
Rev. Mat. Iberoam. 39 (2023), no. 4, 1567–1598
DOI 10.4171/RMI/1385

© 2022 Real Sociedad Matemática Española
Published by EMS Press and licensed under a CC BY 4.0 license

Non-locality, non-linearity, and existence of solutions
to the Dirichlet problem for least gradient functions

in metric measure spaces

Josh Kline

Abstract. We study the Dirichlet problem for least gradient functions for domains
in metric spaces equipped with a doubling measure and supporting a (1,1)-Poincaré
inequality when the boundary of the domain satisfies a positive mean curvature con-
dition. In this setting, it was shown by Malý, Lahti, Shanmugalingam, and Speight
(2019) that solutions exist for continuous boundary data. We extend these results,
showing existence of solutions for boundary data that are approximable from above
and below by continuous functions. We also show that for each f 2 L1.@�/, there
is a least gradient function in � whose trace agrees with f at all points of continuity
of f , and so we obtain existence of solutions for boundary data which are continuous
almost everywhere. This is in contrast to a result of Spradlin and Tamasan (2014),
who constructed an L1-function on the unit circle which has no least gradient solu-
tion in the unit disk in R2. Modifying the example of Spradlin and Tamasan, we
show that the space of solvable L1-functions on the unit circle is non-linear, even
though the unit disk satisfies the positive mean curvature condition.

1. Introduction

Given a function f on the boundary of a domain �, the Dirichlet problem for least gra-
dient functions is the problem of minimizing kDuk.�/ over all u 2 BV.�/ with trace
T u D f a.e. on the boundary. This form of the problem, where the boundary condition is
attained in the sense of traces, was originally introduced in the Euclidean setting by Stern-
berg, Williams, and Ziemer in [37]. There they showed that if the boundary of the domain
has non-negative mean curvature and is not locally area minimizing, then existence and
uniqueness of solutions is guaranteed for continuous boundary data. Furthermore, they
showed that the imposed curvature conditions are necessary to guarantee existence of
solutions, and if the boundary data is of class C 0;˛ for 0 < ˛ � 1, then the solution is of
class C 0;˛=2, provided the boundary of the domain has strictly positive mean curvature.
Their proof makes uses an important result of Bombieri, De Giorgi, and Giusti from [7],
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which states that characteristic functions of superlevel sets of least gradient functions are
themselves of least gradient. Using this, the authors constructed a least gradient solution
by building its superlevel sets so that each was of least gradient and compatible with the
boundary data.

Since the appearance of [37], existence, uniqueness, and regularity of the above least
gradient problem have been studied extensively in the Euclidean setting. We refer the
interested reader, for instance, to the following sampling [10–12, 14, 29, 33, 34] and the
references therein. In particular, it was shown in [29] that there is an equivalence between
least gradient solutions and solutions to the Dirichlet problem for the 1-Laplacian. More-
over, the authors showed that in strictly convex domains, uniqueness of solutions may
fail for discontinuous boundary data. For more on the study of uniqueness of solutions,
see [11].

In recent decades, a theory of analysis on metric measure spaces has been developed
under the assumptions that the measure is doubling and that the space supports a Poincaré
inequality, see for example [3, 6, 18, 20]. Miranda Jr. extended the definition of BV func-
tions to this setting in [30], leading to the development of a theory of least gradient
functions and associated Dirichlet problems in metric spaces [1, 4, 17, 22, 23, 25, 26, 28].
In [25], Lahti, Malý, Shanmugalingam, and Speight studied the Dirichlet problem for
least gradient functions, originally introduced in [37], in the setting of a doubling metric
measure space supporting a .1; 1/-Poincaré inequality. There they introduced a notion of
positive mean curvature which makes sense in the metric setting (Definition 2.12 below).
They showed that if a domain satisfies this condition and if compatibility conditions are
assumed between the measure and the codimension 1 Hausdorff measure of the boundary
of the domain, then existence of solutions is guaranteed for continuous boundary data.
Their strategy adapts the argument from [37] to the metric setting, similarly building a
solution by constructing its superlevel sets in an appropriate manner.

In contrast to [37], [25] also provided examples in the weighted Euclidean setting
which show that even for Lipschitz boundary data, solutions may fail to be continuous up
to the boundary and may fail to be unique. However, it was recently shown in [38] that
continuous solutions exist for the weighted Euclidean least gradient problem with contin-
uous boundary data, provided the weights are positive, bounded away from zero, and of
classC 2: This result, valid in dimensions n� 2, extends the earlier result from [21], which
guarantees existence of continuous solutions in low dimensions for C 1;1 weights which
are positive and bounded away from zero. In [21], it was also shown that for such weights
and continuous boundary data, solutions to the weighted problem in dimensions n � 2 are
unique. For more on the weighted Euclidean least gradient problem, anisotropic formu-
lations, and connections of these problems to conductivity imaging, see [10, 12, 31, 32].
Such applications provide additional motivation for the study of the least gradient problem
in the metric setting. For a recent work on Gauss–Green formulas and connections to the
least gradient problem in the metric setting, see [13].

From [37] in the Euclidean setting, certain non-negative curvature conditions are re-
quired to guarantee existence of solutions to the Dirichlet problem for least gradients.
From [5, 9], it is also known that the trace class of BV functions on a Euclidean Lip-
schitz domain is the L1-class of its boundary. In fact, analogous trace and extension
results hold for BV functions in the metric setting as well, see [26, 28]. Therefore, if a
Euclidean domain satisfies the curvature conditions from [37], it is natural to ask whether
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all L1-functions on the boundary of such a domain admit solutions to the Dirichlet prob-
lem for least gradient functions. This question was answered in the negative by Spradlin
and Tamasan in [36]. A certain fat Cantor set was constructed on the boundary of the unit
disk in R2 in [36], such that the characteristic function of that set is not the trace of a least
gradient function in the unit disk, despite the fact that the unit disk satisfies the necessary
curvature conditions. Thus the question of which L1-functions arise as traces of functions
of least gradient is open even in the Euclidean setting. The goal of this paper is to investi-
gate the conditions sufficient to guarantee existence of solutions to the Dirichlet problem
in both the Euclidean and metric settings.

After introducing the necessary definitions and background information in Section 2,
we begin Section 3 by examining the example presented in [36] in the Euclidean setting
of the unit disk (Example 3.1 below). We modify this example in such a way as to obtain
a solution (Example 3.3 below) which demonstrates that the set of L1-functions on the
boundary of the unit disk for which solutions exist is non-linear. Namely, we show that
the example function from [36] can be expressed as the sum of two functions, each of
which arise as the trace of a least gradient function. Moreover, our example shows that
even in the case of the unit disk, the Dirichlet problem is non-local in the following sense:
there is a boundary data f for which a least gradient solution to the Dirichlet problem
exists, but �f has no solution for a suitable compactly supported Lipschitz function �
on the boundary. This example illustrates the significant difference between the Dirichlet
problem for least gradient functions and the Dirichlet problem for p-harmonic functions
when p > 1, see [6].

In Sections 4 and 5, we obtain sufficient conditions for existence of solutions in the
metric setting under the following standing assumptions:
• .X; d; �/ is a complete metric measure space supporting a .1; 1/-Poincaré inequality,

with � a doubling Borel regular measure.
• � � X is a bounded domain with �.X n�/ > 0.
• @� has positive mean curvature as in [25], see Definition 2.12.
• H .@�/ <1, H j@� is doubling, and H j@� is lower codimension 1 Ahlfors regular,

see (2.6).
Here, H is a codimension 1 Hausdorff measure on @�, see (2.5). The examples presented
in Section 3 are in the setting of the unit disk in R2, which satisfies the above assumptions
as well. The following is the first of the main results of the paper, proved in Section 4.

Theorem 1.1. Let f 2 L1.@�/, and for each k 2 N, let gk ; hk 2 C.@�/ be such that
gk ; hk ! f as k !1 pointwise H -a.e. on @�, with

gk � gkC1 � f � hkC1 � hk H -a.e. on @�.

Then, there is a function u2BV.�/ which is the minimal solution to the Dirichlet problem
with boundary data f .

The following is an equivalent reformulation of the hypotheses of Theorem 1.1:
• Let f 2 L1.@�/ and assume that there is a lower semicontinuous function g on @�

and an upper semicontinuous function h on @� such that g � h everywhere on @�
and g D h D f H -a.e. on @�.
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The key step is to show existence of minimal solutions for continuous boundary data,
from which we obtain a comparison theorem for minimal solutions; note that unique-
ness of solutions is not guaranteed (see [25]), and so a more general comparison theorem
will not hold for least gradient functions. This is in contrast to p-harmonic functions
with p>1, which always satisfy a comparison theorem (see [6]).

As a consequence, we obtain the following result regarding characteristic functions of
subsets of the boundary of the domain.

Theorem 1.2. Let F � @� be measurable, and let z@F denote the boundary of F relative
to @�. If H .z@F / D 0, then there is a function u 2 BV.�/ which is the minimal solution
to the Dirichlet problem with boundary data �F .

In Section 5, we continue to adopt the setting and assumptions from the previous
section. By adapting an argument from [12] in the Euclidean setting, we use the metric
technology of discrete convolution to obtain the following result.

Theorem 1.3. Given f 2 L1.@�/, there exists a least gradient function u 2 BV.�/ such
that for all x 2 @� such that f is continuous at x, we have that T u.x/ D f .x/. In par-
ticular, if f is continuous H -a.e. on @�, then there is a solution to the Dirichlet problem
with boundary data f .

This result was established for strictly convex, Euclidean domains in [12]. Our exten-
sion to the metric setting includes Euclidean domains that are not strictly convex but
satisfy the positive mean curvature condition. For example, the capped cylinder described
in Remark 5.8 below is not strictly convex, but satisfies the positive mean curvature con-
dition.

Although Theorem 1.1, Theorem 1.2, and Theorem 1.3 provide sufficient conditions
on the boundary data to guarantee existence of solutions in this setting, Example 3.3 below
shows that these conditions are not sharp (see Remarks 4.14 and 5.10). It seems that
even for sufficiently regular domains, a characterization of L1 boundary data admitting
solutions is still unknown.

2. Preliminaries

2.1. General metric measure spaces and BV theory

Throughout this paper, we assume that .X; d; �/ is a complete metric measure space
equipped with a doubling Borel regular measure �. By doubling, we mean that there
exists a constant CD � 1 such that

0 < �.B.x; 2r/ � CD�.B.x; r// <1

for all x 2 X and r > 0. By iterating the doubling condition, there are constants C � 1
and Q > 1 such that

(2.1)
�.B.y; r//

�.B.x;R//
� C�1

� r
R

�Q
for every 0 < r � R and y 2 B.x;R/.
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A complete metric space equipped with a doubling measure is proper, that is, closed
and bounded sets are compact. Thus for any open set � � X , we define L1loc.�/ as the
space of functions that are in L1.�0/ for every �0 b �, i.e., for every open set �0 such
that �0 is a compact subset of �. Also, if A and B are subsets of X , we use the notation
A @ B to mean that �.A n B/ D 0. By a domain, we mean a non-empty connected open
set in X .

Given a function uWX ! R, we say that a Borel function gWX ! Œ0;1� is an upper
gradient of u if, for all non-constant compact rectifiable curves  W Œa; b�! X , the follow-
ing inequality holds:

ju.y/ � u.x/j �

Z


g ds

whenever u.x/ and u.y/ are both finite, and
R

g ds D1 otherwise. Here x and y denote

the endpoints of the curve  . Upper gradients were originally introduced in [19].
Let zN 1;1.X/ be the class of all functions in L1.X/ for which there exists an upper

gradient in L1.X/. For u 2 zN 1;1.X/, we define

kuk zN 1;1.X/ D kukL1.X/ C inf
g
kgkL1.X/;

where the infimum is taken over all upper gradients g of u. Now, we define an equivalence
relation in zN 1;1.X/ by u � v if and only if ku � vk zN 1;1.X/ D 0.

The Newtonian spaceN 1;1.X/ is defined as the quotient zN 1;1.X/=�, and it is equip-
ped with the norm kukN 1;1.X/ D kuk zN 1;1.X/. One can analogously define N 1;1.�/ for an
open set � � X . For more on Newtonian spaces, see [35], [20], or [6].

We now define functions of bounded variation on metric spaces, following the defini-
tion introduced by Miranda Jr. in [30]. For u 2 L1loc.X/, we define the total variation of u
by

kDuk.X/ D inf
°

lim inf
i!1

Z
X

gui d� W N
1;1
loc .X/ 3 ui ! u in L1loc.X/

±
;

where gui are upper gradients of ui . For an open set � � X , we analogously define
kDuk.�/, and for an arbitrary A � X , we define

kDuk.A/ D inf¹kDuk.�/ W A � �;� � X openº:

For u 2 L1.X/, we say that u 2 BV.X/ (u is of bounded variation) if kDuk.X/ <1.
We equip BV.X/ with the norm

kukBV.X/ D kukL1.X/ C kDuk.X/:

We note that this definition coincides with the standard definition of the BV class in the
Euclidean setting, see for example [2, 8]. See also [1] and [4] for more on BV theory in
the metric setting.

For u 2 BV.X/, it was shown in Theorem 3.4 of [30] that kDuk.�/ is a finite Radon
measure on X: Moreover, for an open set � � X , if uk ! u in L1loc.�/, then

(2.2) kDuk.�/ � lim inf
k!1

kDukk.�/:

That is, the BV energy is lower semicontinuous with respect to convergence in L1 (see
Proposition 3.6 in [30]).
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We say that a measurable set E � X is of finite perimeter if kD�Ek.X/ <1, and we
denote the perimeter of E in � by

P.E;�/ WD kD�Ek.�/:

We have the following coarea formula, given by Proposition 4.2 in [30]. If � � X is
an open set and u 2 L1loc.�/, then

(2.3) kDuk.�/ D

Z 1
�1

P.¹u > tº; �/ dt;

and if u 2 BV.X/, then the above holds with � replaced by any Borel set A � �.

2.2. Poincaré inequality and consequences

We will also assume throughout this paper that X supports a .1; 1/-Poincaré inequality,
meaning that there are positive constants � and CP such that for every ball B D B.x; r/,
every locally integrable function u, and every upper gradient g of u, we have that−

B

ju � uB j d� � CP r

−
�B

g d�;

where �B WD B.x; �r/, and

uB WD

−
B

ud� D
1

�.B/

Z
B

ud�:

Throughout this paper, we let C denote a constant which depends, unless otherwise noted,
on CD , CP , �, or �. Its precise value is not of interest here and may not be the same at
each occurrence.

As shown in [16], when � is doubling, the (1,1)-Poincaré inequality implies the fol-
lowing Sobolev–Poincaré inequality:� −

B

ju � uB j
Q=.Q�1/ d�

�.Q�1/=Q
� C rad.B/

−
�B

gu d�;

whereQ > 1 is the exponent from (2.1). Given u 2 L1loc.X/, one can apply this inequality
to the approximating functions in N 1;1.X/ in the definition of total variation to obtain the
inequality � −

B

ju � uB j
Q=.Q�1/ d�

�.Q�1/=Q
� C rad.B/

kDuk.2�B/

�.2�B/
;

from which the following lemma is obtained in [22].

Lemma 2.4 (Lemma 2.2 in [22]). Let u 2 BV.X/, and for a ball B � X , let

A D ¹x 2 B W ju.x/j > 0º:

If �.A/ � �.B/ for some 0 <  < 1, then� −
B

jujQ=.Q�1/ d�
�.Q�1/=Q

�
C rad.B/
1 � 1=Q

kDuk.2�B/

�.2�B/
;

where Q > 1 is the lower mass bound exponent given in (2.1).
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We will use the above lemma in the proof of Lemma 5.4 to obtain L1-bounds for a
sequence of BV functions.

Given E � X , we define its codimension 1 Hausdorff measure, H .E/, by

(2.5) H .E/ D lim
ı!0C

inf
°X

i

�.Bi /

rad.Bi /
W Bi balls in X; E �

[
i

Bi ; rad.Bi / < ı
±
:

We say that H j@� is lower codimension 1 Ahlfors regular if there exists C > 0 such that

(2.6) H .B.x; r/ \ @�/ � C
�.B.x; r//

r

for every x 2 @� and 0 < r < 2 diam.@�/.
It was shown in [1] and [4] that if � is doubling and X supports a .1; 1/-Poincaré

inequality, then there is a constant C � 1 such that whenever E � X is of finite perimeter
and A � X is a Borel set, we have

C�1H .A \ @ME/ � P.E;A/ � CH .A \ @ME/;

where @ME is the measure-theoretic boundary of E, which is the set of all points x 2 X
for which

lim sup
r!0C

�.B.x; r/ \E/

�.B.x; r//
> 0 and lim sup

r!0C

�.B.x; r/ nE/

�.B.x; r//
> 0:

Given an extended real-valued function u on X , we define the approximate upper and
lower limits of u by

u_.x/ WD inf
°
t 2 R W lim

r!0C

�.¹u > tº \ B.x; r//

�.B.x; r//
D 0

±
;

u^.x/ WD sup
°
t 2 R W lim

r!0C

�.¹u < tº \ B.x; r//

�.B.x; r//
D 0

±
:

From the Lebesgue differentiation theorem, u_ D u^ �-a.e. if u 2 L1loc.X/.

2.3. Dirichlet problem for least gradient functions

Definition 2.7. Given a bounded domain��X and a function u 2 BV.�/, we say that u
has a trace at a point x 2 @� if there is a number T u.x/ 2 R such that

lim
r!0C

−
B.x;r/\�

ju � T u.x/j d� D 0:

Definition 2.8. Let� � X be an open set, and let u 2 BVloc.�/. We say that u is of least
gradient in � if

kDuk.V / � kDvk.V /;

whenever v 2 BV.�/ with ¹x 2 � W u.x/ ¤ v.x/º � V b �.
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Definition 2.9. Let � be a bounded domain in X with �.X n �/ > 0, and let f 2
BVloc.X/. We say that u 2 BVloc.X/ is a weak solution to the Dirichlet problem for least
gradients in � with boundary data f , or simply, weak solution to the Dirichlet problem
with boundary data f , if u D f on X n� and

kDuk.�/ � kDvk.�/;

whenever v 2 BV.X/ with v D f on X n�.

Definition 2.10. Let � be a domain in X and let f W @�! R. We say that a function
u 2 BV.�/ is a solution to the Dirichlet problem for least gradients in � with boundary
data f , or simply, solution to the Dirichlet problem with boundary data f , if T u D f
H -a.e. on @� and whenever v 2 BV.�/, with T v D f H -a.e. on @�, we must have

kDuk.�/ � kDvk.�/:

Note that solutions and weak solutions to Dirichlet problems on a domain � are nec-
essarily of least gradient in �.

Definition 2.11. A (weak) solution �E to the Dirichlet problem with boundary data �F
is called a minimal (weak) solution to the said problem if every (weak) solution � zE corre-
sponding to the data �F satisfiesE @ zE, that is, �.E n zE/D 0, or alternatively, �E � � zE
�-a.e. in X .

It is shown in [25] that if F � X is such that P.F;X/ <1, then there is a set E � X
withP.E;X/<1 such that �E is a weak solution to the Dirichlet problem with boundary
data �F . We call E a weak solution set. Moreover, for such an F , there is a minimal weak
solution, and such a minimal weak solution is unique �-a.e. in X , see Proposition 3.7
in [25]. However, without additional assumptions on�, the trace of the weak solution may
not agree with �F on @�. That is, a weak solution may not necessarily be a solution. For
example, if�D .0; 1/� .0; 1/�R2, and F is the disk centered at .1=2;0/ of radius 1=10,
then the trace of the minimal weak solution will have zero trace on @�, and in fact there
is no least gradient function with the appropriate trace on the boundary. To address this
issue, the following definition was introduced in [25], extending the formulation from [37]
to the metric setting.

Definition 2.12. Given a domain� � X , we say that the boundary @� has positive mean
curvature if for each x 2 @�, there exists a non-decreasing function �x W .0;1/! .0;1/

and a constant rx > 0 such that for all 0 < r < rx with P.B.x; r/; X/ < 1, we have
that B.x; �x.r// @ EB.x;r/, where EB.x;r/ � X gives the minimal weak solution to the
Dirichlet problem with boundary data �B.x;r/, as defined above.

In [25], positive mean curvature is defined by existence of � and r0 > 0 so that the
condition is satisfied for all x 2 @� and all 0 < r < r0. However, the results from [25]
hold if the definition is weakened to allow dependence on x, as above.

Remark 2.13. It is shown in Propositions 4.8 and 4.9 of [25] that if H .@�/ <1, and
F � X is open with P.F; X/ < 1 and H .@F \ @�/ D 0, then under the assumption
of positive mean curvature, all weak solutions of �F are solutions. Additionally, if v 2
BV.�/ is a solution for �F , then extending v outside � by �F yields a weak solution.
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3. Motivating examples

The domain�DB.0;1/�R2 has boundary of positive mean curvature as defined above,
but it was shown by Spradlin and Tamasan in [36] that there exists a function f 2 L1.@�/
for which there is no solution to the Dirichlet problem when f is the given boundary data.
The function f is the characteristic function of a certain fat Cantor set on the unit circle.
The following example, due to Górny (Example 4.7 in [10]), is a modification of the
example from [36].

Example 3.1. Let � D B.0; 1/ � R2. We construct a Cantor set K1=4 on the unit circle
as follows: let

I0 WD ¹.cos �; sin �/ W �=2 � 1=2 � � � �=2C 1=2º ;

and define f0 W @�! R by f0 D �I0 . To construct f1 W @�! R, we remove an arc of
arc-length 1=4 from the center of I0, and let

I1;1 D ¹.cos �; sin �/ W �=2 � 1=2 � � � �=2 � 1=8º;
I1;2 D ¹.cos �; sin �/ W �=2C 1=8 � � � �=2C 1=2º;

and let J1 WD I1;1 [ I1;2: Define f1W @�! R by f1 D �J1 .
Continuing inductively in this manner, we construct fn from fn�1 by removing an arc

of arc-length 1=4n from the center of In�1;m for each m 2 ¹1; : : : ; 2n�1º, that is, from
each arc comprising Jn�1. We then obtain a new collection of arcs ¹In;mº2

n

mD1, and by a
direct computation, it follows that the arc length of each In;m is given by

H .In;m/ D
2n C 1

22nC1
�

Setting JnD
S2n

mD1 In;m, we define fnW@�!R by fnD�Jn . The Cantor set is then given
byK1=4D

T
n2N Jn, and we define f W@�!R by f D �K1=4 . We note that f 2L1.@�/.

For each n 2 N, consider the function unW�! R given as follows. For each m 2
¹1; : : : ; 2nº, let un D 1 on the region of � bounded by In;m and the chord joining the
endpoints of In;m. Let un D 0 elsewhere in �. It was shown in Example 4.7 of [10]
that un is a solution to the Dirichlet problem with boundary data fn. This was done by
considering the trapezoid formed by the chord joining the endpoints of each arc In�1;m,
the chord joining the endpoints of the arc removed from the center of In�1;m, and the
chords joining the endpoints of the two arcs remaining after the removal. Since the Cantor
set was constructed using the removal parameter 1/4, it was shown that the sum of the
lengths of the bases of the trapezoid is greater than the sum of the lengths of the sides, and
such an inequality holds on every stage of the construction (see Figure 1). Here, by bases
we mean the two parallel sides of the trapezoid.

Claim. If n 2 N is sufficiently large, then for any set E � � such that w D �E is a
solution to the Dirichlet problem with boundary data fn, we have that w D un a.e. in �.
That is, for sufficiently large n 2 N, solution sets to the Dirichlet problem with boundary
data fn are unique a.e.
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I1;1 I1;2

Figure 1. u1 D 1 in the shaded regions, and
u1 D 0 elsewhere in the disk.

�A

A

Figure 2. w D 0 in the shaded regions, and
w D 1 elsewhere in �A.

Proof of claim. By summing the lengths of the line segments which comprise the boundary
of ¹un D 1º, we have by direct computation that

kDunk.�/! H .K1=4/ D 1=2

as n!1. Since 2 sin.5=16/ > 1=2, there exists N 2 N such that for all n 2 N, n > N
implies that

(3.2) kDunk.�/ < 2 sin.5=16/:

Fix n > N and suppose that there exists E � � such that w D �E is a solution to the
Dirichlet problem with boundary data fn. Since w is of least gradient in �, we have
that @E \ � consists of straight line segments. We will show that multiple arcs from
¹In;mº

2n

mD1 cannot be contained in the boundary of a single connected component of E. In
doing so, this will show that w D un a.e. in �.

Suppose that a connected component E0 of E contains multiple arcs from ¹In;mº2
n

mD1

it its boundary. Let In;m1 and In;m2 be the two arcs forming part of the boundary of E0
farthest from one another on @�, and let A be the shortest arc on @� which contains
both In;m1 and In;m2 : Since the chord joining the endpoints of A forms part of the perime-
ter of E, we have that

kDwk.�/ � 2 sin.H .A/=2/:

If H .A/ � 5=8, then by the choice of N and (3.2), we would have that

kDwk.�/ � 2 sin.5=16/ > kDunk.�/:

However, this contradicts w being a solution to the Dirichlet problem with boundary
data fn, and so it follows that H .A/ < 5=8.

Let�A denote the region of� bounded byA and the chord joining the endpoints ofA.
Since H .A/ < 5=8, it follows from the argument in Example 3.3 that for each subarc of A
which was removed in the construction of fn, w D 0 on the region of�A bounded by that
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subarc and the chord joining its endpoints. Likewise, w D 1 elsewhere in�A. It is shown,
as part of the discussion of Example 3.3, that this configuration minimizes the perimeter
of potential solution sets in such regions �A, see Figure 2.

Let C denote the largest subarc of A removed during the construction of fn, and let
k 2 N be such that H .C /D 4�k ; we note that k�n. Consider the function hW Œ0;H .Ik;m/�

! R given by

h.�/ D 2
h

sin
�H .C /

2

�
C sin

�H .Ik;m/CH .C /C �

2

�
� sin

�H .Ik;m/

2

�
� sin

��
2

�i
;

where Ik;m is one of the two arcs adjacent to C at the k-th stage of the construction. The
function h measures the difference between the sum of the lengths of the bases and the
sum of the lengths of the sides of the quadrilateral shown in Figure 3. Here, by bases we
mean the chord joining the end points of C and the side of the quadrilateral opposite that
chord. Because the trapezoid inequality between side and base lengths discussed above
was shown to hold at every stage of the construction in Example 4.7 of [10], we have that
h
�
H .Ik;m/

�
> 0. Furthermore, we have that

h0.�/ D cos
�H .Ik;m/CH .C /C �

2

�
� cos

��
2

�
< 0;

and so h is positive on Œ0;H .Ik;m/�. Similarly, for any fixed � 2 Œ0;H .Ik;m/�, the function
h�W Œ0;H .Ik;m/�! R given by

h�.�/ D 2
h

sin
�H .C /

2

�
C sin

��CH .C /C �

2

�
� sin

��
2

�
� sin

��
2

�i
is decreasing with h�.H .Ik;m// > 0. Hence, h� is positive on Œ0;H .Ik;m/�.

Thus the sum of the length of the chord joining the endpoints of C and the length of
the chord joining the endpoints of A is strictly greater than the sum of the lengths of the
chords which join each endpoint of C to the corresponding endpoint of A, see Figure 4.
This is a contradiction, since w is a solution, and the chord joining the endpoints of A
and the chord joining the endpoints of C form part of the perimeter of A in �. Hence,
multiple arcs from ¹Ik;mº2

n

mD1 cannot be contained in the boundary of a single connected
component of E. Therefore, we have that w D un a.e. in �, proving the claim.

C

Ik;m
�

Figure 3

C

A

Figure 4

Now suppose that there exists a solution u 2 BV.�/ to the Dirichlet problem with
boundary data f D �K1=4 . By Remark 4.7 below, �¹u>tº is a solution to the Dirichlet
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problem with boundary data �¹f >tº for L-a.e. t 2 R. Thus we may assume that there
exists some E �� such that uD �E . Since for all n 2N, f � fn on @�, it follows from
Lemma 4.4 below that max¹u; unº is a solution to the Dirichlet problem with boundary
data fn. But max¹u;unº is the characteristic function of a subset of�, and so by the claim
above, max¹u; unº D un a.e. in � for sufficiently large n. Hence for sufficiently large n,
u � un a.e. in �, and since un ! 0 as n!1, it follows that u D 0 a.e. in �. However
H .K1=4/ D 1=2, and for each x 2 K1=4, T u.x/ D 0 ¤ f .x/, a contradiction. Therefore,
there is no solution to the Dirichlet problem with boundary data f .

In the next example, we show that a slight modification of the function f constructed
above, namely the addition of another arc to K1=4; renders the new function solvable.

Example 3.3. Let F WD @� n I0. For each n 2 N, let gn WD fn C �F D �Jn C �F , and
gWD f C �F D �K1=4 C �F . We claim that there is a solution v 2 BV.�/ to the Dirichlet
problem with boundary data g, i.e., T v D g H -a.e. on @�.

To show this, we first note that for each n 2 N, gn has a solution, see Theorem 1.1
proved in Section 4. Furthermore, g can be extended to a BV function in � by Proposi-
tion 4.1 below, which can then be extended to a BV function on R2. Thus by Lemma 3.1
in [25], this extension of g has a weak solution. For each n 2 N, we will construct a solu-
tion vn for the Dirichlet problem with boundary data gn, and show that these solutions
converge in L1.�/ to a function v whose trace agrees with g H -a.e. on @�.

We first denumerate the removed arcs in the construction as follows. Let C1;1 denote
the arc removed from I0 in the construction of f1, and similarly, let C2;1 and C2;2 denote
the arcs removed from I1;1 and I1;2 respectively, in the construction of f2: Inductively, let
¹Cn;mº

2n�1

mD1 be the collection of arcs removed from the arcs ¹In�1;mº2
n�1

mD1 in the construc-
tion of fn. We recall that each Cn;m has arc length 1=4n, and we note that

Jn D I0 n
� n[
`D1

2`�1[
mD1

C`;m

�
:

For each n 2 N, consider the function vnW� ! R given as follows. For each ` 2
¹1; : : : ; nº and m 2 ¹1; : : : ; 2`�1º, let vn D 0 in the region of � bounded by C`;m and the
chord joining the endpoints of C`;m, and let vn D 1 elsewhere in � (see Figure 5). We
wish to show that vn is a solution to the Dirichlet problem with boundary data gn.

Let w 2 BV.�/ be a solution to the Dirichlet problem with boundary data gn, guaran-
teed to exist by Theorem 1.1. We note that gn is the characteristic function of a subset of
the boundary of �, and so by Remark 4.7, we may assume that there exists a set E � �
such that w D �E . Furthermore, we may assume that @E \ � consists of straight line
segments. We will show that multiple arcs from

Cn WD ¹C`;m W 1 � ` � n; 1 � m � 2
`�1
º

cannot be contained in the boundary of a single connected component of ¹w D 0º. In
doing so, this will show that w D vn.

Suppose that a connected component E0 of ¹w D 0º contains multiple arcs from Cn
in its boundary. Let C`1;m1 and C`2;m2 be the extreme arcs joined by E0, that is, the two
arcs connected to E0 which are farthest from one another on @�. Let A be the shortest
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C1;1

F

C2;1 C2;2

I2;1

I2;2 I2;3

I2;4

Figure 5. v2 D 0 on the shaded region bound-
ing C1;1 and on the very small shaded regions
bounding C2;1 and C2;2; and v2 D 1 else-
where in the disk.

E0
Cl2;m2

Cl1;m1

A

Figure 6. An example of the case when E0
has multiple arcs from Cn in its boundary, and
C`1;m1 is the largest sub-arc of A from Cn.

arc on @� which contains both C`1;m1 and C`2;m2 . Since the arc F was added to Jn in the
construction of gn, it follows that w D 1 on the region of � bounded by F and the chord
joining the endpoints of F . Therefore, by this choice of A, the chord joining the endpoints
of A forms part of the perimeter of E. Thus,

kDwk.�/ D P.E;�/ � 2 sin.H .A/=2/:

We also note that
kDvnk.�/ < H .I0 nK1=4/ D 1=2:

If H .A/ � 5=8, then

kDwk.�/ � 2 sin.H .A/=2/ � 2 sin.5=16/ > 1=2 > kDvnk.�/;

contradicting the fact that w is a solution. Thus H .A/ < 5=8, and we have that

H .A/ � 2 sin.H .A/=2/ < 0:011:

Here is another point at which the addition of F D @� n I0 toK1=4 makes a difference.
In the previous example, the invalid trace was caused by “cutting off” the arcs Ik;m in
constructing the solution to fn. When constructing the solution for gn, however, we are
unable to “cut off” the arc F ; otherwise, we would have to include the line segment joining
the end points of the arc F in the perimeter measure of that solution, creating too much
perimeter.

For k 2 N and m 2 ¹1; : : : ; 2kº, we have that

H .Ik;m \K1=4/ D H .K1=4/=2
k
D 1=2kC1;

and 1=27 < 0:011 < 1=26: Thus, if A contained a sub-arc Ik;m with k � 5; then we have
that

H .A/ � 2 sin.H .A/=2/ < 0:011 < H .Ik;m \K1=4/ � H .A \K1=4/;
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hence H .A n K1=4/ < 2 sin.H .A/=2/. However, setting �A to be the open region of �
bounded by A and the chord joining the endpoints of A, we note that

kDvnk.�A \�/ < H .A nK1=4/:

Since the chord joining the endpoints of A has length 2 sin.H .A/=2/ and comprises part
of the perimeter of E, this contradicts the assumption that w is a solution. Therefore, A
cannot contain a sub-arc Ik;m with k � 5. We now consider two cases.

Case 1. Suppose that either C`1;m1 or C`2;m2 is the largest arc in Cn which is a sub-
arc of A (see Figure 6). We note that the largest such sub-arc is unique. Indeed, by the
construction, if the arc A contains two arcs Ck;m1 and Ck;m2 ; then there exists a k0 < k
and 1 � m � 2k

0

such that Ck0 � A. That is to say, A would necessarily contain a larger
removed sub-arc. Without loss of generality, we assume that C1 WD C`1;m1 is the largest
such sub-arc of A.

Let B WD A n C1, and let Ck;m be the largest arc from Cn such that Ck;m � B . As
above, Ck;m is the unique such sub-arc. We recall that Ck;m was removed from the center
of the arc Ik�1;m, and since Ck;m was chosen as the largest removed sub-arc of B , it
follows from the construction thatB � Ik�1;m. Indeed, if Ik�1;m did not containB , thenB
would contain one of the removed arcs bordering Ik�1;m, which would necessarily be
strictly larger than Ck;m. It follows from direct computation that

H .B nK1=4/ � H .Ik�1;m nK1=4/ D
�
1C

1X
jD1

1

2j

� 1

4k
D

2

4k
�

Moreover, since C1 and Ck;m are the largest sub-arcs of A from Cn, it follows from
the construction that the sub-arc of B connecting C1 to Ck;m is of the form Ik;m for some
1 � m � 2k . This is because the arc joining any removed arc Ck;m to a larger removed
arc, always contains an arc of the form Ik;m. Thus,

H .B/ � H .Ik;m/ D
2k C 1

22kC1
>

1

2kC1
�

Since Ik;m � B � A, it follows from the prior argument in this proof that k � 6.
We note that kDvnk.�A \�/ < 2 sin.H .C1/=2/CH .B nK1=4/; and we would like

to show that

2 sin.H .C1/=2/CH .B nK1=4/ < 2 sin
�H .C1/CH .B/

2

�
D 2 sin.H .A/=2/:

Using the computations above, we prove the following stronger inequality.

Claim.

(3.4) sin
�H .C1/

2
C

1

2kC2

�
� sin

�H .C1/

2

�
>
1

4k
�

Proof of claim. Since C1 D C`1;m1 , it follows that H .C1/=2 � 1=8. By the mean value
theorem, there exists H .C1/=2 < zk < H .C1/=2C 1=2

kC2 such that

sin
�H .C1/

2
C

1

2kC2

�
� sin

�H .C1/

2

�
D

cos.zk/
2kC2

� cos
�H .C1/

2
C

1

2kC2

� 1

2kC2
�
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E0

C3

B1 B2

A

Figure 7. An example of the case when E0 has multiple arcs from Cn in its boundary, but neither
C`1;m1 nor C`2;m2 is the largest sub-arc of A from Cn.

Since H .C1/=2 � 1=8 and k � 6, it then follows that

sin
�H .C1/

2
C

1

2kC2

�
� sin

�H .C1/

2

�
�

1

2kC3
>
1

4k
;

proving the claim.
Thus, it follows that kDvnk.�A \ �/ < 2 sin.H .A/=2/. As above, since the chord

joining the endpoints of A has length 2 sin.H .A/=2/ and comprises part of the perimeter
of E, this contradicts the assumption that w is a solution. Therefore, this configuration
cannot occur for w.

Case 2. Now consider the case when neither C`1;m1 nor C`2;m2 is the largest arc in Cn
which is a sub-arc of A. Let C3 denote the largest such sub-arc, and let B1 and B2 be
the disjoint arcs which comprise A n C3 (see Figure 7). We iterate the argument from the
first case as follows. First, setting C1 WD B1 [ C3, we see that (3.4) holds by the same
proof. Since H .A/ < 5=8, it follows that H .C1/=2 < 3=8 here, and so for k � 6, the
same inequalities hold. Thus,

2 sin.H .A/=2/ � 2 sin
�H .B1/CH .C3/

2

�
CH .B2 nK1=4/:

Now, we repeat the argument for (3.4), this time setting C1 WD C3. Once again, the claim
holds, and so it follows that

2 sin
�H .B1/CH .C3/

2

�
� 2 sin.H .C3/=2/CH .B1 nK1=4/:

Thus, we have that

2sin.H .A/=2/� 2sin.H .C3/=2/CH .B1 nK1=4/CH .B2 nK1=4/ > kDvnk.�A \�/;

again contradicting the fact that w is a solution. Having exhausted all the possible cases,
it follows that the connected component E0 cannot contain multiple arcs from Cn in its
boundary. ThereforewD vn; and so vn solves the Dirichlet problem for boundary data gn.
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Let vW�! R be given as follows. Let C WD
S
n2N Cn. For each C 2 C , let v D 0

on the region of � bounded by C and the chord joining the endpoints of C . Let v D 1
elsewhere in �. Then, vn ! v in L1.�/, and so, by Proposition 3.1 in [17], it follows
that v is a function of least gradient in �. If x 2 @� n .K1=4 [ F /, then there exists
C 2 C such that x 2 C: Since each C is an open arc on @�, it follows that v D 0 on
B.x; r/\� for small enough r > 0. Thus, T v.x/D 0D g.x/. Similarly, if x 2 F , and x
is not one of the endpoints of F , then T v.x/ D 1 D g.x/.

For x 2 K1=4, there exists a fixed angle � such that v D 1 on the circular sector of
angle � in B.x; r/ \ � for sufficiently small r > 0. Thus, T v.x/ > 0. Since v is the
characteristic function of a set in �, T v must take values of either 1 or 0 H -a.e., see
Example 4.8 in [10]. Therefore T v.x/ D 1 D g.x/ for H -a.e. x 2 K1=4, and so T v D g
H -a.e. on @�. Hence by Lemma 4.3, v is a solution to the Dirichlet problem with bound-
ary data g.

Remark 3.5. Given a domain�, let � � L1.@�/ denote the set of functions f on @� for
which there exists a solution to the Dirichlet problem with boundary data f . Examples 3.1
and 3.3 show that � does not necessarily form a vector space, even when�DB.0; 1/�R2.
In particular, � can be non-linear. As shown above, g and �F both have solutions, but
g � �F D �K1=4 D f has no solution.

Remark 3.6. Example 3.3 also shows that solutions to the Dirichlet problem for least gra-
dient functions may be non-local in the following sense. In Example 3.3, a solution exists
for boundary data g D �K1=4[F . However, for any Ik;m from the construction of K1=4,
let �k;m denote a Lipschitz function on @� such that �k;m D 1 on Ik;m and whose support
is contained in the union of Ik;m and the two removed arcs adjacent to Ik;m. Then there
is no solution to the Dirichlet problem with boundary data �k;mg D �K1=4\Ik;m . This is
because the set K1=4 \ Ik;m can be constructed in the same way that K1=4 is constructed
in Example 3.1. By the choice of the parameter a D 1=4, the same inequality between the
side and base lengths of the trapezoids created in the construction holds at every stage,
and so the same argument from Example 3.1 shows that no solution exists for bound-
ary data �k;mg. This non-locality contrasts the case involving solutions to the Dirichlet
problem for p-harmonic functions when p > 1: Such solutions are known to exist if the
boundary data f is the trace of a function in N 1;p.�/. If � is a compactly supported Lip-
schitz function on @�, then �f is similarly the trace of a function in N 1;p.�/ and hence
has a solution. For more on the Dirichlet problem for p-harmonic functions and traces of
functions of class N 1;p when p > 1, see for example [6] and [27].

4. Sufficient conditions for existence of solutions

For the remainder of this paper, we assume that .X; d; �/ is a complete metric measure
space supporting a .1; 1/-Poincaré inequality, with � a doubling Borel regular measure.
We also assume that � � X is a bounded domain, with �.X n�/ > 0, such that @� has
positive mean curvature as in Definition 2.12. Furthermore, we assume that H .@�/ <1,
that H j@� is doubling, and that H j@� is lower codimension 1 Ahlfors regular, as in (2.6).
The unit disk in R2 satisfies the above conditions, and so Example 3.1 above shows that an
L1-function on the boundary of such a domain need not have a solution. However, for such
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domains, it was shown in [25] that given f 2 C.@�/, there exists a solution u 2 BV.�/
to the Dirichlet problem with boundary data f . We show that the solution for continuous
data constructed in [25] is in fact the minimal solution, and that if an arbitrary f 2L1.@�/
can be approximated pointwise a.e. from above and below by continuous functions, then
there exists a solution to the Dirichlet problem with boundary data f . We point out that
approximation of the boundary data in this manner was used in [33] to show existence
of solutions for convex polygonal domains in R2. There, the boundary data belonged to
BV.@�/ and satisfied restrictive admissibility conditions with respect to the geometry of
the boundary.

Since we are interested in finding solutions to the Dirichlet problem given data f
defined on @�, we need methods and control over extensions of f into� and to the entire
space X . The following results from [28] and [25] give existence and bounds for such
extensions.

Proposition 4.1 (Propositions 4.2 and 4.3 in [28]). There exists a nonlinear, bounded
extension EWL1.@�/! BV.�/ satisfying

kEf kL1.�/ � C diam.�/kf kL1.@�/ and kDEf k.�/ � C.1CH .@�//kf kL1.@�/:

Moreover, TEf D f H -a.e. on @�.

Proposition 4.2 (Lemma 5.1 and Proposition 5.2 in [25]). There exists a nonlinear exten-
sion ExtWC.@�/! C.X/ \ BV.X/ satisfying

kExtf kL1.X/ � kf kL1.@�/ C 1 and

kD Extf k.X/ � C .1CH .@�// .kf kL1.@�/ C kf kL1.@�/ C 1/:

Moreover, for f 2 C.@�/ and z 2 @�; it follows that

lim
.Xn@�/3x!z

Extf .x/ D f .z/:

We will need the following lemmas.

Lemma 4.3. Let f 2L1.@�/, and let u2BV.�/ be a function of least gradient in� such
that T u D f H -a.e. on @�. Then, u is a solution to the Dirichlet problem with boundary
data f .

Proof. Let v 2 BV.�/ be such that T v D f H -a.e. on @�. Then, T .v � u/ D 0 H -a.e.
on @�, and so by Theorem 6.9 in [26], there exists wk 2 BVc.�/ for k 2 N such that
wk ! v � u in BV.�/. Thus, it follows that

kD.uC wk/k.�/! kDvk.�/; as k !1:

Since u is of least gradient and wk 2 BVc.�/; we have that

kDuk.�/ � kD.uC wk/k.�/! kDvk.�/; as k !1;

and so it follows that kDuk.�/ � kDvk.�/.
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Lemma 4.4. Let f;g 2L1.@�/ be such that f � gH -a.e., and let u;v 2BV.�/ be solu-
tions to the Dirichlet problem with boundary data f and g, respectively. Then, min¹u; vº
and max¹u;vº are solutions to the Dirichlet problem with boundary data f and g, respec-
tively.

Proof. By Lemma 3.1 in [24], it follows that

(4.5) kDmin¹u; vºk.�/C kDmax¹u; vºk.�/ � kDuk.�/C kDvk.�/:

For x 2 @� such that f .x/ � g.x/ and setting Ur WD B.x; r/ \�, we have that−
Ur

jmin¹u; vº�f .x/jd�D
1

�.Ur /

� Z
Ur\¹u�vº

jv�f .x/jd�C

Z
Ur\¹v>uº

ju�f .x/jd�
�

�
1

�.Ur /

Z
Ur\¹u�vº

jv�f .x/j d�C

−
Ur

ju�f .x/j d�;

and it follows thatZ
Ur\¹u�vº

jv � f .x/j d�

D

Z
Ur\¹u�vº\¹v>f.x/º

jv � f .x/j d�C

Z
Ur\¹u�vº\¹v�f .x/º

jv � f .x/j d�

�

Z
Ur

ju � f .x/j d�C

Z
Ur

jv � g.x/j d�:

Therefore, for H -a.e. x 2 @�; we have that−
Ur

jmin¹u;vº � f .x/jd�� 2
−
Ur

ju�f .x/jd�C

−
Ur

jv� g.x/jd�! 0 as r ! 0C.

Thus, T min¹u;vº D f H -a.e. on @�, and a similar argument shows that T max¹u;vº D g
H -a.e. on @�.

Now, suppose that kDmin¹u; vºk.�/ > kDuk.�/. Then by (4.5) we have that

kDmax¹u; vºk.�/ < kDvk.�/:

This is a contradiction since T max¹u; vº D g H -a.e., and v is a solution to the Dirichlet
problem with boundary data g. Thus, we have that

kDmin¹u; vºk.�/ � kDuk.�/;

and so min¹u; vº is a solution to the Dirichlet problem with boundary data f . Similarly,
we have that max¹u; vº is a solution to the Dirichlet problem with boundary data g.

Lemma 4.6. Let f 2 L1.@�/, and suppose that u 2 L1.�/ with T uD f H -a.e. on @�.
Then, for L-a.e. t 2 R, we have that T�¹u>tº D �¹f >tº H -a.e. on @�.
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Proof. Since H .@�/ <1, it follows that H .¹f D tº/ D 0 for L-a.e. t 2 R. For such
t 2 R, let x 2 @�\ ¹f ¤ tº be such that T u.x/ D f .x/. This property holds for H -a.e.
x 2 @�.

We first consider the case when f .x/ > t . Setting Ur WD B.x; r/ \�, we have that−
Ur

j�¹u>tº � �¹f >tº.x/j d� D
1

�.Ur /

Z
Ur

j�¹u>tº � 1j d� D
�.¹u � tº \ Ur /

�.Ur /
�

Suppose that this quantity does not go to zero as r goes to zero. That is, suppose there
exists "0 > 0 such that for all ı > 0, there exists 0 < rı < ı such that

�.¹u � tº \ Urı /

�.Urı /
� "0:

Let " WD jf .x/ � t j"0. Since T u.x/ D f .x/, there exists ı > 0 such that

">

−
Urı

ju�f .x/jd� D
1

�.Urı /

� Z
Urı\¹u>tº

ju�f .x/jd�C

Z
Urı\¹u�tº

ju�f .x/j d�
�

�
1

�.Urı /

Z
Urı\¹u�tº

ju�f .x/j d� � jf .x/� t j
�.¹u � tº\Urı /

�.Urı /
� jf .x/� t j"0D";

a contradiction. Thus, it follows that−
Ur

j�¹u>tº � �¹f >tº.x/j d�! 0 as r ! 0C.

If f .x/ < t; then we have that−
Ur

j�¹u>tº � �¹f >tº.x/j d� D
�.¹u > tº \ Ur /

�.Ur /
�

If we suppose that this quantity does not go to zero as r goes to zero, then we arrive at a
contradiction by the same method as above. However, in this case, we use the fact that

1

�.Urı /

Z
Urı\¹u>tº

ju � f .x/j d� � jf .x/ � t j
�.¹u > tº \ Urı /

�.Urı /
�

Thus, for H -a.e. x 2 @�, we have that

lim
r!0

−
Ur

j�¹u>tº � �¹f >tº.x/j d� D 0;

and so T�¹u>tº D �¹f >tº H -a.e. on @�.

Remark 4.7. If u 2 BV.�/ is a solution to the Dirichlet problem with boundary data f ,
then by the coarea formula, we have that �¹u>tº 2 BV.�/ for L-a.e. t 2 R. Moreover,
as u is necessarily of least gradient in �, it follows that for each t 2 R, �¹u>tº is of least
gradient in � as shown in Lemma 3.6 of [17]. Thus, by Lemma 4.3 and Lemma 4.6,
it follows that �¹u>tº is a solution to the Dirichlet problem with boundary data �¹f >tº for
L-a.e. t 2 R. In particular, if f D �F for some F � @�, and there exists a solution u
to the Dirichlet problem with boundary data f , we may assume that u D �E for some
E � � with P.E;�/ <1.
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We now show that the solution constructed in [25] for continuous data is minimal in
the following sense.

Proposition 4.8. Let f 2C.@�/. Then, there exists a solution u 2BV.�/ to the Dirichlet
problem with boundary data f , such that for any solution u0 to the said Dirichlet problem,
we have that u � u0 �-a.e. in �.

Proof. We follow the construction of a solution u 2 BV.�/ given in the proof of Theo-
rem 4.10 in [25] and show that u has the desired property.

Let Extf 2 C.X/\ BV.X/ be the extension of f to X given by Proposition 4.2. For
t 2R, let Ft WD ¹x 2X W Extf .x/ > tº. Then, Ft is open by continuity of Extf , and since
Extf 2 BV.X/, it follows from the coarea formula that P.Ft ;X/ <1 for L-a.e. t 2 R.
Moreover, if x 2 @Ft , then Ext f .x/ D t by continuity of Ext f , and so @Ft \ @Fs D ¿
for s ¤ t . Since H .@�/ <1, it then follows that H .@� \ @Ft / D 0 for L-a.e. t 2 R.
Let

J WD ¹t 2 R W P.Ft ; X/ <1 and H .@� \ @Ft / D 0º:

For each t 2 J , there exists a unique minimal solution set zEt to the Dirichlet problem
with boundary data �Ft , see Propositions 3.7 and 4.8 in [25]. Setting

Et WD ¹x 2 X W �
_
zEt
.x/ > 0º;

it follows that �Et is also a minimal solution. Since L.R n J /D 0, we can find a countable
set I � J such that I is dense in R. Let uWX ! R be given by

u.x/ D sup¹s 2 I W x 2 Esº:

In Theorem 4.10 of [25], it is shown that u 2 BV.�/ and u is a solution to the Dirichlet
problem with boundary data f .

Now, let u0 2 BV.�/ be another solution to the Dirichlet problem with boundary
data f . Then, setting

E 0t D ¹u
0 > tº;

it follows from the discussion in Remark 4.7 that �E 0t is a solution to the Dirichlet problem
with boundary data �Ft for L-a.e. t 2 R. Letting

J 0 WD ¹t 2 J W �E 0t is a solution for �Ft º � J;

we have that L.R n J 0/ D 0. Hence, there exists a countable set I 0 � J 0 such that I 0 is
dense in R. For each s 2 I 0, we have that �Es � �E 0s �-a.e., since �Es is the minimal
solution for �Fs . Therefore, letting

Gs WD Es nE
0
s D ¹x 2 � W �E 0s .x/ < �Es .x/º;

we have that �.Gs/ D 0. Letting

G WD
[
s2I 0

Gs;

it follows that �.G/ D 0.
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Moreover, for s� 2 I 0 and s 2 I such that s� < s, we have from Lemma 3.8 in [25]
that Es @ Es� . Let

Hs�;s WD ¹x 2 � W x 2 Es nEs�º:

Then, �.Hs�;s/ D 0. Let
H WD

[
s�2I 0

[
s2I; s>s�

Hs�;s :

Then, we have �.H/ D 0:
Let x 2 X n .G [H/, and suppose that u0.x/ < u.x/ D sup¹s 2 I W x 2 Esº. Then,

by the definition of u, there exists s 2 I with u0.x/ < s � u.x/ such that x 2 Es , and by
the density of I 0 in R, there exists s� 2 I 0 such that

u0.x/ < s� < s � u.x/:

Since s� < s and x 62 H , we have that x 2 Es� . Moreover, since u0.x/ < s�, it follows
that x 62 E 0s� . Thus we have that

�E 0
s�
.x/ < �Es� .x/:

However, this is a contradiction since x 62 Gs� . Therefore, it follows that u.x/ � u0.x/,
and since �.G [H/ D 0, we have that u � u0 �-a.e. in �.

Remark 4.9. If v is another solution which is minimal in the sense of Proposition 4.8,
then u D v �-a.e. Thus, we call u the minimal solution to the Dirichlet problem with
boundary data f .

As an immediate corollary, we obtain a comparison-type result for minimal solutions.

Corollary 4.10. Let f; g 2 C.@�/ be such that f � g H -a.e. on @�, and let u and v
be minimal solutions to the Dirichlet problem with boundary data f and g respectively.
Then u � v �-a.e. in �.

Proof. The existence of the minimal solutions u and v is guaranteed by Proposition 4.8.
By Lemma 4.4, min¹u; vº is a solution to the Dirichlet problem with boundary data f .
Therefore, as u is a minimal solution, we have that

u � min¹u; vº � v �-a.e. in �.

We note that in this setting, uniqueness of solutions is not guaranteed even for Lip-
schitz boundary data (see [25]), and so such a comparison theorem may not hold for
solutions which are not minimal.

Using the previous corollary, we are now able to establish Theorem 1.1.

Proof of Theorem 1.1. For k 2 N, let uk and vk be the minimal solutions for the Dirich-
let problem with boundary data gk and hk , respectively. The existence of such minimal
solutions follows from Proposition 4.8 above. By Corollary 4.10, we have

(4.11) uk � ukC1 � vkC1 � vk �-a.e. in �.

Let uWX ! R be given by
u WD sup

k

uk D lim
k!1

uk :
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We have that juk � uj � 2max¹ju1j; jv1jº �-a.e. in �, and since u1; v1 2 L1.�/, it
follows that Z

�

2max¹ju1j; jv1jº d� <1:

Therefore, by the dominated convergence theorem, we have that

lim
k!1

Z
�

juk � uj d� D 0;

and so it follows that uk ! u in L1.�/. By Proposition 3.1 in [17], it follows that u is a
function of least gradient in �.

LetEgk 2BV.�/ be the extension of gk into�, as given by Proposition 4.1. Since uk
is a solution to the Dirichlet problem with boundary data gk , and since uk ! u in L1.�/,
we have by lower semicontinuity of the BV energy and the bounds from Proposition 4.1
that

kDuk.�/ � lim inf
k!1

kDukk.�/ � lim inf
k!1

kDEgkk.�/

� lim inf
k!1

C.1CH .@�//kgkkL1.@�/

� C.1CH .@�//kmax¹jg1j; jh1jºkL1.@�/ <1:

Thus, u 2 BV.�/:
It remains to show that T u D f H -a.e. on @�. Let x 2 @� be such that gk.x/; hk.x/

! f .x/ as k !1, and such that for all k 2 N, T uk.x/ D gk.x/ and T vk.x/ D hk.x/.
By the hypothesis, these conditions hold for H -a.e. x 2 @�. Then we have that−
Ur

ju�f .x/jd�D
1

�.Ur /

�Z
Ur\¹u>f.x/º

ju�f .x/jd�C

Z
Ur\¹u�f .x/º

ju�f .x/jd�
�
:

Since (4.11) holds for all k 2 N, it follows that ju.y/ � f .x/j � jvk.y/ � f .x/j for
�-a.e. y 2 Ur \ ¹u > f .x/º, and similarly, ju.y/ � f .x/j � juk.y/ � f .x/j for �-a.e.
y 2 Ur \ ¹u � f .x/º. Therefore we have that−

Ur

ju � f .x/j d�

�
1

�.Ur /

� Z
Ur\¹u>f.x/º

jvk � f .x/j d�C

Z
Ur\¹u�f .x/º

juk � f .x/j d�
�

�

−
Ur

jvk � f .x/j d�C

−
Ur

juk � f .x/j d�:

Let " > 0. Since gk.x/; hk.x/! f .x/ as k !1, we can choose k 2 N sufficiently
large such that jgk.x/ � f .x/j; jhk.x/ � f .x/j < ". Thus, it follows that−
Ur

ju � f .x/j d�

�

−
Ur

jvk�hk.x/j C jhk.x/�f .x/j d�C

−
Ur

juk�gk.x/j C jgk.x/�f .x/j d�

<

−
Ur

jvk � hk.x/j d�C

−
Ur

juk � gk.x/j d�C 2":
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Since T uk.x/ D gk.x/ and T vk.x/ D hk.x/, we have that

lim
r!0C

−
Ur

ju � f .x/j d� < 2";

and so taking "! 0, it follows that T u.x/ D f .x/. Thus, T u D f H -a.e. on @�, and so
by Lemma 4.3, u 2 BV.�/ is a solution to the Dirichlet problem with boundary data f .

Let u0 2 BV.�/ be a solution to the Dirichlet problem with boundary data f . For
each k 2 N, it follows that min¹uk ; u0º is a solution to the Dirichlet problem with bound-
ary data gk , by Lemma 4.4. However, as uk is a minimal solution, it follows that uk �
min¹uk ; u0º � u0 �-a.e. in�. Since uk! u pointwise �-a.e., it follows that u� u0 �-a.e.
in �. Thus u is a minimal solution, and uniqueness follows from minimality.

Example 4.12. We point out that the functions vk above need not converge to the minimal
solution u. Let � � R2 be the (unweighted) unit disk, and let

f .x; y/ D

´
1; for jyj > 1=

p
2;

0; for jyj � 1=
p
2:

Letting

gk.x; y/ D

8̂̂̂<̂
ˆ̂:
1; for jyj � 1=

p
2C 2=k;

k.y � .1=
p
2C 1=k//; for 1=

p
2C 1=k < y < 1=

p
2C 2=k;

�k.y C 1=
p
2C 1=k/; for � .1=

p
2C 2=k/ < y < �.1=

p
2C 1=k/;

0; for jyj � 1
p
2C 1=k;

and

hk.x; y/ D

8̂̂̂<̂
ˆ̂:
1; for jyj � 1=

p
2 � 1=k;

k.y � .1=
p
2 � 2=k//; for 1=

p
2 < y < 1=

p
2 � 1=k;

�k.y C 1=
p
2 � 2=k/; for � .1=

p
2 � 1=k/ < y < �.1=

p
2 � 2=k/;

0; for jyj � 1
p
2 � 2=k;

for sufficiently large k, we have that gk � f � hk : It follows that the uk converge to the
minimal solution u D ��\¹jyj>1=

p
2º to the Dirichlet problem with boundary data f , and

the vk converge to the maximal solution v D ��\¹jxj<1=
p
2º. For more on non-uniqueness

of solutions, see Example 2.7 in [29], and [11].

As a consequence of Theorem 1.1, we are able to prove Theorem 1.2. Recall that given
F � @�, we let z@F denote the boundary of F relative to @�.

Proof of Theorem 1.2. For " > 0; let �C" W @�! R be given by

�C" .x/ D max
°
1 �

dist.x; F /
"

; 0
±
:

Then �C" is continuous, and �F � �C"1 � �
C
"2

on @� for "1 < "2. If x 2 F , then �C" .x/D 1
for all " > 0. Likewise, if x 2 @� is in the exterior of F relative to @�, then �C" .x/D 0 for
sufficiently small " > 0. Therefore, lim"!0 �

C
" .x/ D �F .x/ for all x 2 @� n z@F , hence

H -a.e. on @�.
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Similarly, for " > 0, let ��" W @�! R be given by

��" .x/ D min
°dist.x;� n F /

"
; 1
±
:

Then ��" is continuous, and we have ��"2 � �
�
"1
� �F on @� for "1 < "2. Similarly, since

H .z@F / D 0, we have that ��" ! �F H -a.e. on @� as "! 0. Having constructed the nec-
essary approximating sequences, Theorem 1.1 gives the existence of the minimal solution
u 2 BV.�/.

We note that existence of a solution in Theorem 1.2 also follows from the results of
Section 5. However, minimality of the solution is not guaranteed by those results.

As the following example shows, some sets F � @� with poorly behaved boundaries
still satisfy the H .z@F / D 0 condition. Theorem 1.2 gives us a way to ensure existence of
minimal solutions even in these cases.

Example 4.13. Let�DB.0;1/�R3, and letK � @�D S2 be a bi-Lipschitz embedding
of the von Koch snowflake domain in R2 onto S2. Then, z@K is a curve of infinite length,
and so �K 2L1.@�/ nBV.@�/. Since H 'H2 in this example, where H2 is the standard
2-dimensional Hausdorff measure, it follows that H .z@K/ D 0. Hence by Theorem 1.2,
there exists a minimal solution to the Dirichlet problem with boundary data �K .

Remark 4.14. It should be noted that the conditions imposed on f in Theorem 1.1 are
rather strict. Unbounded functions are excluded, for example. Furthermore, the conditions
are not necessary in general to guarantee existence of a solution. As seen in Example 3.3
above, the function g has a solution but cannot be approximated H -a.e. from below by
continuous functions. Likewise, Example 3.3 also shows that the conditions imposed on a
subset of @� in Theorem 1.2 are not necessary in general. Since g D �K1=4[F , we have
that H .z@.K1=4 [ F // D H .z@K1=4/ D H .K1=4/ D 1=2.

5. Solutions at points of continuity of the boundary data

In this section, we consider an arbitrary f 2 L1.@�/, and show that there exists a least
gradient function u 2 BV.�/ whose trace agrees with f at all points of continuity of f .
The argument follows that of Theorem 3.1 in [12], where an analogous result was shown
for strictly convex domains in Rn. However, our results apply even for domains that are not
strictly convex (see Remark 5.8). We first need the following lemmas regarding minimal
solution sets.

Lemma 5.1. Let F1; F2 � X be open sets such that P.F1; X/; P.F2; X/ <1 and

H .@F1 \ @�/ D 0 D H .@F2 \ @�/:

Suppose also that F1 \ F2 \ @� D ¿, and let E1; E2 � X be minimal solution sets to
the Dirichlet problem with boundary data �F1 and �F2 respectively. Then

�.E1 \E2 \�/ D 0:
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Proof. Let @�� WD ¹x 2 @� W T�E1.x/D �F1.x/ and T�E2.x/D �F2.x/º. We claim that
T�E1nE2.x/ D �F1.x/ for x 2 @��, and hence for H -a.e. x 2 @�.

Indeed, for x 2 @�� \ F1 (setting Ur WD B.x; r/ \�/, we have that−
Ur

j�E1nE2 � �F1.x/j d�

D
1

�.Ur /

� Z
Ur\E2

j�E1nE2 � 1j d�C

Z
Urn.E1[E2/

j�E1nE2 � 1j d�
�

D
�.Ur \E2/

�.Ur /
C
�.Ur n .E1 [E2//

�.Ur /
�
�.Ur \E2/

�.Ur /
C
�.Ur nE1/

�.Ur /

D

−
Ur

j�E2 � �F2.x/j d�C

−
Ur

j�E1 � �F1.x/j d�! 0

as r ! 0C. Similarly, for x 2 @�� n F1, we have that−
Ur

j�E1nE2��F1.x/j d�D

−
Ur

�E1nE2 d��

−
Ur

�E1 d�D

−
Ur

j�E1��F1.x/j d�! 0

as r ! 0C. Thus, we have that T�E1nE2 D �F1 H -a.e. on @�. Likewise, a symmetric
argument shows that T�E2nE1 D �F2 H -a.e. on @�.

Now, by Proposition 4.7 in [30], we have that

P.E1 n .E2 \�/;�/ D P.E1 nE2; �/ D P.E1 \ .� nE2/;�/

� P.E1; �/C P.� nE2; �/ � P.E1 [ .� nE2/;�/

D P.E1; �/C P.E2; �/ � P.E2 nE1; �/

D P.E1; �/C P.E2; �/ � P.E2 n .E1 \�/;�/:

Thus, we have that

P.E1 n .E2 \�/;�/C P.E2 n .E1 \�/;�/ � P.E1; �/C P.E2; �/:

IfP.E1n.E2 \�/;�/>P.E1;�/, then we have thatP.E2n.E1 \�/;�/<P.E2;�/.
However, since T�E2nE1 D �F2 H -a.e. on @�; and since E2 is a solution set for �F2 , this
is a contradiction. Therefore, we have that P.E1 n .E2 \ �/; �/ � P.E1; �/, and so
E1 n .E2 \�/ is a solution set for �F1 . Thus, since E1 is the minimal solution set, we
have that �.E1 \E2 \�/ D 0.

The following lemma follows from a similar argument.

Lemma 5.2. Let F1; F2 � X be open sets such that P.F1; X/; P.F2; X/ <1 and

H .@F1 \ @�/ D 0 D H .@F2 \ @�/:

Suppose also that F1 \ @� � F2, and let E1; E2 � X be minimal solution sets to the
Dirichlet problem with boundary data �F1 and �F2 respectively. Then, E1 \� @ E2.
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Since X is doubling, it follows that for each K � 1, there exists CK > 0 such that for
every r > 0, we can find a finite cover ¹B.xi ; r/ºi2Jr � X of @� with xi 2 @� such thatP
i2Jr

�B.xi ;Kr/ � CK . Let " > 0, and consider such a cover ¹B.xi ; "=5/ºi2J" . By the
5B-covering lemma (see [6, 20]), there exists a disjoint subcollection ¹B.xi ; "=5/ºi2I"�J"
such that @� �

S
i2I"

B.xi ; "/. Thus, we obtain a finite cover ¹Bi;" WD B.xi ; "/ºi2I" of
@� such that the set ¹xiºi2I" is 2"=5-separated, and for all K � 1; we have that

(5.3)
X
i2I"

�KBi;" � CK :

We can then find a Lipschitz partition of unity ¹'"i ºi2I" subject to this cover. That is, for
each i 2 I", there is a C="-Lipschitz function '"i WX ! Œ0; 1�, (with C depending only on
the doubling constant) such that supt.'"i / � 2Bi;"; and

P
i '

"
i D 1 on @�. For proof of

these facts, see for example Appendix B of [15], [18], and [20].
For f 2 L1.@�/, define

fBi;" WD

−
Bi;"\@�

f dH ;

and let f"W @�! R be given by

f" WD
X
i2I"

fBi;" '
"
i j@�:

Then, as f" is continuous, there is a minimal solution u" 2BV.�/ to the Dirichlet problem
with boundary data f"; by Proposition 4.8.

Lemma 5.4. Let u" be the minimal solution to the Dirichlet problem with boundary
data f", as defined above. Then,

sup
">0

�
ku"kL1.�/ C kDu"k.�/

�
<1:

That is, ¹u"º">0 is bounded in BV.�/:

Proof. We have thatZ
@�

jf"j dH �
X
i2I"

Z
@�

jfBi;" '
"
i j dH �

X
i2I"

X
j2I"

Z
Bj;"\@�

jfBi;" '
"
i j dH :

For i 2 I", let
Ji;" WD ¹j 2 I" W Bj;" \ 2Bi;" ¤ ¿º:

If j 2 Ji;", then Bj;" � 4Bi;", and so by the doubling property and the fact that ¹xiºi2I"
is a 2"=5-separated set, there exists C > 0 depending only on the doubling constant such
that jJi;"j � C , where jJi;"j denotes the number of elements in Ji;": Since '"i is compactly
supported in 2Bi;", it follows that '"i D 0 on Bj;" for j 2 I" n Ji;".
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Therefore, we have thatZ
@�

jf"j dH �
X
i2I"

X
j2Ji;"

Z
Bj;"\@�

jfBi;" '
"
i j dH

�

X
i2I"

X
j2Ji;"

Z
Bj;"\@�

� −
Bi;"\@�

jf j dH
�
dH

D

X
i2I"

X
j2Ji;"

H .Bj;" \ @�/

H .Bi;" \ @�/

Z
Bi;"\@�

jf j dH

� C
X
i2I"

Z
Bi;"\@�

jf j dH � C

Z
@�

jf j dH ;(5.5)

where the constant C > 0 depends on the doubling constant of H and the bounded overlap
constant from (5.3).

Let Ef"W�! R be the extension of f" to � given by Proposition 4.1. Since u" 2
BV.�/ is a solution to the Dirichlet problem with boundary data f", and by (5.5), we
have that

(5.6) kDu"k.�/ � kDEf"k.�/ � C

Z
@�

jf"j dH � C

Z
@�

jf j dH :

Now, let v" W�!R be given by v" WD u" �Ef", and let Ov" be the zero extension of v"
to all of X . Since T u" D TEf" D f" H -a.e. on @�, it follows that

lim
r!0C

1

�.B.x; r//

Z
B.x;r/\�

jv"j d� D 0

for H -a.e. x 2 @�. Thus, by Theorem 6.1 in [26], it follows that Ov" 2 BV.X/ and that
kD Ov"k.X n�/ D 0.

Since �.X n�/ > 0, we can find a ball B � X such that � � B and �.B n�/ > 0.
By Hölder’s inequality, we have thatZ

�

jv"j d� �

Z
B

j Ov"j d� � �.B/
1=Q

� Z
B

j Ov"j
Q=.Q�1/ d�

�.Q�1/=Q
D �.B/

� −
B

j Ov"j
Q=.Q�1/ d�

�.Q�1/=Q
;

whereQ>1 is the exponent from (2.1). Since Ov"D 0 onB n�; it follows from Lemma 2.4
that Z

�

jv"j d� � �.B/
C rad.B/

1 � .�.�/=�.B//1=Q
kD Ov"k.2�B/

�.2�B/

� C .kD Ov"k.�/CkD Ov"k.X n�// D CkDv"k.�/

� C .kDu"k.�/CkDEf"k.�//:

Here the constant C > 0 depends on �, B , and the doubling and Poincaré constants, but
is independent of ", f", and u".
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Then by (5.6), we have thatZ
�

jv"j d� � C

Z
@�

jf j dH ;

and by the triangle inequality, it follows thatZ
�

ju"j d� � C

Z
@�

jf j dH C

Z
�

jEf"j d�:

Therefore, by Proposition 4.1 and (5.5), we have thatZ
�

ju"j d� � C

Z
@�

jf j dH :

Lemma 5.7. Let f be continuous at x 2 @�. Then, for all � > 0 there exists ı > 0 such
that for all 0 < " < ı and for all y 2 B.x; ı/ \ @�, we have that jf".y/ � f .x/j < �.

Proof. Let �>0. By the continuity of f at x, there exists ı0>0 such that if y 2B.x;ı0/\
@�, then jf .y/ � f .x/j < �. Let ı WD ı0=10. Then, for y 2 B.x; ı/ \ @�, and for 0 <
" < ı, we have that

jf".y/ � f .x/j D
ˇ̌̌X
i2I"

fBi;" '
"
i .y/ � f .x/

X
i2I"

'"i .y/
ˇ̌̌
�

X
i2I"

'"i .y/ jfBi;" � f .x/j:

Let Jy;" WD ¹i 2 I" W y 2 2Bi;"º. Then, '"i .y/ D 0 for all i 2 I" n Jy;". Thus, we have that

jf".y/ � f .x/j �
X
i2Jy;"

'"i .y/ jfBi;" � f .x/j:

Since 0 < " < ı, it follows that for i 2 Jy;", we have that Bi;" � B.x; ı/. Therefore,

jfBi;" � f .x/j �

−
Bi;"\@�

jf � f .x/j dH < �;

and so it follows that jf".y/ � f .x/j < �.

We are now able to establish Theorem 1.3.

Proof of Theorem 1.3. Since ¹u"º">0 is bounded in BV.�/, it follows from the compact
embedding theorem (Theorem 3.7 in [30]) that there exists u 2 BVloc.�/ and a subse-
quence, also denoted u" 2 BV.�/, such that u" ! u in L1loc.�/; and passing to a further
subsequence if necessary, we have that u" ! u pointwise a.e. in �. Hence by Fatou’s
lemma and Lemma 5.4, we have thatZ

�

juj d� � lim inf
"!0

Z
�

ju"j d� <1:

By lower semicontinuity of the BV energy and (5.6), we have that kDuk.�/ <1, and
so u 2 BV.�/. Furthermore, by Proposition 3.1 in [17], it follows that u is a function of
least gradient.
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Let f be continuous at x 2 @�, and let � > 0. By Lemma 5.7, there exists ı > 0 such
that for all 0 < " < ı, and for all y 2 B.x; ı/ \ @�, we have that

jf".y/ � f .x/j < �:

Let rx>0 be as in Definition 2.12. Then by the coarea formula, and since H .@�/<1,
there exists ıx > 0 such that

1

2
min¹ı; rxº < ıx < min¹ı; rxº;

with P.B.x; ıx/;X/ <1 and H .@B.x; ıx/ \ @�/ D 0. Denote F� WD B.x; ıx/, and let
E� � X be a minimal solution set for �F� . Let yı WD min¹ıx ; �x.ıx/º, where �x is as in
Definition 2.12. Then, for all 0 < r < yı, it follows that B.x; r/ \� @ E� .

For 0 < " < yı, let F "t WD ¹Extf" > tº, where Extf" is the extension of f" to X given
by Proposition 4.2. Recall that u" WX ! R is given by

u".y/ D sup¹t 2 I" W y 2 E
"
t º;

where I" andE"t are as in the proof of Proposition 4.8. By the choice of yı, we note that for
t 2 I" such that t � f .x/C �, it follows that F "t \ F� \ @� D ¿. Thus, by Lemma 5.1,
we have that �.E"t \E� \�/D 0. Similarly, for t 2 I" such that t � f .x/� �, we have
that F� \ @� � F "t , and so by Lemma 5.2, it follows that E� \� @ E"t . Therefore, for
all 0 < " < yı and for all 0 < r < yı, it follows from the construction of u" that

ju".y/ � f .x/j � �

for �-a.e. y 2 B.x; r/ \�.
Therefore, for all � > 0, we have that

lim
r!0C

lim
"!0C

−
B.x;r/\�

ju" � f .x/j d� � �;

and as u" ! u pointwise a.e., it follows from the dominated convergence theorem that

lim
r!0C

−
B.x;r/\�

ju � f .x/j d� D 0:

Thus, we have that T u.x/ D f .x/.

We note that in the proof of Theorem 1.3, we apply Lemmas 5.1 and 5.2 to the regu-
larized sets

E"t D ¹x 2 X W �
_
zE"t
.x/ > 0º;

where zE"t is the minimal solution set for �F "t . However, since�.E"t� zE
"
t /D 0, the lemmas

still hold.
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Remark 5.8. We note that Theorem 1.3 generalizes Theorem 3.1 in [12] to the metric
setting and also extends that result to domains in Rn which are not strictly convex but
satisfy the positive mean curvature condition. For example, consider the domain in R3

constructed by attaching half of the unit ball to either end of the cylinder D � Œ0; 1�. The
boundary of this capped cylinder has positive mean curvature, but is not strictly convex.
See the discussion from Section 4 of [25] and Section 3 of [37] relating the notion of
positive mean curvature given above to that of domains in Rn with smooth boundary.

Remark 5.9. If we consider a measurable set F � @� such that H .z@F /D 0, as in Theo-
rem 1.2, we see that existence of a solution to the Dirichlet problem with boundary data �F
follows immediately from Theorem 1.3, since �F is continuous at all points x 2 @� n z@F .
Thus we obtain another proof of the existence part of Theorem 1.2, though it is unclear if
minimality of the solution also follows from these results, as it does in Section 4.

Remark 5.10. As with Theorem 1.1 and Theorem 1.2, we point out that the condition
on f of continuity H -a.e. in Theorem 1.3 is not sharp, as illustrated by Example 3.3.
There, a solution exists for the Dirichlet problem with boundary data g, but g is discon-
tinuous on the set K1=4, which has positive H -measure.
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