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applications to geodesics
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Abstract. We revisit certain path-lifting and path-continuation properties of abstract
maps as described in the work of F. Browder and R. Rheindboldt in the 1950s and
1960s, and apply their elegant theory to exponential maps. We obtain thereby a
number of novel results of existence and multiplicity of geodesics joining any two
points of a connected affine manifold, as well as causal geodesics connecting any
two causally related points on a Lorentzian manifold. These results include a gen-
eralization of the well-known Hadamard–Cartan theorem of Riemannian geometry
to the affine manifold context, as well as a new version of the so-called Lorentzian
Hadamard–Cartan theorem using weaker assumptions than global hyperbolicity and
timelike 1-connectedness required in the extant version. We also include a general
description of pseudoconvexity and disprisonment of broad classes of geodesics in
terms of suitable restrictions of the exponential map. The latter description sheds
further light on the relation between pseudoconvexity and disprisonment of a given
such class on the one hand, and geodesic connectedness by members of that class on
the other.

1. Introduction

Countless mathematical questions boil down to the abstract problem of studying when a
suitably defined map F WX ! Y is surjective; and that issue is in turn connected with the
existence of solutions x 2 X of (possibly nonlinear) equations of the form

F.x/ D y:

This viewpoint goes back in systematic form to J. Hadamard [23] in the early 1910s, and a
number of elegant topological tools have been developed to address aspects of that general
problem. Of special interest to us here is the analysis of path-lifting and path-continuation
properties of certain maps by F. Browder and W. Rheinboldt [11, 30] in the 1950s and
1960s. The resulting framework is so flexible that it has been adapted to a vast array of
different problems (see, e.g., [21, 22] and references therein for a recent review with a
number of applications).
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Our goal in this paper is to apply aspects of the Rheinboldt–Browder theory to expo-
nential maps to revisit, in a broad, unified perspective, both the problem of geodesic
connectedness of affine manifolds and the problem of causal geodesic connectedness for
Lorentzian manifolds.

Let .M;r/ be an affine manifold, i.e.,M is a smoothm-dimensional manifold (m� 2)
and r is an affine connection thereon. The problem of (r-)geodesic connectedness is as
follows: If M is connected, can any two points be connected via a geodesic segment?
This problem is especially important for semi-Riemannian manifolds .M; g/ with their
Levi-Civita connection.

Of course, trivial examples – say, like Euclidean spaces minus a point – suffice to show
that the answer is negative in general. Thus, the question is actually under which geomet-
rically natural hypotheses does geodesic connectedness occur. This problem has a com-
pletely satisfactory, well-known general solution for a (connected) geodesically complete
Riemannian manifold via the Hopf–Rinow theorem, in which the existence of minimal
geodesics connecting any two points ofM is established. Moreover, such completeness is
automatic for compact Riemannian manifolds, and hence geodesic connectedness always
occurs for compact Riemannian manifolds. In addition, a classic result by Morse, see The-
orem 13.3 on p. 239 of [28] (with an important addition by Serre [33]), establishes that
any two non-conjugate points on a complete, non-contractible Riemannian manifold can
be connected by infinitely many geodesics (which can be chosen geometrically distinct
according to [34]; see also [15]). Even in the absence of geodesic completeness, however,
the geodesic connectedness of Riemannian manifolds is fairly well-understood [3, 31].

Each and every one of the pleasant features pointed out above changes dramatically
for more general affine manifolds, and even for indefinite semi-Riemannian manifolds,
where no analogue of the Hopf–Rinow theorem exists. A famous example by Bates [4]
has shown that even complete and compact affine manifolds may fail to be geodesi-
cally connected. Even if one only considers the more restricted (but greatly important)
class of Lorentzian manifolds, de Sitter and anti-de Sitter spacetimes provide well-known
examples of geodesically complete, maximally symmetric Lorentz manifolds which are
not geodesically connected. The underlying manifolds in these examples, however, are
not compact. Yet, compact analytic Lorentz tori can still be found which also fail to be
geodesically connected, Example 7 of [9]. These examples, in turn, are not geodesically
complete. Indeed, to the best of our knowledge it remains an open problem to ascertain
whether a connected Lorentzian manifold which is both compact and geodesically com-
plete is geodesically connected. (Recall that even for Lorentzian manifolds compactness
does not imply geodesic completeness.)

Many techniques have been devised to study the problem of geodesic connectedness
on Lorentzian manifolds. These include powerful variational tools [10, 14, 20, 25], exis-
tence of convex functions [1], methods from group theory [12], topological techniques
based on Brouwer’s degree (see [19] and references therein), and more direct but restricted
methods based on a (partial) integration of the geodesic equations (see, for instance, [13]).

In the special case of Lorentzian manifolds, a related problem is that of causal geo-
desic connectedness: if two points in a Lorentzian manifold .M; g/ can be connected by
a causal curve, then when can they be connected by a causal geodesic? This problem is
of particular interest in gravitational physics, since the geometry of Lorentzian manifolds
is at the heart of the general-relativistic description of gravity. In this context, signals
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between events in spacetime travel along causal curves therein, and causal geodesics then
represent either light rays or free-falling observers under no influence other than that of
the gravitational field.

Just like in the Riemannian case, a general and completely satisfactory solution to
the problem of causal geodesic connectedness occurs only when the Lorentzian manifold
.M; g/ is a globally hyperbolic spacetime [2, 6, 32]. Indeed, the solution here is a perfect
Lorentzian analogue of the complete Riemannian case: if p; q 2 M are connected by a
causal curve, then they are connected by a maximal causal geodesic. The idea of the proof
is purely variational in nature: global hyperbolicity implies compactness of a suitably
defined space of causal curves, and a concomitant upper semicontinuity of the Lorentzian
length functional does the rest.

Our approach here has been partially inspired by the work of J. Beem and P. Parker,
see [5, 8, 9], who give conditions for geodesic connectedness in terms of disprisonment
and pseudoconvexity of families of geodesics. While variational methods usually need
functionals built out of a metric and hence apply mostly to the semi-Riemannian setting,
these geometric conditions also make sense in the purely affine case. In addition, while
geodesic completeness is often needed in other approaches, in the Beem–Parker approach
(as well as in our own results here) the completeness assumption is largely irrelevant.
This presents a great advantage especially in the Lorentzian case, where most physically
interesting examples are not complete.

The key observation we make is that the Beem–Parker approach can be taken a step
further by reinterpreting the purely geometric conditions of pseudoconvexity and dispris-
onment – even when they are valid only for restricted classes of geodesics such as timelike
or null geodesics on an indefinite semi-Riemannian manifold – in terms of analytic prop-
erties of the exponential map expWD � TM !M on the underlying affine manifold. This
idea was hinted at in [9], and systematically used and generalized in a recent paper [16]
by two of us (IPCS and JLF) to get a geodesic connectedness result. We greatly expand
on that approach here, and in particular show how pseudoconvexity and disprisonment for
certain subfamilies of geodesics – such as the causal geodesics in the semi-Riemannian
context – can be reinterpreted as the condition making (suitable restrictions of) the expo-
nential map proper (i.e., inverse images of compact sets are compact). As it turns out,
properness of maps is primary among a number of properties ensuring the required path-
lifting/path-continuation properties in the Rheinboldt–Browder theory, a fact which can
then be used to our advantage. (The approaches in [9,16], however, dealt indiscriminately
with all geodesics.)

Apart from properness of the exponential maps, we also discuss here a few weaker
continuation conditions that still yield the existence of connecting geodesic/causal geo-
desic, where appropriate, and in some circumstances also provide multiplicity statements,
i.e., information about how many (inequivalent) geodesic segments of a certain type are
there connecting two points. In fact, we are able to provide here both an affine gener-
alization and a Lorentzian version of the well-known Hadamard–Cartan theorem from
Riemannian geometry (cf. Corollary 4.6 and Theorem 6.1 below).

The rest of the paper is organized as follows.
In Section 2 we discuss some of the key results and notation we shall use in the sub-

sequent sections. We present a short discussion of the Rheinboldt–Browder theory for
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the benefit of those unfamiliar with the theme. Our presentation is focused only on those
results germane to us here, referring to the original references for proofs.

In Section 3 we introduce an abstract description of pseudoconvexity and disprison-
ment properties for rather broad classes C of geodesics, exploring its announced relation
with properness of the exponential map. This is done via a suitably defined set of vectors
– which we call C there – and the takeaway is summarized in Theorem 3.5.

In Section 4 we apply the results and notions of Section 2 to show that a suitable
restriction of the exponential map is a covering map. That, in turn, is used to reobtain as a
particular consequence the main theorem in [16] (Theorem 4.2 in this paper). On the other
hand, a specialized application of the latter result also yields a true generalization of the
Hadamard–Cartan theorem (Corollary 4.6), as well as a few subsidiary results.

In Section 5 we narrow our focus to Lorentzian manifolds, introducing a number of
conditions based on the Rheinboldt–Browder theory of Section 2, culminating in Theo-
rem 5.5 and its corollaries.

Finally, in Section 6 we present a new Lorentzian version of the Hadamard–Cartan the-
orem (cf. Theorem 6.1) which assumes neither global hyperbolicity nor 1-connectedness
like the previous version in [6], and discuss briefly the placement of causally pseudocon-
vex and disprisoning spacetimes in the causal ladder [26, 27] (cf. Corollary 6.5).

2. Technical preliminaries

Our purpose in this section is twofold. First, to lay down most of the terminology and
notation we will use for the rest of the paper.

Second, we wish to describe a slightly abstract description of path-lifting and contin-
uation properties of maps between Hausdorff topological spaces, as put forth especially
in [11,22,30]. This approach provides some generalizations of standard facts in the theory
of covering spaces. Its importance for us lies in that it gives simple but elegant sufficient
conditions for a map to be onto, and in some situations indeed a covering map. These
notions will later be applied to the exponential map.

Some features of this general framework have been adapted to, and found many appli-
cations in, analytic and geometric problems (see, e.g., [22], and also [21] for a recent
review with abundant references). Since its details may be unfamiliar to some geometers,
we have decided to include a short account of those key points relevant to this paper.

Throughout this section, letX;Y denote arbitrarily fixed Hausdorff topological spaces,
and let F WX ! Y be a continuous map between them. Following [30], P .X/ (respec-
tively, P .Y /) denotes the set of all continuous paths ˛W Œ0;1�!X (respectively, Y ). (How-
ever, when applying the underlying topological theory specifically to smooth manifolds
later on, we shall denote the latter by M;N rather than X; Y to emphasize the context.)

2.1. Path-lifting and extension properties of maps

Some of the definitions and proofs below can be found in [11, 16, 22, 30]. Accordingly,
we shall refer the reader to the relevant portions of those papers whenever appropriate,
and present proofs only when they are not (to the best of our knowledge) to be found
elsewhere.
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Definition 2.1 ([30], Definition 2.3). Let a set P �P .Y / be given. We say that F WX!Y

has the path-lifting property for P if for any ˛ 2 P and any x0 2 F �1.˛.0//, there exists
a path ˛ 2 P .X/ such that

˛.0/ D x0 and F ı ˛ D ˛:

Following standard terminology, we refer to ˛ as a lift of ˛ through F (starting at x0).

Of course, if F WX ! Y has the path-lifting property for a set P � P .Y /, then it also
has the path-lifting property for any P 0 � P .

Recall that F WX ! Y is a covering map if it is onto and any y 2 Y has an evenly
covered neighborhood V 3 y, i.e., F �1.V / � X is a disjoint union of open sets restricted
to each of which F is a homeomorphism onto V . It is a basic property in the theory
of covering spaces that if F is a covering map, then it has the path-lifting property for
P D P .Y /, and hence to any of its subsets. The distinction of Rheinboldt’s approach is
both that this property can be weakened to proper subsets of P .Y /, and also that he gave
a very important characterization of path-lifting in terms of the following key definition.

Definition 2.2 ([30], Definition 2.2). Let a set P �P .Y / be given. We say that F WX!Y

has the continuation property for P if for any ˛ 2 P , and for any continuous function
˛W Œ0; b/ � Œ0; 1�! X such that

F ı ˛ D ˛ jŒ0;b/;

there is a sequence .tk/k2N in Œ0; b/ converging to b for which the sequence .˛.tk//k2N

converges in X .

In these terms, the following important characterization of the path-lifting property,
valid for local homeomorphisms, can be given.

Proposition 2.3 ([30], Theorem 2.4). Let P �P .Y /. A local homeomorphism F WX!Y

has the path-lifting property for P if and only if it has the continuation property for P .

It is in particular clear that a covering map F WX! Y has both the path-lifting property
and the path-continuation property for any P � P .Y /.

The importance of the above discussion becomes apparent if we consider a general
(maybe nonlinear) equation of the general form

(2.1) F.x/ D y0

for a given y0 2 Y . In this case the existence of solutions x 2 X of (2.1) is related to the
surjectivity ofF , and it becomes important to give suitable criteria for this. Following [22],
we say that Y is P -connected for P �P .Y / if any two points on Y can be connected by a
path in P ; actually, the authors of [22] add the requirement that for any path ˛W Œ0; 1�! Y

in P , the reverse path ˛�1W t 2 Œ0; 1� 7! ˛.1 � t / 2 Y also belongs to P (in that paper,
this is a technical condition we shall not use here, and therefore we omit it). It is clear that
we have the following nice criterion for the surjectivity of F : If Y is P -connected and
F WX! Y has the path-lifting property forP , then F is onto. By virtue of Proposition 2.3,
in the case when F WX ! Y is a local homeomorphism, the latter criterion can be restated
as follows.
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Proposition 2.4. If Y is P -connected and the local homeomorphism F WX ! Y has the
continuation property for P , then F is onto.

2.2. Continuation properties for manifolds

Here and hereafter, (smooth) manifold means a real, C1, finite-dimensional, Hausdorff,
second-countable manifold. When dealing with these manifolds – our almost exclusive
interest later in this paper – stronger results can be obtained. Let N;M be smooth mani-
folds of the same (finite) dimension and let F WN !M be a smooth map. It is convenient
to consider the collection of curves given by

(2.2) P D P1.M/ WD
®
˛ 2 P .M/ W ˛ jŒ0;1/ is piecewise smooth

¯
:

We shall make use of the following well-known result.

Lemma 2.5 (Theorem 7.28 of [29]). Let N and M be semi-Riemannian manifolds, and
let F WN ! M be a local isometry. Assume that M is connected and that, given any
geodesic � W Œ0; 1�! M and any point p 2 N such that F.p/ D �.0/, there exists a lift
of � through F starting at p. Then F is a smooth (semi-Riemannian) covering map.

Proposition 2.6. LetN andM be smooth manifolds withM connected, and letF WN!M
be a local diffeomorphism with the continuation property for P1.M/ (as defined in (2.2)).
Then F is a smooth covering map.

Proof. Let h be any Riemann metric onM , and consider the pullback h WD F �h. Since F
is a local diffeomorphism, this is also a well-defined Riemannian metric onN with respect
to which F W .N; h/! .M; h/ becomes a local isometry. Any h-geodesic � W Œ0; 1�!M is
an element of P1.M/, and for any point p 2 N such that F.p/D �.0/, the continuation
property of F for P1.M/ ensures that there exists a lift � W Œ0; 1�! N of � through F
starting at p by Proposition 2.3; since F is a local isometry this lift is uniquely defined and
an h-geodesic. Lemma 2.5 now yields that F is a smooth covering map, as desired.

Remark 2.7. Alternatively, it is also possible at the cost of few more definitions to estab-
lish Proposition 2.6 by adapting Theorem 2.6 of [22], but we shall not pursue the details
here.

Recall that a map F WX ! Y between two topological spaces X and Y is proper if
the inverse images of compact sets in Y are compact in X . The next result is an imme-
diate application of Theorem 7 in [11], by recalling that a smooth proper map between
manifolds is in particular closed, i.e., it maps closed sets onto closed sets (cf. also Propo-
sition 4.6 of [24]).

Proposition 2.8. Let N and M be smooth manifolds, and let F WN ! M be a smooth
local diffeomorphism. If M is connected and F is proper, then F is a covering map, and
moreover, the inverse image under F of each point of M is a finite set.

3. Pseudoconvexity and disprisonment via exponential maps

Throughout the rest of this paper we take .M;r/ to be a connected affine manifold with
dimension dimM � 2 and r is an affine connection thereon. In dealing with geodesics,
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there is no loss of generality in assuming r is torsion-free, since the geodesic equation
only depends on its symmetric part. The domain I � R of a geodesic  W I !M may be
an open, closed or half-closed non-empty interval unless specified, but in case I D Œa; b�
is compact, we often refer to  as a geodesic segment, with endpoints .a/; .b/.

As indicated in the introduction, we wish to consider the problem of geodesic con-
nectedness by geodesics in a suitable, maybe proper subcollection C of all the geodesics
on .M;r/. Such a restriction to a suitable subclass is especially important when we par-
ticularize to a semi-Riemannian manifold .M; g/ (with its Levi-Civita connection) of
indefinite signature. We assume the reader is familiar with at least the basic aspects of
these. Our main reference for facts about semi-Riemannian manifolds is O’Neill’s classic
text [29].

Recall that on a semi-Riemannian manifold .M;g/, we have three distinguished classes
of vectors v 2 TM : timelike when g.v; v/ < 0, null or lightlike if v ¤ 0 and g.v; v/ D 0,
and spacelike if either v D 0 or g.v; v/ > 0. The vector v is said to be causal (or non-
spacelike) if it is either null or timelike. This general classification is usually referred to
as the causal character of vectors. This notion can be extended to smooth curves and
vector fields on M in a natural way: the curve/vector field is said to be timelike (respec-
tively, null, causal, spacelike) if the tangent vector at each point where it is defined is of
the corresponding character. General curves may not have a definite causal character but
geodesics always do, and we refer to them as timelike/null/causal/spacelike according to
which causal character they have.

For each p 2M , we denote by Tp � TpM the set of timelike vectors at p. In the spe-
cial case when .M; g/ is a Lorentzian manifold, Tp is the disjoint union of two connected
open convex cones called timecones, and a continuous choice of one of these compo-
nents – called the future timecone – throughout .M; g/ is called a time orientation on the
Lorentzian manifold .M; g/. If such a choice is fixed the Lorentzian manifold is said to
be time-oriented. A connected, time-oriented Lorentzian manifold is called a spacetime.
Again, we assume the reader is familiar with basic aspects of these. The reader may con-
sult the standard textbook [6] as needed.

We denote by Cp the closure of Tp in TpM . Note that 0p 2 Cp , and that Cp n ¹0pº

coincides with the set of causal vectors in TpM .
It is convenient to set up first a slightly abstract framework to describe a suitable fixed

(nonempty) collection C of geodesics on .M;r/ in terms of the exponential map thereon.
The general description can then be particularized for the cases of interest later.

We denote by expWD � TM !M the exponential map of .M;r/, with D being its
maximal domain. (In particular, D D TM if and only if .M;r/ is geodesically complete.)
In addition, Z � TM shall denote the range of the zero section of the tangent bundle TM
and � WTM !M its canonical projection; recall that D is open in TM , contains Z, and
for any v 2D and t 2 Œ0; 1�, we have t � v 2D . Finally, if p 2M , then Dp WDD \ TpM

and expp WD exp jDp
.

Recall that a collection C of (non-constant) geodesics on .M;r/ is
(a) pseudoconvex if for any compact set K � M , there exists a compact set K� � M

such that any segment of a geodesic in C with endpoints in K is entirely contained
in K�,
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(b) disprisoning if for any given maximal extension  W .a; b/! M of a geodesic in C

(�1 � a < b � C1), and any t0 2 .a; b/, neither Œt0; b/ nor .a; t0� is compact.
If C is not disprisoning, then it is said to be imprisoning.

If we take C to be the collection of all non-constant geodesics in .M;r/ and that
class is pseudoconvex and disprisoning, then .M;r/ itself is said to be a (geodesically)
pseudoconvex and disprisoning affine manifold.

For a semi-Riemannian manifold .M;g/, however, it is also interesting to consider sep-
arately the cases when C is the collection of all null (or lightlike) [resp., timelike, causal]
geodesics. If, say, the collection of all causal geodesics is pseudoconvex/disprisoning,
then .M; g/ itself is said to be causally pseudoconvex/causally disprisoning, respectively.

For convenience, we fix throughout a complete auxiliary Riemannian metric h on M .
We shall denote its distance by dh and the h-norm of v 2 TM by kvkh. Let S � M be
any set. Then S1

h
S will denote the subset of ��1.S/ � TM of vectors with unit h-norm.

It is easy to check that if S is compact in M , then S1
h
S is compact in TM , a fact that we

will use often.
In order to give a technically convenient description of the collection C , fix a non-

empty set C � D with the following properties:
(P1) For any v 2 C , there exists v0 2 C nZ with �.v0/ D �.v/.
(P2) For any v 2 C nZ, .R � v/ \D � C .

(In particular, if v 2 C , then 0 � v 2 C .) Next, define

C1 WD
®
v=kvkh 2 S1hM W v 2 C nZ

¯
;

and for each w 2 C1, consider the interval

Jw WD ¹t 2 R W t � w 2 Dº:

(Note that 0 2 Jw .) Finally, define the class of geodesics

(3.1) C WD
®
 W t 2 I 7! exp.t �w/ 2M j I � Jw non-degenerate interval and w 2 C1

¯
:

About these definitions, the following comments are in order.
(a) For each w 2 C1, property (P2) of C implies that Jw is an open interval, and t 2

Jw 7! exp.t � w/ 2M is a maximally extended geodesic.
(b) C is non-empty (because C ¤ ;), and because of (P1) and the requirement that

intervals are nondegenerate, there are no constant geodesics in C .
(c) Given any geodesic in C , any of its extensions are in C . Furthermore, given any

geodesic in C , and its maximal extension  W .a; b/ ! M , for any t0 2 .a; b/, we
have that  j.a;t0� and  jŒt0;b/ also belong to C .

Let us consider some concrete examples of this general setting. Not all of these will
be considered later in this paper, but they will still serve to illustrate the fairly broad scope
of the previous definitions.

Example 3.1. For .M;r/ arbitrary, take C � D . We claim that C coincides with the
collection of all nonconstant geodesics in .M; r/ (up to affine reparametrizations) in
this case. First, note that C1 � S1

h
M in this case. Let ˛W I ! M be any nonconstant



Path-lifting properties of the exponential map with applications to geodesics 1501

geodesic, and pick any t0 2 I . Let v WD ˛0.t0/. Since ˛ is non-constant, v ¤ 0, so we
define

w WD
v

kvkh
2 S1hM:

Now, we have, for t 2 I ,

.t� t0/ � v 2D and ˛.t/D exp..t� t0/ � v/D exp..t� t0/kvkh �w/) .t� t0/kvkh 2 Jw :

Thus, if we define
Iw WD ¹.t � t0/kvkh W t 2 I º;

we conclude that Iw � Jw , so  W s 2 Iw 7! exp.s � w/ 2 M is in C and is an affine
reparametrization of ˛ as desired.

Example 3.2. Again for arbitrary .M;r/, pick any p 2M and take C � Dp . Then C \
Z D ¹0p WD 0TpM º. Reasoning exactly as in the previous example, given a nonconstant
geodesic ˛W I ! M with ˛.t0/ D p for some t0 2 I , we can show that up to an affine
reparametrization this is a geodesic in C . We conclude that C comprises all nonconstant
geodesics (which can be extended to pass) through p up to an affine reparametrization.

Example 3.3. Let .M; g/ be a semi-Riemannian manifold, and let S � M be a smooth
semi-Riemannian (embedded) submanifold of codimension > 0. Denote by NS � TM
its normal bundle, and put

C D NS \D :

(So that exp? WD exp jC is the normal exponential of S .) It is not difficult to check that in
this case C is the collection of all nonconstant geodesics in .M;g/, which can be extended
as a normal geodesic to S , up to affine reparametrization.

Example 3.4. Let .M; g/ be a semi-Riemannian manifold. Recall that for each p 2 M ,
we denote by Tp the set of all timelike vectors v 2 TpM . We then put

C D .Tp [ ¹0pº/ \D :

Then (again up to affine reparametrizations and/or extensions) C is the collection of all
timelike geodesics passing through p. Again, if ƒp denotes the set of lightlike (nonzero)
vectors in TpM , then we may define

C D .ƒp [ ¹0pº/ \D

and C is the collection of all lightlike geodesics through p. Finally, let Cp be the closure
of Tp in TpM . Note that 0p 2 Cp , and that Cp n ¹0pº coincides with the set of causal
vectors in TpM . For

C D Cp \D ;

then (again up to reparametrizations/extensions) C will be the class of all causal geodesics
through p.

We can now state our first main result. It generalizes results in [9] (cf. also Proposi-
tion 2.1 (i) of [16]), and gives a convenient analytic characterization of pseudoconvexity-
cum-disprisonment for a broad range of geodesic families.
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Theorem 3.5. If exp jC is a proper map, then the collection C defined in (3.1) is pseu-
doconvex and disprisoning. If C \Z is compact and C is closed in D , then the converse
holds.

Proof. Suppose exp jC WC ! M is proper. Assume, by way of contradiction, that C is
imprisoning. Consider, in that case, an inextendible geodesic  W .a; b/!M (with �1 �
a < b � C1) in C and some t0 2 .a; b/ for which Œt0; b/ is compact (the case when
.a; t0� is compact being entirely analogous). If we write .t/ D exp.t � w/ for every
t 2 Œt0; b/ and some w 2 C1, we have

t � w 2 QK WD .exp jC /�1.Œt0; b// for all t 2 Œt0; b/;

with QK compact in C , and hence also in TM . Let p WD �.w/, so w 2 TpM . Clearly,
t �w 2 TpM \ QK, for every t 2 Œt0; b/, and since TpM \ QK is compact in TpM , it is also
hp-bounded, so we necessarily have b < C1. But then we also have b � w 2 QK � C ,
whence b 2 Jw , i.e.,  would be right-extendible, contradicting the assumed inextendibil-
ity of  . This establishes that C is disprisoning.

Assume now that C is not pseudoconvex. In particular, M cannot be compact. Pick
any q 2M , and for each n 2 N, let

xBn WD ¹p 2M W dh.p; q/ � nº:

Each xBn is compact by the Hopf–Rinow theorem for .M; h/, since it is closed and dh-
bounded and h is complete. The failure of pseudoconvexity also implies that there exists
a compact set K �M and a sequence .nW Œan; bn�!M/n2N of elements of C such that

n.an/; n.bn/ 2 K and there exists tn 2 Œan; bn� with n.tn/ … xBn for all n 2 N:

Write
n.t/ D exp.t � wn/; wn 2 C1; t 2 Œan; bn�; for all n 2 N:

Then
an � wn; bn � wn 2 QK WD .exp jC /�1.K/ for all n 2 N;

and again QK is compact in C and hence in TM . In addition, for each n 2 N,

pn WD �.wn/ D �.an � wn/ D �.bn � wn/ 2 �. QK/:

The latter set is compact in M , hence so is S1
h
�. QK/ 3 wn. We conclude that we may pick

a subsequence .ni /i2N , w 2 S1
h
M and a; b 2 R such that wni ! w in TM , ani ! a and

bni ! b in R. In particular, w ¤ 0 and a � b. Furthermore, since QK is closed in C , we
also have a �w; b �w 2 QK � C �D , and the fact that ani � tni � bni forces (again up to
passing to subsequences) a convergence tni ! t0 2 Œa; b�. Now, as a � w; b � w 2 D�.w/,
we also have Œa; b� � w � D�.w/ as the latter set is star-shaped. This in turn implies that
t0 � w 2 D , and thus

ni .tni / D exp.tni � wni /! exp.t0 � w/:

In particular, .ni .tni // would be dh-bounded, which is impossible by its construction.
This contradiction establishes that C is indeed pseudoconvex.
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To prove the converse, assume that C is pseudoconvex and disprisoning, with C \ Z

compact and C closed in D . Let K �M be a compact set and pick any sequence .vn/ �
.exp jC /�1.K/. We wish to show that this has a subsequence converging in .exp jC /�1.K/.
If all but a finite number of terms in this sequence are zero vectors, we of course do
have such a subsequence, so passing to a subsequence if necessary, we may assume that
every vn ¤ 0, and define

wn WD
vn

kvnkh
and an WD kvnkh > 0 for all n 2 N:

By construction, each wn 2 C1, and Œ0; an� � Jwn . Let pn WD �.wn/ � �.vn/. Since
0pn 2 C \Z, which we are assuming to be compact in D (and hence in TM ), we have

pn 2 �.C \Z/ for all n 2 N;

and the latter set is compact in M . But then wn 2 S1
h
�.C \ Z/, therefore, up to passing

to a subsequence, we may assume that there exists w 2 S1
h
M for which wn ! w. Now

define, for each n 2 N, the geodesic

n W t 2 Œ0; an� 7! exp.t � wn/ 2M;

which is in C by construction. Consider the compact set K WD �.C \Z/[K �M . Since
n.0/ D pn; n.an/ D exp.vn/ 2K for each n 2 N, by pseudoconvexity, we can choose
a compact set K� �M such that nŒ0; an� �K� for all n 2 N. Let  W Œ0; b/!M be the
right-inextendible geodesic with  0.0/ D w. Then t � w 2 D for any t 2 Œ0; b/ and

.t/ D exp.t � w/ for all t 2 Œ0; b/:

We now claim that .an/ is bounded. For suppose not. Passing to a subsequence if needed,
we may assume that an !C1. Fix 0 < t < b. Eventually an > t , so on the one hand,

t � wn D
� t
an

�
� vn 2 C for all n 2 N;

since 0 < t=an < 1. On the other hand,

t � wn ! t � w 2 xC \D � xCD
� C;

since C is closed in D . We conclude that t �w 2 C , and since t > 0, we have w 2 C1. In
addition, n.t/! .t/, so .t/ 2K�. We conclude that  2 C and Œ0; b/ �K�, which
contradicts the fact that C is disprisoning.

Therefore .an/ is bounded as claimed. Again up to passing to a subsequence, we
assume that an ! a. Let v WD a � w. Then vn ! v 2 xC . Thus, all that remains to be
shown is that v 2 D . But if not, b � a, so for any 0 < t < b � a, eventually an > t and
an argument just like the preceding one would establish that  2 C and Œ0; b/ � K�,
again a contradiction. Thus, a < b, so v 2 D \ xC D xCD � C , and exp.v/ 2 K, so that
v 2 .exp jC /�1.K/ as desired.

Using the notation in Example 3.4, with the choice

Cp D Cp \D ;

we can describe the class of all causal geodesics on .M; g/ emanating from p. Since
such Cp is closed in D and Cp \ Z D ¹0pº is compact, Theorem 3.5 has the following
immediate consequence.
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In order to avoid repetition, henceforth whenever we use the phrase “causally pseu-
doconvex and disprisoning”, it is to be understood that the latter part means causally
disprisoning.

Corollary 3.6. Let .M;g/ be a Lorentz manifold, and p 2M . The set of causal geodesics
in .M;g/ passing through p (up to extensions) is causally pseudoconvex and disprisoning
if and only if expp jCp is proper. In particular, if .M; g/ is itself causally pseudoconvex
and disprisoning, then expq jCq is proper for every q 2M .

Remark 3.7. With an eye towards physical applications it is often convenient that geo-
metric properties of spacetimes be derived from its position in the so-called causal ladder,
see [26,27]. The highest rung on that ladder is occupied by the globally hyperbolic space-
times. It is well known (cf., e.g., Proposition 7.36 of [6]) that if a spacetime .M; g/ is
globally hyperbolic, then it is causally pseudoconvex and disprisoning. The converse,
however, is false. This is illustrated by the strip ¹.t;x/2R2 W 0<x <1º (with the restricted
metric) in the Minkowski plane .R2;�dt2 C dx2/.

4. Geodesic connectedness on affine manifolds

In this section, we employ the abstract results of Section 2 to study the geodesic connect-
edness of a general (connected) affine manifold .M;r/.

Let p 2M . The image by expp of the set

�p WD ¹v 2 Dp W .d exp/v is singularº

will be denoted by
Conj.p/ WD expp.�p/

and coincides with the set of all conjugate points to p along some geodesic.
Two of the authors (IPCS and JLF) have obtained in [16] a sufficient condition for a

connected affine manifold to be geodesically connected. We say that .M;r/ is a weakly
Wiedersehen manifold, or WW -manifold for short, if for any p 2M ,
(a) Conj.p/ is closed, and
(b) M n Conj.p/ is connected.

(In Theorem 4.4 below, however, this condition makes sense – and only needs to be
applied – pointwise. Therefore it is natural to say that .M;r/ is WW at (a point) p 2M
if conditions (a), (b) hold at p.)

In [16], the following concept was also introduced.

Definition 4.1. Let p 2M . We say that expp is weakly proper if for any continuous curve
˛W Œ0;a/! TpM (0 < a� 1) such that ˛Œ0;a/�Dp and expp ı˛W Œ0;a/!M is piecewise
smooth and right-extendible1 (i.e., it admits a continuous extension to Œ0; a�), there exists
a compact set K � Dp containing ˛Œ0; a/.

1In [16], the requirement is actually that ˛ itself is piecewise smooth; however, the difference is really a
technicality, because in the concrete proofs in which the concept is used the lift will always be contained in the
region of TpM where expp is a local diffeomorphism; hence, ˛ can be chosen as a piecewise smooth lift of a
piecewise smooth curve. In addition, while in [16] we let a � C1, here we take a � 1 for convenience, as the
concepts involved are clearly reparametrization-invariant.
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Using these concepts, a geodesic connectedness result was proved therein (cf. Theo-
rem 1.2 of [16]).

Theorem 4.2. Let M D .M; r/ be a connected WW affine manifold. If exppWDp �

TpM !M is weakly proper for each p 2M , then M is geodesically connected.

We now seek to establish an improved version of the latter theorem. In order to apply
the Rheinboldt–Browder theory, we first reinterpret weak properness in terms of a contin-
uation property for the exponential.

Proposition 4.3. The map exppWDp !M is weakly proper if and only if it has the con-
tinuation property for P1.M/.

Proof. ()) Let ˛ 2 P1.M/ and consider any continuous map ˛W Œ0; b/ � Œ0; 1�! Dp

such that expp ı ˛ D ˛ jŒ0;b/. Assume that expp is weakly proper, thus, ˛Œ0; b/ � K for
some compact set K � Dp .

Let .tk/k2N be any sequence in Œ0; b/ converging to b. Since ˛.tk/ 2 K for any k, we
can, up to passing to a subsequence, assume that .˛.tk//k2N converges in K � Dp .

(() For the converse, let ˛W Œ0; b/! Dp � TpM , 0 < b � 1, be a continuous curve
with ˛ WD expp ı ˛W Œ0; b/ ! M piecewise smooth and right-extendible. Assume that
˛Œ0; b/ is not contained in any compact set of Dp , so in particular expp is not weakly
proper. We shall construct another curve violating the continuation property for expp .

Since expp has the continuation property for P1.M/, there exists a sequence .tk/k2N

in Œ0;b/ converging to b for which the sequence .˛.tk//k2N converges in Dp . Let .Kk/k2N

be a compact exhaustion for Dp , that is, an increasing (i.e., satisfying Kk �
VKkC1)

sequence of compact sets of Dp such that, given any compact set K �Dp , there exists k0
such that K � VKk for any k � k0. Since ˛Œ0; b/ is not contained in any Kk , and yet
.˛.tk//k2N converges in Dp , we can assume the existence of sequences .t l

k
/k2N with

t1 < t
1
1 < t

1
2 < t2 < t

1
3 < t

2
3 < t

2
4 < t

1
4 < t3 < t

1
5 < t

2
5 < t

3
5 < t

3
6 < t

2
6 < t

1
6 < t4 < � � �

such that

˛.tk/ 2 VK1 for all k; ˛.t lk/ 2 Bd.Kl / for all k � 2l � 1:

(See Figure 1.)
In fact, we can suppose that the limit of .˛.tk//k2N , and indeed, each of its points,

belongs to VK1. In particular, the point ˛.t1/ is located on K1; then, ˛ escapes from K1

and goes back to VK1 at t2; so, it necessarily passes twice through the boundary Bd.K1/ at
some values .t1 </ t11 < t

1
2 .< t2/. This behavior for ˛ is repeated from the values t2 to t3,

but now escaping from both K1 and K2, hence passing twice through the corresponding
boundaries Bd.K1/, Bd.K2/ at some values .t2 </ t13 < t

2
3 < t

2
4 < t

1
4 .< t3/; and so on.

Let h, h be complete Riemannian metrics on M , Dp , respectively. Since Bd.Kk/ is
compact for all k and expp is smooth, there exist sequences .m1n/n�1 � .m

2
n/n�2 � � � � �

.mln/n�l � � � � , with ml
lC1
D mlC1

lC1
for all l , such that the points ˛.t lmln/ and ˛.t lmlnC1/ are



I. P. Costa e Silva, J. L. Flores and K. P. R. Honorato 1506

Figure 1. The original curve ˛ vis-a-vis a compact exhaustion of Dp . We have illustrated a few of
the points ˛.t ln/.

close enough in Dp to guarantee that the h-geodesic �n;l realizing the h-distance between
˛.t lmln/ and ˛.t lmlnC1/ is inside the compact set KkC1 n

VKk�1 and satisfies

lengthh.expp ı �n;l / < 1=2
l for all l; and all n � l:

(As for this last condition, note that the norm of d exppW .TDp; h/! .TM;h/ is bounded
on the h-unit tangent bundle over KkC1 n

VKk�1 �Dp , and consequently, the h-length of
expp ı�n;l can be made as small as one pleases by taking the h-length of �n;l sufficiently
small.) In particular, � l;l is a curve in Dp connecting ˛.t lml

l
/ D ˛.t lml�1

l
/ with ˛.t lml

lC1
/

such that

(4.1) lengthh.expp ı � l;l / < 1=2
l for all l:

Consider the curve � W Œ0; b/! Dp obtained by the concatenation of (appropriate repara-
metrizations of) the following segments:

˛ jŒ0; t1m11
�; �1;1; ˛˙1jŒt1m12

; t2m12
�; �2;2; ˛˙1jŒt2m23

; t3m23
�; : : : ;

where the term ˛˙1 means that we must consider ˛ if the extreme values of the interval
domain are well-ordered, or ˛�1 otherwise. (See Figure 2.)
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Figure 2. The new curve � is indicated here in darker tone.

Let .sk/k2N be an arbitrary sequence in Œ0; b/ converging to b. Then, .�.sk//k2N

does not converge in Dp , since it escapes from any compact subset of Dp . However, we
shall presently argue that .expp ı�.sk//k2N is a Cauchy sequence. Since .sk/ is arbitrary,
this shows that � WD expp ı � can be extended as a continuous function Q� W Œ0; b�! M .
But then a (further reparametrization of) Q� violates the continuation property for P1.M/,
a contradiction.

In order to check the Cauchy character of .expp ı�.sk//k2N , observe that, for each k,

.ak WD/ expp ı �.sk/ 2

´
˛˙1.ŒOtk ; Qtk �/; where Otk WD t

lk

m
lk
lkC1

and Qtk WD t
lkC1

m
lk
lkC1

; or

Im.expp ı � lk ;lk /:

Moreover, since lk !1 as k!1, t lm > tk whenever l � k and tk ! b as k !1,
we deduce that Otk ; Qtk ! b as k !1. Recall also the right-extendibility of ˛ jŒ0;b/, the
condition (4.1), and the fact that each segment expp ı� lk ;lk has its endpoints on ˛. There-
fore, given two arbitrary elements aki , i D 1; 2, there are three possibilities: (i) If aki 2
˛˙1.ŒOtki ; Qtki �/, i D 1; 2, the distance between them is small if k1, k2 are large, as a conse-
quence of the right-extendibility of ˛ and the fact that Otki ; Qtki ! b as ki !1. (ii) If, say,
ak1 2 ˛

˙1.ŒOtk1 ; Qtk1 �/ and ak2 2 Im.expp ı � lk2 ;lk2 /, then

dh.ak1 ; ak2/ � dh.ak1 ; c2/C dh.c2; ak2/ for c2 an endpoint of expp ı � lk2 ;lk2 .

Thus, one reaches the same conclusion as before, since dh.ak1 ; c2/ is small by the right-
extendibility of ˛, and dh.p; ak2/ is also small due to condition (4.1). Finally, (iii) if
aki 2 Im.expp ı � lki ;lki /, i D 1; 2, we repeat the argument above by applying the tri-
angle inequality to four points, where now the two “middle” points are endpoints of
expp ı � lki ;lki , i D 1; 2, respectively.
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Using the notation and results in Section 2.2, we finally have the following theorem.

Theorem 4.4. Let .M;r/ be an affine manifold and p 2M . Assume that

(i) expp has the continuation property for P1.M/, and

(ii) .M;r/ is WW at p.

Then the map 'p WD expp jNp WNp !M n Conj.p/ is a smooth covering map, where

Np WD exp�1p .M n Conj.p//:

In particular, p can be geodesically connected with any point of M .

Proof. First of all, (ii) implies that Np andM nConj.p/ are open (and by Sard’s theorem,
nonempty) in Dp and M , respectively. Furthermore,

v 2 Np H) expp.v/ … Conj.p/ H) v … �p;

and hence 'p is a local diffeomorphism by the inverse function theorem.
The proof will be accomplished if we can apply Proposition 2.6 to 'p . Thus, all that

remains to be shown is that 'p has the continuation property for P1.M n Conj.p//.
To that end, fix v0 2 Np and let ˛W Œ0; 1� ! M n Conj.p/ with ˛.0/ D 'p.v0/ D

expp.v0/ be a path in P1.M n Conj.p//, which can naturally be viewed as a subset
of P1.M/. Let ˛W Œ0; l/ � Œ0; 1�! Np be a continuous curve starting at v0 for which

'p ı ˛ � expp ı˛ D ˛ jŒ0;l/:

Because of the continuation property of expp , there exists a sequence .tk/ � Œ0; l/
with tk ! l for which ˛.tk/ converges in Dp to some Ov 2 Dp , say. But by continuity,
expp. Ov/ D ˛.l/ 2 ˛Œ0; 1� � M n Conj.p/, so Ov 2 Np . This establishes the continuation
property as desired.

As for the last statement, take any q 2M . If q 2 Conj.p/, then the claim immediately
holds. If q 2 M n Conj.p/, since 'p D expp jNp is a covering map and hence onto, q
belongs to its image, which just means that q can be reached from p by some geodesic.

Remark 4.5. The following comments about Theorem 4.4 and Proposition 4.3 are in
order.

(1) Observe that by Proposition 4.3 we could substitute in (i) the requirement that expp
is weakly proper. The example provided by Bates in [4] shows that we cannot remove
some form of the hypothesis (i) from the previous theorem, even in the compact and
geodesically complete case.

(2) There are some concrete situations where weak properness is known to apply (see
Propositions 2.6, 2.7 of [16]). Suppose .M; g/ is either a complete Riemannian manifold
or a geodesically complete Lorentz manifold possessing a parallel timelike vector field V .
Then for any p 2 M , the exponential map exppW TpM ! M is weakly proper, although
not necessarily proper (e.g., when M is compact).

(3) It may well happen that p 2 Conj.p/, i.e., that p is self-conjugate, meaning that
there exists a (non-constant) geodesic loop  W Œ0; b�! M with .0/ D .b/ D p along
which p is conjugate to itself. In that case, 0p … Np . This occurs, for example, for any
point on the round sphere Sm for anym � 2. Note that all the assumptions in Theorem 4.4
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hold here at any point, since Sm is a complete Riemannian manifold (cf. previous item)
and for any p 2 Sm, we have Conj.p/ D ¹p;�pº. The covering map 'p is trivial in this
case for any m � 2: although there are infinitely connected components of Np , each is
diffeomorphic to Sm n ¹p;�pº; this is expected for m > 2 as Sm n ¹p;�pº is simply
connected, but holds also for m D 2, even though �1.S2 n ¹p;�pº/ D Z. Theorem 4.4
correctly predicts that for any q 2 Sm n ¹p;�pº, there are infinitely many geodesic seg-
ments from p to q, although in this case they are of course all parts of a single complete
closed geodesic passing through p and q. However, since p is self-conjugate, the theorem
does not predict the infinitely many geodesic loops at p in this example.

(4) The previous discussion may be contrasted with the 2-dimensional flat (Rieman-
nian) cylinder C . Here there are no conjugate points, and Np D TpC ' R2, so 'p is
actually a universal covering of infinite multiplicity. For any p; q 2 C , Theorem 4.4 cor-
rectly predicts that there are infinitely many geodesic segments connecting p and q, even
for p D q, although again all segments are part of a single closed geodesic at p in the
latter case.

The following generalized version of Hadamard–Cartan theorem is a consequence of
Theorem 4.4 and a discussion in [9].

Corollary 4.6 (Generalized Hadamard–Cartan). Let .Mm;r/ be a connected affine man-
ifold and let p 2M . Assume that Conj.p/ D ; and that expp has the continuation prop-
erty for P1.M/ (or, equivalently, that it is weakly proper). Then the following state-
ments hold:

(i) Either �1.M/ is trivial or (countably) infinite.

(ii) If M is simply connected, then it is actually diffeomorphic to Rm. In this case there
is a unique (up to affine reparametrizations) geodesic segment connecting any q 2
M and p.

(iii) If M is not simply connected, then for each q 2M , there exist countably infinitely
many geodesic segments from p to q (which may again be all parts of a single closed
geodesic, cf. Remark 4.5 (2)). In particular, there exist infinitely many geodesic
loops at p.

Proof. Using the notation in Theorem 4.4, we note that since Conj.p/ D ;, we have
Np � Dp . Since the latter set is open and star-shaped in TpM , it is diffeomorphic to Rm.
Now, since the conditions of Theorem 4.4 apply ((i) occurring because of Proposition 4.3),
it follows that exppWDp !M itself is a (universal) covering map. Thus, (i) follows from
Lemma 8 of [9].

As for (ii), if M is simply connected, then the covering expp is trivial, and since it is
connected, it is actually a diffeomorphism between Dp ' Rm and M .

Finally, (iii) holds because the multiplicity of the cover coincides with the cardinality
of �1.M/, which is infinite in this case by (i).

5. Causal geodesic connectedness on Lorentzian manifolds

In this section and in the next one, we shall particularize the ideas in the previous sections
to Lorentzian manifolds (endowed with the corresponding Levi-Civita connection).
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Fix therefore, for the rest of this section, a Lorentzian manifold .Mm; g/ with m � 2.
Recall (cf. Example 3.4) that for each p 2 M , we denote by Tp � TpM the set of

timelike vectors at p. Remember that Tp is the disjoint union of two connected open
convex cones called timecones.

We denote by Cp the closure of Tp in TpM . Note that 0p 2 Cp , and that Cp n ¹0pº

coincides with the set of causal vectors in TpM . Again, Cp n ¹0pº has two connected
components called causal cones. A piecewise smooth curve � W Œa; b�! M is said to be
timelike (respectively, causal) if its tangent vector � 0.t/ 2 T�.t/ (resp. 2 C�.t/ n ¹0�.t/º)
for any t 2 Œa; b� and both lateral tangent vectors at a break are on the same component of
the timecone (respectively, causal cone) thereat.

As in Section 3, let

(5.1) Cp WD Cp \D :

Following standard notation, we write

I.p/ D
®
q 2M W 9 piecewise smooth timelike segment connecting p and q

¯
;

J.p/ D
®
q 2M W 9 piecewise smooth causal segment connecting p and q

¯
[ ¹pº:

It is well known that I.p/ is always open.
Although Theorem 4.4 has a nice conclusion, including multiplicity of geodesics as

well as existence, as a Lorentz-geometric result it has the drawback that it requires a con-
tinuation property for all smooth curves, say via weak properness, while in studying causal
geodesic connectedness, one would expect that control only along causal curves should
suffice. We now proceed to show that this is indeed the case, although for technical rea-
sons, we will have to make a few slight adaptation of the continuation notions introduced
by Rheinboldt and discussed in Section 2.

Definition 5.1 (Causal continuation property). Let p 2 M . We say that expp has the
causal continuation property (CCP) if for any (piecewise smooth) causal curve � W Œ0; 1�
!M with �.0/D p, and for any continuous curve � W Œ0; a/� Œ0; 1�! Cp (for Cp defined
in (5.1)) such that �.0/ D 0p and

expp ı � D � jŒ0;a/;

there exists a sequence .tk/k2N � Œ0; a/ with tk ! a for which �.tk/ converges to some
x 2 Dp (and thus x 2 Cp).

Recall that if . OM; Og/ is a Lorentzian manifold, a map �W OM ! M is a Lorentzian
covering map if it is a smooth covering map for which Og D ��g; in particular, it is a local
isometry.

Lemma 5.2. Let �W . OM; Og/! .M; g/ be a Lorentzian covering map.

(i) If .M; g/ is causally pseudoconvex and disprisoning, then so is . OM; Og/.

(ii) For each Op 2 OM , exp Og
Op

has the CCP if and only if expg
�. Op/

does.

Proof. To simplify notation, we shall indicate by a hat any quantity pertaining to . OM; Og/,
and those without are understood to belong to .M; g/. Fix Op 2 OM and p D �. Op/ 2 M .
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Using covering lifting properties of � and the fact it is a local isometry, it is not difficult
to check that

(5.2) d� Op. OD Op/ D Dp and d� Op. OC Op/ D Cp H) d� Op. OC Op/ D Cp;

as well as

(5.3) � ı Oexp Op D expp ı d� Op:

(i) Assume .M;g/ is causally pseudoconvex and disprisoning. Then expp jCp is proper
by Corollary 3.6. Let OK � OM be a compact subset, and let . Ovk/ � . Oexp Op j OC Op /

�1. OK/ be
any sequence. The compactness of OK implies that up to passing to a subsequence, we can
assume that

Oexp Op j OC Op . Ovk/ H) Oq H) � ı Oexp Op j OC Op . Ovk/! �. Oq/ DW q
(5.3)
H) expp.d� Op. Ovk//! q:

Pick any compact neighborhood V 3 q inM . Since expp jCp is proper, we have thatW WD
.expp jCp /

�1.V / is compact in Cp , and eventually .d� Op. Ovk// � W . Again up to passing
to a subsequence,

d� Op. Ovk/! v0

for some v0 2 Cp . But d� Op is an isomorphism, so by (5.2),

Ovk ! .d� Op/
�1.v0/ DW Ov0 2 OC Op:

We conclude that Oexp Op j OC Op . Ov0/ � Oq 2 OK, i.e., Ov0 2 . Oexp Op j OC Op /
�1. OK/, whence the com-

pactness of the latter set follows.
(ii) We show only that if Oexp Op has the CCP, then so does expp , since the proof of the

converse is similar.
Fix a (piecewise smooth) causal curve ˛W Œ0; 1�!M with ˛.0/ D p and a continuous

˛W Œ0; a/ � Œ0; 1�! Cp such that ˛.0/ D 0p and ˛ jŒ0;a/ D expp ı˛.
Let ˇW Œ0; 1�! OM be the unique lift of ˛ through � starting at Op. (It is in particular a

causal curve in . OM; Og/ since � is a local isometry.) Let x̌ WD .d� Op/�1 ı ˛. Then x̌.0/D 0 Op ,
and by (5.2),

(5.4) x̌Œ0; a/ � OD Op \
OC Op:

Now, from (5.3),

� ı Oexp Op ı x̌ D expp ı d� Op ı x̌ D expp ı˛ � ˛ jŒ0;a/:

By the uniqueness of the lift of ˛ jŒ0;a/ through � starting at Op, we must have

(5.5) Oexp Op ı x̌ D ˇ jŒ0;a/:

Equation (5.5) and the CCP for Oexp Op means there exists a sequence .tk/k2N � Œ0; a/ with
tk ! a for which x̌.tk/ converges to some Ox 2 OC Op . Thus, ˛.tk/! d� Op. Ox/ DW x 2 Cp

and we are done.
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We now give a natural sufficient condition for exponential maps at points to have
the CCP.

Proposition 5.3. If .M; g/ admits a Lorentzian covering �W . OM; Og/! .M; g/ such that
. OM; Og/ is causally pseudoconvex and disprisoning, then for any p 2 M , the exponential
map expp has the CCP.

Proof. By Lemma 5.2 (ii), there is no loss of generality in assuming that .M; g/ is itself
causally pseudoconvex and disprisoning; hence we do so for the rest of the proof.

Fix any (piecewise smooth) causal curve � W Œ0; 1�!M with �.0/ D p, and any con-
tinuous curve � W Œ0; a/ � Œ0; 1�! Cp (for Cp defined in (5.1)) such that �.0/ D 0p and

expp ı � D � jŒ0;a/:

Using Corollary 3.6, expp jCp is proper, and therefore

K WD .expp jCp /
�1.˛Œ0; 1�/

is compact in Cp and ˛Œ0; a/ � K.
Consider any sequence .tk/k2N � Œ0;a/with tk! a. Since the image of ˛ is contained

in a compact set in Cp , it follows that �.tk/ converges to some x 2 Cp up to passing to a
subsequence. This establishes the CCP as desired.

Remark 5.4. It is unclear to us at this point whether the converse of Proposition 5.3 is
true or false.

The following theorem aims at giving sufficient conditions to ensure the existence of
a timelike geodesic from p 2M to q 2 I.p/. Here, we denote by Conjc.p/ the set of con-
jugate points to p along causal geodesics starting at p; note that Conjc.p/ is contained in,
but is not necessarily equal to, Conj.p/ \ J.p/. This is enough for causal connectedness,
because if q 2 J.p/ n I.p/, then it is well known (cf. Proposition 10.46 of [29]) that there
exists a null geodesic segment connecting p and q.

Theorem 5.5. Let .M; g/ be a Lorentz manifold and p 2 M ; assume that expp has the
CCP. Let q 2 I.p/ and assume in addition there exists a (piecewise smooth) timelike curve
� W Œ0; 1�! M with �.0/ D p, �.1/ D q, which does not intersect Conjc.p/. Then there
exists a timelike geodesic from p to q.

Proof. We shall construct a (piecewise smooth) lift of � through expp to Tp \Dp , that is,
a piecewise smooth curve � W Œ0; 1�! Tp \Dp with �.0/ D 0p and expp ı � D � . Since
we then in particular have expp.�.1// D q, this establishes the conclusion.

We apply here a slight modification of the main argument in the proof of Theo-
rem 2.11 of [30]. Since 0p … �p , by the inverse function theorem, there exist open sets
U 3 0p in Dp and V 3 p in M such that V D expp.U / and expp jU WU ! V is a dif-
feomorphism. By continuity of � , there exists 0 < " < 1 with �Œ0; "� � V , so we set
� jŒ0;"� WD .expp jU /

�1 ı � jŒ0;"�.
The key observation here is that since expp ı� jŒ0;"� is timelike by construction, by

Lemma 5.33 of [29], we have �Œ0; "� � Tp (and indeed � stays within a single timecone).
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Let 0 < ` � 1 be the lowest upper bound of all t 2 .0; 1� for which � jŒ0;t� is well-
defined, piecewise smooth and contained in Tp \Dp .

Since expp ı � jŒ0;`/ D � jŒ0;`/ and �.0/ D 0p , the CCP implies that there exists some
sequence .tk/ � Œ0; `/ with tk ! ` for which �.tk/! Ox for some Ox 2 Cp D Cp \Dp .
Put �.`/ WD Ox. Since expp. Ox/ D �.`/ … Conjc.p/, Ox … �p , again by continuity and the
inverse mapping theorem, we conclude that � Œ0;`� is well defined, and again contained in
Tp n �p , by Lemma 5.33 of [29]. In addition, if ` < 1, we could again extend � via a local
inverse for expp contradicting the definition of `.

The hypothesis of causal continuation cannot be removed in Theorem 5.5. To see this,
just consider the flat Lorentzian manifold .M WD R2 n ¹.1; 0/º;�dt2 C dx2/, p D .0; 0/,
q D .2; 0/. Then q 2 I.p/, but there is no timelike geodesic connecting them. Indeed,

Dp ' R2 n ¹.t; 0/ W t � 1º:

Given any timelike curve � W Œ0; 1�!M from p to q, its portion � jŒ0;1/ admits a lift to Cp
through expp , but cannot be extended in Dp .

Corollary 5.6. Let .M; g/ be a Lorentzian manifold. If for some p 2 M , Conjc.p/ D ;
and expp has the CCP, then for any q 2 I.p/, there exists a timelike geodesic from p to q.
In particular, if p D q, then there exists a timelike geodesic loop at p.

Remark 5.7. Suppose that for any p 2 M and for any timelike plane …p � TpM , the
sectional curvaturesK.…p/ � 0. Then for any p 2M , we have Conjc.p/D ;, by Propo-
sition 2.1 of [17] (cf. also Proposition 11.13 of [6]).

Since Lorentzian coverings are in particular local isometries, Proposition 5.3, Corol-
lary 5.6 and Remark 5.7 immediately yield the following corollary.

Corollary 5.8. Let .M; g/ be a Lorenztian manifold with non-negative sectional curva-
tures on timelike planes. If .M; g/ admits a Lorentzian covering �W . OM; Og/ ! .M; g/

such that . OM; Og/ is causally pseudoconvex and disprisoning, then for any p; q 2M with
q 2 J.p/, there exists a causal geodesic connecting p and q.

6. A novel Lorentzian Hadamard–Cartan theorem

If a Lorentzian manifold .M; g/ is causally pseudoconvex and disprisoning (or has a
Lorentzian covering that is) – which as seen in Remark 5.4 is strictly stronger than just
having the CCP for the exponential maps – then much more can be said about causal
geodesic connectedness. The results in this section are more interesting when applied to
spacetimes, i.e., connected time-oriented Lorentz manifolds; accordingly, henceforth we
assume that .M; g/ is time-oriented.

Our first result here is the following extended version of the so-called Lorentzian
Hadamard–Cartan theorem (cf. Theorem 11.16 of [6]), which does not assume either
global hyperbolicity (cf. Remark 3.7) or future 1-connectedness.

Theorem 6.1 (Lorentzian Hadamard–Cartan). Let .M; g/ be a spacetime. Assume that
.M;g/ is causally pseudoconvex and disprisoning. Let p 2M be such that Conjc.p/D ;.
Then the following hold:
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(a) expp jT Cp \Dp W T
C
p \Dp ! IC.p/ is a diffeomorphism; in particular, IC.p/ is dif-

feomorphic to Rm and for any q 2 IC.p/, there exists a unique (up to repara-
metrization) future-directed timelike geodesic from p to q.

(b) If q 2 JC.p/ n ¹pº, there exist at most finitely many future-directed null geodesic
segments (up to reparametrization) from p to q.

(c) JC.p/ is closed.

Proof. First, write Cp D Cp \Dp , �p WD Tp \Dp , and �Cp WD T Cp \Dp , where T Cp is
the future timecone at p.

By Corollary 3.6, expp jCp is proper, and since �p \ Cp D ; by the hypothesis that
Conjc.p/ D ;, we also have that expp is a local diffeomorphism around each v 2 Cp .

Let q 2M . Since .expp jCp /
�1.q/ is compact in Cp , if it were infinite, one would have

an accumulation point v 2 Cp , which would contradict the local injectivity of expp around
this point. Therefore, .expp jCp /

�1.q/ is finite (maybe empty). This already establishes (b).
By Proposition 5.3, expp has the CCP, and hence by (the proof of) Theorem 5.5

expp j�p W �p ! I.p/ is an onto map. Indeed, this proof can be easily adapted to show
that expp j�Cp W �

C
p ! IC.p/ is an onto map. Since its restriction to the open set �Cp is still

a proper map, and since it is a local diffeomorphism, by Proposition 2.8, it is a covering
map (with finite fibers).

However, �Cp is homeomorphic to Rm, so expp j�Cp is a universal covering. By Lemma 8
of [9], �1.IC.p// is either trivial or infinite, but we saw that the cardinality of the fibers of
expp j�Cp – which equals that of �1.IC.p// for a universal cover – is finite. We conclude
that expp j�Cp W �

C
p ! IC.p/ is a trivial covering, and therefore a diffeomorphism. This

establishes (a).
Finally, to prove (c), we recall that

JC.p/ D IC.p/:

Given q 2 JC.p/, therefore, we can pick a sequence .qk/� IC.p/ converging inM to q.
By item (a), for each k 2N, there exists a unique vk 2 �Cp � Cp such that expp.vk/D qk .
By the properness of expp jCp , we conclude that up to passing to a subsequence, we can

assume that vk! v0 for some v0 2 �Cp , whence we conclude that q� expp.v0/; it follows
that q 2 JC.p/, which completes the proof.

Remark 6.2. Clearly, by time duality, Theorem 6.1 can also be analogously stated (and
remains valid) for pasts of points.

Recall that a spacetime .M; g/ is said to be causally simple if it is causal, i.e., has no
closed causal curves, and for any p 2M , J˙.p/ are closed [26].

In [7], Beem and Krolak have established a relationship between causal pseudocon-
vexity and causal simplicity:

Theorem 6.3 (Proposition 2 of [7]). Let .M; g/ be disprisoning, causally pseudoconvex
and causally geodesically connected. Then .M; g/ is causally simple.

In a different vein, Flaherty [18] established the following theorem.
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Theorem 6.4 ([18]). Suppose .M; g/ is timelike 1-connected, timelike and null geodesi-
cally complete, and possesses non-negative sectional curvature on timelike planes. Then
.M; g/ is globally hyperbolic.

We end with the following variant of both Theorem 6.3 and Theorem 6.4 just stated.

Corollary 6.5. Let .M; g/ be a causal, causally pseudoconvex and disprisoning space-
time. Assume that for any p 2M , we have Conjc.p/D ;. Then .M;g/ is causally simple.
If in addition .M; g/ is causally geodesically complete, then it is globally hyperbolic.

Proof. By taking Theorem 6.1(c) and Remark 6.2 into account the simple causality imme-
diately follows.

For the other claim, by taking the main theorem of [18] into account, what remains
to be shown is that .M; g/ is timelike 1-connected, i.e., given any p; q 2 M with q 2
IC.p/, any two future-directed timelike curve segments from p to q are fixed-endpoint-
homotopic through future-directed timelike curve segments from p to q.

By Theorem 6.1, it suffices to show that any future-directed timelike curve ˛W Œ0; 1�
! M with ˛.0/ D p, ˛.1/ D q is fixed-endpoint-homotopic through timelike curves to
the unique future-directed timelike geodesic segment �W Œ0; 1�!M from p to q.

Theorem 6.1(a) implies that there exists a unique piecewise smooth curve segment
ˇW Œ0; 1�! TpM with ˇ.0/ D 0p and ˇ.0; 1� � T Cp \D such that expp ıˇ D ˛. We can
also write

�.t/ D expp.t � ˇ.1//; t 2 Œ0; 1�:

Thus, define the manifestly continuous map xH W Œ0; 1�2 ! .T Cp \D/ [ ¹0pº by

xH.s; t/ WD

´
.t=s/ � ˇ.s/ if 0 � t � s;
ˇ.t/ if s � t � 1;

when 0 < s � 1; and xH.0; t/ WD ˇ.t/ for all t 2 Œ0; 1�. DefiningH WD expp ı xH , one easily
checks this is the desired fixed-endpoint homotopy through timelike curves from ˛ to �,
so the proof is complete.
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