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Counting irreducible modules for profinite groups

Ged Corob Cook, Steffen Kionke and Matteo Vannacci

Abstract. This article is concerned with the representation growth of profinite groups
over finite fields. We investigate the structure of groups with uniformly bounded
exponential representation growth (UBERG). Using crown-based powers, we obtain
some necessary and some sufficient conditions for groups to have UBERG. As an
application, we prove that the class of UBERG groups is closed under split extensions
but fails to be closed under extensions in general. On the other hand, we show that the
closely related probabilistic finiteness property PFP1 is closed under extensions. In
addition, we prove that profinite groups of type FP1 with UBERG are always finitely
generated and we characterise UBERG in the class of pronilpotent groups.

Using infinite products of finite groups, we construct several examples with unex-
pected properties: (1) a UBERG group which cannot be finitely generated, (2) a group
of type PFP1 which is not UBERG and not finitely generated, and (3) a finitely gen-
erated group of type PFP1 with superexponential subgroup growth.
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1. Introduction

In recent years, there has been a growing interest in understanding the asymptotic beha-
viour of representations of infinite groups and families of finite groups. In particular, a lot
of effort has been expended in studying the representation growth of rigid groups (see, for
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instance, [4,34]), i.e., with only finitely many complex representations in each dimension.
It turns out that the asymptotic representation growth of a group G carries a lot of inform-
ation about the structure of G. Moreover, the asymptotic representation-theoretic inform-
ation about families of finite groups leads to striking results on many fronts: examples
include the .2; 3/-generation of finite simple groups (see [30]), and the fact that the rep-
resentation growth of arithmetic groups is rational ([2, 3]).

Nevertheless, all the above-mentioned results study the representation theory of groups
in characteristic zero. A natural question is whether there is a reasonable parallel theory
for representations over finite fields. Of course, given a finitely generated group G and
a finite field F , it is clear that G has only finitely many representations over F of a
given degree; hence, the rigidness condition is automatic in this case. Write r.G; F; n/
for the number of irreducible representations of G over F of dimension n. Note that, if G
is d -generated, then r.G; F; n/ � jF jdn

2
, so any reasonable restriction should improve

on this bound. Moreover, since we are looking only at homomorphisms into finite groups,
it is sufficient to restrict our attention to representations of profinite groups, by passing to
profinite completions.

We say that a profinite group G has UBERG if there exists a constant c > 0 such
that1 r.G; F; n/ � jF jcn for every finite field F . UBERG stands for ‘uniformly bounded
exponential representation growth’ (over finite fields) and, maybe surprisingly, it shows
up naturally in the study of probabilistic generation properties of profinite groups. In fact,
a finitely presented profinite group is positively finitely related (PFR) exactly if it has
UBERG. Moreover, a profinite group has UBERG if and only if the completed group
algebra OZJGK is positively finitely generated (PFG, see [26]). Nevertheless, the structural
properties of UBERG groups are hardly understood and it is unknown if this class is closed
under extensions.

The goal of this article is twofold. First, we will prove several fundamental results on
UBERG groups that, we hope, will provide a foundation for further study on the modular
representation theory of profinite groups from an asymptotic perspective, which can be
seen as the parallel to the study of “rigidity” carried out in [34]. Modular representation
theory in general has been studied before, in [35], for example. Secondly, we will build a
“twisted Clifford theory” for crossed representations (see Theorem 5.6) that will be one
of our main tools to study extensions of UBERG groups.

Additionally, we concentrate our study on the representation theory of cartesian prod-
ucts of finite (simple) groups and we provide several examples with different asymptotic
behaviour in the number of modular representations (see Section 8). In particular, we
can answer various questions that were left open in [8]; for instance, we settle Open Ques-
tions 6.3, 6.4 and 6.6 of [8]. Moreover, we give an example to show that extensions of PFR
groups do not need to be PFR, answering a question raised in [26], p. 3.

Finally, one should note that, even though the characteristic-zero representation theory
of finite groups is relatively well-understood, the modular representation theory of finite
groups is still in many respects a mystery. Therefore, an asymptotic approach could be
highly desirable and we hope that UBERG groups can provide a new framework to study
modular representations asymptotically.

1Note that this is not quite the same definition used in [26], which only considers representations over finite
fields of prime order, but it is equivalent to it by (the proof of) Lemma 6.8 in [26].
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For convenience, we provide a diagram showing the relationships between the various
conditions studied in the paper. For implications in this diagram marked .¨;�/, this ref-
erence provides a counterexample showing the reverse implication fails; for those marked
‘pronilpotent’ (respectively, ‘prosoluble’), the implication holds for pronilpotent (respect-
ively, prosoluble) profinite groups, though not in general. (Non-)implications which follow
from those marked in the diagram may be left unmarked.

PFG APFG UBERG

PFP1

finitely generated

FP1

[11, Theorem 4.4]
(⊊, [11, Example 4.5])

[8, Proposition 1.10]
(⊊, Lemma 3.6)[8, Lemma 5.14]

(⊊, Corollary 7.12)
T

heorem
8.2

(⊊
,[11,E

xam
ple

4.6])

(pronilpotent: Theorem 6.3)

Le
m

m
a

3.
6

×

Theor
em

7.5

×

(⊊
,[8,P

roposition
6.7])

×Corollary
7.12

[8,

Prop
osit

ion 6.7]×

[11, p.455]

(⊊, [11, Example 2.6])
(prosoluble: [26, Corollary 6.12], [7, Remark 3.5(a)])

Main results

It is not surprising that there is a direct connection between the growth of (linear or
projective) representations of a profinite group and the theory of crowns associated to
composition factors (cf. Section 2.5). Our first main result makes this correspondence
explicit.

Throughout this paper, we frequently take inspiration from [22], where structural res-
ults were proved for positively finitely generated (PFG) groups; many of the ideas and
techniques we use can be found there, and Theorem A in particular may be understood
analogously to Theorem 11.1 in [22].

We say that a finite group is monolithic if it has a unique minimal normal subgroup.
In [22], the invariant l.G/ (the minimal degree of a faithful transitive representation of
a group G) was used to characterise the PFG property for profinite groups. In fact, it is
shown there that a profinite group G is PFG if and only if there is some constant c such
that k � l.N /c for any monolithic group L with non-abelian minimal normal subgroupN
and any k such that the crown-based power Lk appears has a quotient of G (again, see
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Section 2.5 for the basic definitions). Here we look at two related invariants which will
provide one necessary and one sufficient condition for UBERG, respectively. See Sec-
tion 3 for the definition of lproj.K/ and l lin.K/ for K a non-abelian characteristically
simple group.

Theorem A. Let G be a profinite group.

(i) Suppose G is finitely generated. Suppose there is some b such that, for all finite
monolithic groups L with non-abelian minimal normal subgroup K, if the crown-
based power Lk is a quotient of G, then k � lproj.K/b . Then G has UBERG.

(ii) Suppose, for all b, there is some monolithic group Lb with non-abelian minimal
normal subgroupKb such that some crown-based power .Lb/k of Lb is isomorphic
to a quotient of G and k > l lin.Kb/

b . Then G does not have UBERG.

We remark that there are UBERG groups that do not satisfy the condition (i) of The-
orem A, for instance the group H from Theorem B below.

Next, we address the question of whether the property of having UBERG is closed
under extensions. Note that the corresponding question is easily seen to hold for PFG
groups (see Proposition 7 in [36]). However, UBERG-by-UBERG groups are not UBERG
in general. Here we exhibit a procyclic-by-UBERG non-UBERG profinite group.

Theorem B. Let .ni /i2N be an increasing sequence of pairwise coprime integers � 12,
and let qi D p

ki
i be a sequence of prime powers for pairwise distinct primes pi � 5 such

that gcd.ni ; qi � 1/ > 1. Let mi D q
bn
3=2
i c

i . Consider the profinite group

G D
Y
i2N

SLni .Fqi /
mi :

Then G is 2-generated, finitely presented and it does not have UBERG. Moreover, we can
choose a procyclic central subgroup Z � G such that the quotient group H D G=Z is
2-generated, finitely presented and it has UBERG.

The subgroup Z in the previous theorem is defined explicitly in Section 4.3.
Even though it is not true that UBERG-by-UBERG groups are UBERG in full gen-

erality, we develop a Clifford theory from crossed representations which might be of
independent interest (see Theorem 5.6). In fact, as a first application, we will use The-
orem 5.6 to show that split extensions of UBERG groups are UBERG.

Theorem C. Suppose G is a profinite group, with K E G.

(i) If K and G=K have UBERG, and the extension of K by G=K is split, then G has
UBERG.

(ii) If K has UBERG and G=K is PFG, then G has UBERG.

In [8], certain probabilistic versions of the cohomological finiteness properties type
FPn were introduced, see Section 2.4. In this article we continue the study of the first of
these (i.e., type PFP1) and we provide a semi-structural criterion in the spirit of Theorem A
for type PFP1 (see Theorem 6.9). It turns out that G having type PFP1 is related to the
growth of the number ofG-isomorphism classes of non-Frattini abelian chief factors ofG
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(see Definition 6.4) and the growth of the size of the smallest faithful irreducible repres-
entationM of monolithic quotients L of G withH 1.L;M/¤ 0 (see Definition 6.8). The
aforementioned characterisation allows us to show that extensions of type PFP1 groups
have type PFP1 (see Theorem 6.14).

Theorem D. Suppose G is a profinite group, K E G. If K and G=K have type PFP1,
then G has type PFP1.

As often happens in group theory, it is hard to distinguish classes of groups satisfy-
ing different properties; e.g., different FPn properties. Hence, the construction of explicit
examples is very desirable. Here we completely characterise pronilpotent UBERG groups
(see Theorem 7.3); these are exactly the finitely generated pronilpotent groups. This shows
that there cannot be any exotic UBERG groups in this class.

Theorem E. Let P be pronilpotent group. The following are equivalent:
(i) P is finitely generated,

(ii) P has UBERG,

(iii) P is of type PFP1,

(iv) P is of type FP1.

Next, we concentrate on the class of cartesian products of finite groups and we produce
several examples of cartesian product with various subsets of the properties described
above, in particular, finite generation, UBERG and type PFP1:

(i) We will exhibit a type PFP1 group which is not finitely generated and does not
have UBERG (see Theorem 8.5); using the theory of universal Frattini covers, we can
even construct a projective profinite group of type PFP1 which is not finitely generated.
This is in sharp contrast to the case of abstract groups, for which type FP1 is equivalent to
finite generation (cf. Exercise VIII.4.1 in [5]).

(ii) Similarly, we construct a 2-generated profinite group of type PFP1, but without
UBERG (Corollary 8.12). Indeed, this example has superexponential subgroup growth,
which is impossible for groups with UBERG by Corollary 5.5 in [26].

(iii) Finally, we have a non-finitely generated metabelian group with UBERG (see
Lemma 4.6), but which does not have type FP1, and hence does not have type PFP1.

However, we show that a PFP1 group with UBERG must be finitely generated (see
Theorem 9.2). In fact, Theorem 9.2 shows more: if we assume that our group has type FP1,
then UBERG implies finite generation.

Theorem F. SupposeG is a profinite group with UBERG and type FP1. ThenG is finitely
generated.

Since it was shown in Proposition 1.10 of [8] that the UBERG and type FP1 condi-
tions together are equivalent to the APFG condition (see Section 2.4), we can express this
result by saying that if the augmentation ideal ker. OZJGK! OZ/ is PFG, then G is finitely
generated.

This should be very surprising: it is almost an axiom of homological algebra that
the choice of which projective resolution we use should not matter – and certainly this
difference is not detectable by any (co)homology groups – but nonetheless, the generation
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properties of the kernel of the projective cover of OZ in the category of OZJGK-modules
cannot tell us whether G is finitely generated, and the generation properties of the kernel
of the augmentation map OZJGK! OZ do.

Organisation of the article

In Section 2, we start by giving the basic definitions and fixing the notation that we need
in the rest of the article. In Section 3, we prove some bounds on the sizes of (linear and
projective) representations of monolithic groups and use these to prove Theorem A. In
Section 4, we give conditions for an infinite product of finite groups to have UBERG,
to prove Theorem B and construct an infinitely generated group with UBERG. Section 5
is devoted to developing our Clifford theory for twisted modules and contains the proof
of Theorem C, as well as analogous results on type PFPn. In Section 6, we characterise
groups of type PFP1 in terms of crown-based powers appearing as quotients of the group,
and use this to prove Theorem D. The proof of Theorem E can be found in Section 7.
Section 8 is our second source of interesting examples, especially of the groups promised
above which have type PFP1 but not UBERG. Finally, in Section 9, we prove Theorem F.

2. Preliminaries, terminology and notation

2.1. Notation

As it is customary when working with profinite groups, we will assume that subgroups are
closed, and maps are continuous. Furthermore, generation will be intended in the topolo-
gical sense. The same will be assumed for profinite modules.

For F a field, F � is the group of non-zero elements under multiplication.
Let G be a finite group. The socle soc.G/ is the subgroup generated by all minimal

normal subgroups of G. We denote by E.G/ the subgroup generated by all quasisimple
subnormal subgroups of G. This is sometimes called the layer of G, and it forms part of
the generalised Fitting subgroup of G.

2.2. Projective and crossed representations, and cocycles

We will use the language of crossed representations and crossed projective representa-
tions following [25], Section 3.14.A: see there for proofs of the statements claimed in this
subsection, and for more detail.

Let E be a field and let G be a profinite group. A representation of G over E of
degree n is a homomorphism �WG ! GLn.E/.

A semilinear transformation of an E-vector space V is an additive homomorphism
f W V ! V such that there exists an automorphism � of E with f .�v/ D �.�/f .v/ for
all � 2 E and all v 2 V . The group of bijective semilinear transformations of V is written
�LE .V /. A crossed representation of G on V is a homomorphism �WG! �LE .V /. Via
the canonical homomorphism �LE .V /!Aut.E/, every crossed representation gives rise
to an action  ofG onE by field automorphisms. We may say � is a  -crossed representa-
tion of G over E. There is a 1-to-1 correspondence (described in Theorem 3.14.3 of [25])
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between  -crossed representations of G over E and modules for the ring EJGK, which
we define as the free profiniteE-module with basis ¹ Ng W g 2Gº, and multiplication defined
distributively by Ng NhD gh, Ng�D g.�/ Ng. We will identify  -crossed representations with
modules for this twisted group ring via this correspondence.

Let E be a finite field and let V be a finite-dimensional E-vector space. A pro-
jective crossed representation � of G on V is a map G ! �LE .V / such that there is
˛ 2 Z2 .G;E

�/, where Z2 .G;E
�/ is the group of 2-cocycles for G with respect to some

action  of G on E, such that �.g/�.h/ D ˛.g; h/�.gh/ for all g; h 2 G, and �.1/ D 1;
see [25], p. 55, for the definition of 2-cocycles. When it is clear, we may suppress the
subscript  from the notation. The G-action induced on E by �, as described above, is the
same as  . We may say � is an ˛-representation of G over E. For F a subfield of E, we
will also say that � is F -linear if .G/�AutF .E/. As above, there is a 1-to-1 correspond-
ence between ˛-representations of G over E and modules for the ring E˛JGK, which we
define as the free profinite E-module with basis ¹ Ng W g 2 Gº, and multiplication defined
distributively by Ng Nh D ˛.g; h/gh, Ng� D g.�/ Ng (see Theorem 3.14.3 in [25]). We will
identify ˛-representations with modules for this crossed product via this correspondence.

Finally, let V D En. A projective representation of G of degree n over E is a project-
ive crossed representation �WG ! �LE .V / with trivial G-action  on E. Hence, such a
projective representation induces a homomorphism G ! PGLn.E/, which we also write
as �. If E is a finite field, we define the size of � to be jEjn. To every homomorphism
�WG ! PGLn.E/ there is attached a well-defined cohomology class ˛ 2 H 2.G; E�/

with respect to the trivial action of G on E�. This � lifts to a representation exactly if the
associated cohomology class ˛ is trivial. When we speak of a faithful projective repres-
entation, we mean one such that ker.�WG ! PGLn.E// � Z.G/; a non-trivial projective
representation will mean one such that the induced map �WG ! PGLn.E/ is non-trivial.

We say two projective representations �1; �2 of G of degree n over E are project-
ively equivalent if there is some x 2 PGLn.E/ such that the induced maps �1; �2WG !
PGLn.E/ satisfy x�1�1.g/x D �2.g/ for all g 2 G.

Lemma 2.1. Let G be a profinite group with an action  on E.

(i) Let � be a projective crossed  -representation of G on V with cocycle ˛. Then the
dual representation on V � D HomE .V; E/ is a projective crossed  -representation
of G with cocycle cohomologous to ˛�1.

(ii) Let �1; �2 be two projective crossed  -representations of G on E-vector spaces
V1; V2 with cocycles ˛1; ˛2. Then �1 ˝E �2 is a projective crossed representation
on V1 ˝E V2 with cocycle ˛1˛2.

Proof. This follows from simple calculations. For instance, the projective crossed repres-
entation of G on V � is defined as .gf /.v/ D g.f .g�1v//, and thus

.g.hf //.v/ D g.h.f .h
�1.g�1v//// D gh.f .˛.h

�1; g�1/.gh/�1v//

D gh.˛.h
�1; g�1// gh.

ghf .v//:

It follows from the cocycle identity that .g; h/ 7! gh.˛.h
�1; g�1// is cohomologous

to ˛�1.
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The first assertion of the lemma allows one to transform simple E˛JGK-modules into
simple E˛

�1JGK-modules by taking duals. If ˛ represents the trivial class in H 2.G;E�/,
then E˛JGK Š EJGK. In particular, V ˝E V � is an EJGK-module.

2.3. Quasiequivalent representations

Recall that two representations �1 and �2 of a finite group G over a field F are said to be
quasiequivalent if there exists � 2 Aut.G/ such that �1 and �2 ı � are equivalent. Note
that quasiequivalence is an equivalence relation and, for faithful representations �1 and �2,
�1.G/ and �2.G/ are conjugate in GLF .V / if and only if they are quasiequivalent (see
Lemma 2.10.14 in [27]).

We say in addition that two projective representations �1 and �2 ofG over F are quasi-
equivalent if there exists � 2 Aut.G/ such that �1 and �2 ı � are projectively equivalent.

2.4. PFG, PFR, UBERG, PFPn, : : :

In this section we recall some basic definitions. The reader can find more information
in [26] and [8].

2.4.1. PFG, PFR, UBERG. We say that a profinite group G is PFG (positively finitely
generated) if there is a positive integer k such that the probability of k Haar-random
elements of G generating the whole group is positive. This condition has been studied
extensively, see for example [12, 36, 37] and references therein. Additionally, follow-
ing [8], we can define PFG modules. A profinite module M is said to be PFG if there
is k 2 N such that the probability that the submodule generated by k Haar-random ele-
ments is the whole M is positive; here the Haar measure on M arises by considering M
as an abelian profinite group.

Remark 2.2. Note that there are unfortunate naming conventions fixed in the literature
here. ‘Polynomial’ growth in similar contexts always means ‘at most polynomial’ growth
(see, for example, [34]), so we include, in our definition of PFG, groups which have
maximal subgroup growth slower than any polynomial. On the other hand, ‘exponen-
tial’ growth (which we will encounter below) usually means that the function in question
has the growth type of an exponential function: that is, it is bounded above and below by
exponentials.

In the spirit of the Mann–Shalev theorem, two of the present authors study in [26] a
related property called PFR (positively finitely related). We list below some of the condi-
tions considered there that we will need; the interested reader may check [26] for more
details.

A profinite group G:
(i) is PFR if it is finitely generated, and for every epimorphism f WH ! G with H

finitely generated, the kernel of f is positively finitely normally generated in H ;
(ii) has UBERG if there exists a constant c > 0 such that, for every finite field F and

every n 2 N, r.G; F; n/ � jF jcn.
Recall that UBERG stands for uniformly bounded exponential representation growth

(over finite fields).
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Proposition 2.3 ([26]). Let G be a profinite group. Then:
(i) G has UBERG if and only if the group algebra OZJGK is PFG;
(ii) if G is finitely presented, then G is PFR if and only if it has UBERG.

Note that the equivalence of UBERG to OZJGK being PFG is only stated in [26] for
finitely generated groups, but the proof for general groups goes through without change.

In [8], it was shown that there are groups with UBERG which are not PFG. In Sec-
tion 4.2 we will show that there are non-finitely generated groups with UBERG.

We also recall the following result from [8].

Proposition 2.4 (Proposition 1.3 in [8]). If G has UBERG, then it is countably based.

2.4.2. Type PFPn. The notion of a profinite group of type PFPn was introduced in [8].
We report the definition here for convenience. Let R be a profinite ring and let M be a
profinite R-module. We say that M has type PFPn over R if it has a projective resolution
� � � ! Pn ! � � � ! P1 ! P0 !M ! 0 with P0; : : : ; Pn PFG profinite R-modules.

A profinite group G has type PFPn over R if R has type PFPn as RJGK-module.
Unless specified otherwise, type PFPn will mean over OZ.

2.4.3. APFG. Finally, the notion of APFG group was introduced by Damian in [11]. We
recall here the definition. A profinite groupG is said to be APFG if the augmentation ideal
I OZJGK of the completed group algebra OZJGK is PFG as a OZJGK-module. This is equivalent
to G having UBERG and type FP1 by Proposition 1.10 in [8].

2.4.4. Frattini subgroup. The Frattini subgroup ˆ.G/ of a profinite group G is

ˆ.G/ D
\
M2M

M

where M is the set of all open maximal subgroups of G. Since the Frattini subgroup
of a finite group is nilpotent, it follows that the Frattini subgroup of a profinite group is
pronilpotent (see Corollary 2.8.4 in [41]).

2.4.5. Frattini covers and PFG. An epimorphism f WH ! G is called a Frattini cover
of G if ker.f / � ˆ.H/. The Frattini covers of G form an inverse system whose inverse
limit, called the universal Frattini cover of G, is again a Frattini cover of G and is a
projective profinite group. See [14], Chapter 22, for background on this.

Lemma 2.5 (Lemma 1.15 in [8]). A Frattini cover H of a profinite group G is PFG if
and only if G is.

2.5. Crowns in groups

2.5.1. G -equivalence. Let G be a group. A G-group A is a group together with a homo-
morphism � W G ! Aut.A/ and we write �.g/.a/ D ag for convenience. Two G-groups
A and B are said to beG-isomorphic (in symbolsAŠG B) if there exists an isomorphism
'WA! B such that '.ag/D '.a/g for all g 2 G, a 2 A. TwoG-groups A and B are said
to be G-equivalent (in symbols A �G B) if there exist two isomorphisms 'WA! B and
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‰WA ÌG ! B ÌG such that the following diagram is commutative:

1 // A //

'

��

A ÌG //

‰

��

G

id
��

// 1

1 // B // B ÌG // G // 1:

2.5.2. Crowns. Let G be a finite group and let X=Y D S t be a chief factor of G. If S
is abelian and S D Cp , then conjugation gives a t -dimensional irreducible representation
of G over Fp . If S is non-abelian instead, remembering that Aut.S t / D Aut.S/ o Sym.t/,
conjugation gives a transitive permutation representation of G of degree t .

We now recall several definitions that will be used in many proofs throughout the rest
of the article. The theory of crowns in profinite groups is developed in [12], where the
reader can find more details and relevant proofs. Recall that a finite group L is called
monolithic if L has a unique minimal normal subgroup N . In this case the socle soc.L/ is
the unique minimal normal subgroup. If in addition N is not contained in ˆ.L/, then L is
called a monolithic primitive group.

Remark 2.6. Let L be a monolithic primitive group with minimal normal subgroup N 6�
ˆ.L/. Then there exists a maximal subgroupM ofLwhich does not containN . It follows
that M is core-free in L, and hence that L has a faithful primitive permutation action on
the (left) cosets of M .

We say that a chief factor X=Y of a finite group G is Frattini if ˆ.G=Y / � X=Y .
Any non-abelian chief factor is non-Frattini, and any abelian non-Frattini chief factor is
complemented.

Now, given a non-Frattini chief factorA of a finite groupG, we defineLADG=CG.A/
if A is non-abelian, and LA D .G=CG.A//A if A is abelian. Then LA is a monolithic
primitive group, and we say it is the monolithic primitive group associated to A.

Let L be a monolithic primitive group and let N be its minimal normal subgroup. For
a positive integer k, the crown-based power of L of size k, Lk , is the preimage of the
diagonal copy of L=N in the k-fold direct product .L=N/k , under the projection map
Lk ! .L=N/k .

For A a non-Frattini chief factor ofG as before, let NA be the set of normal subgroups
N of G such that G=N Š LA and soc.G=N/ �G A. Then, setting RG.A/ D

T
N2NA

N ,
we have that G=RG.A/ is isomorphic to the crown-based power .LA/ıG.A/, where ıG.A/
is the number of non-Frattini chief factors of G G-equivalent to A (in any chief series).

We recall a standard lemma that we will need later.

Lemma 2.7 ([24]). Let T be a monolithic group with non-abelian minimal normal sub-
group N D S s and fix a copy S1 of S in N . Then T embeds in Aut.S/ o T= QK, where
QK D coreT .NT .S1//.

2.6. The constant c4

In this article we will make a heavy use of the constant c4 that appears in [22], therefore
we record some of its properties here for the convenience of the reader. In [22], c4 is
defined to be 16Cmax¹3; c3º, for another constant c3. In particular, c4 � 19.
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The existence of c3 is one of the main results of [29]; in fact they show this result
for c3 an explicit constant. We do not know what values c3 can take.

3. Conditions for UBERG

Recall that a profinite group G is said to have UBERG if the completed group ring OZJGK
is positively finitely generated as a (left) module for itself. Whereas PFG groups are closed
under extensions, this has hitherto been unknown for UBERG groups.

In this section we give related conditions, one necessary and one sufficient, for a
finitely generated profinite group G to have UBERG.

We need the following definition from [22]: the maximal number r such that a non-
abelian normal section of G is the product of r chief factors of G isomorphic to K will
be denoted by rkK.G/. We remark that the statement of Proposition 4.1 in [22] can be
sharpened as follows.

Lemma 3.1. Let G be a finite d -generated group and let T be a transitive group of
degree n. Then there are at most 16dnjT jr epimorphisms from G onto T , where r is the
maximum of rkK.G/ over all K Š Alt.b/s such that bs � n.

This is the same idea as that of Remark 4.2 in [22], but in the form we need for our
purposes.

SupposeK is a non-abelian characteristically simple finite group, sayK D S s , with S
simple. As in [22], we write l.K/ for the minimal degree of a faithful transitive per-
mutation representation ofK. We define the projective length lproj.K/ ofK as follows: let
lproj.S/ be the smallest size of a non-trivial irreducible projective representation of S (over
any field); define lproj.K/ D lproj.S/s (cf. Proposition 3.11). Note that lproj.S/ is also the
smallest size of a non-trivial linear representation of the universal central extension of S
(see, e.g., Proposition 5.3.1 in [27]).

Lemma 3.2. SupposeK D S s , with S a non-abelian simple group. Then lproj.K/ > l.K/.

Proof. Since l.K/� l.S/s (here, in fact, equality holds), it is enough to show that lproj.S/

> l.S/. Given a non-trivial projective representation S ! GL.M/ of minimal size over
some finite field F , we have an action of S on the projective points of M , i.e., the orbits
of M n ¹0º under the action of F �. This action is non-trivial because S has non-trivial
image in PGL.M/; since S is simple, each non-trivial S -orbit of this action is a faithful
transitive permutation representation of S of size at least l.S/, and strictly less than jM j D
lproj.S/.

For completeness, we include the following lemma, which was mentioned in The-
orem 11.1 of [22].

Lemma 3.3. Suppose T is a monolithic group with non-abelian minimal normal sub-
groupK D S r , with S a non-abelian simple group. Then jAut1.T /j � r jAut.S/jr , where
Aut1.T / denotes the group of automorphisms of T which induce the identity on T=K.

Proof. The automorphism group Aut.K/ is isomorphic to the wreath product Aut.S/r Ì
Sym.r/. The homomorphism from Aut.T / to Aut.K/ is injective, see Lemma 2.10 in [22].
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Since K is minimal, T acts transitively on the direct factors S1 � � � � � Sr of S r . We
observe that the image of f 2 Aut1.T / in Sym.r/ is uniquely determined by f .S1/.
Indeed, suppose Sj D tS1t�1 for t 2 T ; then f .t/ D tk for some k 2 K, and hence we
have f .tS1t�1/ D f .t/f .S1/f .t/�1 D tkf .S1/k�1t�1 D tf .S1/t�1. Thus, the image
of Aut1.T / in Sym.r/ has at most r elements and the assertion follows.

Let T be an irreducible linear subgroup of GLFp .V / and let G be a profinite group.
Write Epi.G; T /T for the set of T -conjugacy classes of epimorphisms G ! T . The next
lemma is essentially Lemma 7.2 in [22].

Lemma 3.4. jEpi.G; T /j=jT j � jEpi.G; T /T j � jV j jEpi.G; T /j=jT j:

Proof. Suppose T � GLFp .V /. Then Z.T / � CGLFp .V /
.T / � EndT .V /, and jEndT .V /j

� jV j because V is an irreducible T -module. The result follows by the orbit-stabiliser
theorem.

We can now give a sufficient condition for UBERG, roughly analogous to the implica-
tion (4)) (1) in Theorem 11.1 of [22]. Let c4 be the constant defined in Section 5 of [22]
(see Section 2.6). Also recall that, for a monolithic primitive groupLwith minimal normal
subgroup N , we say that L is associated with A if A is isomorphic to N .

Theorem 3.5. LetG be a d -generated profinite group. Suppose there is some b such that,
for all finite monolithic groups L with non-abelian minimal normal subgroup K, if the
crown-based power Lk is a quotient of G, then k � lproj.K/b . Then there is some c such
that, for T an irreducible linear subgroup of GLFp .V /, j Epi.G; T /j � jT j jV jc and G
has UBERG.

Proof. By the implication (4)) (1) of Theorem 10.2 in [22], there is some a such that,
for any transitive group Q of degree k

(3.6) jEpi.G;Q/j � jQjak :

Let dimFp V D n. Let H be a subgroup of T such that the representation of T is
induced from a primitive representation of H . Denote by W a primitive H -module such
that V D IndTH W . Let P be the image of H in EndFp .W / and let m D dimFp W . Put
QK D core.H/. Then T= QK is a transitive group of degree s D n=m and T is a subgroup of
P o T= QK.

Case 1. Suppose that j QKj � jV jc4 .
Then jEpi.G; T= QK/j � jT= QKjas by (3.6), and hence, by the hypothesis,

jEpi.G; T /j � jT= QKjas jV jc4d � jT j jV jlogp.a/Cc4d :

Case 2. Suppose that j QKj > jV jc4 .
Since j QKj D jT j=jT= QKj � jP js , we have jP j > jW jc4 , and so we can use Proposi-

tion 5.7 in [22]. We use the notation of that proposition. Denote E.B/=Z.E.B// by S ,
where E.B/ is the layer of B (see Section 2.1). Let K D .T \ E.B/s/0. As in Proposi-
tions 6.1 and 7.1 of [22], K is normal in T and is a subdirect product of E.B/s , and T
acts transitively on the factors of E.B/s; in particular, K=Z.K/ Š S r , for some r � s,
and T=CT .K/ is the primitive group associated with K=Z.K/ (cf. Section 2.5).
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By Lemma 7.7 in [18],

jOut.S/j � 3 log.l.S// � 3 log.lproj.S//:

It follows that T=KCT .K/ (which embeds into Out.S/ o Sym.r/) is a transitive group of
degree at most 3r log.lproj.S// D 3 log.lproj.K=Z.K///, so by (3.6),

jEpi.G; T=KCT .K//j � jT=KCT .K/j a3 log.lproj.K=Z.K///

D jT=KCT .K/j l
proj.K=Z.K//3 log.a/:

Fix some � 2 Epi.G; T=KCT .K//, let �1; : : : ; �j be its preimages in Epi.G; T=CT .K//,
and note that .�1; : : : ; �j /WG !

Qj
iD1 T=CT .K/ is a quotient map from G to a crown

power ofK=Z.K/; writing Aut1.T=CT .K// for the group of automorphisms of T=CT .K/
which induce the identity on T=KCT .K/, we deduce using Lemma 3.3 that

j � lproj.K=Z.K//b jAut1.T=CT .K//j � lproj.K=Z.K//b r jAut.S/jr ;

and therefore

jEpi.G; T=CT .K//j � jT=KCT .K/j lproj.K=Z.K//3 log.a/ lproj.K=Z.K//b r jAut.S/jr :

Again, by Lemma 7.7 in [18], jOut.S/j � l.S/ � lproj.S/, so

jEpi.G; T=CT .K//j � jT=CT .K/j lproj.K=Z.K//3 log.a/CbC2

� jT=CT .K/j jV j
3 log.a/CbC2

because lproj.K=Z.K//� jV j: indeed, lproj.K=Z.K//D lproj.S/r and jV j D jW js , s � r ,
so it is enough to show that lproj.S/ � jW j, which holds because (by Proposition 5.7
in [22]) W is an E.B/-module, defined over some finite extension of Fp , on which
Z.E.B// acts by scalars, so it is a projective representation of S D E.B/=Z.E.B//.

Finally, as in Case (2) of Proposition 7.1 in [22], we have that jCT .K/j � jV j3, so
jEpi.G; T /j � jT j jV j3 log.a/CbC2C3d .

To conclude thatG has UBERG, we apply Lemma 3.4 and Proposition 6.1 in [22].

Remark 3.7. Note that the caseK D 1 does not occur in the proof of the previous theorem
(or in Proposition 7.1 of [22]), while it does in Proposition 6.1 of [22], because here we
are using j QKj > jV jc4 instead of jP j > jV jc4 . That is, in the notation of Proposition 6.1
in [22], j QKj D jT \ QN j > jV jc4 . But j QN j D jNGLFp .W /

.E.B//js , and

jNGLFp .W /
.E.B//j � jCGLFp .W /

.E.B//j jAut.E.B//j � jW j jOut.E.B//j jE.B/j

by Proposition 5.7(5) in [22]. Also, jOut.E.B//j � jW j by Lemma 7.7 in [18]. Then
j QN=N j � jW j2s D jV j2. Therefore jT \N j > jV jc4�2 > jV j (note that c4 � 3), whereas
jZ.E.B//js � jW js D jV j. So we cannot have T \N � Z.E.B//.

For our necessary condition, we work parallel to Lemma 9.2 in [22]. While lproj.S/

measures the size of the smallest projective representation of a non-abelian simple group S,
we now need to measure the size of the smallest faithful linear representation of S .
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Lemma 3.8. Let F be finite field of characteristic p and let T be a finite group. Let V
be a faithful finite-dimensional linear F -representation of T . Every element of T which
acts trivially on all composition factors of V lies in Op.T /. In particular, the smallest
faithful linear representation of a finite group with a non-abelian unique minimal normal
subgroup is irreducible.

Proof. Let �W T ! GL.V / be a finite dimensional faithful linear representation of T
defined over the finite field F . Let C be the common centraliser of all composition factors
of V . Then, with respect to a suitable basis of V , the image �.C / lies in the group of
unimodular upper triangular matrices and thus is a p-group. As � is faithful, we deduce
that C is a normal p-subgroup of T and C � Op.T /.

Suppose that T has a unique minimal normal subgroup K, which is non-abelian.
Since the center of Op.T / always contains a minimal normal subgroup, it follows that
Op.T / D ¹1º.We deduce that every faithful representation admits a composition factor
on which some k 2 K acts non-trivially. SinceK is the unique minimal normal subgroup,
it follows that the representation on this composition factor is faithful.

Given a non-abelian characteristically simple finite groupKDS s , S simple, we define
a new function l lin.K/: if the smallest non-trivial projective representation S ! GL.V /
of S has dimension k over the field F D EndS .V /, let l lin.K/ D jF jks if this representa-
tion is (projectively equivalent to) a linear representation, and l lin.K/ D jF jk

2s if not. As
justification for this definition when s D 1, we offer the following lemma.

Lemma 3.9. There is a positive constant e such that, for any non-abelian simple group S ,
the smallest faithful irreducible linear representation of S has size at least l lin.S/e and
at most l lin.S/.

Proof. We first prove the lower bound. This is clear for the sporadic groups, and for the
groups S for which l lin.S/ D lproj.S/, where the smallest faithful irreducible linear rep-
resentation has size l lin.S/ by definition. This second type includes the alternating groups.

It remains to consider only simple groups of Lie type for which the natural module is
not linear, which we subdivide into:
(i) exceptional groups of Lie type;
(ii) classical groups of Lie type.

For (i), the lower bound follows from Proposition 5.4.13 in [27]: there is some e
such that any non-trivial irreducible projective representation S ! PGLk.F / has size
at least jF jek

2
.

For (ii), the lower bound follows from Proposition 5.4.11 in [27]: apart from modules
quasiequivalent to the natural module of dimension d , the smallest projective representa-
tion of these groups (and hence the smallest linear representation) has dimension at least
d.d � 1/=2� 2 for large d . It is easy to see that the linear representations of S , as a subset
of the projective representations of S , are invariant under quasiequivalence, so the result
follows.

For the upper bound for (i) and (ii), let �W S ! PGLk.F / be the smallest faithful
projective representation of S . We compose � with the adjoint representation PGLk.F /!
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GLk2.F / to obtain a faithful linear representation for S of size jF jk
2
. Again, the assertion

follows from Lemma 3.8.

Lemma 3.10. There is some c such that, for any non-abelian simple group S , Aut.S/ has
a faithful irreducible projective representation of size� lproj.S/c and a faithful irreducible
linear representation of size � l lin.S/c .

Proof. This is clear for sporadic and alternating groups; we assume S is of Lie type.
For this we can apply the description of Aut.S/ from Sections 2.5 and 2.7 of [16]: the
automorphisms of S , and of its perfect central extensions QS , are generated by inner auto-
morphisms, diagonal automorphisms, field automorphisms and graph automorphisms.

Suppose S is defined in degree k over a field F of characteristic p: then some per-
fect central extension QS of S acts naturally and faithfully on V of dimension k over F ,
and lproj.S/ D jF jk . We identify QS with its image in GLF .V /. Fix a basis of V . From
Section 2.5 of [16], we see that the diagonal automorphisms of QS are induced by conjug-
ation by the subgroup T of the diagonal elements of GLF .V / which normalise QS . Now
QST � GLF .V / � �LF .V / (recall that �LF .V / is the semilinear group) is acted on by

the Frobenius automorphisms U � �LF .V / of F acting componentwise on the matrix
entries. Thus V becomes a crossed QST U -module over F , and also a crossed module for
the universal central extension R of QST U , via restriction.

Also from Section 2.5 of [16], Aut.S/ is the semidirect product of R=Z.R/ by a
group � of graph automorphisms of order at most 6, and these automorphisms ofR=Z.R/
extend to automorphisms of R. Form the semidirect product R Ì � using this action, so
that .R Ì �/=Z.R/ Š Aut.S/. So W D IndRÌ�

R .V / is a faithful representation of R Ì �
of size jF jkj�j. A simple quotient of this on which S acts non-trivially must be an irre-
ducible representation of R Ì � with kernel � Z.R/, because S is the unique minimal
normal subgroup of Aut.S/, so this gives a faithful irreducible projective crossed repres-
entation X , over some extension of F , of Aut.S/, of size at most jF j6k . The restriction of
this to Fp gives a faithful irreducible projective representation of Aut.S/ of size lproj.S/6,
which is linear if V is.

For the case where V is not linear, write X� for the dual module to X . The class
of the cocycle of X� is the inverse of the cocycle of X and so X ˝F X� is a crossed
representation of Aut.S/with trivial cocycle (see Lemma 2.1). Restriction of scalars to Fp
provides us with a faithful linear representation of Aut.S/ of size at most jF j36k

2
. Since S

is the unique minimal normal subgroup of Aut.S/, it follows from Lemma 3.8 that there
is a faithful irreducible composition factor.

We can now justify our definitions of lproj.K/ and l lin.K/, in the form of the following
lemma. Suppose that T is a monolithic group with non-abelian minimal normal subgroup
K D S s , for some non-abelian simple group S .

Proposition 3.11. Let c be the constant from Lemma 3.10, and let e be the constant
from Lemma 3.9. The smallest size of a faithful irreducible linear (respectively, projective)
representation of T is:

(i) at least l lin.K/e (respectively, lproj.K//;
(ii) at most l lin.K/c (respectively, lproj.K/c/.
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Proof. We give a proof for linear representations; the proof for projective representations
is similar.

(i) For the lower bound, suppose V is a faithful irreducible T -module, and letW be an
irreducible summand of V as aK-module. Some subset A of the set ¹1; : : : ; sº of (indices
of the) copies of S acts non-trivially onW ; by Lemma 5.5.5 in [27],W is a tensor product
(over the field F D EndK.W / D EndSi .Xi /) of non-trivial modules Xi for each of the Si
in T . Each Xi has size at least l lin.S/e , by Lemma 3.9, so (because dimF .Xi / � 2) W
has size � l lin.S/ejAj.

Now each irreducible summand Wj of V , considered as a K-module, has size jW j,
thanks to Clifford theory (see for instance Theorem 2.2.2 in [25]). Moreover, for eachWj ,
the subset Aj of the copies of S acting non-trivially on it has size jAj. Each copy of S
acts non-trivially on V , so there is someWj on which it acts non-trivially; hence

S
j Aj D

¹1; : : : ; sº, so the number of Wj is at least s=jAj. Therefore V has size � jW js=jAj �
l lin.S/es .

Note that, in the case of projective representations, each Xi has size at least lproj.S/

by the definition of lproj.
(ii) For the upper bound, pick one of the copies S1 of S in K. By Lemma 2.7, T

embeds in Aut.S/ o T= QK, where QK D core.NT .S1//. By the previous lemma, Aut.S/ has
a faithful irreducible representation V of size l lin.S/c . By allowing T= QK to permute the
copies of V s , we get a faithful irreducible representation of Aut.S/ o T= QK of size l lin.K/c .
The restriction of this representation to L has a faithful composition factor by Lemma 3.8;
this irreducible representation has size � l lin.K/c .

Theorem 3.12. Let G be a profinite group. Suppose that, for all b, there is some mono-
lithic group Lb with non-abelian minimal normal subgroup Kb such that some crown-
based power Lk of L is isomorphic to a quotient of G and k > l lin.Kb/

b . Then G does
not have UBERG.

Proof. By Proposition 3.11, each Lb has a faithful irreducible representation of size �
l lin.Kb/

c . On the other hand, from projecting onto the factors of the crown power, we
have more than l lin.Kb/

b epimorphisms G ! Lb with different kernels, and thus more
than l lin.Kb/

b G-modules of size � l lin.Kb/
c . Since this is true for all b, we conclude

that G does not have UBERG.

We can show that the gap between our necessary and sufficient conditions for UBERG
is the best one can do by considering only crown-based power quotients of G with non-
abelian socle.

Theorem 3.13. Let G be a d -generated profinite group. The universal Frattini cover QG
has UBERG if and only if there is some b such that, for all monolithic groups L with non-
abelian minimal normal subgroupK, the size of a crown-based power Lk of L occurring
as a quotient of G is k � lproj.K/b .

Proof. As every crown-based powerLk of a monolithic groupLwith non-abelian socle is
Frattini-free, Epi.G;Lk/ is canonically isomorphic to Epi. QG;Lk/. So the ‘if’ part follows
immediately.
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Suppose for all b there is some monolithic group L with non-abelian minimal normal
subgroup K, such that the size of a crown-based power of L occurring as a quotient of
G is > lproj.K/b . By Proposition 3.11, L has a faithful irreducible projective representa-
tion of size � lproj.K/c , so as in Theorem 3.12, the crown-based power of L gives more
than lproj.K/b different projective representations of this size. On the other hand, QG is a
projective profinite group and thus every projective representation of QG lifts to a linear
representation. Since this holds for all b, this shows QG does not have UBERG.

For later reference, we say that a profinite group has proj-UBERG if it satisfies the
condition on crown-based powers in the previous theorem.

As an application for our sufficient condition, we give a slight sharpening of the known
result that PFG implies UBERG.

Corollary 3.14. For finitely generated profinite groups,

PFG H) proj-UBERG H) UBERG:

Proof. Suppose G is PFG. By Theorem 11.1 in [22], for monolithic group L associated
with non-abelian minimal normal subgroup K, there is some a such that the size of a
crown-based power of L occurring as a quotient of G=N is l.K/a, which is less than
lproj.K/a by Lemma 3.2. The second implication holds by Theorem 3.5.

4. Infinite products of finite groups with UBERG

In this section we give a criterion which allows to verify that an infinite product of finite
groups has UBERG. Our approach is rather direct and relies on elementary calculations.
The method can be used to reprove results of Damian ([11], Example 4.5), which rely
on the machinery of [22]. We use our method to construct a UBERG group which is
not finitely generated. In addition, we use it to show that groups with UBERG are not
closed under extensions; indeed, we construct a product of special linear groups which
is procyclic-by-UBERG but which does not have UBERG. We show that both normal
subgroup and quotient are finitely presented and hence PFR by Theorem A in [26]. This
answers in the negative an open question from [26]. The next section, however, contains
conditions under which extensions of groups with UBERG do have UBERG.

4.1. A criterion for UBERG

Here a family of power series .Sq/q is a sequence of power series with Sq 2 ZJXK for
every prime power q D pk , where p runs through all primes.

Definition 4.1. A family of power series .Sq/q is uniformly bounded if there are constants
c; B > 0 such that

Sq.q
�c/ � B � qc

for all prime powers q.

Let G be a profinite group. Recall that a representation � of G over a field E is said
to be absolutely irreducible if L˝E � is irreducible over L for every extension L=E. We
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write r�.G; F; n/ to denote the number of absolutely irreducible representations of G of
dimension n defined over F . Assume that r�.G; F; n/ <1 for all n 2 N and all finite
fields F . For instance, all finitely generated profinite groups have this property. For every
finite field Fq , we consider the power series

S�q .G/ D

1X
nD1

r�.G;Fq; n/X
n�1
2 ZJXK:

Lemma 4.2. Let G be a profinite group with the property r�.G;F; n/ <1 for all n 2 N
and all finite fields F . The group G has UBERG if and only if the family of power series
S�q .G/ is uniformly bounded.

Proof. AssumeG has UBERG, then there is a constant c > 0 such that r�.G;Fq;n/� qnc

for all n 2 N and all finite fields Fq . In particular,

S�q .G/.q
�c�1/D

1X
nD1

r�.G;Fq; n/q
�.cC1/.n�1/

�

1X
nD1

q�nCcC1 D qcC1
q�1

1 � q�1
� qcC1

and .S�q .G//q is uniformly bounded.
Conversely, assume that S�q .G/ is uniformly bounded and S�q .G/.q

�c/ � qcB . Then
in particular r�.G;Fq; n/q�c.n�1/ � qcB , and (since c and B are independent of q) this
shows that G has UBERG by Lemma 6.8 in [26].

Lemma 4.3. Let .Gi /i2N be a family of profinite groups such that the power series
S�q .Gi / are defined. If the family of power series

Sq D
Y
i2N

S�q .Gi /

is well-defined and uniformly bounded, then G D
Q
i Gi has UBERG.

Proof. We claim that for every real number x 2 Œ0; 1/ such that Sq converges at x, we
have

S�q .G/.x/ � Sq.x/:

This suffices to conclude that G D
Q
i2N Gi has UBERG.

The absolutely irreducible representations of G are outer tensor products
N
Vi of

absolutely irreducible representations of the factors Gi , such that almost all Vi are trivial.
In particular, we obtain

r�.G; F; n/ D
X
d2Dn

Y
i

r�.Gi ; F; di /;

where the sum runs over the setDn all sequences d D .d1; d2; : : : / such that almost all di
equal 1 and

Q
i di D n. We observe that for all such sequences d we have

1X
iD1

.di � 1/ �
� 1Y
iD1

di

�
� 1 D n � 1
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and so, for all x 2 Œ0; 1/, we have xn�1 �
Q
i x

di�1. Therefore

S�q .G/.x/ D

1X
nD1

X
d2Dn

xn�1
Y
i

r�.Gi ;Fq; di /

�

1X
nD1

X
d2Dn

Y
i

xdi�1r�.Gi ;Fq; di / D Sq.x/:

4.2. An infinitely generated UBERG group

In this section we give the first example of a profinite group which cannot be finitely
generated but has UBERG. This group G is of the form

G D

1Y
iD1

G�pi ;ni

for certain finite metabelian group G�pi ;ni . We begin by describing the building blocks.
Let p > 3 be a prime with p � 3 mod 4. Let Cp be a cyclic group of order p. Define

Aut.Cp/ı to be the subgroup of Aut.Cp/ which consists of automorphisms of odd order.
The group Aut.Cp/ı is cyclic of order �.p/ D .p � 1/=2 (since p � 3 mod 4). Consider
the group

G�p;n D C
n
p Ì Aut.Cp/ı

with Aut.Cp/ı acting diagonally on C np . We observe that Aut.Cp/ı is non-trivial (since
p > 3) and it is the abelianisation of G�p;n.

Lemma 4.4. Let G�p;n D C
n
p Ì Aut.Cp/ı. Then d.G�p;n/ � n.

Proof. Let d D d.G�p;n/ and let .v1; ˛1/; : : : ; .vd ; ˛d / be a set of generators. Since the
action of Aut.Cp/ı on C np is diagonal, v1; : : : ; vd have to generate C np and hence d � n.

We take a closer look at the representations of these groups. Let ` be a fixed prime.
We start by studying the irreducible representations of G�p;n over an algebraically closed
field K of characteristic `. The one-dimensional irreducible representations of G�p;n are
exactly the ones which factor through the abelianisation, i.e., through Aut.Cp/ı; there is
one of these for each �.p/-th root of unity in K. In particular, if F is any field finite field,
we obtain

r�.G�p;n; F; 1/ D gcd.�.p/; jF j � 1/:

If the characteristic ` D p, then every irreducible representation V of G�p;n over K is
one-dimensional. Indeed, V jCnp is trivial, since it is semi-simple and the trivial represent-
ation is the only irreducible representation of a p-group in characteristic p.

Assume that ` ¤ p. Let .�; V / be an irreducible representation of G�p;n over K that
does not factor through Aut.Cp/ı. Restriction to C np gives

V jCnp D e �
M

˛2Aut.Cp/ı

˛U;
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withU an irreducible representation ofC np overK. Since .�;V / is not one-dimensional,U
is not the trivial representation; U is one-dimensional, and the action of a non-trivial
˛ 2 Aut.Cp/ı has no non-trivial fixed points in C np . It follows that ˛U is not isomorphic
to U for any ˛ ¤ id, and hence the inertial subgroup is C np itself. Therefore e D 1 (see
Theorem 2.2.2(iii) on p. 84 of [25]).

It follows that V D Ind
G�p;n
Cnp

.U / and that

dimK.V / D jG�p;n W C
n
p j � dimF` U D jAut.Cp/ıj D �.p/:

Now note that the non-trivial representations .�; V /’s as above correspond to non-trivial
Aut.Cp/ı-orbits on Irr.C np ; K/. In particular, for every field F of characteristic ` we find

r�.G�p;n; F; �.p// � p
n
� 1:

We have proved the following.

Lemma 4.5. For all x 2 Œ0;1/ and all prime powers q, we have

S�q .G
�
p;n/.x/ � gcd.�.p/; q � 1/C .pn � 1/ x�.p/�1:

Now we are able to construct the infinitely generated UBERG groupG. Let p1;p2; : : :
be an increasing sequence of primes p > 3 satisfying:

(i) pi � 3 mod 4, and
(ii) .p1 � 1/=2; .p2 � 1/=2; : : : are pairwise coprime.

Recall that �.pi /D .pi � 1/=2. Additionally, pick an increasing and unbounded sequence
of integers ni such that

p
ni
i � 1 � 2

�.pi /:

Lemma 4.6. For pi and ni as above, the group

G D

1Y
iD1

G�pi ;ni :

has UBERG, does not have type FP1, is not finitely generated and does not have type PFP1.

Proof. Clearly, G is not finitely generated, as d.G/ � d.G�pi ;ni / � ni and the integers ni
tend to infinity. Since G is soluble, by Corollary 2.4 in [11] and the remark after it, it must
not have type FP1.

For every prime power q, we have (by Lemma 4.5)
1Y
iD1

S�q .G
�
pi ;ni

/.q�2/ �

1Y
iD1

�
gcd.�.pi /; q � 1/C .p

ni
i � 1/q

�2.�.pi /�1/
�

�

1Y
iD1

�
gcd.�.pi /; q � 1/C q�.pi /�2.�.pi /�1/

�
� .q � 1/

1Y
iD1

�
1C q��.pi /C2

�
� .q � 1/

1Y
iD1

.1C q�i / � .q � 1/ exp
� 1X
iD1

q�i
�
� .q � 1/e:

So the family of power series
Q1
iD1 S

�
q .G

�
pi ;ni

/ is uniformly bounded; using Lemma 4.3,
we deduce that G has UBERG.
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4.3. A non-UBERG procyclic-by-UBERG group

For m � 1, we consider the direct product SLn.Fq/m and the factor group Gn.q; m/ D
SLn.Fq/m=Cn.q; m/, where Cn.q; m/ is the image of the diagonal embedding of the
centre C � SLn.Fq/. The centre C consists of scalar matrices �In, where � 2 F�q is
an n-th root of unity. In particular, the group Cn.q; m/ is cyclic of order jCn.q; m/j D
gcd.n; q � 1/.

Let .ni /i2N be an increasing sequence of pairwise coprime integers > 12 and let qi D
p
ki
i be a sequence of prime powers for pairwise distinct primes pi � 5. We may assume

that gcd.ni ; qi � 1/ > 1 for every i . We define the sequence .mi /i2N as mi D q
bn
3=2
i c

i .

Observe that mi grows faster than qcnii for every c > 0, but slower than q
n2i
i as i tends

to1.
We consider the profinite groups

G D
Y
i2N

SLni .Fqi /
mi and H D

Y
i2N

Gni .qi ; mi /:

We note that H Š G=Z, where Z D
Q
i Cni .qi ; mi /. The group Z is a procyclic group,

since Cni .qi ; mi / is a cyclic group of order gcd.ni ; qi � 1/ and these orders are pairwise
coprime (indeed, the integers ni were chosen to be pairwise coprime).

Theorem 4.7. The groups G andH are 2-generated and finitely presented. The groupH
has UBERG, but G does not have UBERG.

4.3.1. First part of proof of Theorem 4.7.

Proof that G does not have UBERG. It is clear that the group SLni .Fqi /
mi has at leastmi

absolutely irreducible representations of degree ni over Fqi , i.e.,

r�ni .G;Fqi / � mi D q
bn
3=2
i c

i :

We observe that q
bn
3=2
i c

i grows faster than qcnii for every c > 0 and we conclude that G
does not have UBERG.

Proof that G and H are 2-generated. It suffices to prove that G is 2-generated. We note
that, since G is perfect, the group G is 2-generated if and only if

G=Z.G/ Š
Y
i

PSLni .Fqi /
mi

is 2-generated. Since the finite simple groups PSLni .Fqi / are pairwise non-isomorphic,
this group is 2-generated exactly if each block PSLni .Fqi /

mi is 2-generated. By The-
orem 1.3 in [39], this is the case if

mi <
jPSLni .Fqi /j

log.jPSLni .Fqi /j/
�
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We will establish the inequality qn
3=2
�
p
jPSLn.Fq/j for all n � 9 and all q; this implies

the required inequality, since
p
x � log.x/ for all x � 1. We observe that j PSLn.Fq/j �

qn
2�n�2, so we only have to prove that

2n3=2 < n2 � n � 2

holds for all n � 9. This follows easily by induction.

Proof that G and H are finitely presented. It suffices to prove thatG is finitely presented,
since H D G=Z where Z is procyclic. We already know that G is finitely generated, so
by Theorem 0.3 in [33] it is sufficient to show that there is a constant C > 0 such that

dimF` H
2.G; V / � C dimF` V

for every prime ` and every finite irreducible representation V of G over F`. Extend-
ing scalars, we see that it is sufficient to establish such an upper bound for the second
cohomology for every absolutely irreducible representation V over some finite field.

Let V be an absolutely irreducible representation of G over some finite field F . As V
is continuous, it factors over a finite product of components of G, i.e., we can write G D
G1 � � � � � Gt � K, where K acts trivially on V and each Gj is of the form SLni .Fqi /
(for some i ) and acts non-trivially on V . As V is absolutely irreducible, it decomposes as
a tensor product

V D W ˝

tO
jD1

Vj

where each Vj is an absolutely irreducible representation of Gj and W is the trivial
1-dimensional representation of K. By Künneth’s formula (see Proposition I.(0.8) in [5]),
we have

H 2.G; V / D
M

fCd1C���CdtD2

Hf .K;W /˝
O

Hdj .Gj ; Vj /:

Since each SLni .qi / is the universal central extension of PSLni .qi / (see Corollary 2 in §7
of [43], recall pi � 5), the group K is a universal central extension of some product of
projective special linear groups. We deduce that H 2.K; W / D 0. Since each Vj is non-
trivial and irreducible, we haveH 0.Gj ;Vj /D 0. In particular, for t � 3 at least one dj D 0
and we have H 2.G; V / D 0. Suppose that t D 1. Then

dimF H
2.G; V / � dimF H

2.SLni .Fqi /; V / � 8:5 dimF V

by Theorem 8.4 in [17]. If t D 2, then, since the special linear groups are 2-generated, we
have dimF H

1.Gj ; Vj / � 2 dimF V and

dimF H
2.G; V / � 4 dimF .V1/ dimF .V2/ D 4 dimF V:

It remains to show thatH has UBERG. This is more difficult and we need some more
information on the representation theory of special linear groups.
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4.3.2. Representation theory of SLn.Fq/.

Definition 4.8. LetG be a finite group and let F be a field. The minimal degree md.G;F /
is the degree of the smallest non-trivial absolutely irreducible representation of G over F ,
if it exists; otherwise, we set md.G; F / D1.

Let p be an odd prime number and let q D pf be a power of p. Let n � 3 denote
a natural number. We consider the special linear group SLn.Fq/. We are interested in
absolutely irreducible representations of SLn.Fq/ over finite fields F`j (where ` is some
prime number). We will use the following facts:

(a) In defining characteristic .`Dp/, then md.SLn.Fq/;Fpj /�n, with equality if f jj .
Assume that f jj . Then the standard representation of SLn.Fq/ on Fn

pj
, its dual and the f

Galois twists of these representations are the only irreducible representations of minimal
degree n over the algebraic closure. For n > 12, every other non-trivial irreducible repres-
entation has degree � n.n � 1/=2; see Theorem 5.1 in [32]. If f −j , then it follows from
Proposition 5.4.6 (i) in [27] that every absolutely irreducible representation over Fpj has
degree at least nmax.2;f=j /.

(b) In non-defining characteristic .` ¤ p/, for n � 5 the minimal degree satisfies

md.SLn.Fq/;F`j / �
qn � 1

q � 1
� n � qn�1I

see Proposition in §2 of [42].
(c) The number of absolutely irreducible representations of SLn.Fq/ over any field is

at most the number of conjugacy classes in SLn.Fq/which is smaller than 28qn�1� qnC3;
see Theorem 1.1 in [15].

This also allows us to bound the minimal degrees for the factor group Gn.q; m/ D
SLn.Fq/m=Cn.q;m/whereCn.q;m/ is the image of the diagonal embedding of the centre
C � SLn.Fq/.

Lemma 4.9. In non-defining characteristic `¤ p, the minimal degrees of SLn.Fq/m and
Gn.q;m/ are bounded from below by qn�1. In defining characteristic `D p, the following
hold:
(i) md.SLn.Fq/m; F`j / � n and there are exactly 2f m representations of degree n

if f jj .

(ii) if gcd.n; q � 1/ > 1, then md.Gn.q;m/;F`j / � n.n � 1/=2.

Proof. In non-defining characteristic ` ¤ p, the absolutely irreducible representations of
SLn.Fq/m over Fj

`
are tensor products V1 ˝F

`j
V2 ˝F

`j
� � � ˝F

`j
Vm of absolutely irre-

ducible representations of SLn.Fq/; see for instance [13]. Hence, md.SLn.Fq/m;F`j / D
md.SLn.Fq/; F`j / and the representations of minimal degree are of the form V1 ˝F

`j

V2 ˝F
`j
� � � ˝F

`j
Vm with exactly one non-trivial Vi which is of minimal degree.

Since every representation of Gn.q; m/ lifts to representation of SLn.Fq/m we have
md.Gn.q;m/;F`j / � md.SLn.Fq/m;F`j /.

It remains to consider the defining characteristic case `Dp. Let V D V1˝F
`j
V2˝F

`j

� � � ˝F
`j
Vm be an absolutely irreducible representation of SLn.Fq/m and let !i WC ! F�q
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denote the central character of Vi . The representation V factors through Gn.q; m/ if and
only if !1!2 � � �!m D 1.

Assume that gcd.n; q � 1/ > 1, so that the centre C � SLn.Fq/ is non-trivial. In
particular, the standard representation of SLn.Fq/ on Fnq and its dual have a non-trivial
central character. In particular, an absolutely irreducible representation V of SLn.Fq/m

which factors throughGn.q;m/ and contains a tensor factor Vi with dim.Vi /D n involves
another non-trivial tensor factor. We deduce that dim.V / � md.SLn.Fq/;F`j /2 � n2. We
observe that any other non-trivial absolutely irreducible representation V of SLn.Fq/m

which factors through Gn.q; m/ contains some Vi of degree at least n.n � 1/=2. This
completes the proof.

This result implies bounds on the number of irreducible representations of bounded
degree, which are conveniently expressed in terms of the family S�.Gn.q; m// of power
series.

Lemma 4.10. In non-defining characteristic ` ¤ p, we have

S�
`j
.Gn.q;m//.x/ �

�
1C qnC3xq

n�1�1
�m

for all j and all x 2 .0; 1/.
Assume that gcd.n; q � 1/ > 1 and ` D p. If f jj , then

S�
pj
.Gn.q;m//.x/ � 1C

1X
kD2

mk qk.nC3/xn
k�1
CmqnC3xn.n�1/=2�1;

and if f −j , then

S�
pj
.Gn.q;m//.x/ � 1C

1X
kD1

mk qk.nC3/xn
kmax.2;f=j /�1

for all x 2 .0; 1/.

Proof. Assume that ` ¤ p. Let x 2 Œ0; 1/, then we obtain

S�
`j
.Gn.q;m//.x/ � S

�

`j
.SLn.Fq/m/.x/ � S�`j .SLn.Fq//.x/m

as in the proof of Lemma 4.3. By Fact (b), the minimal degree md.SLn.Fq/;F`j / � qn�1,
and by Fact (c), there are at most qnC3 non-trivial representations, hence

S�.SLn.Fq/;F`j /.x/ � 1C q
nC3xq

n�1�1

for all x 2 Œ0; 1/.
Now consider the defining characteristic case ` D p. Assume f jj . The absolutely

irreducible representations of Gn.q; m/ are the representations of SLn.Fq/m with trivial
restriction to Cn.q;m/. We know from the proof of Lemma 4.9 that the representations of
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degree n do not factor through Gn.q; m/, and from Fact (a) that the remaining ones have
degree at least n.n � 1/=2. Using Fact (c), we obtain

S�
pj
.Gn.q;m//.x/ � 1C

1X
kD2

�
m

k

�
.qnC3/k xn

k�1
CmqnC3xn.n�1/=2�1

� 1C

1X
kD2

mk q.nC3/kxn
k�1
CmqnC3xn.n�1/=2�1

for all x � 1.
Assume f −j . By Fact (a), the absolutely irreducible representations have degree at

least nmax.2;f=j /, and so

S�
pj
.Gn.q;m//.x/ � 1C

1X
kD1

�
m

k

�
.qnC3/kxn

kmax.2;f=j /�1

� 1C

1X
kD1

mkq.nC3/kxn
kmax.2;f=j /�1:

4.3.3. Second part of proof of Theorem 4.7.

Proof that H has UBERG. We want to apply Lemma 4.3. To this end we show that the
family of power series

St D

1Y
iD1

S�t .Gni .qi ; mi //;

where t varies over all prime powers, is uniformly bounded. We claim that the constant
c D 2 works.

Fix a prime power t D `j . Suppose the `¤ pi for all i , then by Lemma 4.10 we obtain

S`j .`
�2j / �

1Y
iD1

�
1C q

niC3
i `�2j.q

ni�1

i �1/
�mi
� exp

� 1X
iD1

mi q
niC3
i `�2j.q

ni�1

i �1/
�
:

A short calculation yields

1X
iD1

mi q
niC3
i `�2j.q

ni�1

i �1/
�

1X
iD1

q
n
3=2
i CniC3

i `�2j.q
ni�1

i �1/

�

1X
iD1

2log2.qi /.n
3=2
i CniC3/�2.q

ni�1

i �1/
� C C

1X
iD1

2�i D C C 1

for some C , since obviously

log2.qi /.n
3=2
i C ni C 3/ � 2.q

ni�1
i � 1/ < �i

for all large i . In particular, this series converges and is bounded above independently
of `j .
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Assume ` D pi . In this case, there is an additional factor. If f jj , then

S�
p
j
i

.Gni .qi ; mi //.`
�2j / � 1C

1X
kD2

mki q
k.niC3/
i p

�2j.nki �1/

i Cmiq
niC3
i p

�2j
ni .ni�1/

2 C1

i

� 1C

1X
kD2

q
2kn

3=2
i

i q
�2.nki �1/

i C q
2n

3=2
i

i q
�2

ni .ni�1/

2 C1

i

� 1C

1X
kD2

q
�2nki .1�n

�k
i �kn

3=2�k
i /

i C q
2n

3=2
i �2

ni .ni�1/

2 C1

i

� 1C

1X
kD2

q
�.2=3/nki
i C 2�40 � 2;

where we use the rough estimates 1� n�ki � kn
3=2�k
i � 1=3 and 2n2=3i � n2i C ni C 1 �

�40 (for ni � 12 and k � 2).
Assume f −j . We note that

j

f
.n
kmax.2;f=j /
i � 1/ �

1

2
.n2ki � 1/:

For f=j � 2 this is clear. If f=j > 2, then

j

f
n
kf=j
i D n2ki

j

f
n
k.f=j�2/
i �

1

2
n2ki �

1

2
n2ki C

j

f
�
1

2

using ni � 12. We deduce, as before,

S�
p
j
i

.Gni .qi ; mi //.`
�2j / � 1C

1X
kD1

mki q
k.niC3/
i p

�2j.n
kmax.2;f=j /
i �1/

i

� 1C

1X
kD1

q
2kn

3=2
i

i q
�2

j
f
.n
kmax.2;f=j /
i �1/

i � 1C

1X
kD1

q
2kn

3=2
i

i q
�.n2ki �1/

i � 2:

This factor is independent of ` and j and so the claim follows.

5. UBERG-by-UBERG groups

In this section we study conditions under which extensions of groups with UBERG have
UBERG. We show that split UBERG-by-UBERG groups, and UBERG-by-(finitely gen-
erated proj-UBERG) groups, have UBERG.

We proceed using the machinery of Clifford theory, for which our main reference
is [25]. Since any finiteG-module is fixed pointwise by some open normal subgroup ofG,
we may think of such a module as the restriction of a module for some finite quotient ofG.

For a field F and an F -algebra A, we write r.A; F; n/ D jIrr.A; F; n/j to denote the
number (isomorphism classes) of simple A-modules of F -dimension n and R.A;F; n/ D
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iD1 r.A; F; n/. If E=F is a finite field extension such that E � A is a central subfield,

we have R.A;E;n/D R.A;F;nŒE W F �/. For a profinite groupG, we write r.G;F; n/D
r.F JGK; F; n/ and R.G;F; n/ D R.F JGK; F; n/.

Lemma 5.1. Let F be a finite field, let A be an F -algebra and let c > 0. Then

.8n 2 N/ r.A; F; n/ � jF jcn H) .8n 2 N/ R.A; F; n/ � njF jcn � jF j.cC1/n:

A profiniteG has UBERG if and only if there is a constant c0 such thatR.A;F;n/� jF jc
0n

for all n and all finite fields F .

Proof. The first assertion follows from the inequality
Pn
jD1 jF j

cj � njF jcn. IfR.G;F;n/
� jF jc

0n holds for all n and all finite fields, then in particular r.G; Fp; n/ � pc
0n for all

prime numbers p and soG has UBERG. Conversely, ifG has UBERG, then the inequality
r.G; F; n/ � jF jc

0n follows from the proof of Lemma 6.8 in [26] using that every irredu-
cible representation of degree n is absolutely irreducible over a field extension of degree
at most n.

Lemma 5.2. Let A be an F -algebra and let B � A be a subalgebra. Suppose that A can
be generated by d elements as a right B-module. Then

(i) R.A;F; n/ � dR.B; F; n/,

(ii) R.B; F; n/ � dR.A; F; dn/.

Proof. (i) For every finite dimensional simple A-module V , let  .V / be some simple
submodule of V jB . This defines a map  W

Sn
iD1 Irr.A; F; i/ !

Sn
iD1 Irr.B; F; i/. We

claim that the number of elements in each fibre is bounded by d from above. Consider the
fibre over  .V / and assume that V has minimal F -dimension of all modules in the fibre.
Suppose that  .V / Š  .V 0/, then

0 ¤ HomB. .V /; V 0jB/ D HomA.A˝B  .V /; V 0/

and V 0 is a simple factor of the induced moduleA˝B  .V /. Since dimF .V
0/� dimF .V /

and dimF .A ˝B  .V // � d dimF .V /, there are at most d elements in each fibre. We
deduce that

R.A;F; n/ � dR.B; F; n/:

(ii) For every finite dimensional simpleB-moduleW , we choose a simple factor �.W /
of A ˝B W . This defines a map � W

Sn
iD1 Irr.B; F; i/!

Sdn
jD1 Irr.A; F; j /. Again, we

claim there are at most d modules in each fibre. Let W have minimal dimension in the
fibre over �.W /. Suppose that �.W 0/ Š �.W /, then

0 ¤ HomA.A˝B W 0; �.W // D HomB.W 0; �.W /jB/

andW 0 is a simple submodule of �.W /jB . Since dim.W / � dim.W 0/, there are at most d
such simple submodules, i.e.,

R.B; F; n/ � dR.A; F; dn/:

Corollary 5.3. Let G be a profinite group and let H be an open subgroup of index h D
ŒG W H�. Then R.H;F; n/ � hR.G; F; nh/.
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Proof. Since F JGK is h-generated as F JH K-module, Lemma 5.2 implies R.H; F; n/ �
hR.G; F; nh/.

To proceed, we will need the language of crossed representations and crossed pro-
jective representations. The notation is explained in Section 2.2; details can be found in
Section 3.14.A of [25].

Corollary 5.4. Let E be a finite field and let F be a subfield with jE W F j D e. Let  be
an action of G on E which fixes F . Then R.EJGK; E; n/ � eR.G; F; ne/.

Proof. Since EJGK can be generated by e D ŒE W F � elements over F JGK, Lemma 5.2
shows that

R.EJGK; E; n/ D R.EJGK; F; ne/ � eR.G; F; ne/:

Proposition 5.5. Suppose G is a profinite group, with an action  on a finite field E.
Suppose ˛ 2 Z2.G; E�/ is a 2-cocycle with respect to this action. Suppose the smallest
E-dimension of an irreducible E˛JGK-module is �.˛/. Then

R.E˛JGK; E; n/ � �.˛/R.EJGK; E; n�.˛//

for all n.

Proof. LetW be a simpleE˛
�1JGK-module of minimal dimension dimE .W /D�.˛/; the

existence follows from the remark below Lemma 2.1. We define a map �W Irr.E˛JGK;E;n/
! Irr.EJGK; E; �.˛/n/. For a simple E˛JGK-module V , we consider V ˝E W and
choose some simple quotient �.V /. Note that dimE .�.V // � �.˛/n. We will bound the
number of elements in each fibre. Suppose that �.V / D �.V 0/ and assume that V 0 has
minimal dimension in this fibre. We observe that

0 ¤ HomE JGK.V ˝E W; �.V
0// D HomE˛JGK.V; �.V

0/˝E W
�/;

i.e., V is a simple submodule of �.V 0/˝E W �. The ˛-representation �.V 0/˝E W � has at
most dimE .W

�/D �.˛/many isomorphisms classes of simple submodules of dimension
� dimE .V

0/. Each fibre contains at most �.˛/ elements, and so

R.E˛JGK; E; n/ � �.˛/R.EJGK; E; �.˛/n/:

ForK EG, if we are given  WG=K!Aut.E/ or ˛ 2Z2.G=K;E�/ as above, we will
also write  and ˛ for the restrictions of  and ˛ to G. The next theorem extends Clifford
theory to twisted modules and it is our main tool to deal with extensions of UBERG
groups.

Theorem 5.6. LetG be a profinite group, letK E G, and letW be an irreducible F JGK-
module. Write V for an irreducible summand of ResGK W , E for the field EndF JKK.V /,
and H for the inertial subgroup of V . Then there exist an action  of H=K on E, a
2-cocycle ˛ 2 Z2.H=K;E�/ with respect to this action, an extension ext.V / of V to an
E˛JH K-module, and an irreducible E˛

�1JH=KK-module U 0 such that

W Š IndGH .U
0
˝E ext.V //

as F JGK-modules.
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Proof. By Theorem 2.2.2(iii) in [25], it is enough to prove the result for H D G, and we
will assume for the rest of the proof that this is the case.

Recall that the Schur index of V over F is 1 since we are in positive characteristic (see
Theorem 2.5.22 in [25]), so we can apply Theorem 3.14.7 in [25]. By Theorem 3.14.7(i)
in [25], V extends to an ˛-representation ext.V / ofG overE with respect to some action 
of G on E, which is F -linear by Lemma 3.14.6(ii) in [25]; by Lemma 3.14.6(iii) in [25],
the action ofK onE is trivial, so we may think of  as an action ofG=K onE. This gives
the first part of the statement.

From now on we consider W as EJGK-module. Let ext.V /� D HomE .ext.V /; E/
be the dual of ext.V /; this is an E˛

�1JGK-module; see Lemma 2.1. Define

U 0 D .W ˝E ext.V /�/K I

the space ofK-invariants in theE˛
�1JGK-moduleW ˝E ext.V /�. This is anE˛

�1JG=KK-
module. Since V is absolutely irreducible over E, we have dimE .V ˝E V

�/K D 1. For
some m, we have ResGK.W / Š V

m and it follows that U 0 has dimension m over E.
On the other hand, the trace ext.V /� ˝E ext.V / ! E induces a canonical homo-

morphismW ˝E ext.V /�˝E ext.V /!W ofEJGK-modules which restricts to a homo-
morphism

�WU 0 ˝E ext.V /! W:

It is easily checked that � is surjective. We observe that

dimE .W / D m dimE .V / D dimE .U
0/ dimE .V / D dimE .U

0
˝E ext.V //;

and we deduce that � is an isomorphism.

Theorem 5.7. Suppose G is a profinite group, K E G, K and G=K have UBERG, and
the extension of K by G=K is split. Then G has UBERG.

Proof. Fix a such that r.K;F;n/� jF jan for all n and F , and b such that r.G=K;F;n/�
jF jbn for all n and F .

We will count the irreducible F JGK-modules of dimension n. Let us suppose that
2 Irr.G; F; n/. Let V be an irreducible summand of ResGK W , of dimension m, say, and
let H be the inertial subgroup of V with jG WH j D h. Write E for the field EndF JKK.V /

of degree e � m over F .
By Theorem 5.6, we can fix some extension ext.V / of V to an E˛JGK-module, some

2-cocycle ˛ 2 Z2.G; E�/ associated to an action  of G=K on E, and write W in the
form IndGH .U

0 ˝E ext.V //, for some U 0 irreducible E˛
�1JH=KK-module of dimension

n=hm over E.
Let �.˛�1/ be the minimal E-dimension of an irreducible E˛

�1JH=KK-module. Tak-
ing duals gives �.˛/ D �.˛�1/; see Lemma 2.1. We claim that �.˛/ � m=e. Since the
extension K ! G ! G=K is split, K ! H ! H=K is too, so there is a complement
H 0 Š H=K of K in H . Restricting ext.V / to H 0, we obtain an E˛JH=KK-module
of dimension m=e. Any irreducible factor is an irreducible E˛JH=KK-module of E-
dimension at most m=e.
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By Lemma 5.1, Corollary 5.3, Corollary 5.4 and Proposition 5.5 we have

r.E˛
�1

JH=KK; E; n=mh/ � R.E˛
�1

JH=KK; E; n=mh/
� �.˛/R.EJH=KK; E; n�.˛/=mh/ � �.˛/eR.H=K;F; n�.˛/e=mh/

� �.˛/ehR.G=K;F; n�.˛/e=m/ � mhR.G=K;F; n/ � n2jF jbn;

where we use the inequalities �.˛/ � m=e and mh � n in the last two steps. So there are
at most r.K;F;m/� jF jam choices for V , and at most n2jF jbn choices for U 0. Hence the
number of possible W 2 Irr.G; F; n/ whose restriction to K has irreducible components
of dimension m is at most n2jF jamjF jbn, and therefore

r.G; F; n/ �

nX
mD1

n2jF jamCbn � n3jF j.aCb/n � jF j.aCbC3/n

for all n and F , as required.

Corollary 5.8. Suppose G is a profinite group, K E G has UBERG, and the universal
Frattini cover Q of G=K has UBERG. Then G has UBERG.

Proof. Consider the diagram

K // L //

��

Q

����
K // G // G=K;

in which the right-hand square is a pull-back, and the rows are short exact. The map
L! G is epic, so it is enough to show L has UBERG, since quotients of UBERG groups
are UBERG. Since Q is projective, the top row is split, and the result follows from The-
orem 5.7.

Corollary 5.9. Suppose G is a profinite group, K E G has UBERG, and G=K is finitely
generated and has proj-UBERG (in particular, this holds if G=K is PFG by Corol-
lary 3.14). Then G has UBERG.

Proof. This follows from Corollary 5.8 by Theorem 3.13.

Since PFR profinite groups are precisely the finitely presented profinite groups with
UBERG, and positively finitely presented profinite groups are precisely the finitely presen-
ted PFG profinite groups, we get:

Corollary 5.10. PFR-by-positively finite presented profinite groups are PFR.

The concept of relative PFPn type groups was introduced in [8], Section 5.4. Using
the same arguments, we can show similarly:

Theorem 5.11. Let G be a profinite group, and let K E G. Suppose G=K has UBERG,
the extension splits, and K has type PFPn over a commutative profinite ring R. Then K
has relative type PFPn in G over R.
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Proof. We can assume that R is PFG as an R-module; if not, K does not have type PFP0
over R, so the result is vacuously true. Summands of modules of type PFPn over any ring
have type PFPn by Theorem 4.9 in [8], since the Ext-functors are additive, so it suffices to
show RJG=KK has type PFPn over RJGK.

Start with a type PFPn resolution for R as an RJKK-module, and apply IndGK : we
just need to show IndGK P is PFG for P a PFG projective RJKK-module.

For an irreducible RJGK-module W , from the definition of IndGK we have

HomRJGK.IndGK P;W / Š HomRJKK.P;ResGK W /;

so by Theorem 4.10 in [8] it is enough to polynomially bound the number of (isomorphism
types of) irreducible RJGK-modules W such that HomRJKK.P; ResGK W / is non-trivial.
Clifford theory (see, e.g., Theorem 2.2.2 in [25]) tells us ResGK W is a direct sum of irre-
ducible RJKK-modules, so a non-trivial map P ! ResGK W shows that some irreducible
summand V appears as a quotient of P . Since P is PFG, the number of possibilities for V
is polynomially bounded in the order of V . So we fix V , and consider only the irreducible
RJGK-modules W such that ResGK W contains V as a summand. Since G=K has UBERG
and the extension is split, the proof of Theorem 5.7 shows that the number of possibilities
for such W is polynomially bounded in the order of W (uniformly over the possible V ),
and the conclusion follows.

Corollary 5.12. In the situation of the theorem above,

(i) if G=K has type PFPm, G has type PFPmin.m;n/,

(ii) if G has type PFPm, G=K has type PFPmin.m;nC1/.

Proof. This follows immediately by Theorem 5.22 in [8].

As for Corollary 5.9, we get results analogous to Theorem 5.11 and Corollary 5.12
when we consider G with K E G of type PFPn, such that G=K is finitely generated and
has proj-UBERG.

6. Equivalent conditions for FP1 and PFP1

In this section we give a semi-structural condition which is necessary and sufficient for
a finitely generated profinite group G to have type PFP1. As a preparation, we briefly
discuss an equivalent condition for type FP1.

6.1. Type FP1

A necessary and sufficient condition for a profinite group to have type FP1 is given in
Corollary 5.10 of [8].

Proposition 6.1. A profinite group G has type FP1 if and only if there exists d 2 N such
that .ıG.M/C h0G.M//=rG.M/� d for anyM 2 Irr. OZJGK/. For f WP ! OZ a projective
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cover in the category of OZJGK-modules, the minimum number of generators of ker.f / is

sup
M2Irr. OZJGK/

lıG.M/C h0G.M/

rG.M/

m
:

Here Irr. OZJGK/ is the set of irreducible OZJGK-modules, ıG.M/ is the number of non-
Frattini chief factors G-isomorphic to M in a chief series of G, rG.M/ is defined by
M Š EndG.M/rG.M/ as EndG.M/-modules, and h0.M/ is the dimension over EndG.M/

of H 1.G=CG.M/;M/.
We can reformulate Proposition 6.1 in terms of the crown-based powers appearing as

quotients of G.

Corollary 6.2. A profinite groupG has type FP1 if and only if there exists d such that, for
any monolithic primitive group L with abelian minimal normal subgroupM , the size k of
a crown-based power Lk of L which occurs as a quotient of G is at most drG.M/.

Proof. Let M 2 Irr. OZJGK/. Note that h0G.M/=rG.M/ < 1 by Theorem A in [1]. So, by
Proposition 6.1, G has type FP1 exactly if ıG.M/=rG.M/ � d for some d which does
not depend on M .

If Lk is a crown-based power of a monolithic primitive group L with abelian minimal
normal subgroup M which appears as a quotient of G, then, by Theorem 11 in [12], k
is at most the cardinality of the set of chief factors of G which are G-equivalent to M .
For abelian chief factors, G-equivalence is the same as G-isomorphism by the remark
after Definition 1 in [12], i.e., k � ıG.M/. On the other hand, for every k0 � ıG.M/ the
crown-based power Lk0 appears as a quotient of G by Theorem 11 in [12].

It is interesting to compare this result with the equivalent condition for PFG given in
Theorem 11.1(3) of [22], which is expressed entirely in terms of sizes of the crown-based
powers of monolithic groups with non-abelian minimal normal subgroup which appear
as quotients of G. On the other hand, the minimum number of generators for a profinite
group can be determined by the crown-based powers of all monolithic primitive groups
which appear as quotients of G (see Lemma 4.2 in [11]).

We will see below, in Remark 6.10(ii), that whether a finitely generated profinite group
with at most exponential subgroup growth has type PFP1 can also be determined by the
crown-based powers of all monolithic primitive groups which appear as quotients of G.

6.2. Type PFP1

Recall from [8] that a finitely generated profinite group G has type PFP1 if and only if
there is some constant c such that, for all m, the number of irreducible G-modules M of
orderm such thatH 1.G;M/¤ 0 is at mostmc . To control the number of suchG-modules,
we use the following result.

Proposition 6.3 (See (2.10) in [1]). jH 1.G;M/j D qnjH 1.G=CG.M/;M/j, where q D
jEndG.M/j and n is the number of non-Frattini chief factors of G that are G-isomorphic
to M .
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It follows that we may consider separately the irreducible G-modules M such that
H 1.G=CG.M/;M/¤ 0, and theM such that n¤ 0. (Note these sets need not be disjoint.)

Definition 6.4. We say a profinite group G satisfies condition (A) if there is some con-
stant a such that, for all m, the number of G-isomorphism classes of non-Frattini abelian
chief factors M of G of order m is at most ma.

Lemma 6.5. If G has type FP1 and satisfies (A), there is a constant a0 such that, for
allm, the number of non-Frattini abelian chief factorsM of G of orderm is at mostma

0

.

Proof. SinceG has type FP1, there is some a00 such that jH 1.G;M/j � jM ja
00

. So by Pro-
position 6.3, there are at mostma

00

non-Frattini chief factors ofG which areG-isomorphic
to M , and hence at most maCa

00

non-Frattini abelian chief factors of G of order m.

We progress by recalling the following result.

Proposition 6.6 (Lemma 5.2 in [17]). Suppose T is a finite group, and M is a faithful
T -module such that H 1.T;M/ ¤ 0. Then T has a non-abelian unique minimal normal
subgroup.

Note that, for such a T with non-abelian unique minimal normal subgroup K, CT .K/
is a normal subgroup of T so must be trivial. So T is the monolithic group associated
with the non-abelian characteristically simple group K. For the rest of the section, T will
denote such a monolithic group, and K its non-abelian minimal normal subgroup.

We define the H 1-length of T , lH
1
.T /, to be the order of the smallest faithful irredu-

cible T -module M (over any field) such that H 1.T;M/ ¤ 0. If no such M exists, we set
lH

1
.T / D1.
Given a profinite group G, we define the T -rank of G, rkT .G/, to be the maximal

r � 0 such that there is an epimorphism � from G to a subdirect product of T r such that
Kr � �.G/.

Lemma 6.7. rkT .G/ coincides with the number of non-abelian chief factors A of G such
that G=CG.A/ Š T (and thus A Š K/.

Proof. If there are s such chief factors A1; : : : ; As , pick a map G ! G=CG.Ai / for
each i . Then the product �WG !

Q
i G=CG.Ai / of these maps has as its image a sub-

direct product, with Ks � �.G/. So s � rkT .G/.
Conversely, given �WG! T r with r D rkT .G/ such thatKr � �.G/, the image �.G/

has r composition factorsKi such that �.G/=C�.G/.Ki /Š T : these are the r copies ofK.
So G has at least this many, and s � rkT .G/.

Definition 6.8. (i) We say that G satisfies condition (B) if there is some b such that for
allm and all vector spacesM with jM j Dm, the number of GL.M/-conjugacy classes of
irreducible subgroups L of GL.M/, with H 1.L;M/ ¤ 0, appearing as quotients of G is
at most mb . Note, by Proposition 6.6, that in this case L must be a monolithic group with
a non-abelian minimal normal subgroup.

(ii) We say that G satisfies condition (C) if, for all monolithic groups L with non-
abelian minimal normal subgroup, there is some c such that rkL.G/ � lH

1
.L/c .
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Write Epi.G; T /T for the set of T -conjugacy classes of epimorphisms G ! T . Then,
as for Lemma 3.4, we get that Epi.G; T /T D j Epi.G; T /j=jT j, because T has trivial
centre, so acts faithfully on Epi.G; T / by conjugation; we will use this repeatedly in the
proof below.

Theorem 6.9. Assume G has type FP1. The following are equivalent:
(i) G has type PFP1.

(ii) There is some c such that the number of simple G-modules M of order n such that
H 1.G;M/ ¤ 0 is � nc .

(iii) G satisfies (A) and (B), and there is some c such that for any group L associated
with a characteristically simple non-abelian group A, jEpi.G;L/j � jLjlH

1
.L/c .

(iv) G satisfies (A), (B) and (C)

Proof. (i), (ii) is in Corollary 5.13 of [8].
(ii)) (iii): For any L, there is some simple L-module M such that jM j D lH

1
.L/

and H 1.L;M/ ¤ 0. Now, for each conjugacy class of epimorphisms G ! L, restricting
the L-action to G gives a G-module M such that H 1.G; M/ ¤ 0 by Proposition 6.3.
So (ii) implies jEpi.G; L/Lj � lH

1
.L/c . G satisfies (A) by Proposition 6.3; (B) is clear

from the definition.
(iii)) (ii): For any L, we have that jEpi.G;L/Lj � lH

1
.L/c . SinceG satisfies (A), it

follows that there is some a such that the number of simpleG-modulesM of order n such
that H 1.G=CG.M/;M/ D 0 and H 1.G;M/ ¤ 0 is � na. If M is a simple G-module
of order n such that H 1.G=CG.M/; M/ ¤ 0, by (B), there are � nb possibilities for
L D G=CG.M/ up to conjugacy in GL.M/. Fix one such possibility. By Proposition 6.6,
L D G=CG.M/ is the monolithic group associated to its non-abelian minimal normal
subgroup A; clearly lH

1
.L/ � n, so jEpi.G; L/Lj � nc . We conclude that condition (ii)

holds with constant aC b C c.
(iii) ) (iv): If for all c there is some L with rkL.G/ > lH

1
.L/c , we have an epi-

morphism � from G to a subdirect product of LrkL.G/ such that ArkL.G/ � �.G/. The
projections from G onto each factor of the subdirect product have different kernels, so we
know jEpi.G;L/Lj > lH

1
.L/c ; therefore jEpi.G;L/j > jLj lH

1
.L/c .

(iv)) (iii): By Lemma 2.12 and Remark 2.14 in [22], we know that j Epi.G; L/j is
at most rkL.G/.5jOut.S/j/sjLj, where AŠ S s with S simple. We have jOut.S/j � l.S/
by Lemma 7.7 in [18], and clearly l.S/ � 2 for all S , so

.5jOut.S/j/s � .5l.S//s � l.S/4s � lproj.A/4 � lH
1

.L/4I

hence jEpi.G;L/j � jLjlH
1
.L/cC4, as required.

Remark 6.10. (i) In the proof of Proposition 7.1 in [22], to which (iv) ) (iii) in our
theorem is analogous, the inequality 5jOut.S/j � lproj.S/, for all non-abelian simple S ,
is implicitly used. In fact, this is not true: for instance, S D PSL3.F2/ has lproj.S/ D 8

and jOut.S/j D 2. But it is true ‘up to a constant’, and this makes no difference to the
argument, as here.

(ii) We would like to have an equivalent condition for PFP1 using crown-based powers,
along the lines of Theorem 3.5 or Theorem 11.1(3) in [22]. Those conditions work because
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PFG and finitely generated UBERG groups have at most exponential subgroup growth
(see Theorem 10.2 in [22] and Proposition 5.4 in [26]). This fails in general for finitely
generated groups of type PFP1: see Corollary 8.12 below. If we restricted to finitely gen-
erated groups with at most exponential subgroup growth, an equivalent condition in terms
of crown-based powers would hold.

(iii) Note, from the proof of the theorem, that the only place we requireG to have type
FP1 is in (ii)) (i). With no assumptions on G, (i)) (ii), (iii), (iv).

Corollary 6.11. Let .Qn/n be a sequence of finite quasisimple groups, and let .a.n//n be
a sequence of natural numbers. Let Zn be the center of Qn and assume that all Qn=Zn
are pairwise distinct. ThenG D

Q
nQ

a.n/
n has type PFP1 if and only if there is c > 0 such

that a.n/ � lH
1
.Qn=Zn/

c for all n.

Proof. Clearly,ˆ.G/D
Q
nZ

a.n/
n andG does not have abelian non-Frattini chief factors.

Using Proposition 6.1 and h0G.M/=rG.M/ � 1 (see Theorem A in [1]), it follows that G
always has type FP1 and satisfies condition (A).

We verify that condition (B) is satisfied. By Proposition 6.6, for any vector space M ,
jM j D m, any irreducible subgroup L of GL.M/ with H 1.L;M/ ¤ 0 appearing as a
quotient of G must be isomorphic to some Qn=Zn and is thus 2-generated. By Proposi-
tion 6.1 in [22], there is some b such that, for allM , the number of 2-generated irreducible
subgroups of GL.M/ up to conjugacy is � mb , so G satisfies (B).

The monolithic primitive factors of G are exactly the groups Tn D Qn=Zn and we
have rkTn.G/ D a.n/. So condition (C) holds exactly if there is c > 0 such that a.n/ �
lH

1
.Tn/

c for all n.

Corollary 6.12. Suppose G is finitely generated. The following are equivalent:
(i) G has type PFP1.

(ii) G satisfies (A) and (C).

Proof. For G finitely generated, (B) holds by Proposition 6.1 in [22].

We can use Theorem 6.9 to re-prove the following result, which was proved in [8] in
a different way.

Corollary 6.13. Suppose G is has UBERG and type FP1. Then G has type PFP1.

Proof. We show that G satisfies (A), (B) and (C). Since G has UBERG, there is some a
such that the number of irreducible G-modules of order m is at most ma. So (A) and (B)
are immediate. By Theorem 3.12, there is some b such that, for all monolithic groups L
with a non-abelian minimal normal subgroup, the size of a crown-based power ofL occur-
ring as a quotient of G is � l lin.K/b . As in Theorem 3.5, we deduce from Lemma 3.3 that
rkL.G/ � l lin.K/c for some constant c. Finally, by Proposition 3.11, lH

1
.T / � l lin.K/e

for the constant e used in that proposition, so we conclude G satisfies (C).

In fact, in Theorem 9.2 we will prove a stronger result: a profinite group with UBERG
and FP1 must be finitely generated. Now, we will deal with extensions of groups of
type PFP1.
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Theorem 6.14. Let G be a profinite group and N E G. If N and G=N have type PFP1,
then G has type PFP1

Proof. Since FP1 is preserved under extensions, we know that G has type FP1. Let r be
such that jH 1.N; U /j � jU jr for all finite N -modules U . Since N is of type PFP1, there
is d � 0 such that the number of simple N -modules of order � m is at most md (and
similarly there is a constant d 0 for G=N ). In view of (ii) in Theorem 6.9, we need to count
the finite simple G-modules V with H 1.G; V / ¤ 0 and jV j D m. We will distinguish
whether or not N acts trivially on V .

Case 1. ResGN .V / is non-trivial.
In this case, the restriction is semisimple and contains a non-trivial direct summand U .

Then
HomN .ResGN .V /; U / D HomG.V;CoindGN .U //

and V is a simple submodule of the coinduced module CoindGN .U /. We fix U and define
t .G;U / to be the number of simpleG-modules V which contain U and satisfyH 1.G;V /

¤ 0. Define S to be the sum of all simple submodules of CoindGN .U /. Then t .G; U / �
jH 1.G; S/j. The short exact sequence S ! CoindGN .U /! CoindGN .U /=S gives rise to a
long exact sequence

H 0.G;CoindGN .U /=S/ �! H 1.G; S/ �! H 1.G;CoindGN .U //

where the right-hand side is isomorphic to H 1.N; U / by Shapiro’s lemma (see 6.10.5
in [41]). We note that the composition factors of ResGN .CoindGN .U // are G-conjugates
of U and, in particular, are non-trivial. This means that all the composition factors of
CoindGN .U /=S are non-trivial and H 0.G; CoindGN .U /=S/ D 0. We deduce t .G; U / �
jH 1.G;S/j � jH 1.N;U /j and so, if t .G;U /¤ 0, thenH 1.N;U /¤ 0 and jH 1.N;U /j �

jU jr � mr . Since N has PFP1, there are at most md distinct modules U with jU j � m
and H 1.N;U / ¤ 0.

Case 2. The action on V factors through G=N .
Say V is an FpJGK-module. Consider the initial piece of the five term exact sequence

of the Lyndon–Hochschild–Serre spectral sequence (see, e.g., Theorem 3.7 in [7])

0 �! H 1.G=N; V / �! H 1.G; V / �! H 1.N; V /G=N ;

and observe that the last term is

H 1.N; V /G=N D HomG=N .N; V / D HomG=N .H1.N;Fp/; V /:

So if H 1.G; V / ¤ 0, then either H 1.G=N; V / ¤ 0 or V is a G=N -factor of H1.N;Fp/.
Since G=N has PFP1, there are at most md

0

simple G=N -modules of order m of the
former kind. Moreover, since jH1.N;Fp/j � pr , it follows that H1.N;Fp/ has at most r
distinct simple factors; this means that there are at most r modules of the latter kind.

In total there are at most

mrCd C rmd
0

� mr.dCd
0/

simple modules V of order jV j D m and H 1.G; V / ¤ 0, i.e., G has type PFP1.
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7. FP1, UBERG and pronilpotent groups

Types FPn and PFPn will always be understood to mean over OZ in this paper, except when
we specify otherwise. In this section we take a closer look at these properties for groups
with normal pronilpotent subgroups.

Theorem 7.1. Let zG be a profinite group with a normal pronilpotent subgroup P E zG

such that G D zG=P is finitely generated. If zG is FP1, then zG is finitely generated.

The following proposition covers the special case where P D A is abelian and zG is a
split extension. The general result will be reduced to this situation.

Proposition 7.2. Let G be a finitely generated profinite group and let A be a profinite
G-module. If zG D A ÌG is FP1, then zG is finitely generated.

Proof. For every G-module M , the sequence

0 �! H 1.G;M/ �! H 1. zG;M/ �! HomG.A;M/ �! 0

is exact. This follows from looking at the 5-term exact sequence and the observation that
the map H 2.G;M/! H 2. zG;M/ admits a splitting. In particular,

jH 1. zG;M/j D jH 1.G;M/j � jHomG.A;M/j:

The head Ah of A is an infinite product of simple G-modules,

Ah Š
Y

M simple

Mm.M/;

where each finite simple module M occurs a certain number of times. For every finite
simple G-module M , we have

jH 1. zG;M/j D jH 1.G;M/j � jEndG.M/jm.M/:

By assumption, zG has FP1, and the finiteness of H 1. zG;M/ implies that m.M/ is finite
for every simple module M . If M is a simple FpJGK module, then EndG.M/ D FqM for
a prime power qM D pfM (with fM 2 N and jM j D qkM D pfMkM with kM 2 N). We
observe that M occurs exactly kM times in the head of ZJGK. In particular, a module of
the form Mm is generated by no less than bm=kM c elements.

We claim that m.M/=kM is bounded independently of M , so that A is a finitely gen-
erated G-module and is a finitely normally generated subgroup of zG. In particular, zG is
finitely generated.

Since zG is of type FP1, there is a constant b such that, for all primes p and all simple
modules M of order jM j D pc , we have

jM jb � jH 1. zG;M/j � jEndG.M/jm.M/:

Let M be a simple module and write jM j D pkMfM . Then

pfMkM b D jM jb � jEndG.M/jm.M/
D pfMm.M/;

and we deduce bfMkM � fMm.M/ and hence b � m.M/=kM .
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Proof of Theorem 7.1. Let ˆ. zG/ be the Frattini subgroup of zG. Then zG is finitely gener-
ated if and only if zG=.P \ˆ. zG// is finitely generated. As factor group of an FP1 group,
zG=.P \ ˆ. zG// is still FP1. In particular, we may assume that ˆ. zG/ \ P D ¹eº. In this
case we also have ˆ.P / � P \ ˆ. zG/ D ¹eº, i.e., P is a product of profinite abelian
groups of prime exponent.

We claim that zG is a split extension by P . As a first step, we find a minimal supple-
ment.

Let � be the set of closed supplements to P in zG, i.e., the set of closed subgroups
K �c zG with PK D zG. Every descending chain C in � satisfies P

T
K2C K D

zG. Indeed,
this follows from compactness: for all g 2 zG andK 2 C , the setKg D ¹k 2K j g 2 Pkº
is compact and hence

T
K2C Kg ¤ ;. By Zorn’s lemma, there is a minimal supplement

K �c zG to P .
We show that a minimal supplement is a complement; i.e., K \ P D ¹eº. Suppose

for a contradiction that K \ P is non-trivial. Since ˆ. zG/ \ P D ¹eº, there is a maximal
subgroupH � zG which does not containK \P . Note thatK \P is normal in zG, sinceK
is a supplement and P is abelian. Therefore H.P \K/ D zG. Let k 2 K. Then k D hq
with h 2 H and q 2 K \ P . Hence h 2 K \H . We deduce that K � .H \K/.K \ P /
and so .H \K/P DKP D zG. This means thatH \K is a supplement to P and provides
a contradiction to minimality of K.

As QG is a split extension by P , Proposition 7.2 concludes the proof.

As an application, we deduce that the properties of interest to us are all equivalent for
pronilpotent groups.

Theorem 7.3. Let P be pronilpotent group. The following are equivalent:
(i) P is finitely generated,

(ii) P has UBERG,

(iii) P is of type PFP1.

(iv) P is of type FP1,

Proof. The implications “(iii)) (iv)” and “(i)) (iv)” are clear. If P has FP1, then The-
orem 7.1 implies that P is finitely generated (since the trivial group is finitely generated).
If P is finitely generated and has UBERG, then it has type PFP1 (by Proposition 1.10 and
Lemma 5.13 in [8]). A finitely generated pronilpotent group P has UBERG by Corol-
lary 6.12 in [26].

It remains to show that (ii) implies (i). We argue by contraposition and assume that P
is not finitely generated. Consider the Frattini quotient P=ˆ.P / of P : this is a product
of the form

Q
p.Z=pZ/dp.P /, where dp.P / is the minimal number of generators of the

Sylow p-subgroup of P . If some dp.P / is infinite, P surjects onto .Z=pZ/dp.P / and
thus admits infinitely many one-dimensional representations over Fq if p divides q � 1.
In particular, P does not have UBERG. From now on assume dp.P / <1 for all p. As a
function of the primes p, dp.P / is unbounded. We will show that P=ˆ.P / does not have
UBERG. We will show that the number of irreducible representations of order at most k
grows faster than polynomially in k.
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For each p, write Mp for a non-trivial irreducible Z=pZ-module of minimal order.
The number of quotients of P isomorphic to Z=pZ is

.pdp.P / � 1/=.p � 1/ � pdp.P /�1;

and the restriction to P of the action of each of these copies of Z=pZ on Mp is different
because the kernel of the action is different.

By Linnick’s theorem [31], there is a constant c such that, for all primes p, there is
a prime q � 1 mod p with q � pc . Standard arguments of representation theory show
that Z=pZ has non-trivial modules in dimension 1 over Fq , giving at least pdp.P /�1

non-isomorphic irreducible G-modules of order � pc . But pdp.P /�1 grows faster than
polynomially in pc for any c, because dp.P / is unbounded.

Proposition 7.4. Let G be a finitely generated profinite group without UBERG. Then
there is a finitely generated profinite group zG which is abelian-by-G that is not PFP1.

Proof. LetA be the product over all finite simpleG-modules. Note thatA is a 1-generated
profinite G-module. Let zG D A Ì G. Then A is a finitely normally generated subgroup
and with finitely generated factor G, so that zG is finitely generated.

We claim that zG is not PFP1. Let M be a simple G-module. Then (as in the proof of
Proposition 7.2) we have the exact sequence

0 �! H 1.G;M/ �! H 1. zG;M/ �! HomG.A;M/ �! 0:

SinceM is a factor ofA, we have jH 1. zG;M/j � jEndG.M/j. Summing over all modules
of order pc we obtain X

jM jDpc

jH 1. zG;M/j � 1 � .p � 1/ rc.G;Fp/:

Since the last term is not polynomially bounded in pc , we deduce that zG is not of type
PFP1 (see [8]).

8. Universal Frattini covers and examples

Theorem 8.1. Suppose � WH ! G is a Frattini cover of G. Then H has type FP1 if and
only if G does.

Proof. Clearly, if H has type FP1, G does. For the converse, we use Proposition 6.1.
Any non-Frattini chief factor of H is a non-Frattini chief factor of G. So if M is an

irreducible H -module, either ıH .M/ D 0 or M is a G-module, in which case there is
some d such that ıH .M/=rH .M/ D ıG.M/=rG.M/ � d .

Corollary 8.2. SupposeG has type FP1. The universal Frattini cover QG of G has type FP.

Proof. QG has type FP1, and since it is projective, it has cohomological dimension 1.
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This is interesting because we have profinite groups of type FP1 which are not finitely
generated. Proposition 6.1 shows that any infinite product of non-abelian finite simple
groups has type FP1; Example 2.6 in [11] givesAD

Q
Alt.5/, a countably infinite product

of copies of Alt.5/, as an example which is not finitely generated – but countability is not
needed: we can take products over indexing sets of arbitrary cardinality and the result still
holds. So the universal Frattini cover QA of A has type FP but is not finitely generated.

Analogously to these results for type FP1, we may prove results for type PFP1.

Theorem 8.3. Suppose � WH ! G is a Frattini cover of G.Then H has type PFP1 if and
only if G does.

Proof. Clearly, ifH has type PFP1, G does. For the converse, we use Lemma 5.2 in [17].
Recall that the kernel of a Frattini cover is pronilpotent by Corollary 2.8.4 in [41].

So for any group L associated with a characteristically simple non-abelian group A,
rkL.H/ D rkL.G/, and for any H -module M , the non-Frattini chief factors of H that
are H -isomorphic to M are precisely the non-Frattini chief factors of G that are G-
isomorphic to M . By Theorem 6.9, if G has type PFP1, H does too.

Corollary 8.4. Suppose G has type PFP1. Then the universal Frattini cover QG of G has
type PFP.

Proof. QG has type PFP1, and since it is projective, it has cohomological dimension 1.

We finish by using these results to construct groups G of type PFP1 that do not have
UBERG: then the universal Frattini cover QG ofG has type PFP but does not have UBERG.
We first give an example with G not finitely generated.

8.1. Products of special linear groups

For every prime number p, let m.p/ be a non-negative integer. We consider the profinite
group

G D
Y
p

SL2.Fp/m.p/:

Theorem 8.5. The group G D
Q
p SL2.Fp/m.p/ has the following properties:

(i) G is finitely generated if and only if m.p/ grows at most polynomially in p.

(ii) G is PFP1 if and only if m.p/ grows at most exponentially in p.

(iii) If G is PFP2, then G is finitely generated.

(iv) G has UBERG if and only if G is finitely generated.

Corollary 8.6. For m.p/ D 2p , the group G is PFP1 but not finitely generated and not
PFP2. The universal Frattini cover of G is an infinitely generated projective profinite
group of type PFP.

We collect some observations in order to prove the theorem.

Proposition 8.7. Let p � 5 be a prime number. Let k be a field and let V be a non-trivial
simple kŒSL2.Fp/�-module.
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(i) If char.k/ ¤ p, then dimk.V / �
1
2
.p � 1/.

(ii) If char.k/ D p and H 1.SL2.Fp/; V / ¤ 0, then dimk.V / � p � 2.

Proof. Assume that char.k/ ¤ p. Extending scalars, we may assume that k is algeb-
raically closed. Every absolutely irreducible representation of SL2.Fp/ gives rise to an
irreducible projective representation of PSL2.Fp/ and so the assertion follows from [42],
p. 234.

Assume that char.k/ D p. Let M� be the irreducible representation of weight � 2
¹0; : : : ; p � 1º. Recall thatM� has degree �C 1; in particular,M0 is the trivial represent-
ation. Let R� denote a projective cover of M�. It is known that the composition factors
ofR� areM�;Mp�1��;M�;Mp�3�� (the last term only occurs if p � 3� �> 0); see [21]
and references therein. Let

� � � �! P2 �! P1 �! P0 �! k

be the minimal projective resolution of k as kŒSL2.Fp/�-module. Then

H 1.SL2.Fp/; V / D HomkŒSL2.Fp/�.P1; V /:

In this case, P0 DR0 and P1 is the projective cover of the kernelW ofR0! k. Therefore
every homomorphism into a simple module factors through W , and we have

H 1.SL2.Fp/; V / D HomkŒSL2.Fp/�.W; V /:

Every simple factor ofW is a composition factor ofR0. IfH 1.SL2.Fp/;V /¤ 0, then V is
eitherMp�3;Mp�1 or the trivial moduleM0 D k. However, for p � 5 the group SL2.Fp/
is perfect and so H1.SL2.Fp/;M0/ D 0. We conclude that V is Mp�1 or Mp�3 and has
dimension at least dimkMp�3 D p � 2.

Lemma 8.8. Let p � 3 be an odd prime. There is an irreducible representation V of
SL2.Fp/ over F2 such that

dimF2.V / � p and H 1.SL2.Fp/; V / ¤ 0:

Moreover, the centre of SL2.Fp/ acts trivially on V .

Proof. Let B � SL2.Fp/ be the subgroup of upper triangular matrices. Since F�p is a

factor of B , we have H 1.B; F2/ D Hom.B; F2/ ¤ 0. Let M D IndSL2.Fp/
B .F2/ be the

induced representation. The centre of SL2.Fp/ is contained in B and acts trivially on M .
By Shapiro’s lemma,

H 1.SL2.Fp/;M/ Š H 1.B;F2/ ¤ 0:

Let V0 be a simple factor of M , and consider the exact sequence

0 �!M 0 �!M �! V0 �! 0:

Now, the associated long exact sequence shows that at least one of H 1.SL2.Fp/; V0/ and
H 1.SL2.Fp/;M 0/ is non-trivial. By induction, we deduce that some composition factor V
of M also satisfies H 1.SL2.Fp/; V / ¤ 0. Since dimF2 M D p C 1 and M has a trivial
composition factor, it follows that dimF2 V � p.
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Corollary 8.9. For every odd prime p,

2
1
2 .p�1/ � lH

1

.PSL2.Fp// � 2p:

Proof. Let M be a simple module for PSL2.Fp/ such that H 1.PSL2.Fp/;M/ ¤ 0. Then
H 1.SL2.Fp/;M/ ¤ 0 (see Proposition 6.3), and hence the lower bound can be deduced
from Proposition 8.7 and the inequality 1

2
.p � 1/ � p � 2. Conversely, let V be the irre-

ducible representation provided by Lemma 8.8. Then V is non-trivial, factors through
PSL2.Fp/ andH 1.PSL2.Fp/;V /¤ 0 by Proposition 6.3. This proves the upper bound.

Proof of Theorem 8.5. For all assertions, we may assume that m.2/ D 0; m.3/ D 0; in
particular, all factors are quasisimple.

(i) Since SL2.Fp/ for p � 5 is quasisimple and the simple factors of these groups
are pairwise non-isomorphic, we have d.G/ D maxp�5 d.SL2.Fp/m.p//. It follows from
Proposition 3.4 in [44] thatˇ̌̌

d.SL2.Fp/m.p// �
log.m.p//

log.jPSL2.Fp/j/

ˇ̌̌
� ap;

where ap �
log.2jAut.PSL2.Fp//j/

jPSL2.Fp/j
C 1. Using Aut.PSL2.Fp// D PGL2.Fp/, we can bound

the constants ap uniformly by ap � 3.
In particular, G is finitely generated if and only if

log.m.p//
log.jPSL2.Fp/j/

� c

for some constant c independent of p. Since log.j PSL2.Fp/j/ � 3 log.p/ as p tends to
infinity, we deduce that G is finitely generated exactly when m.p/ grows at most polyno-
mially in p.

(ii) This follows from Corollary 8.9 and Corollary 6.11.
(iii) Assume that G is PFP2. Let p � 5 be a prime and let VAd denote the adjoint

representation of SL2.Fp/. We have dimFp VAd D 3 and

H 2.SL2.Fp/; VAd/ ¤ 0;

since SL2.Z=p2Z/ is a non-split extension of VAd by SL2.Fp/. Inflating these represent-
ations to G, we obtain X

jW jDp3

jH 2.G;W /j � 1 � m.p/:

Since G is assumed to have PFP2, there is a constant c independent of p such that

p3c � m.p/

and m.p/ grows at most polynomially in p. By (i), the group G is finitely generated.
(iv) Note that G does not involve every finite group as a continuous subfactor. There-

fore, assuming that G is finitely generated, it follows from Theorem 6.10 in [26] that G
has UBERG. Conversely, assume that G has UBERG. Every SL2.Fp/ has an irreducible
representation of dimension 2 over Fp . In particular, G has at least m.p/ such representa-
tions and we conclude that m.p/ � p2c for a constant which does not depend on p.
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8.2. Products of alternating groups

In this section we study PFP1 for products of alternating groups.

Theorem 8.10. For large primes b, lH
1
.Alt.b// D bb�2.

Proof. Our approach is to first enumerate the Alt.b/-modules smaller than bb�2, and then
show they have trivial first cohomology.

By [23] (restricting representations from symmetric to alternating groups), in charac-
teristic p, for large b, the only non-trivial representation of Alt.b/ smaller than pb

2=4 is
the fully deleted permutation module described in [27] (Section 5.3, Alternating groups).
For large b, this is greater than bb�2, so we only need to consider the fully deleted per-
mutation modulesMp over Fp for primes p < b: for p � b, the fully deleted permutation
module has size � bb�2.

We refer the reader to Section 4.6 of [38] for background on Young modules, and
to Section 5.1 of [38] for which ones belong to the principal block: given a field Fp and
� ` b, the Young module Y � (over p) is the indecomposable summand of the permutation
moduleM� containing the Specht module S�, which, when � is a restricted partition of b,
has as its unique simple quotient the simple module D�.

Fix a field Fp , for p < b prime. Using [23], we can describe the FpŒSym.b/�-module
IndSym.b/

Alt.b/ Mp . Since j Sym.b/ WAlt.b/j D 2, using Clifford theory (e.g., Theorem 2.2.2
in [25]), there are at most 2 irreducible FpŒSym.b/�-modules restricting to the FpŒAlt.b/�-
module Mp . In odd characteristic, these are D.b�1;1/ and D.b�1;1/ ˝ sgn, where sgn is
the sign representation. (Recall that M .b�1;1/ is the natural b-dimensional permutation
module for Sym.b/.) In characteristic 2, sgn is trivial, and it is easy to see by counting
dimensions thatD.b�1;1/ is the only irreducible FpŒSym.b/�-module restricting to Mp . In
either case, by the standard argument, these are the only possible composition factors of
IndSym.b/

Alt.b/ Mp .
Since p − b, the argument of Section 5.3 (Alternating groups) of [27] shows that

D.b�1;1/ D S .b�1;1/ is a direct summand of M .b�1;1/, and hence it is the Young mod-
ule Y .b�1;1/.

For b odd, Y .b�1;1/ is not in the principal block for p D 2, so H 1.Sym.b/; Y .b�1;1//
D 0. For 3� p, the Corollary in 6.3 of [28] showsH 1.Sym.b/;Y �/D 0 for all �. Finally,
Theorem 2.4 in [6] shows for 3 � p that H 1.Sym.b/; S .b�1;1/ ˝ sgn/ D 0. We conclude
that, for all primes p < b, H 1.Sym.b/;D.b�1;1// D H 1.Sym.b/;D.b�1;1/ ˝ sgn/ D 0,
therefore H 1.Sym.b/; IndSym.b/

Alt.b/ Mp/ D 0. Hence, by Shapiro’s lemma, H 1.Alt.b/;Mp/
D 0. (The Corollary in 6.3 of [28] states that H i .Sym.b/; Y �/ D 0 for all � and all
1 � i � 2p � 3, but in fact the correct bound is 1 � i � 2p � 4: see 2.4 in [20].)

The smallest Alt.b/-module not yet accounted for is the fully deleted permutation
module Mb , and jMbj D b

b�2. Therefore lH
1
.Alt.b// � bb�2. Moreover, by the Lemma

in 5.1 of [28], H 1.Sym.b/;D.b�1;1// ¤ 0, and we deduce as above that H 1.Alt.b/;Mb/

¤ 0, therefore lH
1
.Alt.b// D bb�2.

Theorem 8.11. Let f WN�5 ! N and let

G D
Y
b�5

Alt.b/f .b/:
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Then the following are equivalent:
(i) G is finitely generated,

(ii) G is of type PFP1,

(iii) there is c > 0 such that f .b/ � .bŠ/c for all b.

Proof. Indeed,G is finitely generated if and only if f .b/� .bŠ/c for some c, by Section 1
of [19] (since jOut.Alt.b//j � 4 for all b). By Corollary 6.11 and Theorem 8.10, G has
type PFP1 if and only if f .b/ � b.b�2/c

0

for some c0. Since .bŠ/c � b.b�2/c � .bŠ/2c by
Stirling’s approximation, this is equivalent to statement (iii).

Using this, we obtain now a finitely generated example which has type PFP1 but not
UBERG. This example has superexponential subgroup growth, in contrast to the PFG and
UBERG conditions which both, for finitely generated groups, imply at most exponential
subgroup growth (see Theorem 10.2 in [22] and Proposition 5.4 in [26]).

Corollary 8.12. Let G D
Q
b�N;b prime Alt.b/bŠ=8, for some large N . Then G is 2-gene-

rated, has superexponential subgroup growth, does not have UBERG and has type PFP1.

Proof. By Theorem 8.11, G is finitely generated and has type PFP1. The group G is
2-generated by Corollary 1.2 in [40], and has superexponential subgroup growth by Pro-
position 10.2 in [22]. This implies that G does not have UBERG by Corollary 5.5 in [26].

Remark 8.13. Once again, the universal Frattini cover of G in Corollary 8.12 is a finitely
generated projective profinite group of type PFP with superexponential subgroup growth,
which cannot occur for PFG or UBERG groups.

9. FP1 and UBERG

Given all the examples above, one remaining gap is an example of an infinitely generated
group which has UBERG and type PFP1. It is surprising to discover that no such examples
exist.

Lemma 9.1. There is some constant f such that, for any non-abelian simple group S ,
l lin.S/ � jS jf .

Note that there is no constant f 0 such that jS jf
0

� l lin.S/ for all S : the alternating
groups give a counterexample.

Proof. This is trivial for the sporadic groups. For the alternating groups, it follows from
l lin.Alt.n// � 2n�1 < nŠ=2 for n � 5. So we may suppose S is a group of Lie type.

Suppose S is defined over Fq , q a power of a prime p. We conclude from Proposi-
tion 5.4.6 and Remark 5.4.7 in [27] that Fq is the smallest field over which a non-trivial
irreducible representation of S of minimal dimension k in characteristic p is realised, and
any irreducible representation of S in characteristic p has size at least qk . By compar-
ing Proposition 5.4.13 in [27] and Theorem 5.3.9 in [27], we see that except possibly in
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finitely many cases (which we can ignore), the smallest non-trivial irreducible representa-
tion of S occurs in characteristic p. So l lin.S/ � qk

2
, where the value of k for each S can

be read from Table 5.4.C in [27]. Meanwhile, jS j can be read from Tables 5.1.A and 5.1.B
in [27]: comparing these gives the result.

Theorem 9.2. Suppose G is a profinite group with UBERG and type FP1. Then G is
finitely generated.

Proof. We may assume d.G/ > 2; otherwise the result is trivial.
From Theorem 1.4 in [9], it follows that for any finite group H with d.H/ > 2, there

is a monolithic primitive group L with minimal normal subgroup K such that the crown-
based power Lk is isomorphic to a quotient ofH , d.H/D d.Lk/ for some k, and for any
proper quotient J of Lk , d.J / < d.Lk/. Write G as an inverse limit lim

 �i2N
Hi of finite

groups (this is possible becauseG has UBERG, so it is countably based by Proposition 1.3
in [8]). So d.G/D supi d.Hi /D supi d..Li /ki /, where Li and ki are chosen for eachHi
with d.Hi / > 2 as above.

For each i , letKi be the unique minimal normal subgroup of Li . Suppose first thatKi
is abelian. Since Li is a quotient of G, and G has type FP1, by Corollary 6.2 there is
some constant d such that ki � drG.Ki /. By Proposition 6 in [10], and in the notation
used there, since d.Li=Ki / < d..Li /ki /, d..Li /ki / D hLi ;ki . But hLi ;ki � d C 2, by
Theorem A in [1].

Now suppose thatKi is non-abelian,Ki D S r with S simple. BecauseG has UBERG,
there is some c such that ki � l lin.S/cr for all L. By Corollary 8 in [10], for s greater than
max.2; d.Li=Ki //, d..Li /ki / � s if and only if ki �  Li .s/ (where  Li .s/ is defined
in [10]). For  the constant defined in Proposition 9 of [10], we have ki � l lin.S/cr �

jS jcf r by Lemma 9.1, which is �  jS jr.s�2/ when

s � cf � log./= log.jKi j/C 2;

and
 jS jr.s�2/ � . jS r js�1/=.r jOut.S/j/ �  Li .s/

by Lemma 7.7 in [18] and Proposition 10 in [10]. Overall, we get that

d..Li /ki / � max¹d.Li=Ki /; cf � log./= log.jKi j/C 2º:

But d.Li=Ki / < d..Li /ki /, so

d.L
.ki /
i / � cf � log./= log.jKi j/C 2 � cf � log./C 2;

and d.G/ � max¹d C 2; cf � log./C 2º.

We know of no direct proof of this fact, without the use of crown-based power charac-
terisations. Recalling that UBERG plus type FP1 is equivalent to APFG, we conclude that
APFG implies finite generation.
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