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Restricted families of projections onto planes:
The general case of nonvanishing geodesic curvature

Terence L. J. Harris

Abstract. It is shown that if y: [a, b] — S2 is C3 with det(y, y’, y") # 0, and if
A C R3 is a Borel set, then dim g (A) > min{2,dim A,dim A/2 + 3/4} fora.e. 6 €
[a, b], where g denotes projection onto the orthogonal complement of y(6) and
“dim” refers to Hausdorff dimension. This partially resolves a conjecture of Fissler
and Orponen in the range 1 < dim A < 3/2, which was previously known only for
non-great circles. For 3/2 < dim A < 5/2, this improves the known lower bound for
this problem.

1. Introduction

Let S? be the unit sphere in R3. Given a curve y: [a,b] — S? and 0 € [a, b], let 74 be the
orthogonal projection onto y(8)1 € R3, given by

me(x) =x —{x,y(0))y(0), x¢€ R3.
Let dim A denote the Hausdorff dimension of a set A C R3.

Theorem 1.1. Let y: [a, b] — S? be C3 with det(y, y’, y") nonvanishing. If A C R3 is
an analytic set, then

dimA 3
dim g (4) = min {2. dim 4, === + 3.

forae. 0 € a,b].

This partially resolves Conjecture 1.6 from [3] in the range dim A < 3/2, for pro-
jections onto planes. In the range 1 < dim A < 3/2, this was previously known in the
special case of non-great circles; due to Orponen and Venieri [15]. In the range 3/2 <
dim A < 5/2, Theorem 1.1 improves and generalises the previous best known lower bound
from [5], which was also specific to non-great circles.

Denote the s-dimensional Hausdorff measure in Euclidean space by #°. In R2, the
classical Marstrand projection theorem [11] states that if A € R? is a Borel set and P,

2020 Mathematics Subject Classification: Primary 42B10; Secondary 28E99.
Keywords: Orthogonal projections, Hausdorff dimension, Fourier transform.


https://creativecommons.org/licenses/by/4.0/

T.L.J. Harris 1864

denotes orthogonal projection onto the 1-dimensional subspace through e € S, then for
dimA <1,
dim P,(A) = dim A4, H'-ae.ec S!,

and fordimA > 1,
HY(P,(A) >0, H'l-ae.eecS!.

This was generalised to higher dimensions by Mattila. In R3, there are two versions of the
Martrand-Mattila projection theorem; one for lines and one for planes. The version for
lines is analogous to the above with S! replaced by S2. For planes, it states that if 4 € R3
is a Borel set, then if dim A < 2,

(1.1 dimm,(A) = dim A, H?-ae. v e S2,
and if dim A > 2, then
HE(my(A)) >0, H*ae.veS?

where 7, denotes projection onto v=. Restricted projection families can be formed by
constraining v to move along a one-dimensional curve y: [a, b] — S2, and the restricted
projection problem asks whether (1.1) still holds with a natural 1-dimensional measure
replacing the surface measure #2 on S2.

Without the assumption that det(y, y’, ") is nonvanishing, the equality

(1.2) dimmg(A) =dim A, ae.0 € [a,b],

can only hold (in general) for dim A < 1, and was proved in this range by Jarvenpdd, Jar-
venpii, Ledrappier, and Leikas [6] using the energy method of Kaufman [8]. Considering
the counterexample where y is a great circle contained in a plane P and A € P shows that
some extra assumption on Y is necessary for (1.2) to hold in general for 1 < dim A < 2.
The following conjecture is due to Fissler and Orponen; pg denotes projection onto the
1-dimensional subspace through y(6).

Conjecture 1.2 ([3], Conjecture 1.6). Let y:[a,b] — S? be a C3 curve with det(y.y’,y")
nonvanishing, and let A C R3 be an analytic set. Then

dim pg(A) = min{dim A4, 1}, a.e. 8 € [a, b],

and
dim7g(A) = min{dim 4,2}, a.e. 0 € [a, b].

For projections onto planes, progress was made by Fissler—Orponen [3], Oberlin—
Oberlin [13], Orponen [14], Orponen—Venieri [15], and by the author in [5]. The condition
dim A > 5/2 remains the best known sufficient condition that ensures #2 (g (A4)) > 0 for
a.e. 0 € [a, b]; this is due to Oberlin—Oberlin [13]. A comparison with some of the previous
bounds is shown in Figure 1.

The improvement over [5] in Theorem 1.1 stems from Definition 4.1, the application
of which is the main novelty of this work. Definition 4.1 reformulates the projection prob-
lem as an averaged inequality over collections of “bad” tubes. The proof of Theorem 1.1
follows a similar approach to [5] (which used ideas from [4, 9, 13, 15]), and proceeds by



Restricted families of projections onto planes 1865

[ | [ Oberlin-Oberlin
- - - Orponen-Venieri
—_— [5]
1.8+ N Theorem 1.1
R Conjecture
= L6) i
Y
&
g | |
8= 1.4
121 |
b |
| | | ‘ :

| |
1 125 15 175 2 225 25
dim A

Figure 1. The current and some of the previous a.e. lower bounds for dim 7y(A4), in the range
dim A € (1,5/2). The Orponen—Venieri theorem and the bound from [5] were for the special case
of non-great circles.

splitting an integral into a “good” and “bad” part. A self-similarity in the proof allows
the “bad” part to be bounded by re-using Definition 4.1, which circumvents the appeal to
the Orponen—Venieri lemma (Lemma 2.3 in [15]). Since the use of this lemma was the
only step in [5] specific to non-great circles, this allows the proof to be generalised to
curves in S? of nonvanishing geodesic curvature. The bound on the “good” part uses the
decoupling theorem for the cone in R3, from [1].

Section 4 contains the proof of Theorem 1.1. Section 2 is a proof of the refined
Strichartz inequality, needed in Section 4. Section 3 contains a derivation of the wave
packet decomposition needed in Section 4, and is independent of Section 2. Section 5 is a
discussion of some related problems.

2. Refined Strichartz inequality

Definition 2.1. Given a C3 curve y: [a, b] — S? with det(y, y’, y”") nonvanishing, for
each R > 1 let ]
_ J

Or = { 105 B10R1/2

where B > 1 is the smallest constant such that

, ez} N [a, b],

ldet(y.y".y")| = B™" and |ylcsan < B-
For each 0 € O, let

(0 (6
w®) = {r1y() + 12 L o VO <o o <RV g < R7).

[y (©)] |y xy)O) "~
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Let
Pr-1(L(y)) = {(0) : 0 € Op}.
Given § > 0 and t € Pr-1(I'(y)), let
(y xy")(6) y'(6:)
0;) :
ol T e T

|X1| < R1+5, |X2| < R1/2+8, |X3| < R1/2+8}.

T‘C,O = {X

Theorem 2.2. Let y:[a,b] — S? be a C3 curve with det(y, y’, y") nonvanishing. Let
B > 1 be such that

@.1) |det(y.y’.y")| = B,
and
(2.2) 1VIlc3pa,1 < B-

Then for any A > 1 and € > 0, there exists 6o > 0 such that the following holds for all
0 < 6 < 8g. Let R > 1 and suppose that

f= Z fr, where W C U T,,

TeWw T€PR-1(L'(¥))

and each Ty is an A-overlapping set of translates of Ty, intersecting B(0, R). Assume
that forall T € W,

(2.3) ||fT||L°°(B(O,R)\T) + SFP ] || fT ||L‘1(R3\I(T)) <A R—lOOOO ”fT”Zy
q€ll,2

with || fr ||2 constant over T € W up to a factor of 2. Let Y be a disjoint union of R/?-
balls in B(0, R), each of which intersects at most M sets 2T with T € W. Then for
2=p=6

1 M R™3/2\1/2-1/p 1/2
ey = Ceaa B R (Z=) (i)
TeWw

Proof. Assume that [a,b] = [-1,1].Fix 4 > 1, € € (0,1/2), 8o = €99, § € (0, §p),

R > min {3103/e’2105/e}’
and assume inductively that the theorem holds with [a, b] = [—1, 1] for all R < R34, for
all curves y satisfying (2.1) and (2.2), and for all B > 1.

Foreach t € Pp-1(I'(y)), letk =k (t) € Pr-1/2('(y)) be the element of Pp—1/2(T'(y))
which minimises |0; — 6|. For each «, let

(y < y")(6k) Y (k)

1 ; + X2 —
[(y x y")(6c)] ly"(0c)
|X1| < Rl-i-ﬁ7 |X2| < R3/4+8, |X3| < R1/2+8},

Oeo = {x +x3y(8e) :
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and

Y (0c)
17" (6|

LetP = UKE“?R—I/Z(F(V)) P. Given any 7 and corresponding k = k (1),

Pe = {0 =ay(®) +b + 00 a € 5 RIZ be Rz},

24 {(y x ¥)(62),y'(B))| < BTTR™Y4,
and
2.5) {(y x ¥)(82), y(B))| < BTTR™/2,

It follows that for each T' € Ty, there are ~ 1 sets (1 € P,y with 7' N 100 # @, and
moreover 7" C 10000 whenever 7' N 1000 # @. For each such T, let 0 = O(T') € P, be
some choice such that 7 N 1000 # @. For each 7, let

(y x y")(0c) y'(6r)
S:0 = 1x +x + x3y(6;) :
w0 = ¥ ool 2 i) T 0
| < RI+8/2. Ixa| < R1/2+8/2, Ixs| < R1/4+8/2},
and
s =g = 9 b V' (6:) S o L p1/4+8/27 1 < L pl/2+8/27
1—{ =ay(6;) + m+ 7,010 € 15 ,beqg }
ForeachT € W and S € Sy (1), let
fs = fs.,r :=ns fT.

where {ns}ses, is a smooth partition of unity such that

—10°
sup |[9slzaci0omn0.995) < R ,
q€[1,00]

where the implicit constant is absolute, with 75 supported in
Y (6:) (v xy) ()

X3 ——mM——— &
[y’ (02)] [(y x ¥")(0)]
Ix1] <1073, |xa| < 1072R7Y2, |xs] < 10—3R—1}.

{1 v(60) + x2

This partition can be constructed using the Poisson summation formula. By dyadic pigeon-
holing and by (2.3), there are dyadic numbers p and v such that

@6 Iflrer) S GogR2| Y > for o +R0( Y IIleli)l/z,

OeP (S,T)eWq TeWw
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where, for each [, W is a subset of
((S.T): T €W, O=0(T). S €Sery, Insfrl € v, 20)},
such that for any (So, Ty) € W,

(S, To) € W}l € [u,2p),

and with the property that
S, TYeWg = SNT #40.

The dyadic range of v was constrained; relying on the tail term in (2.6) to handle the
contribution from those fs 7 with || fs.7]l2 < R72%°°| fr|l». Hence

||fS,T||L°°(]R3\0.99S) + Sl['lp] || fsaT”Lq(R3\1.1r(T)) <A R™7000 ”fS,T”Za
g€(l,2

for all O and (S, T) € W, where the implicit constant is absolute.
For each « and O € P, let {On}oy be a finitely overlapping cover of 10000 by
translates of the ellipsoid

Y (6c) . (v xyN(6e)
'@l Ty x vy
(l1 P + (2| RTV42 o (x| RTV/2)2)12 < R1A4/2),

{¥1700 + %2

Using Poisson summation again, let {ng_ } oge@ be a smooth partition of unity such that

on 1030,
Z non = 1,
O0n€@n

and such that each ng_ satisfies

Imogllee < 1, |InQDI|Lw(R3\QD) < R—10000

and
Inog (x)| < dist(x, 0m) 1% Vx e R,

with 7o, supported in

Y (6c) (v xy")(6) —1/4 -1/2 —3/4
§17(0) + 62— +§ ; HE =R &l =RV & =R :
1760+ 8 i1+ 5 el ’ ’ }
By dyadic pigeonholing,
<
H Z Z fS’THLp(Y) < log R H Z Z Mo S5 ‘ Lr(Y)
O (S,T)eWg O (S,7T)eWg

1/2
+ AR rI3)

TeWw
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where, for each [J, Y is a union over a subset of the sets O, and 1y is the correspond-
ing sum over 79, such that each Qg C Y intersects a number # € [M'(0),2M’'(0))
different sets 3S with (S, 7)) € W, up to a factor of 2. By pigeonholing again,

H Z Z NYq fS’T‘LP(Y) S (10g R)2 H Z Z nYDfS,T‘

O (S,T)eWn OeB (S,T)eWn

Lr(Y)

where |Wg| and M’ = M’(0) are constant over (1 € B up to a factor of 2. By one final
pigeonholing step,

HZ Z leufs,THLp(Y)f,logR”Z Z nYDfS,T‘

OeB (S,T)eWn OeB (S,T)eWn

Le(Y")

where Y’ is a union over R'/2-balls Q C Y such that each ball 2Q intersects a num-
ber # € [M"”,2M") of the sets Y in a set of strictly positive Lebesgue measure, as []
varies over B. Fix O C Y’. By the decoupling theorem for generalised C3 cones (see
Exercise 12.5 in [2]), followed by Holder’s inequality,

HZ > nYDfS,T‘

OeB (S, T)eWg

<, B0 Re/lOO(M//)1/2—1/p ( Z H Z WYDfS,T‘

OeB (S,7)eWn
B 1/2
+ RO IfIE)
TeWw

Lr(Q)
p )1/17
LP(20)

Summing over Q gives

I/ lrcry S Ce(log R)'%° B0 R0 (M) /217

X ( Z H Z fs.r Iij(YD))l/p n AR_goo( Z ||fT||§)l/2,

OeB (S, 7)eWg TeW

This will be bounded using the inductive assumption, following a Lorentz rescaling.
For each 0 € [—1, 1], define the Lorentz rescaling map L = Ly at 6 by
Y'(6) (y x y)(0) ]

0
L[xl y(0) + x2 Ol TR0 <) 0)

Y'(9) 12, >xyH0)

= 0) + RV* R L
O+ R e TR @)
et Ly@))
~ Y
=1 -1, 1].
O e P
Then for any ¢ € [—1, 1],
gy LT @)

LNl -
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and
() = 5@ (LY ($)  (L(y(@), LY () w51 (LY ()
IL(y(#)) [L(y(o)I?
Hence
1 3/4
det()’;’ 77/’ )7//) = m det(L oY, Lo y/v Lo )/N) = |L o y|3 det(y, ylv J/N)-

Lete = (10°B'%)~! and for fixed € [-1 +¢&,1 —¢], let
P@) =70+ RV9). ¢ el-eel

The assumption that ||y||¢3[—1,1) < B yields

1 <|L(y(¢))| <1+ 10Be, Vp c[d—eR™V* 6+ eR™V4.
Similarly,

IL(y'(¢)) — L(Y'(0))] < 106 BRY*, V¢ € [0 —eR™* 0 + R4,

IL(y"($)) — L(y"(0))| < 10e BRY*, V¢ [0 —eR % 6 + eR7V4,
and

ILy"(¢)| < BRY?, V¢ e[0—eR™V* 0+ RV
It follows that
det(.7".7")| = 2B)~!
on [—e¢, €], and that
||J7||C3[—s,a] <2B

(the calculation for the third derivative is omitted).
For each O € B, given (S,T) € Wn, let gs,7 = fs,7 o L, where L = Lo, o) Then

3/(4p)
2.7 H > fsr Loy = 8 H > gS,T’

(S,T)eWq (S,T)eWn

LP(L7Yg)

The inequalities (2.4) and (2.5) imply that for each (S, T) € Wg, the set L™!(S) is a
equivalent (up to a factor 1.01) to a box of length R/2%/2 in its longest direction parallel
to L' (y x y')(6;) and of length R/4+3/2 in its other two directions. The ellipsoids Q
are rescaled to R'/4+8/2_palls L=1(Qg). Moreover, it will be shown that

g 7'(6:) 7 x 7))
. er v v y :
@8) L@ € {nF@) +xgg + v et

1< x1 <201, |xa| < (LODR™Y4, |x3] < R—I/Z}.

To prove this, let

V' (62) (y x y")(6:)
= 91; ’
=Ry O T el €
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where
x1 €[1,2], |x2] <RY? and |x3] <R

The vector (7 x 7')(6;) is parallel to L= ((y x ¥")(8;)), since L= ((y x y")(#y)) is ortho-
gonal to ¥(6;) and ¥’ (6 ). The inequality

IL7N((y x y")(0)] = R7Y2 |(y x ¥')(82)]

gives
L_l((yxy’)(Gt)) < p-l/2
@9 (e Z=omel <8
Moreover,
L@t (LY (62)))
Lx,
(2 |nL(y<9,»L(L(y'(0r)>)|H
Y (67) (y xyN(0) \ L@yt (LY (6:)
= L —= L s
(2 <|y'(er)|>“3 (|(y><y/)(9r>|) |nL(y(9,))l<L<w(9r)))|>‘
(2.10) < (1.0O1)R™V/4,

For the direction L(y(6;)),

L)
TLG@))

Combining (2.9), (2.10) and (2.11) gives (2.8).
Inductively applying the theorem at scale R'/? therefore gives

@11 (£ ) = x1 LGB+ O(R™Y4),

10 M’/ R™3/4\1/2-1/p 1/2
(2.7) S Cesa B /ER35/4R3/(4P)(W) (> lesrl3)
= (S.T)eWg

10 M’'R3/2\1/2—1/p 1/2
= Copa B R (Z) (Y psal)
o (S.T)eWg

for each O € B. Hence

I fllze

10 M'M"R™3/2\1/2-1/p p/2\1/p
E Ce,&,A BlO /5 R4€/5<W) ( Z ( Z ||fS,T||%) ) .
= OeB  (S,T)eWy

Using || fs,7112 < | frl3/ . this is

10 M'M"R™3/2\1/2=1/p /|B||Wg|\ /P 1/2
S Coa Bl poers (ML) T (BIEED P (5 )
TeW
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The second bracketed term is < 1, since

Wip= Y uz) Y w~) > > 1=BWl

TeW OeB TeW: OeB TeW: (ST)GWD
O=00(T) O=0(T) 7T'=

It remains to show that M'M” < uM.Let Q C Y’ be any R'/2-ball. By definition of
and M,

TR YD YD SNED YED SHED MEEED Sl D!

TeW: OeB: (S,7)eWq OeB TeW: (S, T)EWD OeB (S,T)eWq:
2TNQ#Y O=0(T) T'=T O=0(T) 17'= 2TNQ#D
2TNQ#0

By definition of M’ and M",

Al I < /m(QDOZQ)
D D D D N ELE]

OeB: OeB: OpCYpg
m(Yon20)>0 m((Ygn20)>0
SHD D JD oL
Ok omcvn (s.ewy: "B N20)
m(YoN20)>0 0ON3S#%
- Y >y m0enY
OeB: (S, T)eWg OQpCYno: m(Yo N20)
m(Ygn2Q)>0 0ON3S#0
@.12) = Yy Yy, M9nn?9)
OeB: (S,T)eWq: OnCYpy m(¥o Q)

m(YoN2Q)>0 2TNQ+#H

Y isum

OeB (S,T)eWq:
2TNO#D

A

The inequality (2.12) above follows from the observation that if Qg N 2Q # @, and if
(S, T) € W is such that Qg N 3S # 0, then 2T N Q # @. To prove this, recall that
L~Y(S) is equivalent (up to a factor 1.01) to a box of length R'/2%3/2 in its longest direc-
tion and of length R'/4%3/2 in its other two directions. The sets L~!(Qp) are R'/4+8/2.
balls. Therefore Qg N 3S # @ implies that Qg € 100S < 1.57, which yields that 27 N

Q # @ since Qo N 20 # 0. |

3. Wave packet decomposition

Throughout this section, assume that y: [a, b] — S? is C? with unit speed, that

3.1) ly(@) —y(@)| <27'° and [y'(6) —y'(¢)| <27,
forall 6, ¢ € [a, b], that
(3.2) Y1 #0,  where y = (y1.72,¥3),
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and that
(3.3) det(y,y’,y") > 0.

To simplify notation, the convention N = {0, 1,2, ...} will be assumed.

Definition 3.1. Let y: [a,b] — S? be a C? unit speed curve satisfying (3.1), (3.2)
and (3.3). Let o > 0 and ¢ € (0, 1]. For each k > 0, let

(3.4) Or ={a+027¥21:1eNN0,(b—a) 022},
Foreach k € [0, j] N N, if k < j then for each 6 € O, let
(3.5) (0. j.k) = {Ai(y x¥)(O) + A2¥"(0) + A3 y(0) :
2j—2 SAI §2j+2’ |A2| Sez—k/Z-l—j, _2—k+j+2 §A3 < _2—k+j—2},
and
(3.6) (8, j.k) = {M(y xy)(O) + A2y"(0) + A3y (6) :
_2j+2 <A < _2j—27 |/\2| 582_k/2+j, 2—k+j—2 EA_?, 52—k+j+2}‘
If k£ = j then for each 6 € ©, let
B7) 0., 7) = {Ay xy)(O) + A2y () + A3 7(0) :
2772 <Ay < 27F2) o] < £2772, |As| < 4,
and
(3.8) v (8,].)) = { My xy)O) + 127" (0) + A3y(6) :
—2I%2 <)y < 2772 Ay < £27/2) |As] < 4.

Let
A;:k ={17(0,j,k): 0 € O}, A;k ={t (0,j,k):0 € O},

— AT -
Ajp = Aj,k U Aj’k,
and

oo J
A=J U A

Jj=0k=0

A= U A

jzJ J<k<j

Given J > 0, let

and

A0 = U U {r € Ajy : dist(6; : {a,b}) > 100m™" max{s,Q}Z_k/z},
j>2J J<k<j

where m is the minimum of |det(y, y’, )| on [a, b].
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Given § > 0, foreach j, k and each v € A x let

T, = T2 ={T = (6 + a7/ 60) +ax(y x ') (6)
+ {AIV(QI) + A2 V/(er) + As(y x V/)(er) :
|12|,|A3| Szk/Z—j-i—ké” |AI| §2k_j+k8},

(a2, a3) € p—10-j+k/24ks 72 o 2—10+k—j+k8Z}'

The parameter J should be thought of as morally equal to 1, and is only used to
exclude low frequency pieces. For any t € A and constant C > 0, let Ct be the box with
the same centre as t but with side lengths scaled by C.

Lemma 3.2. Let y:[a,b] — S? be a C? unit speed curve satisfying (3.1), (3.2) and (3.3).
Let s € (0,1] and ¢ > 0. There exists a constant Cy, such that, if 11 € Aj, x,, T2 € Aj, k,,
and

(3.9) 1.017; N 1.017, # @,

then
lj1—jol + ki —k2| <C and |6y — 0, < C27F1/2,

+
J2,k2’ ;

ok’ then

and such that if 7| € A]'.t,kl and 15 € A orif 11 € A;,kl and 15 € A
ki+ky <C.

Moreover, there exists a constant K, depending only on y and ¢, such that if ky,k, > K
and (3.9) holds, then

(3.10) 67, — 0r,| < Ce27%1/2,
Proof. Tf 1.017y N 1.017, # @, let
GBI Ay x y)(0z) + A2y (0r) + A3y (6z,)
= w1 (y X y)(0r,) + u2y'(0z,) + nsy(0z,)

be a point in the intersection, where each side satisfies the conditions in any of (3.5), (3.6),
(3.7) or (3.8), multiplied by the factor 1.01. Then

(3.12) lj1 — j2| <5,

by comparing norms on either side. By symmetry, it may be assumed that ky < k,. If
sgn A1 # sgn i, then by (3.1),

A1(y x ¥)(0z) + A2y (0z) + A3y (Oz,) — 1 (y x ¥)(0z,)| = 27173,

and therefore k, < 100 by (3.11) and the triangle inequality. This shows that all con-
clusions of the lemma hold if sgn A1 # sgn p; (assuming that K > 1000 and that C >
2190 max{1, b — a}), so assume that sgn A; = sgn 1. By (3.11) and (3.12),

(3.13) A1y x ¥)(0z) = iy x ¥)(6r,)] < 271 7F1/248,
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The inequality
lv—Aw|>|v—wl|/2, VYAe[0,1] Yv,w e S?*with (v, w) >0,
together with (3.1), (3.13) and the assumption sgn A = sgn 1, gives
(3.14) (7 X ¥)(0) = (v X ¥)(0,)] < 27912415,
By (3.2), (3.14), the mean value theorem and the identity
(v xy) = —det(y.y".y") ¥,

it follows that
o—ki/2+15

3.15 O — 0| = '
( ) |0z, | < min|yi det(y, v’ y")|

A similar argument gives that
|9‘51 - 912| < 52_k1/2’

provided k; and k, are sufficiently large depending on ¢ and y.
If k1 = j; then the lemma follows, so assume that k; < j;. By the generalised mean
value theorem and the assumption that y is C2,

(3.16) y(©) =y(@) + (0 —9)y'(¢) + %(9 —¢)?y"(9) +0(10 —¢I*)

for any 6, ¢ € [a, b], where the rate of decay to zero in the error term is uniform in ¢
and 6. Hence

(r(0).(v x¥)(@) = %(9 — ¢)* det(y(¢).7'(¢). V" (@#) +0(|0 — ¢[*).

Using (3.11), (3.15), letting 6 = 6;, and ¢ = 6,, and taking the dot product of both sides
of (3.11) with y(6y, ), gives

Az — % (0, — 0z,)? det(y(0z,). ¥’ (Bz,). ¥ (0x,)) — 1 0(|6z, — 0, %)
<C, 2j2—k1/2—k2/2,

for some constant C, which may depend on y. Since [A3| 2 [2/17k1| and sgn A3 =
—sgniA; = —sgn g, and since the decay to zero in the error term is uniform, the left-
hand side is > 2/177%1 provided k; and k, are sufficiently large depending only on y. This
implies that k, < kq, and therefore |k — k2| < C provided that C is sufficiently large
(depending on y). ]

Lemma 3.3. There exist constants ¢ > 0, € € (0, 1] and J; > 0 such that for all J > Jy,
there is a partition of unity {Vr¢},cas subordinate to the cover {1.01t : t € A’} of

U =

teAt0
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such that for each t € A’° N A i k> the function V- is smooth and satisfies

N )
G1n |(5) Vel + )| S 27 x @)
+ 1272y O+ 127 v,y (00))

foralll e N, t e Rand x,v € R3.
Given any § > 0, for every v € A there exists a smooth partition of unity {nr}reT,
subordinate to the cover T, = T? of R3, such that

d\! o
|(5) e+ 1) 1127 My !
+ (277K () (O)) [P+ 127 7KK (o, (y x ) (00))
foralll e Nt eR, x,veR3*and T € T,.

Proof. Fort € AT, let

ge(x) = g0(4.005 + (x,y(6:))),

and fort € A7, let
gr(x) = g0(4.005 — (x, y(61))),

where g¢ is a smooth function on R with 0 < g¢ < 1, go(x) = 1 for x > 1/1000 and
g(x) = 0for x <0. Choose J; large enough and ¢ small enough to ensure that if J > J;,
if t € A andif ©’ € AN A;j, then go(x) = 1 forall x € r N (1.01)7’; such a choice
of J; and ¢ exists by the angle condition (3.10) in Lemma 3.2, and by (3.16).

By translating and rescaling a fixed bump function on the unit cube, for each t € A
let f; be a smooth bump function which is equal to 1 on , nonzero in the interior of 1.017,
with fz > 1/100 on 1.0097 and with f; = O outside 1.017. Let J > J. If t € Aj ;. N AY
with k < j, let

15 N
(3.18) Ye(x) = S fr0 € (1.017)°,
0 x € R3\ (1.017)°.

Fort € Aj; N A7, let

e x) 0
(3.19) Ve (x) = Yoo e € (1.017)°,
0 x € R3\ (1.017)°.

Then ) a7 Yo (x) = 1for x € (J,cps T, by the choice of J; and ¢.
It will be shown that if the constant o in (3.4) is small enough, and if J; is large
enough, then for any v € Ajx N A7° withk < j,

(3.20) 1.017 € U 7.

e’
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If r € AT (which can be assumed; the argument for r € A~ being similar), this follows
from the following argument. Given

1.0l 5 x = A1(y X )//)(er) + Az V/(et) + A3y(67)

— 4 A’Z
=103+ Ty G )

) + 0@/,

let

+ Az
F 0 didet(y(0:), ' (62). v (6r))
Choose j’ such that 2/'~1 < A; < 2/'*! and define k’ by

27K < dist(x, span{(y x y)(0'), y'(8")}) < 2/ K'+1,

0'=6

If J; is chosen sufficiently large and ¢ is sufficiently small, then (by (3.16)) the para-
meter k’ is well-defined and satisfies |k — k’| < 1, k¥’ > 0, and moreover

{x,y(0")) <0.
If k' < j’, choose 8, € O such that
|9/ _ 91,| < 2_k//2Q~
Then (by (3.16)), if J; is sufficiently large and then p is chosen sufficiently small (depend-
ing on ¢),
272 < (x, (y x Y)(0) <2772,
(o, ¥/ (0))] < £2/ K2,
—2/"7KF2 < (x y(6p)) < =2/ K2,
By letting 7' € A/, N AT be the box corresponding to the angle 6./, this proves (3.20).
If k' > j’, the above argument still works by taking 6,» € ©; instead. The covering prop-
erty in (3.20) implies that the denominator in the definition of ¥ in (3.18) is bounded
away from zero on the support of the numerator, and therefore (by Lemma 3.2) v, is
smooth and satisfies the inequalities in (3.17) whenever € A7 N A ik with k < j. For
the first part of the lemma, it remains to prove (3.17) in the case k = j.

For the case k = j, it will be shown that if the constant g in (3.4) is small enough, and
if Jj is large enough, then forany v € A; ; N AY-°,

(3.21) (1.01D) \ {x & (x.y(6)) > 4.005, € | J 1.0097".

e’

To see this, given x € (1.017) \ {x : (x, y(6;)) > 4.005}, write
x =21y x y)(0) + A2¥'(0c) + A3y (6:)

_ / A2
=100 e G @)

Choose j’ such that 2/'~1 < A; < 2/"+1 If

(3.22) —4 < (x,y(6;)) < 4.005,

)+ 0(1).
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then let k¢’ = j’ and choose ;s € ®;s such that
10— 6u] <2770,
Then (by (3.16)), if J; is sufficiently large and then p is chosen sufficiently small (depend-
ing on ¢),
V2 < (x, (y x Y)(6)) <2742,
|{x, ¥ (6:))] < £277/2,
—4.036 < (x, y(0y)) < 4.036.
If (3.22) does not hold, then
—4.04 < {x,7(6) < —4,
In this case, let k¥’ = j’ — 1, and choose 0, € @} such that
16" 6] <277
Then (by (3.16)), if J; is sufficiently large and then p is chosen sufficiently small (depend-
ing on ¢),
272 < (x, (y x ¥)(0r)) < 27F2,
[(x,y'(6:))| < 827" 7K/2,
—27" K2 < (x, y(6r)) < =272,

In either case, by letting 7/ € Aj/ N AT be the cap corresponding to angle 0y, this
proves (3.21). This implies that the denominator in the definition of ¥; in (3.19) is bound-
ed away from zero on the support of the numerator, and therefore (by Lemma 3.2) v, is
smooth and satisfies (3.17) whenever € A;; N A7+°. This proves the first part of the
lemma.

The second part of the lemma is straightforward. ]

Definition 3.4. Let § > 0. Let ¢,0 > 0 and J; > 0 be parameters ensuring the existence
of the partition of unity in Lemma 3.3, and let J > J;. Givenabox 7 € A N A7 and
T € T, = T, define

Mr f = nr(f * o),

for each Schwartz function f.
Let ¢ be a bump function equal to 1 on B3(0, 1) which vanishes outside B3(0, 2).

Lemma 3.5. Let e, 0 > 0 and J1 > 0 be parameters ensuring the existence of the partition
of unity in Lemma 3.3, and let J > Jy. Let jo € N, let

by (x) =20 p(27x), x e R3,

let a € [0, 3], and let €, 8, oy > 0. For any finite Borel measure . on B3(0, 1), and any
J > Jy, there is a decomposition

H*@jg = g + Up,
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where
Mg = Hg,jo, a8, and  pp = b, jo,J .80

are complex-valued continuous functions supported in B3(0,27 5), and

(3.23) =) D > D Mr(uxdy).

J>2J kelje,jl t€Ajx T€T,,
k>J

where
Tep = {T € T, : u(4T) > 2107keo/2-aG=Y - = T\ T,

and the sum in (3.23) converges in L (R3).

In the proof of the main theorem, only the behaviour of p on tubes of radius at
least 2770 is considered, so there is no loss in convolving ;& with the bump function above,
and this (crucially) localises the frequencies to the ball of radius ~ 270.

The precise exponent in the “bad” part wp is defined as above in such a way that the
average L' norm of the measures mgy/up can be controlled by re-using Definition 4.1,
using the strategy below.

Proof of Lemma 3.5. Most of the lemma follows by defining 15 as in (3.23) and by defin-
ing weg = p * ¢j, — p; the only nontrivial thing to check is that the sum in (3.23)
converges in L*°. For this it suffices to show that for any 7" with 7(T') € A; ¢ and j > jo,

| M1 (w * ¢jy) | oo Sy 2007V

for any N > 0. By Hausdorff—Young, the definition of M7, and the assumption that p is
finite, it suffices to show that for j > 2 j,

(324) [V - dioll, w277,
By the Schwartz property of ¢,

m(t)

”Wr ‘1/5\10”1 = ||$J\0”L1(1.01r) SN 20/—Jjo)N’

where m(7) denotes the Lebesgue measure of 7. By replacing N with 3N, this gives (3.24)
and proves the lemma. ]

Lemma 3.6. Let § > 0. Let &,0 > 0 and J1 > 0 be parameters ensuring the existence of
the partition of unity in Lemma 3.3. If J > Jy is sufficiently large, and if T € A N A7,
then

IM7 (e % §jo) 11 <n 22 u@T) + min{2™7V 270N} (R,

forany T € T, and any N > 1.
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Proof. If j > jo + J/10, the inequality follows by Cauchy—Schwarz, Plancherel and the
Schwartz decay of ¢. Assume then that j < jo + J/10. By the definition of M7 (i * ¢5,),

Ve(x — )| dx d(u % ¢
”MTMHIS/15T/y+2/8?|w (x = y)| dx d(p  $j,) ()
+/15T /T\( 42i57) Ve = )| dx d(* ¢5,) ()
: y+2787
" /1.@\(1 5T)/;" |K\ﬂ/r(x = )| dx d(p* ¢jp)(y).

where 7 is the “dual” box to T centred at the origin; with axes parallel to T but reciprocal
side lengths. The first integral is < 2378 (i % ¢j,)(1.5T), which is smaller than 2378 1,2T)
since k > J and j < jo 4+ J/10. The second integral is <y 27/¥ (1 * 9j,)(1.5T) by
Lemma 3.3 and repeated integration by parts. Similarly, by Lemma 3.3 and repeated integ-
ration by parts, the third integral is

SN / dist(y, 7)™V du(y) < 27N w(R?),
R3\(1.57)

if N’ is chosen large enough. This proves the lemma. ]

Lemma 3.7. Let § > 0. Let ¢,0 > 0 and J1 > 0 be parameters ensuring the existence of
the partition of unity in Lemma 3.3, and let J > Jy. Then there exists K1 > 0 such that if
te€AjrNAY and

(3.25) 0 — 6] = 27K/ 9 € [a,b],

then fork > Ky, N > 1, T € T and for f € L'(R?),

o Mr f L1362y Sn 27NV m(D) || f 1.

Proof. By identifying the complex measure wgs M f with its Radon—Nikodym derivative
with respect to K 2

woadtr ) = [ SO [ @ € [ erep@)ei @ at)ae]ay.
R3 R3 R
for any x € y(60)*. It therefore suffices to show that
‘/ nr(x + 1y(0)) 2t EYO) dt‘ <N 27V Veer Vx eR3.
R

By repeated integration by parts, it suffices to show that forallt e R,/ > 1, £ € 7 and
x € R3,

d\!
(3.26) |(5) nre+ 17O <027 (@)1
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Define ¢ = |6 — 6;|. The assumed lower bound (3.25) on &, together with (3.16) and the
assumption that y is C? with det(y, y’, ") nonvanishing, yields

(€. ()| 2 2/*, VEer,
provided £ is sufficiently large. Hence to prove (3.26) it suffices to show that
d\! j—ké 2\]
(5) e+ ov@)] s @78 viz1.
By Lemma 3.3 and (3.16),
d !
|(5) nrte+1v0)]

<1 |(v(). y(60) 2 1 [(y(6). v/ (6)) 2727

+ [{y(©). (¥ x ¥y")(6r)) 2]—k/2—k8|l
< (KR | (oikI2KBYL (2] K2k < (2] -k8)]

where the last inequality follows from the assumed lower bound (3.25) on €. ]

4. Proof of the main theorem

For a Borel measure ;1 on R3 and « € [0, 3], let

_ p(B(x.r))
calw) = sup —=—"1="
xeR3 r
r>0

Definition 4.1. Let y: [a, b] — S? be a function and let & € [0, 3]. Define ag = ag(ct, y)
to be the supremum over all «* > 0 such that there exists § = §(«, @™, y) > 0and C =
C(a,a*,y) > 0 such that

@.1) / b(ﬂe#u)( U p)do = cu®*)r,

DeDy

for all Borel measures . on the unit ball with ¢ (1) < 1, for any R > 1, and for any collec-
tion of sets {Dg : 6 € [a, b]} such that the integrand of (4.1) is measurable, where, for each
6 € [a,b], Dg is a disjoint set of at most (R3)R*"/2 discs in g (R3) of radius R~1/2.

The proof of the main theorem will be broken up into several separate lemmas. First,
Lemma 4.2 deals with the contribution from the “bad” part of the measure, whilst Lem-
mas 4.3, 4.4, 4.5, 4.6 and 4.7 deal with the “good” part. Lemma 4.8 converts everything
into a lower bound for & in Definition 4.1, which is then used to obtain the main theorem.

Lemma 4.2. Suppose that y: [a ,~b] — 82 is a C? unit speed curve satisfying (3.1), (3.2)
and (3.3) on [a, b, and let [d,b] C (a,b). Let a € [0, 3] and € € (0, 1/100). If oy €
[0, ap(cx, 1, y|[5 5])), then there exists §' > 0 such that for any § € (0,8, there is a positive
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integer Jo such that for all jo > J > Jo with J € [(jo€)/1000, 1000j¢ €] and for all Borel
measures (L on the unit ball with cy (1) < 1,

b
[ / \moain| 3% d6 < 277% W(R),

a

where [ty = W jo J.a.e.5.a) 1S defined by (3.23) with respect to y: [a,b] — S2.

Proof. Let§” =§"(a, ) € (0,1/100) be an exponent that works in (4.1) with o* replaced
by o + 1008” and with A = 1, for some positive §’, and after taking 8’ smaller if neces-
sary assume that §’ < (§”€2)/100. Let § € (0, §'] be given. Let j, and J be such that
jo = J = Jy, where Jy is implicity chosen sufficiently large (depending on §) so that the
argument below holds. By Lemma 3.5,

b
(4.2) / / |7os1ep| dH? dO

5
§/~ ) IED S /lng#MT(/L*quO)MJ{’de

4 j>2J kelje,jl 1€Ajx T€T,p
k>J

5
4.3) =/?; >y > > /|7T9#MT(M*¢jo)|d=7€2d9

Jj>2J kelje,j] TEA k! TeT,,
k>J |9, —|<2k(-1/2+6)

b
CONEY D 3D MDD 3 L ey S Prn

J>2J kelje,j] TEA k! TeT,y
k>J |9[_9|22k(—1/2+8)

By Lemma 3.7, the contribution from (4.4) is
58,5 2_J/'L(R3)-

If Jy is sufficiently large, then by Lemma 3.6 the contribution from (4.3) is

b
s277u®H+ Y Y > > 2¥u2r)do
i>2J kelje,j1° ¢ TEA k! TeT,,
k>J |0, —0| <2k(=1/2+8)
@5 S22 p®)+ Y Y 2" x (B,
j>2J ke€lje,j]
k>J

where #! is the Lebesgue measure on [a, b],

Bjx = {(6,x) € [a,b] xR : x € Bj1(0)),

B x(6) = g J 2r

TEAk: TeT,p
|0r—9|<2k(_1/2+8)

and
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For fixed j and k, let { B;}; be a finitely overlapping cover of B3(0, 1) by balls of radius
2~U=k) For each § and [, let

Bjri(0) = U U or.
TEA ! TeT, p:
|0, —0|<2k(=1/2+8) 2T NB;#0

and let _
Bjx; ={(0.x) €[@a.b]xR*: x € B ;(0)}.

Let /4; x be the pushforward of y under x +> 2/ 7%=2k8x Then

(J' x ) (Bjg) < Y (H" x 1)(Bje)
1

(4.6) _ Z 9—a(j—k—2ké) (%1 % ﬁj,k,l)(B]/',k,l)’
1

where B A
s = {(0.x) € [@.b] x R® : x € 277Kk B, 4 1 (6)},

and i = 2°U7K=2k0 4y 5, where
B =/ 0+ yyl = 13,

with b; the centre of Bj.
Up to translation and finite overlaps, B; . and fi; x; satisfy the conditions of Defin-

ition 4.1; for each 6, the set 2/7%=2%8 B, ,(9) is contained in a union of tubes of radius
27%/2 parallel to y(6), with the number of tubes < 2¢@0+10089/277; ;(R3), such that
each tube overlaps < 210k8 f the others. Moreover, cq (j k1) < 1and i is supported
in a ball of radius 1. Hence

(' X k) (Bl g ) S Tljgea (R¥) 27K < 00l =k=2k8) 4 () 27kE"/4,
Putting this into (4.6) yields
(' x ) (Bjg) S 27514 u(R3),

Substituting this into (4.5) and then (4.2) gives

b
[ / (mgsin| e d6 < 2B L (R),
a

and hence _
b
| [imosnusl aserds < 277 e
a

provided Jj is sufficiently large. This proves the lemma. ]
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Lemma4.3. Let y : [a,b] — S? be a C? unit speed curve satisfying (3.1), (3.2) and (3.3)
on |a, b]. Then there exists a constant 6 > 0 depending on y, and for each € € (0,1) an
integer Jo > 0 depending on y and €, such that for any t € A’ N Ajx with J > Jo and
kelje Jjl

@.7)  dist(1.017, 71 7/(8) + na(y x ¥)(8)) > o max(|p|'~10¢, 2/(1-100)),
for all n € R2 with |n1| = |n2|' € and for all 6 € [a, b] with | — 6| < o.

Proof. If either || < 27710 or || > 27710, this is immediate, so it may be assumed that
27710 < |y < 27F10 Let x = A1(y x ¥)(0:) + A2y’ (07) + A3y(6;) € 1.017, where
|A1] ~ 27, |Az| <277%/2 and |A3] ~ 277%. Suppose first that |0, — 6] < 27€ If k < 5je,
then |6; — 0] <« 27%/2 and hence |(x, y(0))| = 2/7% > 27(=6€) which implies that

4.8) dist(x, 71y'(0) + n2(y x ¥')(6)) 2 max(|n|' =10, 2/07199),
If k > 5je, then |(x,y'(0))| < 270729 which, due to the condition || > |n2]'~¢,

implies (4.8). It remains to consider the possibility that |§ — 6;| > 27%/€, in which case

A
(A1(y x ¥")(6), y(0)) = 71 [(6: — 0)% det(y (62). ¥ (62), ¥ (6:)) + (16 — O)],

which gives |(x, y(6))| = 2717 for |§ — ;| < ¢y, and this implies (4.8). L]

Lemma 4.4. Let y:[a,b] — S? be a C? unit speed curve satisfying (3.1), (3.2) and (3.3)
onla,b), let [d, l;] C (a,b), and assume that |5— a| < o, where o is a constant that works
in Lemma 4.3. Let € € (0,1), § > 0, let a € [0, 3] and let oy > 0. Then there exists a
positive integer Jy such that for all jo > J > Jy and for all finite Borel measures |1 on
the unit ball,

5
/ / . itz (my'(0) + n2(y x ¥y )OI dndb
a J{mlzIn2'—}nB(0,2/001+)

b
@ Himlzln2l'=3nB(0,2/0(1+9))

where jLg = g, jo.J a.e.8 .0 1S defined by Lemma 3.5.

Proof. This follows from the triangle inequality, Lemma 4.3, the definition of 5, and the
rapid decay of F (Mt (1 * ¢j,)) outside 1.017(T). |

Lemma 4.5. Let o € [0,3], o € (0,3] and let € € (0,1/2). Suppose that y:[a, b] — S?
is a C3 unit speed curve satisfying (3.1), (3.2) and (3.3), on [a, b], and let [@,b] < (a,b).
Let

Ajx = [B(0,27T)\ B(0,2))] n {27752 < || < 271Ky ke <,

and
Ajj = [B(0,27T)\ B(0,27)] N {ln1| < 2UFV/2},
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Then there exists 8¢ € (0, €199), and for any § € (0, 8o] a Jo = 0, such that if J > J,
Jo(1 +8) > j > 3J and je < k < j, then for any Borel measure p on B3(0, 1) with
cd(“) S ly

b
“9) / /A 1T (17 (6) 412y x V)@ dndf
a ",k
! < u(®R?) 100je+j(2—a)+k(—1/2+20/3—a}/3)

where wp = Kb, jo.J 6.6 .0t 1S defined by (3.23) with respect to y: [a, b] — S2.

Proof. Suppose first that k < j. By the wave packet decomposition and Lemma 3.2, there
is a constant C such that the left-hand side of (4.9) is

b
(4.10) < C 27190 (R3)? +/~ / ooy
@ Akl |jr—jl<C —k|=C teh;p
k'<j’
2
> F(Mr(px i)y 0) + ma(y x ¥)(6))| dndb.
TeT, ¢

Let /i be defined by setting ﬁ equal to the function inside the modulus signs above. Let
{B}m be a finitely overlapping cover of R3 by balls of radius 257/, and let {9, }m
be a corresponding subordinate smooth partition of unity. Then by changing variables
(see (4.22)—(4.24) below) and by Plancherel,

4.11) (4.10) < C271007 ;) (R3)2 4 2k/2=) Z/ |Z0m|>.
m R3
For each m and for arbitrarily large N, the integral in (4.11) satisfies
(4.12) / [0 [? S Cn 27N ()2
R3

LD SEND SEED SEND SR (IR

[j'=J1<C |k'—k|<C €Ay TeTe,
K<j’ TN B0

which follows from the “essential orthogonality” of wave packets.
A similar inequality will be shown in the case k = j. By the wave packet decomposi-
tion and Lemma 3.2, the left-hand side of (4.9) is in this case

b
SCZ_IOOjM(R3)2+/&_ Ajj Z Z Z

[/'=Ji1<C |kK'=j|<C €N 1s
k/Sj/

> F(Mr(ux i)y (6) + na(y x y')(6))

TeT g

2
dndo.
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Let & be defined by setting ﬁ equal to the function inside the modulus signs above. By the
finite overlapping property of the sets t,

P
@3 [ [y © + <y @) dnas

< C2_100j,lL(R3)2 + Z Z Z

|i'=J|I<C |k'—jI<C tehj pr
k'<j’

b 2
<[] ' S S F (Mo 3o )y 0) + 1y x 1)) dnde,
a TeT,, T'TT
TNB(0,10)#0

where the sets 7’ cover 7' with planks of dimensions ~ 1 x 277/2 x 277 with long direc-
tion parallel to y (6;(r)), medium direction parallel to y’(6;(ry) and short direction parallel
to (y X ¥')(6(r)), and M7 = ng' M, where {n7'}7' is a smooth partition of unity
subordinate to the cover {T’}7-. By the 2-dimensional Plancherel theorem followed by the
uncertainty principle (bounding the L? norm by the L norm, followed by Hausdorff—
Young and Cauchy—Schwarz),

(4.13) < € 271007 | (R3)?

to10i8=i2 Y >y > /IMT(M * i)

lJ'=J1=C |K'—jISC t€hjrpr  TE€Try
k'<j’ TNB(0,10)#0

This shows that (4.11)—(4.12) holds also in the case k = j, although possibly with a 21/

loss, and with { B,, },, equal to the cover of B(0, 1) by the single ball B(0, 10) in that case.

The remainder of the proof will therefore cover both cases simultaneously (k < j).
Applying Plancherel to the non-negligible term in the right-hand side of (4.12) gives

AT DD DD D /|MT(/1~*¢J'0)|2

lj/=J|SC |K'—k|<C t€A;rpr TeTrg
kK'<j' TNBu 7D

[ X X XX (rMrGes g« v) s gi).

|j'=J1<C |k'—k|<C t€Ajrjr TEeT,,
k'<j' TNBm#9D

Let v be the restriction of u * ¢;, to 210k8 g By Cauchy—Schwarz, the right-hand side
of (4.14) is

4.15) = Cy 2 Vu®R®)? + n@'%% B2

X(/ o2 > Y IrMr(uxgi)lxvn

[J'=Jj|=C |k'=k|<C t€Ajr 1 TET,
k/sj/

2 1/2
dv) .

TN By 0
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Let

fr=hrMr(usgp)l*y. and f= Y Y 3 M s

j'=JI=C K'—k|<C v€Ajrpr T€Trg
k'<j’ TN By #0

The integral in (4.15) satisfies
/Iflzdv < /Iflzd(v « ).

where {(x) = % for some very large N. This follows from the uncertainty prin-

ciple since f is supported in a ball of radius < 2/. By dyadic pigeonholing, there is a

subset
we | I U (T eTeg: TN B #0}.

lj'=J1<C |k'—k|<C t€Aj s
k'=j’

such that || fr |2 is constant up to a factor of 2 as T varies over W, and

[irpav o g0 [| T frf aws)

TeWw

+27100 3 Y > el

|lj/—=jl=C |k'=k|<C TGAJ-/,k/ TeT: g
K<j T\ By A0

By pigeonholing again and by Holder’s inequality, there is a disjoint union ¥ of balls Q
of radius 277/ T%/2_guch that

(4.16) /) 2 fT‘ d(v* ) 5 10g2) 1/ ey, (/Y(v i §)3/2>2/3’

TeWw

and such that each Q C Y intersects a number # € [M,2M ) boxes 3T as T varies over W,
for some dyadic number M . By rescaling and then applying the refined Strichartz inequal-
ity (Theorem 2.2) with p = 6, the first factor in (4.16) satisfies

1 zscry = Ces 274244 () 2 I/ I

For the second factor in (4.16), the assumed inequality ¢q (i) < 1 implies that [[v * oo <
2/G=%) Hence

[oso¥es
Y

2%(3—:1) |W |2~ kep/2—a(i—k)
<
~ M

22(3 @) 24(3-0) ,
D> BT < D w@T) + Cy 277N u(R)

TeW TeWw

+ CNZ*'/N.
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Hence,

(4.17) (4.16) < log(2¥) 2/ G-e)tk(z1+2a/3-ap/3%e) N7 fr 12,
TeW

By Plancherel, || frll2 < M7 (1 * ¢j,)|2 for every T. Assuming the tail terms are not
dominant, substituting into (4.17) and then into (4.14) yields

)RS DD DI /iMT(u*quo)P

|j’—JI<C |k'—=k|<C t€A; ik TeT, g
k'<j’ TNBy,#£9

< M(zlookBBm)lﬂ 210je+%[j(3—a)+k(—1+2a/3—oz6/3)]

(Z )N SIS /|MT(M*¢;O)|)1/2.

|j/=j1<C |k'—k|<C t€Ajrpr TeTe,
k'<j’ TN By #0

By cancelling the common factors, this yields

)IEED DD DD /erw*quo)P

J'=J1=C lk'~k|<C tehjrr T€Teg
kK'<j TNB,#9

< M(zlooké Bm) 220j€+j(3—a)+k(—1+20¢/3—0[6/3)'

By substituting back into (4.11)—(4.12) and summing over m, this proves the lemma (the m
for which the tail terms dominate make a negligible contribution to the sum). |

Lemma 4.6. Leta € [0,3], af > 0, and let €,8 > 0 with § < €/1000. Let y:[a,b] — S?
be a C? unit speed curve satisfying (3.1), (3.2) and (3.3). Then there is a constant C and
a positive integer Jo such that for all jo > J > Jy and for all finite Borel measures | on
the unit ball,

b
[ @)+ na < O dnds < €267 ey
a JB(0,237)

Proof. This follows from the trivial bound on each M7 (i * ¢, ), and the rapid decay of
F (Mt (1 * ¢j,)) outside 1.017(T), for each t. |

Lemma 4.7. Suppose that V: [a,b] — S? is a C3 unit t speed curve satisfying (3.1), (3.2)
and (3.3) on |a, b]. Let [a, b] C (a, b) be such that |b —d| < o, where o is a constant
that works in Lemma 4.3. Let « € [0,3] and € > 0. If o, € (0, a0(t, 1, y| a,b]))’ then there
exists 8o > 0, and for any § € (0,8¢] a Jo > 0, such that for all jo > 3J and J > Jo with
J € [(jo€)/1000, 1000/ €] and for all Borel measures (1 on the unit ball with co () < 1,

b
(418) / /‘|7t0#ﬂ‘g|2 d%Zde < /‘L(R3) 2]()(max{O,Z—a,3/2—(1/3—&6/3}4—1046).
a
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Proof. By Plancherel,
B
(4.19) /~ [|7Tg#/1,g|2d3€2d9
B
- / / @Y 0) + naly x ¥ @) dndo
@ JB(0,2/001+8)

b
4 / [ C mmY6) + may x ¥ @) dndb.
a JR2\B(0,2/01+%)

The inequality

b
f / 1wy O) + ma x )@ dndf < p(RP)
a JR2\B(0,2/0(1+8)

follows straightforwardly from the rapid decay of 6,\0 outside B(0, 27°); see pp. 13-14
in [5] for a more detailed calculation of a similar inequality. The other term in (4.19) can
be written as

b
(4.20) / / @y ®) + maly x )@ dydé
a 3(0,210(1%))
b
- // Ty 6) + maly x YO dydo
@ J{ml=In2l1=<}nB(0,270(1+8))

b
+/ / o Emy'(0) + nay x YOI dndb.
a J{ml<nz2l'=<}NB(0,2/0(1+8)

By Lemma 4.4, the first term satisfies

b
#2D // gy’ ©) + na(y x y')(0))|* dndb
a J{mlzIn2|'=€}nB(0,2/0(1+6))

5
sueys [ CRY ) + my x )OI dn db.
a Jim|zIn-nB,2700+9)
The change of variables

E=E(0)=my'(0)+ n(y xy)O)
has Jacobian

8 £ £ 1A / 14
42y | MEE) 0l et x ) (©0). 7 (8). v (0)
a(n1.1m2,9)
4.23) = I 1 x & x ¥)16). "))
— | (r(0). y" O]

(4.24) = [ml.
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The line (4.24) above follows from the assumption that y is a curve in $? with unit speed,
whilst (4.22) and (4.23) use the scalar triple product formula det(a, b, c) = {a,b x ¢) and
the identity

(v xv") = —det(y.y".y")y".
Applying this change of variables to (4.21) gives

@421) < p(R3? + / e AR de
B(0,2/0(1+8))

< M(R3)2 + 21:0(1+8)(2+26_a)1a—€(ﬂ) o =< 2
- 2]0(1+8)2€12—e(/") a>2

5 M(R3)2 + 2j0(1+8)(max{0’2_a}+2E)M(R3),

which is much smaller than the right-hand side of (4.18). This bounds the first term
in (4.20).
It remains to bound the second term in (4.20). This satisfies

/ / ) g (n1y'(0) + na(y x Y (O)|>dndb
a J{nil<In2|'=€}nB(0,2/0(1+5)

- Y ¥ // 2 (1Y (0) + na(y x Y)O)F dndo

JE[3J, Jo(1+5)] kelje,jl

4 / / T (17’ 0) + ma(y x ) @) dnd8
a JB(0,237)

< M(R3) 2Jo (max{0,2—a,3/2—a/3—0t/3}+200€)

by Lemmas 4.5 and 4.6. This covers the final case and finishes the proof of the lemma. m

Lemma4.8. Let y:[a,b] — S? be a C3 unit speed curve with det(y,y’,y") # 0 on [a, b],
let [a,b] C (a,b), and let « € (0, 3]. Then for any a* > 0 with
1 + (XO(“7 17 )/l[[l”l;‘])}7

a*<min{2aa+
3 2 3

there exist §”, C > 0 such that

(4.25) / (Jrg#u)( U D) do < Cu(R¥H)RY"
DeDy

for all Borel measures |1 on the unit ball with c, (1) < 1, for any R > 1, and for any
collection of sets {ID)g 0 € la, b]} such that the integrand of (4.25) is measurable, where,

for each 0 € [a, b] Dy is a disjoint set of at most W(R3)R*"/2 discs in wg(R3) of
radius R='/2.

As a corollary, ap(e, 1, y|[5 5]) > min{2, o, /2 + 3/4}.
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Proof. By localisation, it may be assumed that y satisfies (3.1), (3.2) and (3.3) on [a, b],
and that |b — a| < o where o is a constant that works in Lemma 4.3. Let &, &, R, u and
the sets Dy be given. Define

_ min{o, /3 +1/2 +ap/3,2} —a*
- 1010 )

By the “good-bad” decomposition (Lemma 3.5) with q() ‘=09 —€and § K €, J defined
by R € [27,27*1) and j, defined by R'/? € [2/0,2/0F1),

| (U D) ds

DEDQ

b 12, (b 1/2
§/~/|n9#ub|d<¥€2d6+ sup Je2 UD) (/~/|n9#ug|2d<%’2d9)
a 0ela.b] DeDy a

b . b 1/2
@26 5 [ [[lmousnl 362 a0 + w2 R [ [moun, Paseas) "

By Lemma 4.2,

b
4.27) / / \aity| A2 d6 < W(RY) R
a

provided R is sufficiently large. By Lemma 4.7,

. b 1/2
@28) w@)2R ([ [ imaggag? de? ao)
a

< /,L(]R3)R% max{ot*—2,a*—ot,ot*—l/2—o¢/3—o¢o/3}+1056'

Applying (4.27) and (4.28) to (4.26) yields (4.25) and proves the first part of the lemma,
provided §” is chosen sufficiently small, R is taken sufficiently large, and the constant
C(a,a™, y) is then taken large enough to handle the small values of R.

The last part of the lemma follows directly from the first part, and from Definition 4.1
which defines o. [

Proof of Theorem 1.1. Assume without loss of generality that dim A > 0 and that A is
a subset of the unit ball. Let € > 0 be small, let « = dim A — € and (using Frostman’s
lemma) let u be a nonzero, finite Borel measure on A with ¢, () < 1. Suppose that
E C[a + €,b — €] is a compact set such that

3
dim g supp 4 < § := min {2,0{, % + 4_1} — 10¢€,

for every 6 € E. Let e > 0 be small. For each 6 € E, let' {B(mq(x;(0)),r; (9))};";1 be a
covering of 7y supp u by discs of dyadic radii smaller than &, with each x; (6) € supp u,

IIssues of measurability will be ignored since they can be easily adjusted for.
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such that

(4.29) Z ri ()T < 1.
j

It may be additionally assumed that 7 (x; (6)) € mg supp u for every j and 6. For each
0 € E and each k > |log, ¢|, let

D)= | B(ra(x;(6)).7;(6)).

jirj()=2"%

Then for each 6 € E,
1< Z (rgu) (Dr (0))-

k>|log, €|

By the Besicovitch covering theorem, for each 6 € E there is a disjoint subcollection
{B(mg(x;(8)),r;(6))}jer, and corresponding subsets Dy (0) C Dg(6), such that

1S ) (rosp)(DL(6)),

k> |log; €|

and hence

HUE)S Y | (resn)(Dy(6)) dO.

k>llog 6] * £

By (4.29), for each 6 and k, the set Dy (6)’ is the union of at most 2¥¢+€) disjoint discs
of radius 27%. By Lemma 4.8, there exists a § > 0 independent of & such that

HYE) < Z 27k <

k>[log; ¢

Letting ¢ — 0 gives # ' (E) = 0. Hence

a 3
dim 79 (A) > dim 77y supp . > min {Z,a, 5 + Z} —10€
for a.e. 6 € [a + €, b — €]. The theorem follows by letting ¢ — 0 along a countable
sequence. [

5. Further improvement and related problems

A related problem is the family of projections pg(x) = (x, y(6))y(0) onto lines, where y
is a smooth curve in $? with det(y, y’, y”) nonvanishing. For non-great circles, this was
resolved by Kidenmiki—Orponen—Venieri in [7]. I do not know if the method of proof here
would also work on this problem; I would guess that at least a different kind of refined
Strichartz inequality would be needed, with “slabs” in place of “tubes”. One applica-
tion, due to Liu [10], of the Kdenméki—Orponen—Venieri projection theorem is to give the
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sharp lower bound of 3 for the Hausdorff dimension of Kakeya sets in the first Heisen-
berg group H. It would be interesting if Theorem 1.1 could be analogously applied to
generalised Besicovitch sets in H (e.g., sets containing a left translate of every vertical
subgroup).

I do not know if Theorem 1.1 holds with C3 replaced by C2. The only step in the proof
of Theorem 1.1 which seems to make crucial use of the C3 assumption is the decoupling
theorem for generalised cones, though the statement and some steps in the proof of the
refined Strichartz inequality would likely become more technical if y were only assumed
to be C2. As far as I am aware, the decoupling theorem for generalised cones has only
been proved in the literature with C3 assumptions (see e.g. [16]).

Although the proof of Theorem 1.1 has some similarities with the proof of the lower
bound for the distance set problem in [4], it makes crucial use of the fact that the pro-
jections 1y are linear. Since the distance function is nonlinear, the recursive method of
bounding the “bad” part in the proof of Theorem 1.1 does not seem to work on the dis-
tance set problem.

Another problem on restricted projections comes from the family of maps Sg (x,y) =
x — gy from R?" to R, where n > 2 is fixed and g ranges over O(n). In [12], Mattila
proved that

(5.1) dimSg(A4) > max{min{dim A,n — 1}, min{dim A — 1,n}}, ae. g e O(n),

and asked whether this can be replaced by dim S, (4) > min{n, dim A} fora.e. g € O(n).
A counterexample (obtained with help from A. Barron) is the set A = {(x,x) : x € R"};
since every g € O(n) with detg = (—1)"*! has 1 as an eigenvalue, the set Sg(A) has
dimension at most n — 1 whenever det g = (—1)"T!. By taking direct sums with Cantor
subsets of the plane {(x, —x) : x € R"}, this can be modified to show that (5.1) is sharp
for all values of dim A. It would be interesting to know whether a better lower bound is
possible if the requirement “a.e. g € O(n)” is weakened to “with probability at least 1/2”.

Acknowledgements. Alex Barron helped find the counterexample at the end of Section 5.
I also thank Shaoming Guo for some comments on an earlier version of this article.
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