ and

Z
B.0;1/

g D 1:

Note that we may write W D exp.������3/ with � WD 2 arctanh O�=2, because R0;0; O� D
exp.���3/. This suggests to introduce W" WD exp.���"���3/, where �"�� WD g" � ��� .
Then we have the following result.

Proposition 8.2. Let O� 2 .�2; 2/ be constant and � D 2 arctanh O�=2. Then

(8.17) D0 C �.�2;��1/ � r�
"
��

"!0
���! D0;0; O�

in the strong resolvent sense.



B. Cassano, V. Lotoreichik, A. Mas and M. Tušek 1484

Proof. First, using Lemma 8.1, one shows that the self-adjoint operator D"
�
WDW".�i� �

r/W" defined on ¹ 2 L2.R2IC2/ j W" 2 H
1.R2IC2/º converges to D0;0; O� in the

strong graph limit sense as "! 0; for details, see the proof of Theorem 2 of [42]. This
implies also the strong resolvent convergence. Since dom.D"

�
/ D W�1" H 1.R2IC2/ and

both W" and W�1" , viewed as matrix-valued functions, are smooth and bounded (including
their derivatives), domD"

�
D H 1.R2IC2/. Next, for any  2 dom.D"

�
/, we have

D"
� D W".�i� � r/W" D �iW"�W" � r C i�W"�W" � r�

"
��
�3 

D �i� � r C i�� � r�"���3 ;

where we used the observation that W"�W" D � in the last equality. Therefore, D"
�
D

D0 C �.�2;��1/ � r�
"
��

.

Note that in the sense of distributions,

lim
"!0
r�"�� D lim

"!0
g" � r��� D ı0 � r��� D r��� D n ı†;

so the distributional limit as "! 0 of the potential in (8.17) is �.� � t/, and not O�.� � t/.

9. Final remark: higher dimensions

We conclude the paper with a discussion on a possible generalization of our results to
higher dimensional cases.

It is possible to define an analogue of the magnetic interaction in higher dimensions.
This is not immediate, because the tangent unit vector is not uniquely defined. However,
since � � t D i.� � n/�3, see (3.13), this issue may be overcome. We rewrite the formal
expression for (1.3) as follows:

D�;�;�;! D D0 C
�
�I2 C ��3 C �i.� � n/�3 C !.� � n/

�
ı†:

PutN WD 2b
nC1
2 c, where b�c denotes the integer part of a real number. It is well known

(see, e.g., [38, 44]) that there exist Hermitian matrices ˛1; : : : ; ˛n; ˛nC1 2 CN�N that
satisfy the anticommutation relations

j̨ ˛k C ˛k j̨ D 2ıj;k IN ; 1 � j; k � nC 1;

where ıj;k stands for the Kronecker delta. The Dirac differential expression with a ı-shell
interaction in Rn acts on functions  WRn ! CN as follows:

D
Œn�

�;�;�;!
WD �i˛ � r C

�
�IN C �˛nC1 C �i.˛ � n/˛nC1 C !.˛ � n/

�
ı†;

where ˛ � r WD
Pn
jD1 j̨ @j . In particular, we define the Dirac differential expression in R3

with a ı-shell interaction as follows: denoting ˇ D ˛4,

D
Œ3�

�;�;�;!
D �i˛ � r Cmˇ C

�
�I4 C �ˇ C �i.˛ � n/ˇ C !.˛ � n/

�
ı†:

Adopting the terminology used for the potentials, we will call the interaction �i.˛ � n/ˇ ı†
the anomalous-magnetic ı-shell interaction.
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We point out that when we were finishing this work, we learnt that the three dimen-
sional case was being considered in [18]. In there, the author introduces the ı-shell inter-
action corresponding to the differential expression DŒ3�

0 C .�
5 C i�.˛ � n/ˇ/ı†, for
�; � 2 R and 
5 WD �i˛1˛2˛3. Using the strategy developed in [4], that is, based on
fundamental solutions, in Section 6 of [18] the author shows some results which, in the
case � D � D � D 0, agree with our Theorems 2.2, 2.3 and (the statements about self-
adjointness in) 2.5. It is worth mentioning that his approach also works on surfaces †
with low regularity. In this direction, see also [62], where general local interactions are
considered, although no explicit reference to the anomalous magnetic potential is made.

A. Lemmata on exponential matrices

Let t D .t1; t2/ be a unit vector and let n WD .t2;�t1/. Using the shorthand notation (1.4),
for �; �; � 2 R, let us consider the Hermitian matrix

(A.1) B�;�;� WD �I2 C ��3 C �.� � t/:

For O�; O�; O� 2 R such that Od WD O�2 � O�2 � O�2 ¤ �4, put

(A.2) R
O�; O�; O�
WD

4

4C Od

�4 � Od
4

I2 C i O�.� � n/C O�.� � t/ � O��3
�
:

In this appendix, we address the following questions:

(i) Given �; �; � 2 R, is it possible to find O�; O�; O� 2 R such that Od ¤ �4 and

expŒi.� � n/B�;�;�� D R O�; O�; O� ‹

(ii) Is this correspondence bijective?
Similar questions were already considered in the appendix of [69].

The following lemma gives an answer to question (i).

Lemma A.1. Let �; �; � 2 R, d WD �2 � �2 � �2, and let B�;�;� and R O�; O�; O� be given
by (A.1) and (A.2), respectively. Let O�; O�; O� 2 R be such that Od D O�2 � O�2 � O�2 ¤ �4.
Then R O�; O�; O� D expŒi.� � n/B�;�;�� if and only if one of the following holds:

(A.3)

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
d > 0; d ¤ .2k C 1/2�2 for all k 2 N0 and . O�; O�; O�/ D

tan.
p
d=2/

p
d=2

.�; �; �/;

d D 0 and . O�; O�; O�/ D .�; �; �/;

d < 0 and . O�; O�; O�/ D
tanh.

p
�d=2/

p
�d=2

.�; �; �/:

If d D .2k0 C 1/
2�2, for k0 2 N0, then there are no O�; O�; O� 2 R such that R O�; O�; O� D

expŒi.� � n/B�;�;��.

Proof. Denoting T D t1 C i t2 for t D .t1; t2/, we get

(A.4) i.� � n/B�;�;� D
�
�� .� � �/ xT

.� C �/T �

�
:
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The exponential of a general 2 � 2 matrix A is

(A.5) expŒA� D exp
hTrA
2

i�
cos � I2 C

sin �
�

�
A �

TrA
2

I2
��
;

with

� D

r
detA �

�TrA
2

�2
2 C;

considering the principal branch of the square root, and where .sin �/=� is intended to be
equal to 1 when � D 0, see, e.g., [19] and the appendix of [69]. Plugging (A.4) into (A.5),
we get

expŒi.� � n/B�;�;�� D cos
p
d I2 C

sin
p
d

p
d

i.� � n/B�;�;�

D cos
p
d I2 C

sin
p
d

p
d

.i.� � n/�C �.� � t/ � ��3/:

Since the matrices ¹I2; �3; � � t; � � nº are a basis of the Hermitian 2 � 2 matrices, we
have R O�; O�; O� D expŒi.� � n/B�;�;�� if and only if the coefficients with respect to this basis
are equal, i.e.,

cos
p
d D

4 � Od

4C Od
;(A.6)

sin
p
d

p
d

.�; �; �/ D
4

4C Od
. O�; O�; O�/:(A.7)

For d D .2k0C 1/2�2, with k0 2N0, (A.6) has no solution Od 2 R n ¹�4º. Consequently,
there are no O�; O�; O� 2 R such that R O�; O�; O� D expŒi.� � n/B�;�;��. We consider now d 2 R

such that d ¤ .2kC 1/2�2, for all k 2N0. Dividing (A.7) by 1C cos
p
d and using (A.6),

we get
sin
p
d

1C cos
p
d

1
p
d=2

.�; �; �/ D . O�; O�; O�/:

We conclude the proof by applying the elementary identity

tan
�

2
D

sin �
1C cos �

for all � 2 C n ¹.2k C 1/� j k 2 Zº;

and by recalling that, for all d < 0, we have

tan
p
d=2

p
d=2

D
tanh
p
�d=2

p
�d=2

�

By Lemma A.1, we have that the function d WD �2 � �2 � �2 7! Od D O�2 � O�2 � O�2

maps d 2 Œ0;C1/ to Od 2 Œ0;C1/ and d 2 .�1; 0/ to Od 2 .�4; 0/. Consequently, (ii)
has a negative answer: the correspondence between .�; �; �/ and . O�; O�; O�/ is not surjective
since one can not find .�; �; �/ 2 R3 such that R O�; O�; O� D expŒi.� � n/B�;�;�� when O�; O�; O�
are such that Od < �4. Moreover, the correspondence is not injective when d � 0, as the
following lemma shows.
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Lemma A.2. Let O�; O�; O� 2 R be such that Od WD O�2 � O�2 � O�2 > �4, and let R O�; O�; O� be as
in (A.2). Let �; �; � 2 R, d WD �2 � �2 � �2 and let B�;�;� be as in (A.1). Then R O�; O�; O� D
expŒi.� � n/B�;�;�� or equivalently (A.3) holds if and only if one of the following holds:

� Od > 0 and .�; �; �/ D
arctan

p
Od=2C k�p
Od=2

. O�; O�; O�/ for k 2 Z;(A.8)

� Od D 0 and .�; �; �/ D . O�; O�; O�/I for Od D O� D O� D O� D 0; also any �; �; � 2 R

such that d D .2k0�/2 for k0 2 N; are admissible,

� �4 < Od < 0 and .�; �; �/ D
arctanh

p
� Od=2p

� Od=2
. O�; O�; O�/:

Proof. If Od � 0, then, by (A.3), we have d � 0 and Od D 4 tan2.
p
d=2/, that gives

(A.9) tan

p
d

2
D

p
Od

2
;

p
d

2
D arctan

p
Od

2
C k�; for k 2 Z:

If
p
d=2 D k0� , for some k0 2 N, then (A.3) is true if and only if O� D O� D O� D 0.

If
p
d=2 D 0, then (A.3) gives . O�; O�; O�/ D .�; �; �/. If

p
d=2 ¤ k� , for all k 2 N0, we

can divide by tan
p
d=2 in (A.3). Using (A.9), this yields (A.8). The proof of the case

�4 < Od < 0 is analogous and even simpler, so it will be omitted.

B. Magnetic field

Throughout this section � is assumed to be a real constant. The term �.� � t/ı† in (1.3)
corresponds to the singular vector potential A† WD �.t1ı†; t2ı†/ supported on †. Note
that this is just a formal expression – in fact, this term is reflected in the transmission condi-
tion across†. We will introduce the magnetic field by the formula B† D @1A2 � @2A1 D
�.@1.t2ı†/ � @2.t1ı†//, i.e., exactly in the same manner as in a regular case. Here tiı†
is the simple layer and the derivatives are understood in the sense of distributions. Since
.n1; n2/ D .t2;�t1/, we obtain

hB†; 'iD 0.R2/;D.R2/ D ��
�
hn1ı†; @1'iD 0.R2/;D.R2/ C hn2ı†; @2'iD 0.R2/;D.R2/

�
D ��

Z
†

n � r' d� D h�@nı†; 'iD 0.R2/;D.R2/;

for all ' 2 D.R2/, where @n ı† stands for the double layer distribution, cf. [70].
Alternatively, thanks to the divergence theorem, we may write

hB†; 'iD 0.R2/;D.R2/ D ��

Z
�

�' dx D h���.��/; 'iD 0.R2/;D.R2/:

If, for " 2 .0; ˇ/, we define the vector potential

(B.1) A" W R2 ! R2; A".x/ WD

´
�h".p/t.x†/ for x D x† C pn.x†/ 2 †";
0 for x 2 R2 n†";
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then the corresponding magnetic field B" reads

B".x/ D @1A";2.x/ � @2A";1.x/(B.2)

D

´
�h".p/�.s/
1Cp�.s/

C �h0".p/ for all x D 
.s/C pn
 .s/ 2 †";
0 for x 2 R2 n†";

and we have the following result.

Proposition B.1. Let A" and B" be defined as in (B.1) and (B.2), respectively. Then

(i) A"
"!0
���! �tı† D A† in the sense of distributions,

(ii) B"
"!0
���! �@n ı† D B† in the sense of distributions.

Proof. Let 
 be an arc-length parametrization of†, as in Section 3.1. In order to prove (i),
let ' 2 D.R2/. Thanks to (3.7),

lim
"!0

Z
R2

A".x/'.x/ dx D lim
"!0

Z
†"

A".x/'.x/ dx

D lim
"!0

Z `

0

Z "

�"

�h".p/ t
 .s/'.
.s/C pn
 .s//.1C p�
 .s// dpds

D lim
"!0

Z `

0

Z 1

�1

�h.q/ t
 .s/'.
.s/C "qn
 .s//.1C "q�
 .s// dqds

D

Z `

0

� t
 .s/'.
.s// ds D
Z
†

� t.x†/'.x†/ dx† D h� tı†; 'iD 0.R2/;D.R2/:

The second assertion follows from (i) combined with the continuity of distributional
derivatives with respect to the convergence on D 0.R2/.

Note that the two-dimensional Dirac operator with the magnetic field associated with
the vector potential A" is just E0;0;�I". By Theorem 2.6, E0;0;�I" converges to D0;0; O� in
the strong resolvent sense, where O� is always (except for the trivial case � D 0) different
from �. On the other hand, we have just shown that the formal limit of E0;0;�I" is D0;0;�.
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grants MTM2017-83499-P and MTM2017-84214-C2-1-P (Spain) funded by MCIN/AEI/
10.13039/501100011033 and by “ERDF A way of making Europe”, and AGAUR grants
2017-SGR-358, 2017-SGR-1392 (Catalunya). A. M. is member of the Barcelona Graduate
School of Mathematics, supported by MINECO grant MDM-2014-0445. M. T. is sup-
ported by the project CZ.02.1.01/0.0/0.0/16_019/0000778 from the European Regional
Development Fund.



General ı-shell interactions for the two-dimensional Dirac operator 1489

References

[1] Abate, M. and Tovena, F.: Curves and surfaces. Unitext 55, Springer, Milan, 2012.

[2] Albeverio, S., Gesztesy, F., Høegh-Krohn, R. and Holden, H.: Solvable models in quantum
mechanics. Second edition. AMS Chelsea Publishing, Providence, RI, 2005.

[3] Antunes, P. R. S., Benguria, R. D., Lotoreichik, V. and Ourmières-Bonafos, T.: A variational
formulation for Dirac operators in bounded domains. Applications to spectral geometric
inequalities. Comm. Math. Phys. 386 (2021), no. 2, 781–818.

[4] Arrizabalaga, N., Mas, A. and Vega, L.: Shell interactions for Dirac operators. J. Math. Pures
Appl. (9) 102 (2014), no. 4, 617–639.

[5] Arrizabalaga, N., Mas, A. and Vega, L.: Shell interactions for Dirac operators: on the point
spectrum and the confinement. SIAM J. Math. Anal. 47 (2015), no. 2, 1044–1069.

[6] Arrizabalaga, N., Mas, A. and Vega, L.: An isoperimetric-type inequality for electrostatic shell
interactions for Dirac operators. Comm. Math. Phys. 344 (2016), no. 2, 483–505.

[7] Behrndt, J., Exner, P., Holzmann, M. and Lotoreichik, V.: Approximation of Schrödinger
operators with ı-interactions supported on hypersurfaces. Math. Nachr. 290 (2017), no. 8-9,
1215–1248.

[8] Behrndt, J., Exner, P., Holzmann, M. and Lotoreichik, V.: On the spectral properties of Dirac
operators with electrostatic ı-shell interactions. J. Math. Pures Appl. (9) 111 (2018), 47–78.

[9] Behrndt, J., Exner, P., Holzmann, M. and Lotoreichik, V.: On Dirac operators in R3 with
electrostatic and Lorentz scalar ı-shell interactions. Quantum Stud. Math. Found. 6 (2019),
no. 3, 295–314.

[10] Behrndt, J., Hassi, S. and de Snoo, H.: Boundary value problems, Weyl functions, and differ-
ential operators. Monographs in Mathematics 108, Birkhäuser/Springer, Cham, 2020.

[11] Behrndt, J. and Holzmann, M.: On Dirac operators with electrostatic ı-shell interactions of
critical strength. J. Spectr. Theory 10 (2020), no. 1, 147–184.

[12] Behrndt, J., Holzmann, M., Mantile, A. and Posilicano, A.: Limiting absorption principle and
scattering matrix for Dirac operators with ı-shell interactions. J. Math. Phys. 61 (2020), no. 3,
article no. 033504.

[13] Behrndt, J., Holzmann, M. and Mas, A.: Self-adjoint Dirac operators on domains in R3. Ann.
Henri Poincaré 21 (2020), no. 8, 2681–2735.

[14] Behrndt, J., Holzmann, M., Ourmières-Bonafos, T. and Pankrashkin, K.: Two-dimensional
Dirac operators with singular interactions supported on closed curves. J. Funct. Anal. 279
(2020), no. 8, article no. 108700.

[15] Behrndt, J., Langer, M. and Lotoreichik, V.: Schrödinger operators with ı and ı0-potentials
supported on hypersurfaces. Ann. Henri Poincaré 14 (2013), no. 2, 385–423.

[16] Benguria, R. D., Fournais, S., Stockmeyer, E. and Van Den Bosch, H.: Self-adjointness of two-
dimensional Dirac operators on domains. Ann. Henri Poincaré 18 (2017), no. 4, 1371–1383.

[17] Benguria, R. D., Fournais, S., Stockmeyer, E. and Van Den Bosch, H.: Spectral gaps of Dirac
operators describing graphene quantum dots. Math. Phys. Anal. Geom. 20 (2017), no. 2, article
no. 11, 12 pp.

[18] Benhellal, B.: Spectral properties of the Dirac operator coupled with ı-shell interactions. Lett.
Math. Phys. 112 (2022), no. 3, article no. 52, 52 pp.

https://doi.org/10.1007/978-88-470-1941-6
https://doi.org/10.1090/chel/350
https://doi.org/10.1090/chel/350
https://doi.org/10.1007/s00220-021-03959-6
https://doi.org/10.1007/s00220-021-03959-6
https://doi.org/10.1007/s00220-021-03959-6
https://doi.org/10.1016/j.matpur.2013.12.006
https://doi.org/10.1137/14097759X
https://doi.org/10.1137/14097759X
https://doi.org/10.1007/s00220-015-2481-y
https://doi.org/10.1007/s00220-015-2481-y
https://doi.org/10.1002/mana.201500498
https://doi.org/10.1002/mana.201500498
https://doi.org/10.1016/j.matpur.2017.07.018
https://doi.org/10.1016/j.matpur.2017.07.018
https://doi.org/10.1007/s40509-019-00186-6
https://doi.org/10.1007/s40509-019-00186-6
https://doi.org/10.1007/978-3-030-36714-5
https://doi.org/10.1007/978-3-030-36714-5
https://doi.org/10.4171/JST/289
https://doi.org/10.4171/JST/289
https://doi.org/10.1063/1.5123289
https://doi.org/10.1063/1.5123289
https://doi.org/10.1007/s00023-020-00925-1
https://doi.org/10.1016/j.jfa.2020.108700
https://doi.org/10.1016/j.jfa.2020.108700
https://doi.org/10.1007/s00023-012-0189-5
https://doi.org/10.1007/s00023-012-0189-5
https://doi.org/10.1007/s00023-017-0554-5
https://doi.org/10.1007/s00023-017-0554-5
https://doi.org/10.1007/s11040-017-9242-4
https://doi.org/10.1007/s11040-017-9242-4
https://doi.org/10.1007/s11005-022-01544-z


B. Cassano, V. Lotoreichik, A. Mas and M. Tušek 1490

[19] Bernstein, D. S. and So, W.: Some explicit formulas for the matrix exponential. IEEE Trans.
Automat. Control 38 (1993), no. 8, 1228–1232.

[20] Borrelli, W., Carlone, R. and Tentarelli, L.: An overview on the standing waves of nonlinear
Schrödinger and Dirac equations on metric graphs with localized nonlinearity. Symmetry 11
(2019), no. 2, article no. 169, 22pp.

[21] Boussaid, N., D’Ancona, P. and Fanelli, L.: Virial identity and weak dispersion for the mag-
netic Dirac equation. J. Math. Pures Appl. (9) 95 (2011), no. 2, 137–150.

[22] Brasche, J. F., Exner, P., Kuperin, Y. A. and Šeba, P.: Schrödinger operators with singular inter-
actions. J. Math. Anal. Appl. 184 (1994), no. 1, 112–139.

[23] Brüning, J., Geyler, V. and Pankrashkin, K.: Spectra of self-adjoint extensions and applications
to solvable Schrödinger operators. Rev. Math. Phys. 20 (2008), no. 1, 1–70.

[24] Carlone, R., Malamud, M. and Posilicano, A.: On the spectral theory of Gesztesy–Šeba realiz-
ations of 1-D Dirac operators with point interactions on a discrete set. J. Differential Equations
254 (2013), no. 9, 3835–3902.

[25] Cassano, B. and Lotoreichik, V.: Self-adjoint extensions of the two-valley Dirac operator with
discontinuous infinite mass boundary conditions. Oper. Matrices 14 (2020), no. 3, 667–678.

[26] Cassano, B. and Pizzichillo, F.: Self-adjoint extensions for the Dirac operator with Coulomb-
type spherically symmetric potentials. Lett. Math. Phys. 108 (2018), no. 12, 2635–2667.

[27] Cassano, B. and Pizzichillo, F.: Boundary triples for the Dirac operator with Coulomb-type
spherically symmetric perturbations. J. Math. Phys. 60 (2019), no. 4, article no. 041502.

[28] Castro Neto, A., Guinea, F., Peres, N. M., Novoselov, K. S. and Geim, A. K.: The electronic
properties of graphene. Rev. Modern Phys. 81 (2009), 109–162.

[29] Derkach, V. A. and Malamud, M. M.: Generalized resolvents and the boundary value problems
for Hermitian operators with gaps. J. Funct. Anal. 95 (1991), no. 1, 1–95.

[30] Dittrich, J., Exner, P. and Šeba, P.: Dirac operators with a spherically symmetric ı-shell inter-
action. J. Math. Phys. 30 (1989), no. 12, 2875–2882.

[31] Dombey, N. and Calogeracos, A.: Seventy years of the Klein paradox. Phys. Rep. 315 (1999),
41–58.

[32] Evans, L. C. and Gariepy, R. F.: Measure theory and fine properties of functions. Textbooks in
Mathematics, CRC Press, Boca Raton, FL, 2015.

[33] Exner, P.: Leaky quantum graphs: a review. In Analysis on graphs and its applications,
pp. 523–564. Proceedings of Symposia in Pure Mathematics 77, American Mathematical Soci-
ety, Providence, RI, 2008.
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