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Asymptotic N -soliton-like solutions of the fractional
Korteweg–de Vries equation

Arnaud Eychenne

Abstract. We construct N -soliton solutions for the fractional Korteweg–de Vries
(fKdV) equation

@tu � @x.jDj
˛u � u2/ D 0;

in the whole sub-critical range ˛ 2 .1=2;2/. More precisely, ifQc denotes the ground
state solution associated to fKdV evolving with velocity c, then, given 0 < c1 < � � �<
cN , we prove the existence of a solution U of fKdV satisfying

lim
t!1




U.t; �/ � NX
jD1

Qcj .x � �j .t//




H˛=2

D 0;

where �0j .t/ � cj as t ! C1. The proof adapts the construction of Martel in the
generalized KdV setting [Amer. J. Math. 127 (2005), pp. 1103–1140] to the fractional
case. The main new difficulties are the polynomial decay of the ground state Qc and
the use of local techniques (monotonicity properties for a portion of the mass and the
energy) for a non-local equation. To bypass these difficulties, we use symmetric and
non-symmetric weighted commutator estimates. The symmetric ones were proved
by Kenig, Martel and Robbiano [Annales de l’IHP Analyse Non Linéaire 28 (2011),
pp. 853–887], while the non-symmetric ones seem to be new.
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1. Introduction

1.1. The fractional Korteweg–de Vries equation

We consider the fractional Korteweg–de Vries equation (fKdV), also called the dispersion
generalized Benjamin–Ono equation,

(1.1) @tu � jDj
˛@xuC @x.u

2/ D 0; .t; x/ 2 R �R;

where ˛ 2R, jDj˛ is the Riesz potential of order�˛, which is defined by F .jDj˛u/.�/D

j�j˛F .u/.�/, and F is the Fourier transform.
In the cases ˛ D 2, respectively ˛ D 1, this equation corresponds to the well-known

Korteweg–de Vries (KdV), respectively Benjamin–Ono (BO) equations, which are com-
pletely integrable (see [20, 41]). In the case ˛ D 0, one recovers the inviscid Burgers’
equation after a suitable change of variable, while the case ˛ D �1 corresponds to the
Burgers–Hilbert equation. Finally, the cases ˛ D 1=2 and ˛ D �1=2 are somehow remin-
iscent of the linear dispersion of the finite depth water waves equation with and without
surface tension. In other words, for large frequencies, equation (1.1) corresponds in those
cases to the Whitham equations with and without surface tension (see [39] for more
details).

From a mathematical point of view, these equations are also useful to understand the
“fight” between nonlinearity and dispersion. Instead of fixing the dispersion (e.g., that of
the KdV equation) and increasing the nonlinearity (e.g., up@xu for the generalized KdV
equation), one chooses to fix the nonlinearity u@xu and lower the dispersion, allowing then
fractional dispersion of the form jDj˛ , ˛ < 2. As pointed out by Linares, Pilod and Saut
in [43], this viewpoint is probably more physical, since in many problems arising from
physics or continuum mechanics, the nonlinearity is quadratic with terms like .u � r/u
and the dispersion is in some sense weak. Here will focus on positive values of ˛’s. Note,
however, that the dynamics for negative ˛’s is quite different with the formation of shocks
(see [30, 63, 65]).

Although equation (1.1) is not completely integrable outside of the cases ˛ D 1 and 2,
it enjoys a Hamiltonian structure. In particular, the mass

M.u/.t/ WD

Z
u2.t; x/ dx

and the energy

E.u/.t/ WD
1

2

Z
.jDj˛=2u.t; x//2dx �

1

3

Z
u3.t; x/ dx

are formally preserved by the flow of (1.1).
Moreover, we have the scaling-translation invariance of (1.1). If u is a solution of (1.1),

then
uc.t; x/ D cu.c

.1C˛/=˛ t; c1=˛.x � x0// for all x0 2 R; c > 0;

is also a solution. A straightforward computation shows that kuck PH s D c
sC˛�1=2kuk PH s .

In particular, equation (1.1) is mass-critical for ˛ D 1=2 and energy-critical for ˛ D 1=3.
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In this paper, we focus on the mass-subcritical case ˛ 2 .1=2; 2/. We assume that
the initial value problem associated to (1.1) is globally well-posed in the energy space
H˛=2.R/ in the whole subcritical range 1=2 < ˛ < 2, in the sense that for all u0 2
H˛=2.R/ and T > 0, there exists a solution u 2 C.Œ0; T � W H˛=2.R// of (1.1) satisfy-
ing u.0; �/ D u0, which is unique in some class XT � C.Œ0; T � W H˛=2.R//, and that the
flow W u0 2 H˛=2.R/ 7! u 2 C.Œ0; T � W H˛=2.R// is continuous. Such a result has been
proved by Herr, Ionescu, Kenig and Koch in [27] in the range 1 � ˛ < 2, extending a
previous result of Ionescu and Kenig for the BO equation [31]. For weaker dispersion, the
global well-posedness in the energy space has been conjectured through numerical simu-
lations by Klein and Saut [40] in the whole range 1=2 < ˛ < 1. Progress has been made
in this direction recently: Molinet, Pilod and Vento proved in [58] global well-posedness
in H˛=2.R/ for 6=7 < ˛ < 1 (see also Linares, Pilod, Saut [43] for former results). Note
however, that the problem is still open in the case 1=2 < ˛ < 6=7.

Finally, we mention some other interesting results concerning the fractional KdV
equation with positive dispersion ˛. In [17], Ehrnström and Wang proved long time exist-
ence for small initial data. Fonseca, Linares and Ponce in [21] proved some persistence
results in weighted Sobolev spaces. Kenig, Ponce and Vega in [38], Kenig, Ponce, Pilod
and Vega in [37] and Riano in [64] proved some unique continuation results, while Men-
dez in [53,54] proved propagation of regularity results. We also refer to Linares, Pilod and
Saut [43] and Klein and Saut [40] for other results, conjectures and numerical simulations
regarding the fractional KdV equation.

1.2. Solitary wave solutions

A fundamental property of this equation is the existence of solitary wave solutions of the
form

u.t; x/ D Qc.x � ct/; with Qc.x/! 0 as jxj ! C1;

for c > 0, where Qc.x/ D cQ.c1=˛x/ and Q is solution of the non-local ODE

(1.2) jDj˛QCQ �Q2
D 0:

In other words, Qc satisfies

(1.3) jDj˛Qc C cQc �Q
2
c D 0:

For some particular values of ˛ the solution of (1.2) is explicit and unique (up to trans-
lations). For ˛ D 2, QKdV.x/ D

3
2

cosh�2.x
2
/, while for ˛ D 1, QBO.x/ D 4.1C x

2/�1.
The uniqueness result for BO is non-trivial and was proved by Benjamin [7], and Amick
and Toland [3] by combining complex analysis techniques with properties of the harmonic
extension of the Hilbert transform.

For the other values of ˛, there does not exist, as far as we know, any explicit formu-
lation of Q. However, the existence of solutions of (1.2) minimising the functional

(1.4) J ˛.u/ D
.
R
jjDj˛=2uj2/1=.2˛/.

R
juj2/.˛�1/=.2˛C1/R

juj3

is well known since the work of Weinstein [70], and Albert, Bona and Saut [1]. Such
solutions are called ground states solutions of (1.2). They decay polynomially at infinity
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(see [36]), this property being related to the singularity at the origin of the symbol j�j˛ .
Moreover, their uniqueness is delicate and was proved by Frank and Lenzmann in [22],
relying on the non-degeneracy of the kernel of the linearized operator associated to Q.
Below, we summarize the properties of the ground states of (1.2).

Theorem 1.1 ([1,22,36,70]). Let ˛ 2 .1=3;2/. There existsQ 2H˛=2.R/\C1.R/ such
that the following hold:

• Existence. The function Q solves (1.2) and Q D Q.jxj/ > 0 is even, positive and
strictly decreasing in jxj. Moreover, the function Q is a minimizer of J ˛ in the sense
that

J ˛.Q/ D inf
u2H˛=2.R/

J ˛.u/:

• Decay. The function Q satisfies the decay estimate

(1.5)
1

C.1C jxj/kC1C˛
� Q.k/.x/ �

C

.1C jxj/kC1C˛
; k D 0; 1; 2;

for some C > 0.

• Uniqueness. The even ground state solution Q D Q.jxj/ > 0 of (1.2) is unique. Fur-
thermore, every optimizer v 2H˛=2.R/ for the Gagliardo–Nirenberg problem (1.4) is
of the form v D ˇQ.
. � C y//, for some ˇ 2 C, ˇ ¤ 0, 
 > 0 and y 2 R.

• Linearized operator. Let L be the unbounded operator defined on L2.R/ by

Lu D jDj˛uC u � 2Qu:

Then the continuous spectrum of L is Œ1;C1/, L has one negative eigenvalue �0,
associated to an even eigenfunction W0 > 0, and ker L D span¹Q0º.

Remark 1.2. The uniqueness problem for the solutions of (1.2) which are not ground
states is still an open question when ˛ ¤ 1.

These solitary waves are orbitally stable under the flow of (1.1) (see Linares, Pilod
and Saut [44], and [4, 5] for other proofs) in the mass sub-critical range ˛ 2 .1=2; 2/.
They were proven to be linearly unstable in the mass super-critical range ˛ 2 .1=3; 1=2/
(see [4]).

The case 0 < ˛ < 1=3 is energy super-critical. It has been proved in Theorem 4.1
of [43] that fKdV does not posses solitary waves moving to the right and belonging to the
energy space H˛=2.R/.

Sometimes, we also call these solutions solitons even though they are not known to
have elastic interactions outside of the integrable case ˛ D 1.

1.3. N-soliton solutions

An important conjecture for nonlinear dispersive equations is to prove the soliton resol-
ution property, which states that arbitrary initial data eventually resolve over time into a
finite or infinite sum of solitary waves and an oscillatory remainder of essentially linear
type. It has been proved in the KdV case for sufficiently smooth and decaying initial data
by using the complete integrable structure (see [16]). Note, however, that despite some
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recent progress (see [66, 71]), it is still an open problem for the Benjamin–Ono equation
on the line.

For KdV-type equations, we are still far from a complete understanding of this phe-
nomenon. In this direction, an important question is to construct solutions behaving like
a superposition of N solitary waves at infinity. Indeed, such objects are expected to be
universal attractors in the region x > 0 for any smooth and decaying solutions at infinity.
These solutions, also calledN -soliton solutions by abuse of language, were first construc-
ted by Martel in [45] for the sub-critical and critical gKdV equations by adapting the
construction by Merle in [55] of solutions blowing up at k given points for the critical
nonlinear Schrödinger equation to the KdV setting, and by relying on the energy methods
by Martel, Merle and Tsai [50]. This construction was extended to the super-critical gKdV
equations by Côte, Martel and Merle [14] (see also Combet [11]).

For the fractional KdV equations, outside of the case ˛ D 1, no result concerning
construction of N -solitary wave solutions at infinity seems to be known. Of course, in the
case ˛ D 1, the N -soliton solutions of the Benjamin–Ono equation are explicit by using
inverse scattering methods [8, 16, 41, 52, 59]. These N -solitons were also proved to be
orbitally stable by Neves and Lopes [60], and Gustafson, Takaoka and Tsai [24], and even
asymptotically stable by Kenig and Martel [35].

The main result of this paper states the existence of such N -soliton solutions for any
given set of velocities 0 < c1 < c2 < � � � < cN .

Theorem 1.3. We assume ˛ 2 .1=2; 2/. Let N 2 N, 0 < c1 < � � � < cN < C1. Then
there exist some constants T0 > 0, C0 > 0, N functions �1; : : : ; �N 2 C 1.ŒT0;C1// and
a solution U 2 C 0.ŒT0;C1/ W H˛=2.R// of (1.1) such that, for all t � T0,




U.t; �/ � NX
jD1

Qcj . � � �j .t//




H˛=2

�
C0

t˛=2
;(1.6)

j�j .t/ � cj t j � t
1�˛=4 and j�0j .t/ � cj j �

C0

t˛=2
for all j 2 ¹1; : : : ; N º.(1.7)

Remark 1.4. Due to the polynomial decay of the error in (1.7), it is not clear whether
we are in the case of strong interactions or not, and thus whether the asymptotic of �j .t/
in (1.6) may be more complicated than just cj t . The construction introduced to understand
the strong interaction phenomenon, see, for example, [61], could provide tools to obtain
a better estimate on �0j (1.7). Recently, in a joint work with Valet in [18], we proved the
existence of strongly interacting 2-soliton for the fractional modified Korteweg–de Vries
equation. An adaptation of the construction obtained in this paper could potentially help
to improve the result in Theorem 1.3.

Remark 1.5. The construction in the case ˛ 2 .1=2; 6=7/ is conditional to the well-
posedness of the equation in the energy space, which is still an open problem for this
range of ˛’s.

Remark 1.6. Since the solitons Qcj are smooth, we expect the N -soliton solution U to
be also smooth. To obtain the convergence (1.6) in higher Sobolev norm, one possibility
could be to follow the method in [45] based on a Gronwall argument and modified ener-
gies. However, it is not clear how to construct such modified energies in the non-local
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setting. Related to this question, the uniqueness of these N -soliton solutions is an inter-
esting open problem.

Similar construction ofN -soliton-like solutions have already been performed for other
nonlinear dispersive equations. Outside of the gKdV equations commented above, we
refer to Martel and Merle [46] and Côte, Martel and Merle [14] for the non-linear Schrö-
dinger (NLS) equation, and more recently to Ferriere [19] for the logarithmic-NLS equa-
tion. We also refer to the works of Martel and Merle [49], and Jendrej [34] for the wave
equation, to the works of Côte and Muñoz [15], Bellazzini, Ghimenti and Le Coz [6],
and Côte and Martel [13] for the Klein–Gordon equation, to the work of Rousset and
Tzvetkov [57] for the water-waves equation, and, lastly, to the work of Valet [67] for the
Zakharov–Kuznetsov equation.

A different method of construction of multi-solitons, based on the fixed point argument
of Merle in [55], has been introduced by Le Coz, Li and Tsai in [42] for the NLS equation
to construct an infinite sum of solitary waves. This strategy has also been used by Chen
for the wave equation [9] and by Van Tin for the derivative NLS [68].

Recently a new version of the Liapunov–Schmidt reduction in the setting of dispers-
ive equations has been obtained by Jendrej, Kowalczyk and Lawrie in [33] to derive a
complete classification of all kink-antikink pairs in the strongly interacting regime for the
classical nonlinear scalar field models on the real line.

Finally, let us observe that the result of Theorem 1.3 would be the first step to study
the collision of multi-soliton solutions in the cases ˛ 2 .1=2; 2/, ˛ ¤ 1. We refer to the
works of Martel and Merle [47, 48] for the study of the inelastic collision of two solitons
of the quartic KdV equation.

1.4. Outline of proof of Theorem 1.3

The proof of Theorem 1.3 follows the strategy of [45, 50, 55]. After fixing a sequence of
time .Sn/%C1, one considers the sequence .un/ of solutions to (1.1) evolving from the
initial data

PN
jD1Qcj . � � cjSn/ at time Sn. As long as the solution remains sufficiently

close to the sum of N solitary waves, one introduces modulated translation parameters
.�j;n.t//

N
jD1 allowing to satisfy suitable orthogonality conditions. The goal is to obtain

backwards uniform estimates for the difference un.t/ �
PN
jD1Qcj . � � �j .t// on some

time interval ŒT0; Sn�, for some T0 independent of n. The N -soliton is then obtained by
letting n!C1 and using a compactness argument. Moreover, it is worth to observe that
the uniform estimate relies on monotonicity properties for suitable portions of the mass
and energy of the solution.

Compared to the previous constructions, we have to deal here with two major new dif-
ficulties. First, due to the singularity at the origin of the symbol j�j˛ related to the non-local
operator jDj˛ , the solitary waves have only polynomial decay of order .1C jxj/�.1C˛/.1

As a consequence the uniform estimates on the parameters �j;n.t/ are only polynomial and
thus cannot be integrated directly. Relying on a topological argument introduced in [14],
we need then to adapt carefully the initial data of the translation parameters �j;n at time Sn
to be able to close the bootstrap estimates.

1The decay of the solitary waves of gKdV is always exponential.
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Secondly, observe that the monotonicity techniques introduced by Martel and Merle
for gKdV are local in space, and therefore tailored for differential but not integral (non-
local) equations. To adapt these techniques to the fKdV equations, one need to use suitable
weighted commutator estimates (see Lemma 3.1). Those estimates were introduced in
the symmetric case by Kenig and Martel [35] in the case ˛ D 1, and Kenig, Martel and
Robbiano [36] for the general case 0 < ˛ < 2 (see also [51] for an application to the crit-
ical modified Benjamin–Ono equation). Note, however, that to derive the monotonicity
property of the energy, one needs a non-symmetric version of these estimates (see estim-
ates (3.6)–(3.7)), whose proof is based on pseudo-differential calculus and follows the one
of Kenig, Martel and Robbiano for the symmetric case.

The paper is organized as follows. In Section 2, we modulate the geometrical trans-
lation parameters for a solution close to N solitary waves, set up the bootstrap setting
and close the construction of the N -soliton solution after assuming the main bootstrap
estimate. In Section 3, we state several weighted estimates whose proofs are given in the
appendices. These weighted estimates are useful to derive the monotonicity properties and
to prove the bootstrap estimate in Section 4.

Notation 1.7. • From now on, C will denote a positive constant changing from line to
line and independent of the different parameters. We also denote by C� a positive con-
stant changing from line to line and depending only on the parameters ¹c1; : : : ; cN º.

• Unless stated otherwise, all the integrals will be over R with respect to the space
variable.

• For x 2 RN , we recall the definition of the Japanese brackets hxi WD
p
1C jxj2.

• We denote kf kLp WD .
R
jf jp/1=p and kf kH s WD kh�is=2F .f /. �/kL2 , where F .f /

is the Fourier transform of f . Finally, �.R/ denotes the Schwartz space of real-valued
functions.

• We fix 0 < c1 < � � � < cN and set

ˇ D
1

2
min.c1; c2 � c1; : : : ; cN � cN�1/:

2. Construction of the asymptotic N -soliton

Notation 2.1. • For L > 0 and N 2 N, we define

(2.1) RNL D
®
.yj /

N
jD1 2 RN W yj � yj�1 > L for all j 2 ¹2; : : : ; N º

¯
:

• For Y D .Yj /NjD1 2 RNL , we denote

(2.2) RY .x/ D

NX
jD1

RY;j .x/ WD

NX
jD1

Qcj .x � Yj /:

• Let M D .mi;j /Ni;jD1 2MN .R/ be a N �N matrix.
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2.1. Modulation of the geometrical parameters

Proposition 2.2 (Modulation). There exist L1; 
1; T1 > 0 such that the following is true.
Assume that u is a solution of (1.1) satisfying, for L > L1, 0 < 
 < 
1, S > t� > T1,

(2.3) sup
t��t�S

�
inf

.Yj /
N
jD12RN

L





u.t; �/ � NX
jD1

Qcj . � � Yj /






H˛=2

�
< 
:

Then there exist N unique C 1 functions �j W Œt�; S�! R, j 2 ¹1; : : : ; N º, such that

(2.4) �.t; x/ D u.t; x/ �R.t; x/;

where

(2.5) R.t; x/ D

NX
jD1

Rj .t; x/ WD

NX
jD1

Qcj .x � �j .t//

satisfies the following orthogonality conditions:

(2.6)
Z
.@xRj /� D 0 for all j 2 ¹1; : : : ; N º and t 2 Œt�; S�:

Moreover, for all t 2 Œt�; S�,

k�.t; �/kH˛=2 � C
;(2.7)

inf
j2¹1;:::;N�1º

.�jC1.t/ � �j .t// �
L

2
:(2.8)

Remark 2.3. A solution u satisfying (2.3) lives for all time t 2 Œt�; S� in the tube

(2.9) T
;L WD
®
v 2 H˛=2.R/ W inf

Yj�Yj�1CL
kv �RY kH˛=2 < 


¯
:

The proof of Proposition 2.2 is an application of the implicit function theorem to the
functional

(2.10) ˆ W T
;L �RNL ! RN ; .v; Y / 7!
� Z

.v �RY /Q
0
cj
. � � Yj /

�N
jD1

:

Note that a direct application of the implicit function theorem at the point .RY ; Y / for
Y 2 RNL would imply

(2.11) 8Y 2 RNL ; 9"Y > 0; 9Š.�j /
N
jD1 2 C

1.T
;L \ B.RY ; "Y // W R/;

such that ˆ.v; .�j .v//NjD1/ D 0 for v 2 B.RY ; "Y /. This would not be enough to con-
clude the proof of (2.6) due to the lack of control of "u.t/ uniformly in Œt�; S�. Indeed,
an application of (2.11) to a solution u satisfying u.S; �/ D

PN
jD1 Qcj . � � �

in
j;n/ for

.�in
j;n/ 2 RNL , and a continuity argument would provide the existence of " > 0 such that

u.t; �/ 2B WDB.
PN
jD1Qcj . � � �

in
j;n/; "/ for all t 2 .t1; S�, where t1 is the first time before

S with u.t1; �/ … B . Nevertheless, nothing would guarantee that u.t1; �/ belongs to a ball
B.RY ; "Y / for some Y 2 RNL .
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u.t; �/ T
;L

RY

B.RY ; "Y /

B.RY 0 ; "Y 0/

Figure 1. Implicit function theorem.

To bypass this difficulty, we will use the following quantitative version of the implicit
function theorem (see Section 2.2 in [10]). We refer to Lemma 3 in [12], Lemme 3.3
in [32], Proposition 3 in [25], and Proposition 3.1 in [56] for applications of this theorem
in a similar context.

Theorem 2.4. Let X; Y and Z be Banach spaces, let x0 2 X; y0 2 Y , 
; ı > 0 and let
ˆWB.x0; 
/ � B.y0; ı/ ! Z be continuous in x, continuously differentiable in y, sat-
isfying ˆ.x0; y0/ D 0, M0 WD dyˆ.x0; y0/ has a bounded inverse in L.Z; Y /. Assume
moreover that, for all B.x0; 
/,

kM0 � dyˆ.x; y/kL.Y;Z/ �
1

3
kM�10 k

�1
L.Z;Y /; y 2 B.y0; ı/;(2.12)

kˆ.x; y0/kZ �
ı

3
kM�10 k

�1
L.Z;Y /:(2.13)

Then there exists y 2 C 1.B.x0; 
/ W B.y0; ı// such that for x 2 B.x0; 
/, y.x/ is the
unique solution of the equation ˆ.x; y.x// D 0 in B.x0; 
/.

Before giving the proof of Proposition 2.2, we need the following lemma.

Lemma 2.5. There exist C > 0 and L2 > 0 such that for all L > L2, and all Y D
.Yj /

N
jD1 2 RNL , we have

(2.14)
ˇ̌̌ Z

.@xRY;j /.@xRY;k/
ˇ̌̌
�

C

1C L2C˛
; j ¤ k;

with RY;j defined in (2.2).
Moreover, let .�j /NjD1 2 C

1.Œt�; S� W R/, satisfying �jC1 � �j � L=2 for all integers
j; k 2 ¹1; : : : ; N � 1º, with j ¤ k. Thenˇ̌̌ Z

.@xRj /.@xRk/
ˇ̌̌
�

C

1C L2C˛
;(2.15) ˇ̌̌ Z

Rj .@
2
xRk/

ˇ̌̌
�

C

1C L1C˛
;(2.16) ˇ̌̌ Z

RjRk.@
2
xRl /

ˇ̌̌
�

C

1C L1C˛
;(2.17)

with Rj defined in (2.5).
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Furthermore, if the functions .�j /NjD1 satisfy j�jC1.t/� �j .t/j � ˇt , with ˇ > 0, thenˇ̌̌ Z
.@xRj /.@xRk/

ˇ̌̌
�

C

.ˇt/2C˛
;(2.18) ˇ̌̌ Z

Rj .@
2
xRk/

ˇ̌̌
�

C

.ˇt/1C˛
;(2.19) ˇ̌̌ Z

RjRk.@
2
xRl /

ˇ̌̌
�

C

.ˇt/1C˛
:(2.20)

Proof of Lemma 2.5. By symmetry, we can suppose j < k. Let

� WD
°
x 2 R W x <

Yj C Yk

2

±
:

By (1.5) and Yk � Yj > L, we deduce thatˇ̌̌ Z
�

.@xRY;j /.@xRY;k/
ˇ̌̌
�

C

1C
�
Yk �

YjCYk
2

�2C˛ Z
�

j@xRY;j j �
C

1C L2C˛
:

On the other hand, by (1.5) and Yj � Yk < �L, we get on �cˇ̌̌ Z
�c
.@xRY;j /.@xRY;k/

ˇ̌̌
�

C

1C
�YjCYk

2
� Yj

�2C˛ Z
�c
j@xRY;kj �

C

1C L2C˛
;

which concludes (2.14). To prove the other estimates, we use the same argument on
� WD ¹x 2 R W x <

�jC�k
2
º with estimate (1.5), �jC1 � �j � L=2 for (2.15), (2.16), (2.17)

and (1.5), j�jC1.t/ � �j .t/j � ˇt for (2.18), (2.19), (2.20).

Proof of Proposition 2.2. We decompose the proof in two steps. First, using Theorem 2.4,
we show that we can find N unique functions �j continuous on T
;L, defined in (2.9), sat-
isfying (2.6)–(2.8). To obtain the regularity of the functions, we use the Cauchy–Lipschitz
theorem.
First step: Existence of the functions �j . We recall the definition of RNL and RY given,
respectively, in (2.1) and (2.2). First, we check that the functional ˆ defined in (2.10)
satisfies the hypotheses of Theorem 2.4. It is clear that, for all Y 2 RNL ,

ˆ.RY ; Y / D 0:

Let us define
M0 DM0.RY ; Y / WD dYˆ.RY ; Y / D AC B;

where

A WD

0BBBBBB@

R
.Q0c1/

2 0 � � � 0

0
R
.Q0c2/

2 0 � � � 0
:::

: : :
:::

:::
: : :

:::

0 : : : 0
R
.Q0cN /

2

1CCCCCCA ;
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and

B D B.Y / WD

0BBBBBB@
0 Q1;2 � � � Q1;N

Q2;1 0 Q2;3 � � � Q2;N

:::
: : :

:::
:::

: : :
:::

QN;1 : : : QN;N�1 0

1CCCCCCA ;
with Qj;k WD

R
@xRY;j @xRY;k . The matrix A is invertible, and by (2.14), for all L > L2,

we get

jQj;kj �
C

1C L2C˛
:

Then for L > L3, with L3 big enough, M0 is invertible. Moreover, the matrix A is inde-
pendent of Y 2 RNL , and limL!1kBk1 ! 0. Then there exists � independent of L > 1
such that for all Y 2 RNL ,

kM0.RY ; Y /
�1
k1 D kA

�1.IdCB.Y /A�1/�1k1 � kA�1k1
1X
nD0

�
C
kA�1k1

1C L2C˛

�n
� �:

Thus, to verify conditions (2.12), (2.13), since k � kL.RN ;RN / � k � k1, it suffices to prove
that for v 2 B.RY ; 
/,

kM0 � dYˆ.v;Z/k1 �
1

3
��1; Z 2 B.Y; C1
/;(2.21)

kˆ.v; Y /k1 �
C1


3
��1;(2.22)

for a positive constant C1 to be chosen later. First, we show (2.22). Let j 2 ¹1; : : : ; N º.
By Cauchy–Schwarz and since v 2 B.RY ; 
/,

j ĵ .v; Y /j �

Z
jv �RY j j@xRY;j j � kv �RY kL2k@xRY;j kL2 � 
k@xQcj kL2 ;

which implies (2.22) by choosing C1 D 3� supj k@xQcj kL2 . Since the constant C1 does
not play any role in the rest of the paper, we write C instead of C1.

Now, let us verify (2.21). First we define

Q�j;k.Z; Y / WD

Z �
.@xRZ;j /.@xRZ;k/ � .@xRY;j /.@xRY;k/

�
;

with Z D .Zj /NjD1; Y D .Yj /
N
jD1 2 RNL , and

Pk.v;Z/ D

Z
.v.x/ �RZ.x//@

2
xRY;k ;

with Z D .zj / 2 RNL , v 2 B.RY ; 
/. The matrix M0 � dYˆ.v;Z/ is given by0B@ P1.v;Z/ Q�2;1.Z; Y / � � � Q�N;1.Z; Y /
:::

: : :
:::

Q�1;N .Z; Y / : : : Q�N�1;N .Z; Y / PN .v;Z/

1CA :
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For j 2 ¹1; : : : ; N º, by Cauchy–Schwarz, since v 2 B.RY ; 
/,

(2.23) jPj .v;Z/j �

Z
jv �RZ j j@

2
xRY;j j � kv �RZkL2k@

2
xRY;j kL2 � C
:

For j; k 2 ¹1; : : : ; N º, j ¤ k, by (2.14),

(2.24) jQ�j;k.Z; Y /j �
C

1C L2C˛
:

Gathering (2.23) and (2.24), we get

kM0 �DYˆ.v; Y /k1 � C
 C
C

1C L2C˛
�
1

3
��1

for 
 < 
2 small enough and L > L4 big enough.
Then forL>max.L2;L3;L4/ and 
 < 
2 we deduce from Theorem 2.4 the existence

and uniqueness of .�j /j2¹1;:::;N º in C 1.B.RY ; 
/ W B.Y;C
// satisfying (2.6). Moreover,
since 
 can be chosen independently of Y 2RNL , we can extend .�j /j2¹1;:::;N º (by unique-
ness) to the whole tube T
;L defined in (2.9). Furthermore, for all v 2 T
;L, there exists
Y D .Yj / 2 RNL such that .�j .v//j2¹1;:::;N º 2 B.Y; C
/. Therefore,

j�jC1.v/ � �j .v/j � jYjC1 � Yj j � j�jC1.v/ � YjC1j � j�j .v/ � Yj j(2.25)

� L � 2C
 �
L

2
:

Now, by abuse of notation, we define �j .t/ WD �j .u.t; �//. Then it is clear that �j is
C 0.Œt�; S� W R/, since u.t; �/ 2 C 0.Œt�; S� W H˛=2.R//.

Let us prove estimate (2.7). By the construction of .�j .t//NjD1, we have that for all
t 2 Œt�; S�, there exists .Yj .t//NjD1 2 RNL such that

j�j .t/ � Yj .t/j � C
; ku.t; �/ �RY.t/kH˛=2 � 
:

By the triangle inequality and the mean value theorem, we deduce

k�.t; �/kH˛=2 � ku.t; �/ �RY.t/kH˛=2 C kRY.t/ �RkH˛=2

� 
 C

NX
jD1

j�j .t/ � Yj .t/jk@xQkH˛=2 � C
:

This finishes the proof of (2.7). Note also that (2.8) is a direct consequence of (2.25).
Second step: Regularity of the functions �j . We assume that the N functions �j are
C 1.Œt�; S� W R/. First, we compute the equation for � using (1.1) and (2.4):

@t� D @x.G .�/C jDj
˛R �R2/C

X
0�k�N

�0k@xRk ;

where
G .�/ WD jDj˛� � 2R� � �2:

Moreover, since
R2 D

X
1�k�N

R2k C 2
X

1�l<m�N

RlRm;
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this implies, by using (1.3), that

(2.26) @t� D @x

�
G .�/ �

X
1�k�N

ckRk � 2
X

1�l<m�N

RlRm

�
C

X
1�k�N

�0k@xRk :

Furthermore, by differentiating in time the relation
R
.@xRj /� D 0, we obtain

(2.27) 0 D
d

dt

Z
.@xRj /� D ��

0
j

Z
.@2xRj /�C

Z
.@xRj /@t�:

Replacing (2.26) in (2.27), and integrating by parts, we obtain that

0 D �

Z
.@2xRj /

�
G .�/ �

X
1�k�N

ckRk � 2
X

1�l<m�N

RlRm

�
(2.28)

C

X
1�k�N

�0k

Z
.@xRk/.@xRj / � �

0
j

Z
.@2xRj /�:

Finally, we deduce that, for all j 2 ¹1; : : : ; N º,X
1�k�N

�0k

Z
.@xRk/.@xRj / � �

0
j

Z
.@2xRj /�

D

Z
.@2xRj /

�
G .�/ �

X
1�k�N

ckRk � 2
X

1�l<m�N

RlRm

�
:

We can rewrite this ODE system in the matrix form

(2.29) AY 0 D B;

where Y WD .�j /NjD1, A WD A0 C A� , with

A� WD

0BBB@
�
R
.@2xR1/�

R
.@xR1/.@xR2/ � � �

R
.@xR1/.@xRN /R

.@xR2/.@xR1/ �
R
.@2xR2/� � � �

R
.@xR2/.@xRN /

:::
:::R

.@xRN /.@xR1/ � � � � � � �
R
.@2xRN /�

1CCCA ;

A0 WD

0BBBB@
R
.@xQc1/

2 0 � � � 0

0
: : : 0

:::
:::

0 � � � � � �
R
.@xQcN /

2;

1CCCCA ;
and

B WD

�Z
.@2xRj /

�
G .�/ �

X
1�k�N

ckRk � 2
X

1�l<m�N

RlRm

��
1�j�N

:

In order to prove that A is invertible, it suffices to prove that A0 is invertible and kA�k1
can be taken small enough. By using the Cauchy–Schwarz inequality and (2.7), we haveˇ̌̌ Z

.@2xRj /�
ˇ̌̌
� C
:
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By (2.15), we obtain ˇ̌̌ Z
.@xRk/.@xRj /

ˇ̌̌
�

C

1C L2C˛
; k ¤ j:

Taking L > L5 big enough, and 
 < 
3 small enough, the matrix A is invertible and we
can rewrite (2.29) as

Y 0 D A�1B:

Now, we have to prove that A�1B is globally Lipschitz. Let us begin with the termR
.@2xR1/�. Let .�j /NjD1; .z�j /

N
jD1 2 RN . Then, by the Plancherel identity and the Cauchy–

Schwarz inequality,ˇ̌̌̌ Z
@2x.Qc1.x � �1//

�
u.t; x/ �

NX
jD1

Qcj .x � �j /
�

� @2x.Qc1.x � z�1//
�
u.t; x/ �

NX
jD1

Qcj .x � z�j /
�
dx

ˇ̌̌̌

�

Z
j�j2 j yQc1 j juj je

i��1 �ei� z�1 j d� C

NX
jD1

Z
j�j2 j yQc1 j j

yQcj j je
i�.�1C�j /�ei�.z�1Cy�j /j d�

� j�1 � z�1j

Z
j�j3 j yQc1 j jyuj d� C

�
j�1 � z�1j C

NX
jD1

j�j � z�j j
� NX
jD1

Z
j�j3 j yQc1 j j

yQcj j d�

� C

NX
jD1

j�j � z�j j k@
3
xQc1kL2.ku0kL2 C kQcj kL2/;

where in the last inequality, we have used that ku.t; �/kL2 D ku0kL2 .
Using the same argument for the other term in A and B , we get A�1B is glob-

ally Lipschitz. Therefore, we obtain N unique C 1 functions z�j W Œt�; S� ! R satisfy-
ing (2.27) with z�j .S/ D �j .S/ as initial condition, where .�j /NjD1 is given by the first
step. Since (2.6) is satisfied at time S with �j .S/, we deduce that for all t 2 Œt�; S�,Z

.@xQcj .x � z�j .t///.u �Qcj .x � z�j .t/// D 0:

By the uniqueness statement of the first step, we conclude that the N functions �j , con-
structed in the first step, are C 1 functions. This concludes the proof of Proposition 2.2 by
taking 
 < 
1 D min.
2; 
3/ and L > L1 D max.L2; L3; L4; L5/ .

2.2. Bootstrap setting

Let .Sn/C1nD0 be a non-decreasing sequence of time going to infinity, with Sn > T0, for
T0 > 1 large enough to be chosen later. We define by un the solution of (1.1) satisfying

un.Sn; �/ D

NX
jD1

Qcj . � � �
in
j;n/;
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with

(2.30) �in
j;n 2 Ij;n WD ŒcjSn � S

1�˛=4
n ; cjSn C S

1�˛=4
n � for all j 2 ¹1; : : : ; N º

to be fixed later.
For t � Sn, as long as the solution un exists and satisfies (2.3) for suitable 0 < 
0 < 
1

and L0 > L1 (which will also be fixed later), we consider the C 1 functions .�j;n/NjD1
provided by Proposition 2.2 and satisfying (2.4)–(2.8). At Sn, the decomposition satisfies

(2.31) �.Sn/ D 0; �j;n.Sn/ D �
in
j;n; j D 1; : : : ; N:

We introduce the bootstrap estimates at t � Sn, assuming that un satisfies (2.3):

k�.t; x/kH˛=2 < 
0;(2.32)

sup
j2¹1;:::;N º

j�j;n.t/ � cj t j � t
1�˛=4;(2.33)

with � defined in (2.4).
For T0 > 1, to be chosen later, we define

t�n D inf
®
T0 < zt � Sn W 9"n > 0 such that (2.32)–(2.33) holds for all t 2 Œzt ; Sn C "n�

¯
:

Note by (2.31) and by continuity that there exists "n > 0 such that (2.32) hold on
ŒSn � "n; Sn C "n�. Moreover, if �j;n 2 VIj;n for all j 2 ¹1; : : : ; N º, then by possibly
taking "n smaller, (2.33) holds also on ŒSn � "n; Sn C "n�, so that t�n is well defined. In
the case where �j0;n 2 @Ij0;n for some j0 2 ¹1; : : : ; N º, it follows from the transversality
property (see (2.40) below) that t�n D Sn.

The main result of this section states that there exists at least one choice of .�inj;n/
N
jD1 �

.cjSn/
N
jD1 such that t�n D T0. In other words, the bootstrap estimates (2.32)–(2.33) are

valid up to a time T0 independent of n.

Proposition 2.6. Let ˛ 2 .1=2; 2/. There exist T0 > 1, C0 > 1 and 
0 > 0, satisfying
C0=T

˛=2
0 < 
0=2, and L0 WD ˇT0=2 > L1, such that the following is true. For all n 2 N,

there exists .�inj;n/
N
jD1 2 Ij;n, with Ij;n defined in (2.30), satisfying

(2.34) j�inj;n � cjSnj � S
1�˛=4
n ; j 2 ¹1; : : : ; N º;

and t�n D T0

Sections 2.3 and 2.4 are dedicated to the proof of Proposition 2.6. In every step of the
proof, T0 will be taken large enough and 
0 > 0 small enough independent of n.

2.3. Modulation estimates

Proposition 2.7. For all �in
j;n 2 Ij;n and all t 2 Œt�n ; Sn�, we have

inf
j2¹1;:::;N º

j�jC1;n.t/ � �j;n.t/j � ˇt;(2.35)

j�0j;n.t/ � cj j � C�

�
1

.ˇt/˛C1
C

� Z 1

.1C jx � �j;n.t/j/1C˛
�2
�1=2
C k�k2

L2

�
:(2.36)
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Proof. By the triangle inequality and (2.33), for t large enough, we deduce that

j�jC1;n.t/ � �j;n.t/j � .cjC1 � cj / t � j�jC1;n � cjC1 t j � j�j;n � cj t j

� 2ˇt � 2t1�˛=4 � ˇt:

Now, we prove (2.36). We deduce from (2.28) that

.�0j;n�cj /

Z
.@xRj /

2
D

Z
.@2xRj /

�
G .�/ �

X
1�k¤j�N

ckRk � 2
X

1�l<m�N

RlRm

�
(2.37)

�

X
1�k¤j�N

�0k;n

Z
.@xRk/.@xRj /C �

0
j;n

Z
.@2xRj /�

for all j 2 ¹1; : : : ;N º. By using the fact the operator jDj˛ is self adjoint and the Cauchy–
Schwarz inequality, we deduceˇ̌̌ Z

.@2xRj /G .�/
ˇ̌̌
C

ˇ̌̌ Z
.@2xRj /�

ˇ̌̌
� C.k�kL2 C k�k

2
L2
/:

Moreover, by (2.18), (2.19), (2.20), and (2.35), we getX
k¤j

�
ck

ˇ̌̌ Z
.@2xRj /Rk

ˇ̌̌
C �0j

ˇ̌̌ Z
@xRk@xRj

ˇ̌̌�
C 2

X
1�l<m�N

ˇ̌̌ Z
.@2xRj /RlRm

ˇ̌̌
�

C

.ˇt/1C˛
:

Gathering the two former estimates, we deduce, for all j 2 ¹1; : : : ; N º, that

j�0j;n � cj j

Z
.@xRj /

2
� C

�

0.1C j�

0
j;nj/C

X
1�k¤j�N

1C j�0
k;n
j

.ˇT0/1C˛

�
;

which implies, after summing over j ,

NX
kD1

j�0j;nj � C�:

Finally, by reinjecting the former estimate in (2.37), for all j 2 ¹1; : : : ; N º, we have

j�0j;n.t/ � cj j � C�

�
1

.ˇt/˛C1
C

� Z 1

.1C jx � �j;n.t/j/1C˛
�2
�1=2
C k�k2

L2

�
;

which yields (2.36).

2.4. Proof of Proposition 2.6

The proof of Proposition 2.6 relies on the following result which will be proved in Sec-
tion 3.

Proposition 2.8 (Bootstrap estimate). Let ˛ 2 .1=2; 2/. There exist C0 > 1, 0 < 
2 < 
1
and T2 > T1 such that for all �in

j;n 2 Ij;n, all t 2 Œt�n ; Sn�, all 0 < 
0 < 
2, and T0 > T2,

(2.38)



un.t; �/ � NX

jD1

Qcj . � � �j;n.t//




H˛=2

�
C0

t˛=2
:
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Proof of Proposition 2.6 assuming Proposition 2.8. Let 0 < 
0 < 
2 and T0 > T2 be such
that C0=T

˛=2
0 < 
0=2. First, we show that un satisfies (2.3) with L0 D ˇT0=2 and that

(2.32) is strictly improved on Œt�n ; Sn�. Indeed, it follows from (2.38) that




un.t; �/ � NX
jD1

Qcj . � � �j;n.t//




H˛=2

�
C0

T
˛=2
0

<

0

2
:

Moreover, (2.35) implies that

inf
j2¹1;:::;N�1ºº

j�jC1;n.t
�
n / � �j;n.t

�
n /j � ˇT0 D 2L0:

Now, we prove that there exists �in
n D .�in

j;n/
N
jD1 2 RN , satisfying (2.34), such that

t�n D T0. Assume by contradiction that for all choices �in
n satisfying (2.34), the associated

maximal time t�n .�
in
n / > T0.

First, we remark that �in
j;n D cjSn C �j;nS

1�˛=4
n for a unique �j;n 2 Œ�1; 1� and we

denote t�.�n/ WD t�n .�
in
n / (which will also be denoted t� when there is no risk of confu-

sion), with �nD .�j;n/NjD1. By definition of t� and the fact that (2.3) and (2.32) are strictly
improved on Œt�; Sn�, we have that

(2.39) j�j0;n.t
�/ � cj0 t

�
j D .t�/1�˛=4;

for at least one j0 2 ¹1; : : : ; N º. Then we define

ˆ W Œ�1; 1�N ! @Œ�1; 1�N ; � 7!
�
.�j;n.t

�.�// � cj t
�.�//.t�/˛=4�1.�/

�N
jD1

:

We set
f W R! RC; s 7! sup

j2¹1;:::;N º

�
.�j;n.s/ � cj s/s

˛=4�1
�2
:

We claim that if for s0 2 ŒT0; Sn�, (2.39) is satisfied in s0 for at least one j 2 ¹1; : : : ; N º,
then

(2.40) f is a decreasing function in a neighborhood of s0;

and

(2.41) ˆ 2 C 0.Œ�1; 1�N ; @Œ�1; 1�N /:

Let us assume (2.40) and (2.41) and finish the proof of Proposition 2.6. For any � 2
@Œ�1; 1�N , we have that

j�in
j0;n
� cj0Snj D S

1�˛=4
n ; for at least one j0 2 ¹1; : : : ; N º;

which implies by (2.40) that t� D Sn. Hence, we deduce that ˆj@Œ�1;1�N D Id. However,
it is a well-known topological result that no such continuous function ˆW Œ�1; 1�N !
@Œ�1; 1�N can exist (see Theorem 1.4, Chapter 3, in [28]). This concludes the proof of
Proposition 2.6.
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Now, we prove (2.40) and (2.41). Let fj .s/ D ..�j;n.s/ � cj s/s˛=4�1/2 for all integer
j 2 ¹1; : : : ; N º. Let s 2 R. Note that for all j 2 ¹1; : : : ; N º, the functions fj are con-
tinuously derivable. Then, to prove (2.40), it is enough to show that for a time s0 satisfy-
ing (2.39), for all j 2 ¹1; : : : ; N º such that fj .s0/ D f .s0/, we have that f 0j .s0/ < 0.

By direct computations, we have that

f 0j0.s/ D 2
�
.�j0;n.s/ � cj0s/s

˛=4�1
�

�

�
.�0j0;n.s/ � cj0/s

˛=4�1
C

�˛
4
� 1

�
s˛=4�2.�j0;n.s/ � cj0s/

�
D 2

�˛
4
� 1

�
.�j0;n.s/ � cj0s/

2s˛=2�3 C 2.�j0;n.s/ � cj0s/.�
0
j0;n

.s/ � cj0/s
˛=2�2:

Moreover, inserting (2.38) in (2.36), for all j 2 ¹1; : : : ; N º, we get

(2.42) j�0j;n.s/ � cj j �
C�

s˛=2
;

which, combined with (2.39) in s0, implies that

f 0j0.s0/ � 2
�˛
4
� 1

�
s�10 C 2s

˛=4�1
0 j�0j0;n.s0/ � cj0 j � 2

�˛
4
� 1

�
s�10 C 2C�s

�˛=4�1
0 :

Since ˛ < 2, for T0 large enough, we conclude that

f 0j0.s0/ < 0:

The same computations yield
f 0j1.s0/ < 0:

Then we conclude that f 0.sC0 / < 0 and f 0.s�0 / < 0, in other words f is a decreasing
function at s0. Note that for s0 D Sn and � 2 @Œ�1; 1�N , we get that f is a decreasing
function at Sn.

To show (2.41), we prove that the map � 2 Œ�1; 1�N 7! t�.�/ is continuous. The
continuity of t�.�/ follows from the transversality property (2.40). Indeed, by (2.40), for
all " > 0, there exists ı > 0 such that f .t�.�/ � "/ > f .t�.�//C ı D 1C ı, and for all
t 2 Œt�.�/C "; Sn� (possibly empty), f .t/ < 1 � ı.

Note that f depends on the parameter � since �j;n.t/ D �j;n.u.t; �//. Moreover, the
functions �j;n are globally defined.

Then, by the continuity of the flow , there exists �> 0 such that for all j�� N�j<�, with
N� 2 Œ�1; 1�N , the corresponding Nf satisfies j Nf .s/ � f .s/j < ı=2 for s 2 Œt�.�/ � "; Sn�.
We deduce that

Nf .t�.�/C "/ < j Nf .t�.�/C "/ � f .t�.�/C "/j C f .t�.�/C "/

< 1 �
ı

2
D Nf .t�. N�// �

ı

2
:

In other words, t�. N�/ < t�.�/C ". Furthermore,

Nf .t�.�/ � "/ > f .t�.�/ � "/ � j Nf .t�.�/ � "/ � f .t�.�/ � "/j > 1C
ı

2
:

Then t�.�/ � " < t�. N�/. This finishes the proof of (2.41).
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Remark 2.9. The choice of the exponent 1� ˛=4 used in (2.33) is related to the algebraic
decay s�˛=2 obtained on �0j;n in (2.42). If one could integrate directly estimate (2.42), one
would expect a bound of the form j�j;n.t/ � cj t j � Ct1�˛=2. However, since ˛=2 < 1, a
direct integration of the quantity (2.42) is not possible to close the bootstrap estimate. For
this reason, we make use of a topological argument, which allows us to adjust carefully
the initial conditions �in

j;n to integrate (2.42). The key point is the transversality condi-
tion (2.40). The sign of the derivative of f is obtained by comparing the quantity �0j;n � cj
and �j;n � cj t . Therefore, one could get an estimate of the form j�j;n � cj t j � t1�˛=2C",
with " 2 .0; ˛=2/. By convenience we choose " D ˛=4, which yields the bound in (2.33).
Note, however, that this choice does not affect the bound in (1.6).

2.5. Proof Theorem 1.3 assuming Proposition 2.6

First, we state the weak continuity property of the flow of (1.1). Relying on the well-
posedness result in [58], this result is proved in Appendix A for the case ˛ > 6=7. The
weak continuity property of the flow of (1.1) will be admitted for ˛ � 6=7.

For sake of clarity, we recall the well-posedness result stated in [58]. To do so, we need
to define X s;bT , the Bourgain space restricted on a time interval Œ0; T �. First, we introduced
the Bourgain space X s;b as the completion of the Schwartz space �.R2/ under the norm

kukXs;b WD kh�i
s
h� � �j�j˛ibFt;x.u/kL2 ;

where Ft;x the Fourier transform with respect to both variables t and x. The restriction
space X s;bT is the space of functions uWR � .0; T /! R satisfying

kuk
X
s;b
T

D inf
®
kzukXs;b j zu W R �R! R; zujR�.0;T / D u

¯
< C1:

Now, we state the well-posedness theorem obtained in [58].2

Theorem 2.10 (Global well-posedness in the energy space). Let ˛ 2 .6=7; 2/, and T > 0.

• Existence. For any u0 2 H˛=2.R/, there exists a solution u of (1.1), with the initial
condition u0, belonging to the class

YT WD C
0.Œ0; T � W H˛=2.R// \X˛=2�1;1T \ L2..0; T /;W ˛=4�1=2�;1.R//:

• Uniqueness. The solution u is unique in the following class:

ZT WD L
1..0; T / W H˛=2.R// \X˛=2�1;1T \ L2..0; T /;W ˛=4�1=2�;1.R//:

Moreover, u 2 C 0
b
.RC WH˛=2.R//, and the flow-map data solution u0 7! u is continuous

from H˛=2.R/ into C 0.Œ0; T � W H˛=2.R//.

2Note that the uniqueness statement is slightly stronger than the one in Theorem 1.2 in [58], since we only
need to assume that u 2 L1..0; T / WH˛=2/ instead of u 2 C 0.Œ0; T � WH˛=2/. This statement, however, follows
directly from the proof of Theorem 1.2 in [58].



A. Eychenne 1832

Lemma 2.11 (Weak continuity of flow in the energy space). Let ˛ 2 .6=7; 2/. Suppose
that z0;n * z0 in H˛=2.R/. We consider solutions zn of (1.1) corresponding to initial
data z0;n and satisfying zn 2 C 0.RC WH˛=2.R//. Then zn.t/ * z.t/ inH˛=2.R/, for all
t � 0, where z 2 C 0.RC W H˛=2.R// is the solution of (1.1) emanating from z0 obtained
in Theorem 2.10.

By Proposition 2.6, there exist C� > 0, T0 > 0 independent of n, and �1;n; : : : ; �N;n 2
C 1.ŒT0; Sn�/ satisfying (2.6), (2.33) and (2.38) for all T0 � t � Sn. Then, for all t 2
ŒT0; Sn�,

kun.t; �/kH˛=2�




un.t; �/� NX
jD1

Qcj . � � �j;n.t//




H˛=2
C




 NX
jD1

Qcj . � � �j;n.t//




H˛=2
�C�:

Thus, up to a subsequence, there exists U0 2 H˛=2.R/ such that

un.T0/ * U0 in H˛=2.R/:

Now, we prove the convergence of the modulation parameters. Let t 2 ŒT0;C1/ and
set T such that T0 < t < T < C1. By (2.33), we find that for all j 2 ¹1; : : : ; N º and
n 2 N,

j�j;n.t/j � T
1�˛=4

C cjT:

Moreover, from (2.42), we see that �0j;n is uniformly bounded independently of time. Thus,
by the Arzelà–Ascoli theorem, there exists rj .t/ 2 C 0.ŒT0; T �/ such that, after extracting
a subsequence if necessary, we have

(2.43) �j;n.t/! rj .t/:

Let U 2 C 0.ŒT0;C1/ W H˛=2.R// be the solution of (1.1) satisfying U.T0; �/ D U0,
obtained in Lemma 2.11. We set R� WD

PN
jD1Qcj .x � rj .t// and let t 2 ŒT0;1/. By

Lemma 2.11, we know that

(2.44) un.t/ * U.t/ in H˛=2.R/;

for all t � T0. We deduce then from (2.38) and (2.43) that

kU.t; �/ �R�.t; �/kH˛=2 � lim inf
n




un.t; �/ � NX
jD1

Qcj . � � �j;n.t//




H˛=2

C lim inf
n

NX
jD1

kQcj . � � �j;n.t// �Qcj . � � rj .t//kH˛=2 �
C0

t˛=2
:

By Proposition 2.6, we have that C0=T ˛0 � 
0=2 and ˇT0 > 2L1. In addition, since
j�jC1;n.t/� �j;n.t/j � ˇT0, we have rjC1.t/� rj .t/ � ˇT0 > 2L1. Therefore, U.t; �/ 2
T
;2L1 for all t 2 ŒT0;1/. By Proposition 2.2, there existN unique functions �1; : : : ; �n 2
C 1.ŒT0;C1/ WR/ such that .�j /NjD1 satisfy (2.6). On the other hand, since the solution un
satisfies also (2.6) with .�j;n/NjD1, we deduce, by passing to the limit and using (2.43)–
(2.44), that rj satisfies also (2.6). Hence, by the uniqueness statement in Proposition 2.2,
we see that rj .t/ D �j .t/ for all t 2 R. Therefore, R�.t; x/ D

PN
jD1Qcj .x � �j .t//,

which concludes the proof of (1.6). The first estimate in (1.7) follows passing to the limit
in (2.33), while the second is derived by arguing as in Proposition 2.7 and using (1.6).
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3. Weighted estimates

We define N functions to localize the information around each solitary waves. Let

(3.1) �.x/ D 1 � C�

Z x

�1

dy

hyi1C˛
; where C� D

� Z C1
�1

dy

hyi1C˛

��1
:

We have 0 � � � 1. Using the function �, we set, for A > 1 to be fixed later,

(3.2) �j;A.t; x/ D �
�x � �j .t/C�jC1.t/

2

A

�
D �

�x �mj .t/
A

�
for j 2 ¹1; : : : ; N � 1º;

and �N;A WD 1, where the �j ’s are defined in Section 2 (in particular, they satisfy (2.35)).
The function �j;A follows the first j solitary waves. Finally, for j 2 ¹1; : : : ;N º, the func-
tion  j;A is localized around the j th solitary wave. Let

(3.3)  1;A D �1;A;  j;A D �j;A � �j�1;A;  N;A D 1 � �N�1;A:

In this section, we state some important estimates involving to the weight �j;A and
its derivative �0j;A. These estimates will be crucial in the proof of the monotonicity of a
localized part of the mass and the energy (see Proposition 4.1 in Section 4).

3.1. Weighted commutator estimates

Lemma 3.1. Let ˛ 2 .0; 2/. In the symmetric case, there exists C > 0 such that

(3.4)
ˇ̌̌ Z

.jDj˛u/uj�0j;Aj �

Z �
jDj˛=2

�
u
q
j�0j;Aj

��2 ˇ̌̌
�
C

A˛

Z
u2j�0j;Aj

and

(3.5)
ˇ̌̌ Z

.jDj˛u/@xu�j;A C
˛ � 1

2

Z �
jDj˛=2

�
u
q
j�0j;Aj

��2 ˇ̌̌
�
C

A˛

Z
u2j�0j;Aj;

for any u 2 �.R/, A > 1 and j 2 ¹1; : : : ; N º.
In the non-symmetric case, there exists C > 0 such thatˇ̌̌ Z

..jDj˛u/v � .jDj˛v/u/j�0j;Aj
ˇ̌̌

(3.6)

�

´
C
A˛

R
.u2 C v2/j�0j;Aj if ˛ 2 .0; 1�;

C

A˛=2

R
.u2 C v2 C .jDj˛=2u/2/j�0j;Aj if ˛ 2 .1; 2/;

and ˇ̌̌ Z
..jDj˛u/@xv C .jDj

˛v/@xu/�j;A(3.7)

C .˛ � 1/

Z
jDj˛=2

�
u
q
j�0j;Aj

�
jDj˛=2

�
v
q
j�0j;Aj

�ˇ̌̌
�

´
C
A˛

R
.u2 C v2/j�0j;Aj if ˛ 2 .0; 1�;

C

A˛=2

R
.u2 C v2 C .jDj˛=2u/2/j�0j;Aj if ˛ 2 .1; 2/;

for any u; v 2 �.R/, A > 1 and j 2 ¹1; : : : ; N º.
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Remark 3.2. Instead of (3.6), we can obtain that for ˛1 C ˛2 D ˛ � 1, with 0 � ˛1; ˛2 �
˛ � 1 and ˛ 2 .1; 2/, there exists C > 0 such that for all u; v 2 �.R/,ˇ̌̌ Z

..jDj˛u/v � .jDj˛v/u/j�0j;Aj
ˇ̌̌
�

C

A˛=2

Z
.u2 C v2 C .jDj˛1u/2 C .jDj˛2v/2/j�0j;Aj:

Moreover, estimates (3.6) and (3.7) are given with jDj˛=2 instead of jDj˛�1. This is
done to simplify the computations, terms with jDj˛=2 appear naturally in the proof of
Proposition 4.1.

Let us explain why we choose to force a dissymmetry on the right-hand side of (3.6)
and (3.7). These two estimates will be applied with the function v D jDj˛u. However, the
natural quantities appearing to prove Proposition 4.1 are

R
u2j�0j;Aj,

R
.jDj˛=2u/2j�0j;Aj

and
R
.jDj˛u/2j�0j;Aj. Therefore, to control the remainder terms in (3.6) and (3.7), we

need to impose a dissymmetry to avoid an extra derivative on the function v.

Estimates (3.4), (3.5) are proved in Lemmas 6 and 7 in [36] for ˛ 2 Œ1; 2�. Observe,
however, that their proofs extend easily to the case ˛ 2 .0; 2/. Note also that while only
one side of the inequalities in (3.4)–(3.5) is stated in Lemmas 6 and 7 in [36], both sides
are actually proved.

While estimates (3.6) and (3.7) seem to be new, their proofs follow the lines of the
ones of Lemmas 6 and 7 of [36]. For the sake of completeness, we will present them in
Appendix C.

Lemma 3.3. Let ˛ 2 .0; 2/. There exists C > 0 such thatˇ̌̌ Z �
jDj˛

�
u
q
j�0j;Aj

��2
�

Z
.jDj˛u/2j�0j;Aj

ˇ̌̌
(3.8)

�

´
C
A˛

R
.u2 C .jDj˛u/2/j�0j;Aj if ˛ 2 .0; 1�;

C

A˛=2

R
.u2 C .jDj˛=2u/2 C .jDj˛u/2/j�0j;Aj if ˛ 2 .1; 2/;

for all u 2 �.R/, A > 1 and j 2 ¹1; : : : ; N º.

Lemma 3.4. Let ˛ 2 .0; 2/. There exists C > 0 such thatˇ̌̌ Z
jDj˛

�
u
q
j�0j;Aj

��
.jDj˛u/

q
j�0j;Aj

�ˇ̌̌
(3.9)

�

Z
.jDj˛u/2j�0j;Aj C

C

A˛=2

� Z �
u2 C .jDj˛=2u/2 C .jDj˛u/2

�
j�0j;Aj

�
;

for all u 2 �.R/, A > 1 and j 2 ¹1; : : : ; N º.

The proofs of Lemmas 3.3 and 3.4 are also given in Appendix C.

3.2. Weighted estimates for the solitary waves

Lemma 3.5. Let p; q � 0. Then, for all j; k 2 ¹1; : : : ; N º with k ¤ j , we haveZ
R
p
j R

q

k
�

C

.ˇt/.1C˛/min.p;q/
;(3.10) Z

@xR
p
j @xR

q

k
�

C

.ˇt/.2C˛/min.p;q/
;(3.11)
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R
p

k
 
q
j;A �

C

.ˇt/min.p.1C˛/;q˛/
:(3.12)

Moreover, for all j; k 2 ¹1; : : : ; N º, we haveZ
R
p

k
j�0j;Aj

q
�

C

.ˇt/.1C˛/min.p;q/
;(3.13) Z

@xR
p

k
j�0j;Aj

q
�

C

.ˇt/min.q.1C˛/;p.2C˛//
;(3.14) Z

R
p
j .1 � . j;A/

q/ �
C

.ˇt/min.q˛;p.1C˛//
;(3.15) Z

@xR
p
j .1 � . j;A/

q/ �
C

.ˇt/min.˛q;p.2C˛/
:(3.16)

Lemma 3.5 is proven by arguing exactly as in the proof of Lemma 2.5.

3.3. Weighted estimates for the non-linear terms

Lemma 3.6. Let ˛ 2 .0; 2/ and let � 2H˛=2.R/ be defined in (2.4) and satisfy (2.3). Then
we have

(3.17)
Z
j�j3j�0j;Aj � C


� Z
u2j�0j;Aj C

Z �
jDj˛=2

�
u
q
j�0j;Aj

��2�
C

C

.ˇt/1C˛

and

(3.18)
Z
j�j4j�0j;Aj � C


2
� Z

u2j�0j;Aj C

Z �
jDj˛=2

�
u
q
j�0j;Aj

��2�
C

C

.ˇt/1C˛
:

Lemma 3.7. Let ˛ 2 .0; 2/ and let u satisfy the hypotheses of Theorem 2.2. Then there
exists C > 0 such thatˇ̌̌ Z
jDj˛=2

�
u
q
j�0j;Aj

�
jDj˛=2

�
u2
q
j�0j;Aj

�ˇ̌̌
� C

�

2 C

1

A˛=2

�� Z
.u2 C .jDj˛=2u/2/j�0j;Aj

�
C
1

8

Z
.jDj˛u/2j�0j;Aj C

C

.ˇt/1C˛
;

for all A > 1 and 0 < 
 < 
1.

The proofs of these lemmas are also based on pseudo-differential estimates and are
given in Appendix D.

4. Proof of the bootstrap estimate

The goal of this section is to prove Proposition 2.8. We work in the bootstrap setting of
Section 2.2. In particular, the solutions un admit the decomposition of Proposition 2.2
on the time interval Œt�n ; Sn�. We also recall the definitions of the weight functions �j;A
and  j;A in (3.2) and (3.3).
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In every step of the proof, the values of T0 and A will be taken large enough independ-
ently of n, while the value of 
 will be chosen small enough independently of n. Moreover,
for simplicity of notation, we drop the index n of the functions un and .�j;n/NjD1 and of
the time t�n , and the index A of the weight functions �j;A and  j;A.

Finally, we define the part of the mass Mj and of the energy Ej localized around the
j th solitary wave Rj by

Mj .t/ WD

Z
u.t; x/2 j .t; x/ dx; Ej .t/ WD

Z �1
2
ujDj˛u �

1

3
u3
�
.t; x/ j .t; x/ dx;

so that for all j 2 ¹1; : : : ; N º,

jX
kD1

Mk.t/D

Z
u.t;x/2�j .t;x/dx;

jX
kD1

Ek.t/D

Z �1
2
ujDj˛u�

1

3
u3
�
.t;x/�j .t;x/dx:

We also define

(4.1) zEk D Ek C �0Mk ;

with

(4.2) �0 WD min
j2¹1;:::;N�1º

�cj
4
;
cN

4
;

cj cjC1

4.cj C cjC1/

�
:

4.1. Monotonicity

Proposition 4.1 (Monotonicity). Under the bootstrap assumptions (2.32)–(2.33), we have

(4.3)
jX
kD1

.Mk.Sn/ �Mk.t0// � �
C

.ˇt0/˛

and

(4.4)
jX
kD1

. zEk.Sn/ � zEk.t0// � �
C

.ˇt0/˛

for all j 2 ¹1; : : : ; N º, t0 2 Œt�; Sn�.

Remark 4.2. From Proposition 4.1, we see that Mj .Sn/ is almost larger than Mj .t0/ for
t0 < Sn. In other words, when the time decreases, the portion of the mass on the left of the
.j C 1/th solitary wave also decreases. A similar phenomenon occurs also for the energy.
This can be seen as a manifestation of the dispersive character of KdV-type equations:
if a wave moves to the right, then the dispersion effect pushes some mass to the left, see
Figure 2. Moreover, if u is a solution of fKdV, then u.�t;�x/ is also a solution. Therefore,
if a wave move to the left, then the dispersion effect pushes some mass to the right.

Proof of Proposition 4.1. We remark that for j D N , the inequalities (4.3) and (4.4) are
easily verified since M and E are preserved by the flow of (1.1). Then we can always
assume 1 � j � N � 1.
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�j
j

�jC�jC1
2

j
�jC1
j

�j

t D Sn

�j
j

�jC�jC1
2

j
�jC1
j

�j

t D t0

Figure 2. Monotonicity of the mass.

First, we give the proof of (4.3). By using (1.1), integration by parts and � is non-
increasing function, we get

1

2

d

dt

� jX
kD1

Mk.t/

�
D

Z �
jDj˛u.�@xu�j C uj�

0
j j/ �

u3

3
j�0j j C

m0j

2
u2j�0j j

�
:

Then we deduce, from (3.4), (3.5), that

(4.5)
Z �
jDj˛u.�@xu�j C uj�

0
j j/
�
� �

C

A˛

Z
u2j�0j j C

˛ C 1

2

Z �
jDj˛=2

�
u
q
j�0j j

��2
:

Observe from (2.36) that m0j �
cjCcjC1

4
. Thus,

1

2

d

dt

� jX
kD1

Mk.t/

�
��

Z
u3

3
j�0j j C

cj C cjC1

8

Z
u2j�0j j C

˛ C 1

2

Z �
jDj˛=2

�
u
q
j�0j j

��2
:

Now, we estimate the nonlinear term. With the notation of Proposition 2.2, we have

juj3 � C

� NX
kD1

R3k C j�j
3

�
:

Therefore, by (3.13),
NX
kD1

Z
R3kj�

0
j j �

C

.ˇt/˛C1
;
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and by (3.17),Z
j�j3j�0j j � C


� Z
u2j�0j j C

Z �
jDj˛=2

�
u
q
j�0j j

��2�
C

C

.ˇt/˛C1
:

Hence, we can conclude that

d

dt

� jX
kD1

Mk.t/

�
� �

C

.ˇt/1C˛
:

Thus, by integrating between t0 and Sn, we have

jX
kD1

Mk.Sn/ �

jX
kD1

Mk.t0/ � �

Z Sn

t0

C

.ˇt/1C˛
dt � �

C

.ˇt0/˛
;

which proves (4.3).
Let us prove (4.4). We differentiate Ej with respect to time to find that

d

dt

� jX
kD1

Ek.t/

�
D

Z ��1
2
@tujDj

˛uC
1

2
ujDj˛@tu

�
� @tuu

2
�
�j

Cm0j

Z �1
2
ujDj˛u �

1

3
u3
�
j�0j j

D I1 Cm
0
j I2:

Using (1.1), for I1, we obtain that

I1 D
1

2

Z
.jDj˛@xu � @x.u

2//.jDj˛u/�j C
1

2

Z
ujDj˛.jDj˛@xu � @x.u

2//�j

�

Z
.jDj˛@xu � @x.u

2//u2�j

D I1;1 C I1;2 C I1;3:

First we compute I1;1 by integrating by parts:

(4.6) I1;1 D
1

4

Z
.jDj˛u/2j�0j j �

1

2

Z
@x.u

2/.jDj˛u/�j ;

since the functions �j are non-increasing. Now we decompose I1;2 as

I1;2 D
1

2

Z
u.jDj2˛@xu/�j �

1

2

Z
u.jDj˛@x.u

2//�j D I1;2;1 C I1;2;2:

First we deal with I1;2;1. By using integration by parts, we get

I1;2;1 D �
1

2

Z
@xu.jDj

2˛u/�j C
1

2

Z
u.jDj2˛u/j�0j j D I

1
1;2;1 C I

2
1;2;1:
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On the one hand, using estimate (3.7) with v D jDj˛u and integration by parts for the last
integral, we get

I 11;2;1 D �
1

2

Z �
@xujDj

2˛uC .jDj˛u/@xjDj
˛u
�
�j

�
˛ � 1

2

Z
jDj˛=2

�
u
q
j�0j j

�
jDj˛=2

�
.jDj˛u/

q
j�0j j

�
C
˛ � 1

2

Z
jDj˛=2

�
u
q
j�0j j

�
jDj˛=2

�
.jDj˛u/

q
j�0j j

�
C
1

2

Z
.@xjDj

˛u/.jDj˛u/�j

�
1

4

Z
.jDj˛u/2j�0j j dx C

˛ � 1

2

Z
jDj˛=2

�
u
q
j�0j j

�
jDj˛=2

�
.jDj˛u/

q
j�0j j

�
�

C

A˛=2

Z �
u2 C .jDj˛=2u/2 C .jDj˛u/2

�
j�0j j:

On the other hand, from (3.6) with v D jDj˛u, we deduce

I 21;2;1 D
1

2

Z
.ujDj2˛u � .jDj˛u/2/j�0j j C

1

2

Z
.jDj˛u/2j�0j j

�
1

2

Z
.jDj˛u/2j�0j j �

C

A˛=2

Z �
u2 C .jDj˛=2u/2 C .jDj˛u/2

�
j�0j j:

Now, we deal with I1;2;2. Using integration by parts,

I1;2;2 D
1

2

Z
@xujDj

˛.u2/�j �
1

2

Z
ujDj˛.u2/j�0j j:

Arguing similarly, as for I1;2;1, from (3.6), (3.7) with v D u2, we get that

I1;2;2 � �
˛ � 1

2

Z
jDj˛=2

�
u
q
j�0j j

�
jDj˛=2

�
u2
q
j�0j j

�
�
1

2

Z
u2.jDj˛u/j�0j j

�
1

2

Z
@x.u

2/.jDj˛u/�j �
C

A˛=2

Z �
u2 C u4 C .jDj˛=2u/2

�
j�0j j:

Hence, gathering these estimates, we conclude

I1;2 �
3

4

Z
.jDj˛u/2j�0j j �

1

2

Z
@x.u

2/jDj˛u�j �
1

2

Z
u2jDj˛uj�0j j(4.7)

�
˛ � 1

2

Z
jDj˛=2

�
u
q
j�0j j

�
jDj˛=2

�
u2
q
j�0j j

�
C
˛ � 1

2

Z
jDj˛=2

�
u
q
j�0j j

�
jDj˛=2

�
.jDj˛u/

q
j�0j j

�
�

C

A˛=2

Z �
u2 C u4 C .jDj˛=2u/2 C .jDj˛u/2

�
j�0j j:

Finally, we compute I1;3 by integrating by parts:

(4.8) I1;3 D

Z
.jDj˛u/@x.u

2/�j �

Z
.jDj˛u/u2j�0j j C

1

2

Z
u4j�0j j:



A. Eychenne 1840

Therefore, combining (4.6), (4.7) and (4.8), we deduce that

I1 �

Z
.jDj˛u/2j�0j j �

3

2

Z
u2.jDj˛u/j�0j j C

1

2

Z
u4j�0j j

�
˛ � 1

2

Z
jDj˛=2

�
u
q
j�0j j

�
jDj˛=2

�
u2
q
j�0j j

�
C
˛ � 1

2

Z
jDj˛=2

�
u
q
j�0j j

�
jDj˛=2

�
.jDj˛u/

q
j�0j j

�
�

C

A˛=2

Z �
u2 C u4 C .jDj˛=2u/2 C .jDj˛u/2

�
j�0j j:

By using the identityZ
.jDj˛u/2j�0j j C

1

2

Z
u4j�0j j �

3

2

Z
.jDj˛u/u2j�0j j

D

Z �1
4
jDj˛u � 3u2

�2
j�0j j C

15

16

Z
.jDj˛u/2j�0j j �

17

2

Z
u4j�0j j;

˛�1
2
2 Œ�1

4
; 1
2
�, and Lemmas 3.4, 3.7, we conclude that

I1 �
1

4

Z
.jDj˛u/2j�0j j � 9

Z
u4j�0j j

� C
� 1

A˛=2
C 
2

� Z
.u2 C .jDj˛=2u/2/j�0j j �

C

.ˇt/1C˛
:

Using (3.4) to control I2, we obtain that

d

dt

� jX
kD1

Ek.t/

�
�
1

4

Z
.jDj˛u/2j�0j j � C

� 1

A˛=2
C 
2

� Z
.u2 C .jDj˛=2u/2/j�0j j

�
m0j

3

Z
juj3j�0j j � 9

Z
u4j�0j j �

C

.ˇt/1C˛
:

We need to add the mass to the energy in order to control the remaining terms:

d

dt

� jX
kD1

Ek.t/C�0Mk.t/

�
� �9

Z
u4j�0j j � C

� 1

A˛=2
C
2

� Z
.u2C .jDj˛=2u/2/j�0j j

�
m0j

3

Z
juj3j�0j j � �0

Z
jDj˛u.@xu�j � uj�

0
j j/

� �0

Z
1

3
juj3j�0j j C �0m

0
j

Z
u2j�0j j �

C

.ˇt/1C˛
:

Thus, by using (4.5), we deduce

d

dt

� jX
kD1

Ek.t/C �0Mk.t/

�
� �9

Z
u4j�0j j C

�
�0m

0
j �

C

A˛=2
� 
2

� Z
u2j�0j j

�
m0j C �0

3

Z
u3j�0j j C �0

3 � ˛

2

Z �
jDj˛=2

�
u
q
j�0j j

��2
�

� C

A˛=2
C 
2

� Z
.jDj˛=2u/2j�0j j �

C

.ˇt/1C˛
:
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Observe from (2.36) that
�0m

0
j

2
�

C

A˛=2
� 
2 > 0:

Thus, by (3.8), we deduce that

d

dt

� jX
kD1

Ek.t/C �0Mk.t/
�
�
�0m

0
j

2

Z
u2j�0j j � 9

Z
u4j�0j j �

m0j C �0

3

Z
u3j�0j j

C �0
3 � ˛

4

Z �
jDj˛=2

�
u
q
j�0j j

��2
�

C

.ˇt/1C˛
:

From Lemma 3.6, we get

d

dt

� jX
kD1

Ek.t/C �0Mk.t/

�
�

��0m0j
4
� C


� Z
u2j�0j j �

C

.ˇt/1C˛

C

�
�0
3 � ˛

2
� C


� Z �
jDj˛=2

�
u
q
j�0j j

��2
� �

C

.ˇt/1C˛
:

Thus, by integrating between t0 and Sn, we have

jX
kD1

zEk.Sn/ �

jX
kD1

zEk.t0/ � �

Z Sn

t0

C

.ˇt/1C˛
dt � �

C

.ˇt0/˛
;

which proves (4.4).

4.2. Mass and energy expansion

Lemma 4.3. There exist C > 0 such that the following hold:ˇ̌̌
Mj .t/ �

� Z
Q2
cj
C 2

Z
�.t/Rj .t/C

Z
�2.t/ j .t/

�ˇ̌̌
�

C

.ˇt/˛
;(4.9) ˇ̌̌

Ej .t/�
�
E.Qcj /�cj

Z
�.t/Rj .t/C

1

2

Z �
�.t/jDj˛�.t/�2R.t/�2.t/

�
 j .t/

�ˇ̌̌
(4.10)

�
C

.ˇt/˛
C C
k�.t/k2

H˛=2

and ˇ̌̌�
Ej .t/C

cj

2
Mj .t/

�
�

�
E.Qcj /C

cj

2
M.Qcj /

�
�
1

2
Hj .t/

ˇ̌̌
(4.11)

�
C

.ˇt/˛
C C
k�.t/k2

H˛=2 ;

where

(4.12) Hj .t/ WD Hj .�.t/; �.t// D

Z �
�.t/jDj˛�.t/C cj�

2.t/ � 2Rj .t/�
2.t/

�
 j .t/:
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Proof. Using u D RC � in the mass, we get

Mj .t/ D

Z
.R2 C 2R�C �2/ j :

Thus, by direct computations,

Mj .t/ �
� Z

Q2
cj
C 2

Z
�Rj C

Z
�2 j

�
D

Z
.R2 j �Q

2
cj
/C 2

Z
�.R j �Rj /

D I1 C 2I2:

We use the translation invariance of the L2 norm of Qcj , and (3.10), (3.12), (3.15) to
deduce

jI1j �
X

.k;i/¤.j;j /

Z
RiRk j C

Z
R2j .1 �  j / �

C

.ˇt/˛
:

By the Cauchy–Schwarz inequality, (3.12), (3.15), for I2 we obtain

jI2j � 2k�kL2
�X
k¤j

kRk j kL2 C kRj .1 �  j /kL2
�
�

C

.ˇt/˛
:

Combining these two inequalities we conclude the proof of (4.9).
To prove (4.10), we expand Ej as

Ej .t/ D
1

2

Z
R.jDj˛R/ j C

1

2

Z
�.jDj˛�/ j C

1

2

Z
.RjDj˛�C �jDj˛R/ j

�
1

3

Z
R3 j �

Z
R2� j �

Z
R�2 �

1

3

Z
�3 j :

Hence, ˇ̌̌
Ej .t/ �

�
E.Qcj / � cj

Z
�Rj C

1

2

Z
.�jDj˛� � 2R�2/ j

�ˇ̌̌
�

ˇ̌̌ Z �1
2
RjDj˛R �

1

3
R3
�
 j �E.Qcj /

ˇ̌̌
C
1

3

ˇ̌̌ Z
�3 j

ˇ̌̌
C
1

2

ˇ̌̌ Z
.RjDj˛�C �jDj˛R/ j � 2

Z
R2� j C 2cj

Z
�Rj

ˇ̌̌
D J1 C J2 C J3:

We use the translation invariance of E.Qcj /, (3.12), (3.15) and kjDj˛RkkL1 � C to
bound jJ1j, up to a constant, byZ

.Rj j jDj
˛Rj j CR

3
j /.1 �  j /

C

X
.i;k/¤.j;j /

ˇ̌̌ Z
Ri .jDj

˛Rk/ j

ˇ̌̌̌
C

X
.i;k;l/¤.j;j;j /

Z
RiRkRl j :

Thus, we get

(4.13) jJ1j �
C

.ˇt/˛
:
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Replacing j�0j j by  j in (D.1), we have

jJ2j � C
k�
p
 j k

2
H˛=2 :

Arguing as in (D.4), it follows that

(4.14) jJ2j � C
k�k
2
H˛=2 :

By using (1.3), we get

2jJ3j �
ˇ̌̌ Z

.RjDj˛�C �jDj˛R/ j � 2

Z
.jDj˛Rj /�

ˇ̌̌
C 2

ˇ̌̌ Z
.R2j � �R

2� j /
ˇ̌̌

�

ˇ̌̌ Z
R.jDj˛�/ j �

Z
.jDj˛Rj /�

ˇ̌̌
C

ˇ̌̌ Z
�.jDj˛R/ j �

Z
.jDj˛Rj /�

ˇ̌̌
C 2

ˇ̌̌ Z
R2j � �R

2� j

ˇ̌̌
D jJ3;1j C jJ3;2j C jJ3;3j:

By using the Cauchy–Schwarz inequality, we obtain

jJ3;2j C jJ3;3j � k�kL2
�
k.1 �  j /jDj

˛Rj kL2 C kR
2
j .1 �  j /kL2

�
C k�kL2

�X
k¤j

k j jDj
˛RkkL2 C

X
.k;l/¤.j;j /

kRkRl j kL2
�
:

From (1.3), we rewrite jDj˛Rj D R2j � cjRj . Thus, it follows from (3.12) and (3.15) that

(4.15) jJ3;2j C jJ3;3j �
C

.ˇt/˛
:

Now, we estimate jJ3;1j. By using the Cauchy–Schwarz inequality,

jJ3;1j �
X
k¤j

ˇ̌̌ Z
Rk.jDj

˛�/ j

ˇ̌̌
C

ˇ̌̌ Z
Rj .jDj

˛�/.1 �  j /
ˇ̌̌

� kjDj˛=2�kL2
�X
k¤j

kjDj˛=2.Rk j /kL2 C kjDj
˛=2.Rj .1 �  j //kL2

�
:

By interpolation, kukH˛=2 � kuk
1�˛=2

L2
kuk

˛=2

H1 . Thus, from estimates (3.13)–(3.16), we
deduce that

jJ3;1j � kjDj
˛=2�kL2

�X
k¤j

kRk j k
1�˛=2

L2
kRk j k

˛=2

H1(4.16)

C kRj .1 �  j /k
1�˛=2

L2
kRj .1 �  j /k

˛=2

H1

�
�

C

.ˇt/˛
:

Gathering (4.13), (4.14), (4.15) and (4.16), we conclude the proof of (4.10).
To prove (4.11), by gathering (4.9) and (4.10), we getˇ̌̌�

Ej .t/C
cj

2
Mj .t/

�
�

�
E.Qcj /C

cj

2
M.Qcj /

�
�
1

2
Hj .t/

ˇ̌̌
�

C

.ˇt/˛
C C
k�.t/k2

H˛=2 C

ˇ̌̌ Z
�2.R �Rj / j

ˇ̌̌
:
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Then, by Cauchy–Schwarz, (3.12) and the Sobolev imbedding L4.R/ ,�! H 1=4.R/, we
obtain that ˇ̌̌ Z

�2.R �Rj / j

ˇ̌̌
� k�k2

L4

X
k¤j

kRk j kL2 �
C

.ˇt/˛
;

which concludes the proof of (4.11).

4.3. Control of the Rj directions

We recall that C� is a positive constant changing from line to line and depending only on
the parameters ¹c1; : : : ; cN º.

Proposition 4.4. For all j 2 ¹1; : : : ; N º, t0 2 Œt�; Sn�,

(4.17)
jX
kD1

ˇ̌̌ Z
�.t0/Rk.t0/

ˇ̌̌
�
C�

t˛0
C C�k�.t0/k

2
H˛=2 :

Proof of Proposition 4.4. The proof is by induction. For j D 1, by (4.9) at time t D t0
and t D Sn, we deduce that

2

Z
�.t0/R1.t0/ �

C

.ˇt0/˛
�

Z
�2 1 �

Z
Q2
c1
CM1.t0/

�
C

.ˇt0/˛
�

Z
�2 1 �M1.Sn/CM1.t0/CM1.Sn/ �

Z
Q2
c1

�
C

.ˇt0/˛
�

Z
�2 1 �M1.Sn/CM1.t0/:

Moreover, by using estimate (4.3), we deduce that

2

Z
�.t0/R1.t0/ �

C

.ˇt0/˛
�

Z
�2 1 �

C

.ˇt0/˛
:

Now we want to obtain a lower bound of this scalar product. We recall that zEk and �0
are, respectively, defined in (4.1) and (4.2). By (4.9), (4.10) at time t D t0 and t D Sn, we
observe that

.c1 � 2�0/

Z
�R1 � �

C

.ˇt0/˛
� C
k�k2

H˛=2 �E1.t0/CE.Qc1/C
1

2

Z
�.jDj˛�/ 1

�

Z
R�2 1 � �0M1.t0/C �0

Z
Q2
c1
C �0

Z
�2 1

� �
C�

t˛0
� C�k�k

2
H˛=2 �

zE1.t0/C zE1.Sn/

C
1

2

Z
�.jDj˛�/ 1 �

Z
R�2 1 C �0

Z
�2 1:

Thus, from (4.4) and the fact that kR 1k1 < C , we deduce

.c1 � 2�0/

Z
�R1 � �

C�

t˛0
� C�k�k

2
H˛=2 C

1

2

Z
�.jDj˛�/ 1:
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Note that replacing �0j by  j in (D.2), we deduce

kjDj˛=2.� j /kL2 � Ck�kH˛=2 ;

so that
.c1 � 2�0/

Z
�R1 � �

C�

t˛0
� C�k�k

2
H˛=2 :

Combining the lower and upper bound, we conclude thatˇ̌̌ Z
�.t0/R1.t0/

ˇ̌̌
�
C�

t˛0
C C�k�k

2
H˛=2 :

Now, we prove the inductive step. We assume that (4.17) holds true for some j 2
¹1; : : : ; N � 1º, and then we prove it for j C 1. Arguing similarly, as in the case j D 1,
by (4.9) at time t D t0 and t D Sn, (4.3) and then the induction hypothesis (4.17) in j , we
deduce

2

Z
�.t0/RjC1.t0/ �

C

.ˇt0/˛
C

jC1X
kD1

.Mk.t0/ �Mk.Sn// �

Z
�2 jC1

�

� jX
kD0

.Mk.t0/ �Mk.Sn// �

jX
kD1

Z
�2 k

�
�

jX
kD1

Z
�2 k

�
C

.ˇt0/˛
C 2

jX
kD1

ˇ̌̌ Z
�Rk

ˇ̌̌
�
C�

t˛0
C C�k�k

2
H˛=2 :

Arguing similarly, as j D 1 for the lower bound, from (4.9), (4.10) at time t D t0 and
t D Sn, we obtain

.cjC1 � 2�0/

Z
�RjC1

� �
C�

t˛0
� zEjC1.t0/C zEjC1.Sn/C �0

Z
�2 jC1

C
1

2

Z
.�jDj˛ � 2R�2/ jC1 � C�k�k

2
H˛=2

� �
C�

t˛0
� C�k�k

2
H˛=2 C �0

jC1X
kD1

Z
�2 k

C

jC1X
kD1

. zEk.Sn/ � zEk.t0//C
1

2

jC1X
kD1

Z
.�jDj˛� � 2R�2/ k

�

� jX
kD1

. zEk.Sn/ � zEk.t0//C
1

2

jX
kD1

Z
.�jDj˛� � 2R�2/ k C �0

jX
kD1

Z
�2 k

�
:
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Thus, by using again (4.9), (4.10) at time t D t0 and t D Sn, (4.4), and then the induction
hypothesis (4.17) in j , it follows that

.cjC1 � 2�0/

Z
�RjC1 � �

C�

t˛0
� C�k�k

2
H˛=2 �

jX
kD1

.ck � 2�0/
ˇ̌̌ Z

�Rk

ˇ̌̌
� �

C�

t˛0
� C�k�k

2
H˛=2 :

This concludes the proof of (4.17) in j C 1, and thus the proof of Proposition 4.4 by
induction.

4.4. Proof of Proposition 2.8

Recalling the notation � D u �R, it suffices to prove that

(4.18) k�k2
H˛=2 �

C�

t˛0
:

Proof of (4.18). The proof of estimate (4.18) relies on the quadratic form Hj .t/ defined
in (4.12). On the one hand, from (4.11), we have

NX
jD1

1

c2j
Hj .t0/ �

NX
jD1

1

c2j

�
Ej .t0/C

cj

2
Mj .t0/

�
�

NX
jD1

1

c2j

�
E.Qcj /C

cj

2
M.Qcj /

�
(4.19)

C
C�

t˛0
C C�
k�k

2
H˛=2 :

On the other hand, by a direct resummation argument, we observe that
NX
jD1

1

c2j

zEj D

N�1X
jD1

� 1
c2j
�

1

c2jC1

� jX
kD1

zEk C
1

c2N

NX
kD1

zEk

and
NX
jD1

1

c2j

�cj
2
� �0

�
Mj D

N�1X
jD1

h1
2

� 1
cj
�

1

cjC1

��
1 � 2�0

� 1
cj
C

1

cjC1

��i jX
kD1

Mk

C
1

2cN

�
1 � 2

�0

cN

� NX
kD1

Mk :

Combining these two identities, since zEj D Ej C �0Mj , we deduce

NX
jD1

1

c2j

�
Ej C

cj

2
Mj

�
D

N�1X
jD1

� 1
c2j
�

1

c2jC1

� jX
kD1

zEk C
1

c2N

NX
kD1

zEk

C

N�1X
jD1

h1
2

� 1
cj
�

1

cjC1

��
1 � 2�0

� 1
cj
C

1

cjC1

��i jX
kD1

Mk

C
1

2cN

�
1 � 2

�0

cN

� NX
kD1

Mk :
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Note that all the coefficients in front of the partial sums on the right-hand side of the above
estimate are positive by the definition of �0 in (4.2). Therefore, from (4.19), (4.9), (4.10)
at time t D t0 and t D Sn and the monotonicity results (4.3) and (4.4) in Proposition 4.1,
we deduce

(4.20)
NX
jD0

1

c2j
Hj .t0/ �

C�

t˛0
C C�
k�k

2
H˛=2 :

On the other hand, by Corollary E.3 and (2.6), there exists �0 > 0 such that

NX
jD0

1

c2j
Hj .t0/ � �0k�k

2
H˛=2 �

C�

t˛0
�
1

�0

NX
jD0

� Z
�.t0/Rj .t0/

�2
:

The control of the Rj directions derived in Proposition 4.4 yields

(4.21)
NX
jD0

1

c2j
Hj .t0/ � �0k�k

2
H˛=2 �

C�

t˛0
�
1

�0

C�

t2˛0
�
1

�0
C�k�k

4
H˛=2 :

Therefore, we conclude the proof of (4.18) by combining (4.20) and (4.21), which finishes
the proof of Proposition 2.8.

A. Weak continuity of the flow

In this appendix, we give the proof of Lemma 2.11, where the IVP associated to (1.1) is
globally well-posed in the energy space (see [58]). We follow a general argument given
by L. Molinet (see also [23]).3

Proof of Lemma 2.11. Let ˛ > 6=7. For T > 0, we recall the definition of Yt , the resolu-
tion space

YT WD C
0.Œ0; T � W H˛=2.R// \X˛=2�1;1T \ L2..0; T /;W ˛=4�1=2�;1.R//;

and let k � kYT be the norm associated to YT .
Assume z0;n * z0 in H˛=2.R/. By the Banach–Steinhaus theorem, we deduce that

there exists C > 0 such that kz0;nkH˛=2 � C . Moreover, by the global well-posedness
result, Theorem 2.10, there exists C > 0 such that the solution zn of (1.1), associated
to z0;n, satisfies

(A.1) kzn.t/kYT � C for all t 2 Œ0; T �:

Thus, by the Banach–Alaoglu theorem, there exists

z 2 ZT WD L
1..0; T / W H˛=2.R// \X˛=2�1;1T \ L2..0; T /;W ˛=4�1=2�;1.R//

such that zn
�
�* z in L1.Œ0; T � W H˛=2.R//, up to extracting a subsequence. By (A.1), we

get
kD˛@x znkL1T H�˛=2�1

� C;

3Personal communication.
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and since z2n 2 L
1.R/ ,! H�1=2

�

.R/, we have that

k@x.z
2
n/kL1T H�3=2

� � Ckznk
2
L2
� C:

Then, by (1.1), we obtain that

(A.2) k@tznkL1T Hmin.�3=2�;�˛=2�1/ � C:

Therefore, by the Aubin–Lions theorem (Theorem 1.71 in [62]), we deduce that zn ! z

in L2.Œ0; T � W L2.Œ�k; k�/, for all k 2N. In particular, this implies z2n! z2 in L1.Œ0; T � W
L1.Œ�k; k�//.

Since zn is a weak solution of (1.1) in the distributional sense satisfying zn.0; �/D z0;n,
we know that for all � 2 C1c .Œ�T; T � �R/,Z T

0

Z
R
.@t� � @xjDj

˛�/zn dxdt C

Z T

0

Z
R
.@x�/z

2
n dxdt �

Z
R
�.0; x/z0;n.x/ dx D 0:

Thus, passing to the limit, we conclude thatZ T

0

Z
R
.@t� � @xjDj

˛�/z dxdt C

Z T

0

Z
R
.@x�/z

2 dxdt �

Z
R
�.0; x/z0.x/ dx D 0;

which proves that z is a weak solution of (1.1) corresponding to the initial datum z0.
Since z 2 ZT , we deduce, from the uniqueness part in Theorem 2.10, that z 2 YT and that
zn
�
�* z in L1.Œ0; T � W H˛=2.R// for the whole sequence.
Finally, let  2 C1c .R/. From the Arzelà–Ascoli theorem and the bounds (A.1)–

(A.2), it follows that the function vnW t 2 Œ0; T � 7!
R

R  .x/zn.t; x/ dx converges up to
a subsequence in C 0.Œ0; T � W R/. Moreover, by uniqueness, this limit holds for the whole
sequence and it is equal to

R
R z.t;x/ .x/dx, which implies that zn.t/*z.t/ inH˛=2.R/

for all t 2 Œ0; T �.

B. Pseudo-differential toolbox

In this section, uwill denoted a function in �.R/. First, we recall some well-known results
on pseudo-differential operators (see [2] or Chapter 18 in [29]). LetD D�i@x . We define
the symbolic class �m;q by

a.x;�/2 �m;q ”

´
a 2 C1.R2/;

8k; ˇ 2 N; 9Ck;ˇ > 0 W j@
k
x@
ˇ

�
a.x; �/j � Ck;ˇ hxi

q�kh�im�ˇ :

For all u 2 �.R/, we set the operator associated to the symbol a.x; �/ 2 �m;q by

a.x;D/u WD
1

2�

Z
eix�a.x; �/F .u/.�/ d�:

We state the following three results:
• Let a 2 �m;q . There exists C > 0 such that for all u 2 �.R/,

(B.1) ka.x;D/ukL2 � Ckhxi
q
hDimukL2 :
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• Let a 2 �m;q and b 2 �m
0;q0 . Then there exists c 2 �mCm

0;qCq0 such that

(B.2) a.x;D/b.x;D/ D c.x;D/:

• If a 2 �m;q and b 2 �m
0;q0 are two operators, we define the commutator by

Œa.xD/; b.x;D/� WD a.x;D/b.x;D/ � b.x;D/a.x;D/:

Moreover, there exists c 2 �mCm
0�1;qCq0�1 such that

(B.3) Œa.x;D/; b.x;D/� D c.x;D/:

As a consequence of (B.2), hDimhxiqhDi�m 2 �0;q . Therefore, by (B.1), we have

khDimhxiqukL2 D khDi
m
hxiqhDi�mhDimukL2 � C2khxi

q
hDimukL2 ;

for C2 > 0. By the same computations with hxiq instead of hDim, there exists C1 > 0

such that
C1khxi

q
hDimukL2 � khDi

m
hxiqukL2 :

Gathering these two estimates, we conclude that

(B.4) C1khxi
q
hDimukL2 � khDi

m
hxiqukL2 � C2khxi

q
hDimukL2 :

C. Proof of the weighted commutator estimates

This section is devoted to the proofs of Lemmas 3.1, 3.3 and 3.4.
In this section, u is a function inH˛=2.R/. Let � be defined as in (3.1) and for A > 1,

�j;A as in (3.2). Moreover, we define

ˆ.x/ D
p
j�0.x/j � hxi�.1C˛/=2 and ĵ;A D

q
j�0j;Aj:

Finally, let � 2 C1c .R/ be such that �.�/ D 1 on Œ�1; 1� and �.�/ D 0 on Œ�2; 2�c .
The proof of Lemma 3.1 is an extension of the proof of Lemmas 6 and 7 in [36]. Note

that, while the estimates in Lemmas 6 and 7 in [36] are stated for ˛ 2 Œ1; 2�, their proofs
extend directly to the case ˛ 2 .0; 2/. This yields estimates (3.4) and (3.5). However, since
estimates (3.6) and (3.7) are not symmetric in u, we cannot use Claim 3 in [36]. Instead,
we use the following estimates (which are also derived from the techniques in [36]).

Lemma C.1. Let ˛ 2 .0; 2/, T D jDj˛�D �D�jDj˛ . Then there exists C > 0 such that
for all u; v 2 �.R/, we have

(C.1) i

Z
.T u/v D �.˛ � 1/

Z
jDj˛=2.uˆ/jDj˛=2.vˆ/CR;

with

(C.2) jRj �

´
C
R
.u2 C v2/j�0j if ˛ 2 .0; 1�;

C
� R
u2j�0j C 1

A˛=2

R
.jDj˛=2u/2j�0j C A˛=2

R
v2j�0j

�
if ˛ 2 .1; 2/;

for all A > 1.
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Proof. The proof of (C.1) is a combination of the proofs of Claim 1 and Claim 2 in [36].
Following [36], we split T D T1 C T2, where

T1 D jDj
˛.1 � �.D//�D �D�.1 � �.D//jDj˛;

T2 D jDj
˛�.D/�D �D��.D/jDj˛:

First, we have arguing exactly as in Claim 2 in [36] that, for any ˛ 2 .0; 2/,

i

Z
.T2u/v D �.˛ � 1/

Z
jDj˛=2�.D/.uˆ/jDj˛=2.vˆ/CR2;

with
jR2j � C

Z
.u2 C v2/j�0j:

Now, we deal with the operator T1. Let us define a.x; �/D �.x/j�j˛.1� �.�// 2 �˛;0.
Then, following the computations in the proof of Claim 1 in [36], we have

i

Z
.T1u/v D �.˛ � 1/

Z
jDj˛=2.1 � �.D//.uˆ/jDj˛=2.vˆ/C

Z
. zT1u/v CR1;

with

zT1 D �
i

2
.@2x@

2
�a/.x;D/D �ˆŒˆ; jDj

˛.1 � �.D//�; jR1j � C

Z
.u2 C v2/j�0j:

To estimate j
R
. zT1u/vj, we cannot use Claim 3 in [36] due to the lack of symmetry.

Instead, we use classical pseudo-differential calculus estimates. Observe that the symbol
t1.x; �/ of zT1 belongs to the class �˛�1;�˛�2. In the case 0 < ˛ < 1, t1.x; �/ 2 �0;�.˛C1/.
Thus, the Cauchy–Schwarz inequality and (B.1) yieldˇ̌̌ Z

. zT1u/v
ˇ̌̌
D

ˇ̌̌ Z
.ˆ�1 zT1u/ˆv

ˇ̌̌
� kˆ�1 zT1ukL2kˆvkL2 � C

Z
.u2 C v2/j�0j:

In the case 1 < ˛ < 2, t1.x; �/ 2 �˛=2;�.1C˛/. By the Cauchy–Schwarz inequality, (B.1)
and then Young’s inequality, we getˇ̌̌ Z

. zT1u/v
ˇ̌̌
� kˆ�1 zT1ukL2kˆvkL2 � C

� 1

A˛=2

Z
.hDi˛=2u/2j�0j C A˛=2

Z
v2j�0j

�
;

for any A > 1. Moreover, by pseudo-differential calculus, (B.2), (B.1), and since the sym-
bols of the operators ˆ�.D/hDi˛=2ˆ�1 and ˆ.1 � �.D//hDi˛=2jDj�˛=2ˆ�1 belong
to �0;0, we haveZ

.hDi˛=2u/2j�0j � 2

Z
.�.D/hDi˛=2u/2j�0j C 2

Z �
.1 � �.D//hDi˛=2u

�2
j�0j(C.3)

� 2

Z �
ˆ�.D/hDi˛=2ˆ�1.ˆu/

�2
C 2

Z �
ˆ.1 � �.D//hDi˛=2jDj�˛=2ˆ�1.ˆjDj˛=2u/

�2
� C

� Z
u2j�0j C

Z
.jDj˛=2u/2j�0j

�
:

Gathering these estimates concludes the proof of Lemma C.1.
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Lemma C.2. Let ˛ 2 .0; 2/, S D ˆŒˆ; jDj˛�. Then there exists C > 0 such that for all
u; v 2 �.R/, we haveˇ̌̌ Z

.Su/v
ˇ̌̌
C

ˇ̌̌ Z
.Sv/u

ˇ̌̌
�

´
C
R
.u2 C v2/j�0j if ˛ 2 .0; 1�;

C
� R
u2j�0j C 1

A˛=2

R
.jDj˛=2u/2j�0j C A˛=2

R
v2j�0j

�
if ˛ 2 .1; 2/;

for all A > 1.

Proof. We split S D S1 C S2; where

S1 D ˆŒˆ; jDj
˛.1 � �.D//�; S2 D ˆŒˆ; jDj

˛�.D/�:

We first deal with the high frequency terms involving S1. Since 1 � � is supported
outside 0, S1 is a pseudo-differential operator of symbol s1.x; �/, which belongs to the
class �˛�1;�˛�2. In the case 0 < ˛ � 1, s1.x; �/ 2 �0;�.˛C1/, and in the case 1 < ˛ < 2,
s1.x; �/ 2 �˛=2;�.˛C1/. Thus, by arguing as in the proof of Lemma C.1, we deduce thatˇ̌̌ Z

.S1u/v
ˇ̌̌
�

´
C
R
.u2 C v2/j�0j if 0 < ˛ � 1;

C
�
1

A˛=2

R
.hDi˛=2u/2j�0j C A˛=2

R
v2j�0j

�
if 1 < ˛ < 2:

Observe that the same estimate also holds for j
R
.S1v/uj. Indeed, the proof is exactly the

same as the case 0 < ˛ � 1. In the case 1 < ˛ < 2, ˆ�1hj�ji�˛=2s1.x; �/ 2 �0;�.˛C1/=2,
so that ˇ̌̌ Z

.S1v/u
ˇ̌̌
� kˆ�1hDi�˛=2S1vkL2kˆhDi

˛=2ukL2

�
1

A˛=2

Z
.hDi˛=2u/2j�0j C A˛=2

Z
v2j�0j:

Moreover, by using (C.3), we deduce thatˇ̌̌ Z
.S1u/v

ˇ̌̌
C

ˇ̌̌ Z
.S1v/u

ˇ̌̌
�

´
C
R
.u2 C v2/j�0j if ˛ 2 .0; 1�;

C
� R
u2j�0j C 1

A˛=2

R
.jDj˛=2u/2j�0j C A˛=2

R
v2j�0j

�
if ˛ 2 .1; 2/;

Now we deal with the low frequency term involving S2. We follow the proof given
in [36] for the same type of operator. We remark that jDj˛�.D/u D k � u, with yk D
j�j˛�.�/. Then we can rewrite

Œˆ; jDj˛�.D/�u D

Z
k.x � y/.ˆ.x/ �ˆ.y//u.y/ dy:

We want to prove that the operator defined by the kernel

ƒ.x; y/ D k.x � y/.ˆ.x/ �ˆ.y//ˆ�1.y/

is bounded in L2.R/. For this, we need the three following results.
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Theorem C.3 (Schur’s test, Theorem 5.2 of [26]). Let p; q be two non-negative measur-
able functions. If there exists ˛; ˇ > 0 such that

(1)
R

RjK.x; y/jq.y/ dy � ˛p.x/ for a.e x 2 R,

(2)
R

RjK.x; y/jp.x/ dx � ˇq.y/ for a.e y 2 R,

then Tf WD
R

RK.x; y/f .y/ dy is a bounded operator on L2.R/.

Claim C.4 (Claim 8 of [36]). There exists C > 0 such that

jˆ.x/ �ˆ.y/j � C
jx � yj

.hxi C hyi/.˛C3/=2
if jx � yj �

1

2
.hxi C hyi/;

jˆ.x/ �ˆ.y/j �
1

hxi.1C˛/=2
C

1

hyi.1C˛/=2
if jx � yj �

1

2
.hxi C hyi/:

Lemma C.5 (Lemma A.2 of [36]). Let p be a homogeneous function of degree ˇ > �1.
Let � 2 C10 .R/ be such that 0 � � � 1, �.�/ D 1 if j�j < 1 and �.�/ D 0 if j�j > 2. Let

k.x/ D
1

2�

Z
eix�p.�/�.�/ d�:

Then, for all q 2 N, there exists Cq > 0 such that, for all x 2 R,

j@qxk.x/j �
Cq

hxiˇCqC1
:

LetƒDƒ1Cƒ2, whereƒ1 andƒ2 are restricted, respectively, to the regions jx � yj �
1
2
.hxi C hyi/ and jx � yj � 1

2
.hxi C hyi/. By using Claim C.4 and Lemma C.5,

jƒ1.x; y/j � C
1

hx � yi1C˛
jx � yj

.hxi C hyi/.˛C3/=2
hyi.1C˛/=2 � C

1

hx � yi1C˛
:

Then, by Theorem C.3, with p D q D 1, ƒ1 is the kernel of a bounded operator in L2.
Now we deal with ƒ2. By using Claim C.4 and Lemma C.5,

jƒ2.x; y/j � C
1

hx � yi1C˛

� 1

hxi.1C˛/=2
C

1

hyi.1C˛/=2

�
hyi.1C˛/=2

� C
1

hx � yi1C˛
C C

hyi.1C˛/=2

hx � yi1C˛hxi.1C˛/=2

� ƒ3.x; y/Cƒ4.x; y/:

Then, by Theorem C.3, with p D q D 1, ƒ3 is the kernel of a bounded operator in L2.
We computeZ

ƒ4.x; y/hxi
�1=2 dx � C hyi�.1C˛/=2;

Z
ƒ4.x; y/hyi

�.1C˛/=2dy � C hxi�1=2:

Then, by Theorem C.3, we deduce that ƒ4 is the kernel of a bounded operator in L2.
Gathering these estimates, we conclude that

kŒˆ; jDj˛�.D/�ukL2 � CkuˆkL2 :
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Therefore, by Young’s inequality, we getˇ̌̌ Z
.S2u/v

ˇ̌̌
D

ˇ̌̌ Z
vˆŒˆ; jDj˛�.D/�u

ˇ̌̌
� C

� Z
v2j�0j C

Z
.Œˆ; jDj˛�.D/�u/2

�
� C

Z
.u2 C v2/j�0j:

The estimate for j
R
.S2v/uj is similar. This concludes the proof of Lemma C.2.

Proof of (3.7). By integration by parts, we getZ �
.jDj˛u/@xv C .jDj

˛v/@xu
�
� D

Z �
jDj˛.�@xu/ � @x.�jDj

˛u/
�
v D i

Z
T uv;

with T D jDj˛�D �D�jDj˛ . Hence, we deduce from (C.1) thatˇ̌̌ Z �
.jDj˛u/@xvC .jDj

˛v/@xu
�
� C .˛ � 1/

Z
jDj˛=2

�
u
p
j�0j

�
jDj˛=2

�
v
p
j�0j

�ˇ̌̌
D jRj;

where jRj satisfies (C.2). Therefore, we conclude the proof of (3.7) by performing the
change of variable x0 D x�mj

A
.

Proof of (3.6). By direct computation, we getZ �
.jDj˛u/v � .jDj˛v/u

�
j�0j D

Z
vˆŒˆ; jDj˛�u �

Z
uˆŒˆ; jDj˛�v

D

Z
.Su/v �

Z
.Sv/u;

where S D ˆŒˆ; jDj˛�. Therefore, we conclude the proof of (3.6) by using Lemma C.2
and performing the change of variable x0 D x�mj

A
.

This finishes the proof of Lemma 3.1. Now we prove Lemma 3.3.

Proof of Lemma 3.3. By direct computations, we obtainZ
.jDj˛.u ĵ;A//

2
�

Z
.jDj˛u/2j�0j;Aj(C.4)

D

Z
.jDj2˛u/uj�0j;Aj �

Z
.jDj˛u/2j�0j;Aj �

Z
u ĵ;AŒ ĵ;A; jDj

2˛�u

D

Z
.jDj2˛u/uj�0j;Aj �

Z
.jDj˛u/2j�0j;Aj �

1

2

Z
uŒ ĵ;A; Œ ĵ;A; jDj

2˛��u:

By applying (3.6) to v D jDj˛u, we get thatˇ̌̌ Z
.jDj2˛u/uj�0j;Aj �

Z
.jDj˛u/2j�0j;Aj

ˇ̌̌
(C.5)

�

´
C
A˛

R
.u2 C .jDj˛u/2/j�0j;Aj if ˛ 2 .0; 1�;

C

A˛=2

R �
u2 C .jDj˛=2u/2 C .jDj˛u/2

�
j�0j;Aj if ˛ 2 .1; 2/:
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It remains then to estimate the term (C.4). By using the proof of Claim 7 in [36], we
know that for any ˛ > 0, there exists C > 0 such that for all u; v 2 �.R/,

(C.6)
ˇ̌̌ Z

.Œˆ; Œˆ; �.D/jDj˛��u/v
ˇ̌̌
� C

Z
.u2 C v2/j�0j:

We observe that the symbol of the pseudo-differential operator ˆ�1Œˆ; Œˆ; �.D/jDj2˛��
belongs to �2˛�2;�.1C˛/=2�2 � �˛;�.1C˛/=2, since ˛ 2 .0; 2/. Thus, it follows from (B.1),
(C.6) and Young’s inequality thatˇ̌̌ Z

uŒˆ; Œˆ; jDj2˛��u
ˇ̌̌
�

ˇ̌̌ Z
uˆˆ�1Œˆ; Œˆ; .1 � �.D//jDj2˛��u

ˇ̌̌
C

ˇ̌̌ Z
uŒˆ; Œˆ; �.D/jDj2˛��u

ˇ̌̌
�
C

A˛

Z
.hDi˛u/2j�0j C CA˛

Z
u2j�0j:

Moreover, arguing as in (C.3), we obtain thatZ
.hDi˛u/2j�0j dx � C

� Z
u2j�0j C

Z
.jDj˛u/2j�0j

�
:

By changing variable x0 D x�mj
A

, we deduce that

(C.7)
ˇ̌̌ Z

u ĵ;AŒ ĵ;A; jDj
2˛�u

ˇ̌̌
�
C

A˛

Z
.u2 C .jDj˛u/2/j�0j;Aj:

Therefore, by gathering (C.5), (C.7), we conclude the proof of (3.8).

Proof of Lemma 3.4. By Young’s inequality and (3.8), we obtain thatˇ̌̌ Z
jDj˛.u ĵ;A/.jDj

˛u/ ĵ;A

ˇ̌̌
�
1

2

� Z
.jDj˛.u ĵ;A//

2
C

Z
.jDj˛u/2j�0j;Aj

�
�

Z
.jDj˛u/2j�0j;Aj C

1

2

ˇ̌̌ Z
.jDj˛.u ĵ;A//

2
�

Z
.jDj˛u/2j�0j;Aj

ˇ̌̌
�

Z
.jDj˛u/2j�0j;Aj C

C

A˛=2

� Z �
u2 C .jDj˛=2u/2 C .jDj˛u/2

�
j�0j;Aj

�
;

which yields (3.9).

D. Proof of the non-linear weighted estimates

Proof of Lemma 3.6. Let j 2 ¹1; : : : ;N º. First we prove estimate (3.17). By the Cauchy–
Schwarz inequality, the Sobolev embedding PH 1=4.R/ ,! L4.R/ and 1=4 < ˛=2, we get
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that Z
j�j3j�0j;Aj �

� Z
�2
�1=2� Z

�4j�0j;Aj
2
�1=2

(D.1)

� C
kjDj1=4.� ĵ;A/k
2
L2
� C
k� ĵ;Ak

2
H˛=2 :

From the decomposition � D u �R, we have

(D.2) k� ĵ;AkH˛=2 � ku ĵ;AkH˛=2 C kR ĵ;AkH˛=2� ku ĵ;AkH˛=2 C kR ĵ;AkH˛ :

To deal with the second term on the right-hand side of (D.2), we use pseudo-differen-
tial calculus. Observe that the symbols ofˆ�.D/hDi˛ˆ�1,ˆ.1��.D//hDi˛jDj�˛ˆ�1

belong to �0;0. It follows then from (B.4), and then (B.2) that, for all v 2 �.R/,

kjDj˛.vˆ/kL2 � kvˆkH˛ � Ck.hDi˛v/ˆkL2(D.3)
� Ck�.D/.hDi˛v/ˆkL2Ck.1��.D//hDi

˛
jDj�˛.jDj˛v/ˆkL2

� C.kvˆkL2 C k.jDj
˛v/ˆkL2/:

Then, we obtain, by changing variable x0 D x�mj
A

,

kjDj˛.v ĵ;A/kL2 � C
� 1
A˛
kv ĵ;AkL2 C k.jDj

˛v/ ĵ;AkL2

�
;

so that

(D.4) kv ĵ;AkH˛ � C
�
kv ĵ;AkL2 C k.jDj

˛v/ ĵ;AkL2
�
;

for all v 2 �.R/.
Therefore, combining (D.1), (D.2) and (D.4) with v D R, we deduceZ

j�j3j�0j;Aj � C
ku ĵ;Ak
2
H˛=2 C C


Z
.R2 C .jDj˛R/2/j�0j;Aj:

Moreover, by using equations (1.3) and (3.13), we obtainZ
.jDj˛R/2j�0j;Aj � C

� Z
R2 CR4

�
j�0j;Aj �

C

.ˇt/1C˛
;

which concludes the proof of (3.17).
Now we prove (3.18). Using the Cauchy–Schwarz inequality, the Sobolev embedding

and the former estimates, we conclude thatZ
�4j�0j;Aj �

� Z
�4
�1=2� Z

�4j�0j;Aj
2
�1=2

� C
2
� Z

u2j�0j;Aj C

Z
.jDj˛=2.u ĵ;A//

2
�
C

C
2

.ˇt/1C˛
;

which is exactly estimate (3.18).
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Proof of Lemma 3.7. By using Young’s inequality and the decomposition u D RC �, we
deduce thatˇ̌̌ Z

jDj˛=2.u ĵ;A/jDj
˛=2.u2 ĵ;A/

ˇ̌̌
D

ˇ̌̌ Z
jDj˛.u ĵ;A/u

2
ĵ;A

ˇ̌̌
� 2

Z
u4j�0j;Aj C

1

8

Z
.jDj˛.u ĵ;A//

2

� C
� Z

�4j�0j;Aj C

Z
R4j�0j;Aj

�
C
1

8

Z
.jDj˛.u ĵ;A//

2:

Using (3.18), (3.13), (3.8), we have thatˇ̌̌ Z
jDj˛=2.u ĵ;A/jDj

˛=2.u2 ĵ;A/
ˇ̌̌

� C
�

2 C

1

A˛=2

�� Z �
u2 C .jDj˛=2u/2 C .jDj˛u/2

�
j�0j;Aj

�
C C
2

Z
.jDj˛=2.u ĵ;A//

2
C
1

8

Z
.jDj˛u/2j�0j;Aj C

C

.ˇt/1C˛
:

Furthermore, by using again (3.8) with ˛=2 < 1, we deduce thatˇ̌̌ Z
jDj˛=2.u ĵ;A/jDj

˛=2.u2 ĵ;A/
ˇ̌̌

� C
�

2 C

1

A˛=2

�� Z �
u2 C .jDj˛=2u/2 C .jDj˛u/2

�
j�0j;Aj

�
C
1

8

Z
.jDj˛u/2j�0j;Aj C

C

.ˇt/1C˛
:

This concludes the proof of Lemma 3.7.

E. Coercivity of the localized operator

To begin, we recall the definition of Hj given in (4.12):

Hj .u; u/ D

Z
.ujDj˛uC cju

2
� 2Rju

2/ j;A;

where Rj is defined in (2.5) and  j;A is defined in (3.3), and u 2 H˛=2.R/. Moreover, let

Lju D jDj
˛uC cju � 2Rju and Lu D jDj˛uC u � 2Qu:

It has been proved in Theorem 2.3 in [22] that the spectrum of L is composed by
one negative eigenvalue, the eigenvalue 0 and that the rest is the continuous spectrum
Œ1;C1/. Moreover, the eigenspaces associated with the negative eigenvalue and 0 are
one-dimensional vector spaces and the eigenspace of 0 is spanned by Q0.

Furthermore, from Lemma E.1 in [69], since we are in the subcritical case, we can
replace the eigenfunction associated with the negative eigenvalue byQ to get the coerciv-
ity property stated in the following theorem.
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Theorem E.1. Let ˛ 2 .1=2; 2/. Then there exists � > 0 such that for all u 2 H˛=2.R/,Z
uLu � �kukH˛=2 �

1

�

� Z
uQ

�2
�
1

�

� Z
uQ0

�2
:

Remark E.2. By using a scaling argument, the result of Theorem E.1 still holds if one
replaces L by Lj and Q by Rj , for j 2 ¹1; : : : ; N º.

As a consequence of the former theorem, we deduce a coercivity property for the
bilinear form Hj .

Corollary E.3. There exist � > 0, C > 0 such that for all A > 1, u 2 H˛=2.R/,

NX
jD1

Hj .u; u/ �
�
� �

C

.ˇt/˛
�

C

A˛=2

�
kuk2

H˛=2 �
1

�

NX
jD1

�� Z
uRj

�2
C

� Z
u@xRj

�2�
:

Proof of Corollary E.3. For all j 2 ¹1; : : : ; N º, we have from Theorem E.1 that

Hj .u; u/ D

Z
u
p
 j;AL.u

p
 j;A/C

Z
u.jDj˛u/ j;A �

Z �
jDj˛=2

�
u
p
 j;A

��2
� �ku

p
 j;Ak

2
H˛=2 �

1

�

� Z
u
p
 j;ARj

�2
�
1

�

� Z
u
p
 j;A @xRj

�2
C

Z
u.jDj˛u/ j;A �

Z �
jDj˛=2

�
u
p
 j;A

��2
:

By (3.15), (3.16), and the Cauchy–Schwarz inequality, for all j 2 ¹1; : : : ; N º, we deduce
that � Z

u
p
 j;ARj

�2
C

� Z
u
p
 j;A@xRj

�2
� 2

� Z
uRj

�2
C 2

� Z
u@xRj

�2
C 2

� Z
u.1 �

p
 j;A/Rj

�2
C 2

� Z
u.1 �

p
 j;A/@xRj

�2
� 2

� Z
uRj

�2
C 2

� Z
u@xRj

�2
C
Ckuk2

L2

.ˇt/˛
:

Observe from hDi˛=2 � 1C jDj˛=2 that

ku
p
 j;Ak

2
H˛=2 � c

Z
.u2 C .jDj˛=2u/2/ j;A � c

Z
.jDj˛=2u/2 j;A

C c

Z �
jDj˛=2

�
u
p
 j;A

��2
;

for a small positive constant 0 < c < 1. Since
PN
jD1  j;A D 1, we have

(E.1)
NX
jD1

Z
u.jDj˛u/ j;A D

Z
.jDj˛=2u/2 D

NX
jD1

Z �
.jDj˛=2u/

p
 j;A

�2
:
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Hence, by summing over j , we deduce that
NX
jD1

Hj .u; u/ � N
�
c� �

C

.ˇt/˛

�
kuk2

H˛=2 �
2

�

NX
jD1

�� Z
uRj

�2
C

� Z
u@xRj

�2�
C .1 � c�/

NX
jD1

� Z
u.jDj˛u/ j;A �

Z �
jDj˛=2.u

p
 j;A/

�2�
:

It remains to estimate the last term on the right-hand side of the former inequality. By
using (E.1) and direct computations,
NX
jD1

� Z
u.jDj˛u/ j;A �

Z �
jDj˛=2

�
u
p
 j;A

��2�
D

NX
jD1

Z �
.jDj˛=2u/

p
 j;A C jDj

˛=2
�
u
p
 j;A

���
.jDj˛=2u/

p
 j;A � jDj

˛=2
�
u
p
 j;A

��
D �

NX
jD1

Z �
.jDj˛=2u/

p
 j;A C jDj

˛=2
�
u
p
 j;A

���
jDj˛=2;

p
 j;A

�
u:

By arguing as in (D.3) and using 0 �  j;A � 1, we deduce that

NX
jD1

kjDj˛=2.u
p
 j;A/kL2 � C

NX
jD1

�
ku
p
 j;AkL2 C k.jDj

˛=2u/
p
 j;AkL2

�
(E.2)

� CkukH˛=2 :

Then it follows from the Cauchy–Schwarz inequality and (E.2) that
NX
jD1

ˇ̌̌ Z
u.jDj˛u/ j;A �

Z
.jDj˛=2.u

p
 j;A//

2
ˇ̌̌
� CkukH˛=2

NX
jD1

kŒjDj˛=2;
p
 j;A�ukL2 :

Finally, to estimate the commutator on the right-hand side of the former estimate, we will
rely on pseudo-differential calculus and argue as in the previous subsection. By (B.3),
we have that the symbol of ŒjDj˛=2.1 � �.D//;

p
 � belongs to �˛=2�1;�1 � �0;0, since

˛ < 2. Then it follows from (B.1) that

kŒjDj˛=2;
p
 �ukL2 � C

�
kukL2 C kŒjDj

˛=2�.D/;
p
 �ukL2

�
:

We recall jDj˛=2�.D/u D k � u, with yk D j�j˛=2�.�/, so that

Œ�.D/jDj˛=2;
p
 �u D

Z
k.x � y/

�p
 .x/ �

p
 .y/

�
u.y/ dy:

We want to prove that the operator T defined by the kernel

R.x; y/ D k.x � y/.
p
 .x/ �

p
 .y//;

is bounded in L2.R/. By Lemma C.5, we obtain that jk.x/j � C

hxi1C˛=2
. Since

p
 2

L1.R/, we deduce by Lemma C.3 that

kŒjDj˛=2�.D/;
p
 �ukL2 � CkukL2 :
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By changing the variable x0 D x�mj
A

, we get that

kŒjDj˛=2;
p
 j;A�ukL2 �

C

A˛=2
kukL2 :

We finish the proof of Corollary E.3 by combining all these estimates and by choosing
� small enough.
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