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Interior estimates for the Monge—Ampere type
fourth order equations

Ling Wang and Bin Zhou

Abstract. In this paper, we give several new approaches to study interior estim-
ates for a class of fourth order equations of Monge—Ampere type. First, we prove
interior estimates for the homogeneous equation in dimension two by using the par-
tial Legendre transform. As an application, we obtain a new proof of the Bernstein
theorem without using Caffarelli-Gutiérrez’s estimate, including the Chern conjec-
ture on affine maximal surfaces. For the inhomogeneous equation, we also obtain a
new proof in dimension two by an integral method relying on the Monge—Ampere
Sobolev inequality. This proof works even when the right-hand side is singular. In
higher dimensions, we obtain the interior regularity in terms of integral bounds on
the second derivatives and the inverse of the determinant.

1. Introduction

We study the regularity of the following fourth order equations of Monge—Ampere type:
(1.1) UYwi; = f,
where {U%} is the cofactor matrix of D?u of an unknown uniformly convex function, and
det D2u]"1=9 9 >0, 0 £1,
(1.2) w = [ ] - 7
log det D?u, 0=1.

When 6 = 1/(n + 2), this is the affine mean curvature equation in affine geometry [7].
When 6 = 0, it is Abreu’s equation arising from the problem of extremal metrics on toric
manifolds in Kéhler geometry [1], and is equivalent to

9%yt

Z ax,’ax]' - f’
1,J

where {u%/} is the inverse matrix of D?u. The regularity of (1.1) has been extensively
studied before, see [4,5, 10, 18, 19,32-35]. This equation is usually treated as a system of
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a Monge—-Ampere equation and a linearized Monge—Ampere equation. Therefore, in pre-
vious works, its regularity relies heavily on Caffarelli-Gutiérrez’s deep result on the inte-
rior regularity of the linearized Monge—Ampere equation [3], which was later extended
by [13, 14,24] to the boundary and to higher order estimates. In this paper, we investigate
the interior estimates of (1.1) by several new approaches. We will mainly concentrate on
the case 0 € [0, 1] due to the interesting geometric background.

We first consider the case of the homogeneous equation

(1.3) UYw;; =0,

where w is given by (1.2). We apply the partial Legendre transform to give a new proof of
the interior estimates of (1.3) in dimension two.

Theorem 1.1. Assume n = 2 and 0 € [0, 1]. Let Q C R? be a convex domain and let u
be a smooth convex solution to equation (1.3) on 2 satisfying

(1.4) 0 <A <detD?u <A.

Then for any Q' € Q, there exists a constant C > 0, depending on supg |u|, A, A, 6 and
dist(2’, 9R2), such that
||u||c4,a(9/) < C.

The partial Legendre transform for the fourth order equation was first used in [25],
where the authors deal with the second boundary value problem. After the partial Legendre
transform, equation (1.3) becomes a quasi-linear second order equation (see (2.3)) for the
determinant. The main ingredient in our proof is an interior integral gradient estimate
(Theorem 2.2). When 6 € [0, 1/4], condition (1.4) holds by the determinant estimates
and arguments of strict convexity [32,34]. By Theorem 1.1 and a rescaling argument as in
Theorem 2.1 of [32], we obtain a new proof of the following Bernstein theorem [17,32,34]
without using Caffarelli-Gutiérrez’s theory.

Theorem 1.2. Assume n =2 and 0 < 60 < 1/4. Let u be an entire smooth uniformly
convex solution to (1.3) on R2. Then u is a quadratic polynomial.

In the case of the inhomogeneous equation and in higher dimensions, the partial
Legendre transform does not work. We will investigate the interior regularity by an integ-
ral method motivated by De Giorgi—Nash—Moser’s theory. Consider the inhomogeneous
equation with general right-hand side term

(1.5) Uw;j = f(x,u, Du, D*u),

where w given by (1.2) with 8 € [0, 1]. This equation is introduced by [21,22] in the study
of convex functionals with a convexity constraint related to the Rochet—Choné model for
the monopolist problem in economics. It is said to be singular since the right-hand side
term depends on D?u. A typical example considered in [21,22,25] is

(1.6) £ =div(|[Vul?72Vu) + fO(x,u).

Note that when f € L°°(R2), once we have the determinant estimate (1.4), we can use
Caffarelli-Gutiérrez’s theory to get the interior regularity. The assumption on f can be
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weakened to f € L"/21¢(Q) by [23]. Hence for f defined as (1.6), whenn =2and p > 2,
we can obtain the interior regularity of u directly by using interior W2:1*¢_estimates of
the Monge—Ampere equations [9,29]. To settle the more singular case 1 < p < 2, Le [20]
established the interior estimate of the linearized Monge—Ampere equation with right-
hand side term in divergence form in dimension two. One of the main tools in [20] is
the Monge—Ampere Sobolev inequality (see Lemma 3.2). In this paper, we will use the
Monge-Ampere Sobolev inequality and the W?2:1T¢_estimates for the Monge—Ampere
equation directly in the fourth order equation to obtain a W?2-P-estimate of the solution
(Theorem 3.3). Then we can apply the regularity theory of second order elliptic equation
of divergence type to obtain a new proof for the interior estimates of (1.5).

Theorem 1.3. Assumen = 2 and 0 € [0,1]. Let Q C R? be a convex domain. Assume
f =div(g) + h,

where g 1= (g'(x), g%(x)): Q — R? is a bounded vector function and h € L4(Q) for some
q > n/2. Suppose u is a smooth convex solution to equation (1.5) on Q satisfying (1.4).
Then for any Q' € Q, there exists a constant C > 0, depending on supg, |u|, A, A, 6,
lgllLeo@) 17]lLa(q) and dist(R', 92), such that

lullwsay = C.

Remark 1.4. (1) It is clear that the above theorem applies to the case (1.6) for any p > 1
in dimension two. The higher dimensional case is still open.

(2) When f € W14(Q) and § = 0 or 1, we give another new proof in Section 3
inspired by [6] for the complex setting. More precisely, we get a C2-estimate of u in
terms of the W2?-bound (Theorem 3.4), which makes (1.5) become a uniformly elliptic
equation. Then the classical theory of uniformly elliptic equations can be applied.

In higher dimensions, the interior regularity and the Bernstein theorem are still widely
open. In fact, according to the counterexample in [32] for the affine maximal surface
equation, there may be no interior estimates if no further assumptions are made. More
precisely, (1.4) may not hold. We give a partial result by assuming integral bounds on the
second derivatives and the inverse of the determinant.

Theorem 1.5. Let Q C R” be a convex domain and let u be a smooth uniformly convex
solution to equation (1.3) with 6 € [0, 1] on Q. Assume that p,q > 0 satisfyn/p + 1/q <
2/n. Then for any Q' € Q, there exists a constant C, depending only on p, q, 0, supg |u/,
lullw2.r () I(det D2u)~" || La(q) and dist(Q', dRQ), such that

||u||c4,a(9/) <C.
As an application, we obtain a Liouville type theorem in higher dimensions.

Corollary 1.6. Let u be an entire smooth uniformly convex solution to (1.1) with 6 € [0, 1]
on R"™. Suppose there are p,q,C > 0 suchthatn/p 4+ 1/q < 2/n and

(1.7) / |D?u|? + (det D?u) 9 dx < CR", YR >0.
Br(0)

Then u is a quadratic polynomial.



L. Wang and B. Zhou 1898

The structure of the paper is as follows. In Section 2.1, we apply partial the Legendre
transform to (1.1) in dimension two to derive a new equation. The key interior gradient
estimate (Theorem 2.2) for the new equation is established in Section 2.2. Then we prove
Theorem 1.1 in Section 2.3 with this key estimate. In Section 3, we first derive the W?2p.
estimate of u (Theorem 3.3), and then we prove Theorem 1.3. Section 4 is devoted to some
study on interior regularity in higher dimensions.

2. The homogeneous equation in dimension two

In this section, we present a new proof for the interior estimate for the homogeneous
equation without Caffarelli-Gutiérrez’s theory.

2.1. The new equation under partial Legendre transform

We first focus on the dimension two case. Write u(x) = u(x;, x). The partial Legendre
transform in the x;-variable is

2.1 u*(&,n) = x1uy, (x1,x2) — u(xy, x2),

where
y=(1n) = P(x1,x2) := (uy,, x2) € P(Q) =: Q*.

We have
a(S’ 7]) — uxlxl ux1X2 and a('xl’ Xz) — 1/”)61)61 _uxlxz/uxlxl
d(x1,x2) 0 1 A&, n) 0 1 '
Hence,
. . 1 ) . det D%u R u
22) ug =x1, ug = CUp = Uy, Upy = — . oUL, = M,
Uxixq Uxix; Uxixy

The partial Legendre transform has been used widely in the study of the Monge—Ampere
equation [8,11,12,24,26]. Here we apply it to equation (1.3).

In order to derive the equation under the partial Legendre transform, we consider the
associated functionals of (1.3):

Jqldet D2u]® dx, 6>0, 61,
Ag(u) = [qlogdet D*udx, 0 =0,
Jo det D?u logdet D*udx, 6 =1.
The case of 8 = 0 is essentially included in [25].
Proposition 2.1. Let u be a uniformly convex solution to (1.3) in Q. Thenin Q* = P (2),
its partial Legendre transform u* satisfies
(2.3) wrwle +wy, + (0 — Dw® + ew;* w? =0,

* __ _a* *
Here, w* = unn/”ss'
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Proof. As

det D%u = —

*

u:ln %
and dxdy = Uge d&dn,
Uge

we have
ur \0
Ao = [ (= 22) ug gy
' Ueg
= /Q*(—u;n)gugsl_edédn = Aj(u*), 6 € (0,1);

*

Ao() = / tog (- "”")ugg dedn = ALu*):

*
Ueg

uy uy
A = [ (=220 tog (= 22 uge ddn = Af).
« u U
133 133
Since u is maximal with respect to the functional Ag, u* is maximal with respect to the
functional Aj. It suffices to derive the Euler-Lagrange equation of Aj. See [32, 34] for
the case of the Legendre transform.
First, we consider 6 € (0, 1). For ¢ € C§°(2*), by integration by parts,

dAZ(u* +1tg)
dt

* * — * -_— * _0
=0 /Q*[(l_e)(_”nn)g(uéé) Ppee — 9(_”7771)9 1”551 PnnldEdn
* * — * _— * _9
= /Q A=) up) i) e — (05" uge " lan} 9 dEdn.
Denote w* = —u;n / “§g~ Then the equation, after the transformation, becomes

—0w* " + A=) Ww* e = 0.

After simplification, this is (2.3). Similarly, for ¢ € C§°(22%),

ug Uiy —Un, Qg u,
ZZOZ/*_ﬁ(_ e )u§§+log<—u—zn><p§§d§dn
13

Uiy Ugg

dAS(u* +to)
dt

*

PunUge — Upy Vet u
- /* Sgu" = +log ( - uzn) pee dEdn.
nn 13

and the equation, after the transformation, becomes
_[(W*)_l]nn + (logw™)ge = 0.
After simplification, we obtain (2.3). Finally,

(L PrntEe T MR L
) 0:/ 1+ logw )(— %)u&—kw logw*gee dEdn
= Q* u
113

dAT(u* +te)
dt

= _/Q*(l + log w*)(W*gge — @ny) + w* logw*pes d€ d.
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so the equation becomes
_wgg — (logw™)yy =0,

which is equivalent to (2.3). [

2.2. The interior gradient estimate of (2.3)

For simplicity, we change notations in this section and write (2.3) as

2

2.4) uuxx—{—uyy:(l—Q)uﬁ—k ” uy.

It is easy to see that this is a quasi-linear equation with right-hand side depending on the
gradient. We prove the following interior gradient estimate.

Theorem 2.2. Assume u is a solution to (2.4) with 6 € [0, 1] on Bg := Br(0) and satisfies
0 <A <u < A. Then there exist a, C > 0 depending on A, A, R and 0, such that

(2.5) / |Vu?(R? —x%2 - y?)*dV < C.
Bpr

Proof. Let w = v¢n, where

v=,/u+uj+1 and n=(R>—x?—yH)% «a>3,

and ¢ = ¢(u) is a positive function of u to be determined later.
A direct calculation yields

UWxyx + Wyy
(2.6) = (UVxx + Vyy) @N + 2[uvx (@n)x + vy (dN)y] + [U(PN)xx + (DPN)yy]v.

It is clear that

2.7) Uy = vt (uxuxx + Uylxy), Vy = vt (uxuxy + uyiyy),
(2.8) Uxx = —v? (Uxtxx + uyuxy)z +v7! (M;zcx + UxUxxx + uiy + uyuxxy)7
(2.9)  vyy =~V (Uxlhxy + Uytiyy)? + 07! (ufcy + UxUxyy + uiy + UuyUyyy).

Differentiating the equation, we have

2—6 ,  22-19)
(2.10) uxuxx + Ulxxx + Uxyy = 2(1 — O UxUyyx — Tuxuy + Tuyuxy,

2—-96 , 2(2-106)
2.11) UpUxx + Ulxxy + Uyyy = 2(1 — O UxUyy — g Wiy + Wty

By the Cauchy inequality, we have

(Uxuxx + uyuxy)z = (U2 - 1)(”)2cx + u)zcy)’

2.12)
(uxttxy + uyttyy)? < (0% — 1)(“)2cy + uiy)
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Then by (2.7), (2.8), (2.9), (2.10), (2.11) and (2.12), the first term in (2.6) satisfies
UVxx + Vyy

= uv Wl +ud) — 0 Ut + Uytxy) ] + VT U Uxcx + Uylhxy)

+ [v_l(u)zcy Fugy) = 07 (Uxthxy + Uyttyy)?] + 07 Uty + Uytyyy))

[2(1 — Ot (uxttnx + yttny) + 2EDuy (urury + uypttyy) — (V2 — Dy ]

v 2= 9(u2u2 +u4)+v [u(uxx +”xy)+u)2cy +u§y]

= 2(1 = O)uyvy + 2C0 gy 26 U—l u? - vzv_1 My

+ v [uy, + ”xy) +ugy g ]
>2(1 —O)uyvy + w Uyvy — 2:4_20 vv 3 qux+v_luxx+v_3uu)2€x
>2(1 —0)uyvy + 2(2 0) UyVy — 2";29”71 i VUxy — Cv,

where C > 0 depends on A. By integration by parts,

/ (wvsx + vyy) 1 dV
Bgr

> /B 2(1 = 0)[uxx v + 1xv()5] dV

[ 20" v Suon+ Luyvign,]av
Bgr

w2

= /BR uxxvqbndV—/BR 2(2_6);[(1—9)”;% +

_/B [2(1—9)uxv(¢n)x+2(2_9)(”yv(u¢77)y _ “i:;ﬁn)]dv
_/I;R [2_9<U_%>“§¢U+C¢nv]dV

u2
= /BRuxxqundV—/BR [2(1—9)¢'+w¢]uivndl/

—/ [2(2—9)¢1 + (2—9)(3—29)%¢]u§vndV
Bpgr u u
20—

2—-0v2—-1
_/ ( v? u q,’)n—l—vuqu,')n—i—Cq,')r/v)dV
Bpr

ui]vq&ndV

0) 2—9
uyv¢ny+C¢17v]dV+/B el
R

- [ [a-6puvpn.+
Bgr

22-6)(1-06) gb]uivndV
u

= [ uvpnav [ [2a-0)¢'+
Bg ) Bgr
_/BR [2(2—9)%~|—(2—0)(3—29)M—12¢]u§vnd1/

—c[/ |Vu|2(R2—x2—y2)°‘_1dV+/ |Vu|(R2—x2—y2)“dV+1].
Br Bgr
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Here C > 0 depends on A, A, R and 6. For the third term in (2.6),
(PN xx + (@N)yy]v
= v[¢//(u)(u”)zc + ”5)77 + ¢'(u) (uuxx + Uyy)n + 2" (u) (uuxnyx + Uyny)
+ ¢ (unxx + nyy)]

= v[qb”(u)(uu,zc + ui)n + ¢'(u)((1 — 0> +

U2 )1+ 24 () + 1y 77)
+ ¢ (unxcx + Uyy)]
2-6
< [@"u+ =09t + (¢ +¢'—=)ui vy
+ C[|[VuP(R? = x® — y)*7! 4 |Vu|(R? — x* — y*)* 2],

Here C > 0 depends on A, A, R and 6. Integrating by parts the second term in (2.6),

uy(n)svdV —2 f 1 @n)x + @My lvd V.

Bpr

zLRuvx(¢n)x+vy(¢n)ydv=—2/

Bpr

and hence,

/ UWxx + Wyy dV
Bgr

= /BR(MUxx +Uyy)¢77dV—2/

Bgr

ur(@n)xvdV /B (@mxx + @N)yylodV

22— 60)(1 - 6)
u

= [ wvenav [ [s+009 - b~ ¢"u]udondV
Bpr Bgr

¢/ ¢ "
+/BR[_3(2_9)7_(2_9)(3_29)F_¢ ]ugvndv
2.13) —c[/ |Vu|2(R2—x2—y2)°‘_ldV+/ |Vu|(R2—x2—y2)°‘_2dV+l].
Bpr

Bgr

Note that the left-hand side term satisfies

(2.14) / uwxx—i-wyde:[ UxxvPpndV.
Br Bpr

Now we choose y

=4 0—2 ,

$u) = Au 202-96+9
with
3—6
A

> —— + 1.
Z207—90+9 "
Then it is clear that ¢ (u) > 0. Furthermore, since 6 € [0, 1], we have

22— 6)(1 - 6)

(-5+360)¢" — ”

o—¢"u=1
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and
¢’ ¢ ., _ 22-0)3-0)
-32-0)—-2-60)3-20)=5 —¢p'=————"">Cp > 0.
Q=0 —C=00=20) 5 =9 = Gz —og 1 opu =~
Combining them with (2.13) and (2.14), we obtain
/ |Vul? (R* — x* — y*)*dV
Bpg
<C |Vu| 2(R? - y2)°‘—1dv+c2/ |Vu|(R?> — x? — y*)* 2 —dV + C3
Bpr
2/3 1/3
/ \Vul?(R?—x yz)"‘dV> +c2’(/ |Vu|3(R2—x2—y2)°‘dV) +Cs.
Bgr
Hence, (2.5) follows. [

2.3. Proof of Theorem 1.1

In order to use the partial Legendre transform, we first recall the modulus of convexity.
For a convex function on R”, the modulus of convexity m,, of u is defined by

(2.15) my () = inf{u(x) — €, (x) : |x —z| > t},

where ¢t > 0 and £, is the supporting function of u at z. For a strictly convex function,
m,, must be a positive function. A result of Heinz [16] implies that in two dimensions,
when det D?u > A > 0, there exists a positive function C(t) > 0 depending on A such that
my (t) > C(t) > 0. Now for the partial Legendre transform (2.1), we consider the mapping

(2.16) (€)= P(x,y) = (ux, y) : BR(0) — R
The following important property is revealed in [26].

Lemma 2.3 (Lemma 2.1 in [26]). There exists a constant § > 0 depending on the modulus
of convexity my, defined in (2.15), such that Bs(0) C £ (Bgr(0)).

Proof of Theorem 1.1. Forany p € Q, let R = dist(p, 02)/2. Without loss of generality,
we assume & (p) = 0. Itis clear that supg () |Du| < C for some constant C depending
on R and supgq |u|. By Lemma 2.3, there exists § > 0 such that Bs(0) C P (Br(p)).
According to Proposition 2.1, u™* satisfies (2.3) in Bg(0) with

u*
O</\§w*=—4§[\.
Uee
By Theorem 2.2,
lw* w3 (B, 000 < C-

Note that n = 2. By the Sobolev theorem, we have the C* estimate of w*. And by the
interior W 2:?-estimate of the uniformly elliptic equation (2.3), we have the estimate

W™ [lw2.3/2(By5,40)) < C-
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which implies the W !-®-estimate of w*. Again by the interior W??-estimate of the uni-
formly elliptic equation (2.3), we have

lw* w285, = C.
which implies the C1*® estimate of w*. Then by the Schauder estimate of (2.3), we have

lw*llc2a(Bs/40)) = €

and all the higher order estimates of u*. Transforming back by the partial Legendre trans-
form, we obtain the lower bound of uy,x, by (2.2). Since we can do partial Legendre
transforms of u in any direction, we can obtain the lower bound for the smallest eigen-
value of D?u, which implies the boundedness of D?u by (1.4). Then we have all the
higher order estimates of u. u

3. The inhomogeneous equations in dimension two

In this section, we will study the interior estimate for the inhomogeneous equation (1.5).
We first recall the regularity theory of the second order elliptic equation in divergence
form,

(3.1 Dj(a;;(x)Dju) = D;ig" +h in Q,
where g = (g',..., g") is a vector valued function and {a;; (x)} satisfies
0 <A(x)[E]* < a;j(x)&& < AX)[E, VE R\ {0}

and can be discontinuous. When {a;; (x)} is uniformly elliptic, a fundamental regularity
theory was established by De Giorgi, Nash, Moser, etc. In [28,31], the classical De Giorgi—
Nash—-Moser theory was extended to degenerate linear elliptic equation with A(x)™! €
LP(Q) and A(x) € L9(2), where 1/p + 1/q < 2/n. We denote by S, the set of n x n
nonnegative definite matrices.

Theorem 3.1 (Theorem 4.2 in [31]). Let {a;;}: 2 — S,} be such that A~' € L (Q) for
some p >n. Let g € L®°(Q;R") and h € L1(Q). Assume p and q satisfy 1/p + 1/q <
2/n. Suppose that u is a subsolution (supersolution) to (3.1) in Bg = Br(y) C Q and
that u < 0 (u > 0) on dBR. Then

S;Pu(—u) < ClIA MLrBr) (gl R ™7 + |k Lacpg) RZI7/P).
R

In [27], the author investigated the linearized Monge—Ampere equation with right-
hand side f = D;g" + h, i.e., aij(x) = U" in (3.1). Under the stronger assumption that
det D?u is sufficiently close to a positive constant, he can use the W 2-?-estimate of the
Monge—Ampere equation and Theorem 3.1 to obtain the interior regularity. It was later
shown in [20] that when n = 2 we only need the determinant to be bounded from above
and below.
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Now we turn to the fourth order equation (1.5). By the divergence free property of U i,
i.e., Zi D;UY = 0, we can rewrite equation (1.5) in divergence form:

(3.2) D;(U7D;w) = D;g" + h.
Note that in dimension two, it holds

det D?%u

I <UY <Aul.
Au

In view of Theorem 3.1, it suffices to get the L?-bound of Au for sufficiently large p.
In the following, we will use an integral method directly in (1.5) to derive it. Instead
of the classical Sobolev inequality, we will need the following Monge—Ampere Sobolev
inequality.

Lemma 3.2 (Proposition 2.6 in [20]). Assume n = 2. Let u be a smooth, strictly convex
function defined in a neighborhood of a bounded domain Q C R2. Suppose u satisfies

(3.3) 0 <A <detD?u <A.

Then for any y > 2 there exists a constant C > 0, depending only on A, A and y, such
that

1/x .. 1/2
(/ v|X dx) < C(/ UY v;vj dx) forall v e C5°(2).
Q Q

The above inequality is the two-dimensional counterpart of the Monge—Ampere Sobo-
lev inequality in higher dimensions derived by Tian and Wang [30].

Theorem 3.3. Assumen =2 and 6 € [0,1]. Let g € L*°(Q2;R") and h € LI(2). Let u
be a uniformly convex smooth solution to equation (3.2) in Br satisfying (3.3). Then for
any p > 1, there exists a constant C > 0 depending on A, A, R, 0, ||g||LoBr) |"|lLe(BR)
and p such that

[AullLr (g, < C.

Proof. We first consider the case 6 € [0, 1). Denote
v=Au, w= (detDzu)_(l_e), o= R*—|x|*

We consider
z=vPgp”

where o, § > 0 are constants and ¢ = ¢(w) is a positive function to be determined. Then
zi = Buiv® T o p® + P (0%,
zij = BB — Dviv;vP 2op® + o vP T op® + uiv? T (pp);
+ B 0P (0p™)i + 0P (9p™)y).
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By integration by parts with (1.5) and choosing & > 2, we have

0= / UijZij dx
Bgr

=pB -1 UY v vjpp*vP2dx + B Ui p®vP~1dx

Bgr Br
+28 U v; w; o p® Pl dx + 20[,3/ U v; pjop*! vl dx
Bpr Bpr
(3.4)
+ / U wjw,¢" p*vP dx + 20{/ Uwipjo'0* P dx + fo' p%vP dx
Br Bp Br

—i—a/ UY pijp*! vBdx + a(o — 1)/ Uijpipjgap“_zvﬂ dx.
Br Bpr
Note that for any m,

u”’ (Umm)ij = wtly ki Umij Umkl + (Indet D2u)m

I 1 w? 1 Wam
= u'' v wpij e + —— 2 - ——

We have
/ Uvijop*vP~dx =/ det D2uu uk wpmij s @ p* VP dx
Bpr

BRr

1 Vw|?

+ — det D?u ﬂgz),o"‘ vl dx
1-6 Br w?

1 Aw
- det D2u — @ p*vP 1 dx.
w
By integration by parts, we have

A _
/ detDZM—wgo,o"‘vﬂ_l dx:/ w_%Aw(pp“vﬁ_l dx
Bpg w Bpg
_2-0

(3.5) =1_4 .

w IVw|?¢ p® v~ dx — / w6 Vw2 p* vP 1 dx
Bgr

— a/ w4 wi pip® WP dx — (B—1) w4 w; v @ p® VP2 dx.
Bg Bpr

By changing coordinates at each point, say xo, we can assume that D?u(x,) is diagonal.
Then

2 2 2 ij
. Ui us . v; u v;v;
il  k mij mmi i 1Yy
(3.6) U U U = > > = .
UiiUjj  UiiUmm — UiV v
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where we used the Cauchy inequality in the second inequality. Hence by (3.5) and (3.6),
we have

/ Uijvijqop“vﬂ_l dx
Bgr

i) o B—2 . —9 _&_1 2 o p—1
> U vivjpp*vP ™ dx + = |Vw|*p*v” ™" dx
Bgr 1—9 BR 1—6
3.7 + 2 wih wi pigpp® WP dx + ﬁ—/ w8 wivip*vP 2 dx.
1-6 Jp, 1-6 Jp,

Then putting (3.7) into (3.4) yields

02,32/ U vvjppvP~ 2dx+—/ _%70(¢'——)|Vw|2p°‘vﬂ Vdx
Bg ’ 1-6 Bgr
+ op w_%wipigop“_lvﬂ_l dx + P w6 gw,v op*vP 2 dx
1-6 Jpg 1-6  Jpg
(3.8)
+28 U viw,;¢ p*vP = dx + 20p Ui pjop® tvP~1 dx
Bpr Bgr

+/ U wjw,¢" p%vP dx + fo'p%vP dx + 2oz/ U wipje'p* v dx
Bgr

Bgr Bg

—i—a/ Uijp,-jqop"‘_lv’g dx + a(a — l)/ Uijp,-pjwp"‘_zvﬂ dx.
Bgr Bpr

Now we choose ¢(w) = ", where A > 0 is to be determined later. Then we know that
(3.9) ¢'(w) = Ay, ¢"(w) = (A% + A7) g,

We will estimate the right-hand side of (3.8) term by term.
By (3.9), the two terms of the third line in (3.8) satisfy

‘2,3/ U v; w; (p’p“vﬁfldx’ = ‘/ 24 UY v; w; ¢ p* vP ! dx’
Br Bgr
Aw

ﬂze—
Bgr 1/2+€Aw

A2
+/ (7€Aw +A262Aw)U”w w; ¢ p*vP dx,
Bpr

UY v; vj @ p* P2 dx

and

2
2 U v p;0p® vf14d ’<[ p Ui v v;0p%0P2d
‘ aﬁ/BR GRIOPT U= 8 (U 2wy H P A

—i—/B 8(1 + 2@ UV p; p; @ p*20P dx.
R
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Note that
2 ij oo 2 10y, ay.
Vol < oD% UYpip; and |Vu|* < ot D% U vv;.
The two terms of the second line in (3.8) satisfy
af w—%wipi(ppa—lvﬂ—l dx
1 -0 Jp,
_ 1
5/ sz_%Wwﬁo,o“vﬂ_l dx+/ —azﬂw_ﬁw,olz(pp“_zvﬂ_ldx
B (1—10) Bg 4
_ 1 ..
5/ sz_%wwlzwp“vﬂ‘l dX+f ~a®BUY pipjpp* 0P dx,
Bpr (1 - 9) Bpr 4
and

1 _
FE-1) w6 w; v; @ p*vP2 dx‘
1-6 Jgg

(B—1)? Aw,, —3=20 2 . p-1
</BR m(l+2e Jw™ =60 |[Vw | p* v’ ™" dx

3,32w*ﬁ
\V/ 2 o ﬂ—Sd
+/BR—4(1+2€A“’)| v|pp*v X

(B—1)? A _3-20 5 _
< — (1 2e4W -6 o B ld
_/BR3(1_9)2(+e Jw [Vw|* ¢ p*v X

/ LUi.iv.v.(ppavﬂ—zdx
Br 4(1 + 2e4w) " ‘

By (3.9), the last term of the fourth line in (3.8) satisfies
‘20{ / U w; pj p* P dx‘
Bpr

A2 . .
< / — MUY wiw;j g p* vBdx + / 202 U p; p; @ p*20P dx.
Bgr Bgr
Note that f = div (g) + h, where g is a bounded vector field. We denote
gl = v Zi(gi)z-
Then by integration by parts, we have
) f fo'p*vP dX‘
Bpr

he'p*v? dx —/ g (wig"p*v? + apig'p* 0P + Buig p*vP 1) dx
Br

Bgr

1 - 1 _
5/ —w_%lvwzrpp“vﬁ_ldx +/ —(AzeAw+A2e2Aw)2w%|g|2(pp“vﬂ+ldx
Bg 2 Br 2
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2

+/ gufﬁ|Vp|2Ae"“"<p,o"‘_2v’3_l dx—i—/ gwﬁ|g|2AeAwgo,o
Bgr

Bg 2

B ﬂzw_lle 2 B—3
hlg/ p?vP d / P \VulPgpvP 3 d
+/BR||gopv X+ BR16(1+26Aw)| v|[*pp*v X

+/B 41 + 2eAw)A262Awwﬁ|lgr|2<,0,o"‘vﬁ‘|r1 dx
R

Bgr

+[ %UijpiijeAw(ppa—zvﬂ dx+/ gwﬁ|g|2AeAw(ppavﬂ+l
Bg

Br 2
r o B ﬂz ij o, -2
h d —————— U" ;v —~d
+/BR||go,ov x+/BR16(1+2eAw) viv; @ p*v X

+ [ 4(1 + 2e4W) 42024 wTe g2 p® vPH1 dx.
Bgr
Hence, (3.8) reduces to

5 i @ B2
OZ/BRWU vivj e p* v dx

+oz/ UY pijop* 1P a’x—/ |h| @ p*vP dx
Br BRr

o (Phuett DRy 2]
Bgr

1-6  3(1-0)2 1-0)2 2

X W IVw|>¢ p® vB 1 dx

Oth-‘rl

dx

dx

</ %w_%|Vw|2<pp°‘vﬂ_ldx —1—/ %(AzeAw+A262Aw)2w%|g|2gopavﬂ+ldx
Bgr

1 y
+ / (a(a —1)— (8 + 18e4¥ + Zﬂ)az - gAeAw)U”p,-pj @ p* 2 vP dx
Bpr

2

1 _
_[ E(AzeAw +A2e2Aw)2w%|g|2<pp"‘vﬂ+l dx
Bgr
—/ gwﬁ|g|2AeAwgo/o"‘vﬂJrldx
Br 2
—/ 4(1 —l—2eAw)A2e2Awwﬁ|g|2go,0°‘vﬂJrl dx.
Bgr

Now we choose A sufficiently large such that

p aw_ (B—D? g
TogAve” — 3T U 2™ - g m 3 >0
ie.,
(381 — 0w —2(8 — D2)et — g - 12 —6p— = g

2
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Note that N N
UYpip; <v"7'|Vp[* and |UYp;;| <2n0""!

Then we have
/ U vivj p* vP~2 dx
BRr .

< c/ p“vﬂ+1dx+c/ P 2yPtn—l dx-l—C/ |h| p% v dx.
Bgr Br B

R
Since
Uij (vﬂ/Z a/Z).(vﬂ/Zpa/Z)j

132 o, -2

2
v p*v +oz4 UY pipjp® 2P + Z'BU”v,op"‘lvﬂ_1

2
o ..
< ﬂ—U Tviv; p¥vP~ 2+7U’-’pi,ojp“_2vﬂ

we have

[ Uy e, d
BRr .
§C/ * ﬂ+1dx+C/ p“_zvﬁ+"_1dx+C/ |h| p* v® dx
Bpr Br Bgr

1/ 1-1/
c/ ph+nl dx—i—C(/ 1] dx) q(/ W2 pe2) dx)
Br Br Br

Choosing y > ;qu and using Lemma 3.2 with n = 2, we have

A

2/
(3.10) [/B (vﬂ/zp“/z)xdx] XSC A VB dx 4+ C.
R R

By the interior W?2:!1*¢_estimates for Monge—Ampere equation [9, 29] with (3.3), we
know that there is a small &9 > 0, that depends only on A and A, such that ||v||j 1+ <
C(A, A). Then in (3.10), we choose B = g9 and y = 2p/gq for p € (quleo, +00) to get
[AullLr (g, < C.

For 8 = 1, we know that w = Indet D2u, and we can obtain the L?-bound of Au
following the same method used above. Alternatively, we can apply the Legendre trans-
form to u for the case § = 1 to get the estimate of D2u by the strictly convexity of u with
condition (3.3). [

Now we establish higher estimates of u in terms of the W?2:?-estimate. By chaining
together a sequence of balls, in a standard fashion, we know Au € LIOC(Q) for any fixed
p € [1,+00). Then by Theorem 3.1 and the same arguments as in Proposition 6.1 of [27]
or Theorem 1.3 in [20], we get the Holder continuity of w and all the higher order estim-
ates of u.

As we mentioned in the introduction, there is another approach to establish the C2-
estimate from W22 when f € W4 (By), which holds in any dimension.
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Theorem 3.4. Let u be a uniformly convex smooth solution to equation (1.5) in By with
0 = 0 or 1. Assume that f € WY4(B,) for some q > n/2. Suppose u satisfies (3.3).
Assume that |Au| e (B,) is bounded for some p, > n(n — 1)/2. Then there exists a
constant C > 0, depending on A, A, ||Aul| o g,y and || f |lw1.a(B,), Such that

sup Au < C.
By

Proof. The proof is inspired by [6]. We consider the case € = 1. The case 6 = 0 then

follows by using the Legendre transform. Denote v = u¥ wy w;, where {u*"} is the inverse

matrix of D?u. By direct calculations,

vi = =S ut g wie wy + 2u* wig wy,

kp . rs . tl ks Ip. rt ks tl
vij = WU U up i ug wewr T u P u up g uge wie wp — u U ugi wi wy

— 20w gy wig wy — 20FS w ugg wig wy + 2uF wpwp + 2uf wig ).

For any xo € B, we can choose a coordinate transformation so that u;; (xo) = u;; (x0)d;;.
Then

'ukk

ull vy (xo) = 2u'’ 1 kk 11

Ukri Wlr W Wy — U U U U0 Wi Wy
Lk

u"u
3.11) —4u”ukku”ukl,~ Wik Wy + 2ult Kk Wik Wk + 2u't wizk.
Differentiating In det D2y = w twice, we have

(3.12) u'’ Ujjkl — u'Sut Ujjk Uge] = (Indet D?u)x; = wg;.

Note that (1.5) can be written as "/ w; ; = e~ f. Differentiating the equation respect to
X -direction directly yields

(3.13) —u'Py'’ Uprk Wij + u/ wijk = e U (fix —wr f).
Inserting (3.12) and (3.13) into (3.11), we have

kkull kk, 11 i, kk, 2

u’ v;j(x0) = u w'u uggiugiwewr — 2u" u  u uggpwigwy +uttutt wi

+u uR R wewie — uFFul wigwew; + 20F%e ™ (fie — wi fw
iy 2 y g
= u”ukk(z u”u,-klw1> — 2u”ukk<z u”uiklw1>wik + u”ukkwizk
1 1

+ u”ukkwizk — uFRu  wwew; + 20% e (fie — we £ wi
= u uFF w — X:L‘ll“z'klwll2 +u' = wgwpw;
I
(3.14) + 20 e (fie — wi ) wy.

Next, we compute
u' (e2"v);j (xo)

I 1, 4 Loy, o Lu i Lo ii
(3.15) =Zezwu”wizukkw,%+§e2wu”w,-iv+e2wu”w,-vi+ezwu”v,-,-.
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Note that

wlwivy = = uF* ul g wie wp wi + 20w wr wi w;

(3.16) = u o wy wi (wii — Z w hwi wi) + u uF* w; wi w;.
I

Combining (3.14), (3.15) and (3.16), we have
1

u (e"?); (xo) = u''u kk‘wzk = ujgwy + 3
1

Wi Wi ew/2 + ulzukkakew/Z

(3.17) — % eTV2 fy 4 2072y % frwg.

By (3.12), we have

(3.18) u’ (Au)ij(xo) = uiiujjufjk + Aw.
Let z = /2y + Au. Note that

1 1 _
Aw = Zwkk < E (ukk)ZwikeW/Z 4 Euike w/2
k

< %(ukk)zw,%kew/2 + %(Au)ze_w/z.
Then by (3.17) and (3.18), we have
u”zij(x0) = =C|f o = Clficlo = C| fil + u**ulTwi; e/ + Aw
> —C(f |+ 1 filv = Clfil + @) wiy e’ — Emkk)zw;kew/z
— %(Au)ze_“’/2
(3.19) = =C(f+ | fil + Au)z,
where C = C(A, A). In the last inequality we used
z>Au > n(detDzu)l/" > pAl/n,
Since (3.19) is valid at every point in By, by (3.3), we have the following inequality:
(3.20) D;j(UY D;z) > —gz — CAuz in By,

where g = C(|f| + | fkl) € LY(B).
Next, we derive the upper bound of z by integration and iteration. Let n € C§°(B)
be a cutoff function. Multiplying (3.20) by ¢ = 5?z#~! with # > 2 and by integration by
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parts, we have

(/3—1)/ ”zznzﬁ 2dx

IA

—2/ Uijzinjnzﬁ_l dx +C
By

-1 ” 2 .
p1 [ UYzizin? 22 dx + -1 / UYnin; 28 dx
B, ﬁ_ B,

Au-n?zP dx +/ gn?zP dx

B, By

IA

2
+C/ Au-n?zP dx+/ gn?z? dx,
Bl Bl
which implies
[ vz, dx
B,
< C,B(/ Uijninjzﬂ dx+/ Au-nzz’g dx—i—/ gnzzﬂ dx)_
Bl Bl

B

Then by the Monge—Ampére Sobolev inequality [30] and (U¥) < (Au)"~'I, we have
11222120 5
(3.21) < CO,B(/ (Au)""'|Dn|? 28 dx +/ Au-n?zP dx +[ gn?zP dx),
B B B

1

where p = 2* = nzTnZ forn > 2 and p > 2 for n = 2. Then by Holder’s inequality,

1/q 2g \1-1/q
/ gn*zPdx < (/ qux) (/ |nzﬂ/2|fiqu) )
B, B B,

Since g > n/2, we have 2 < Tl < 2*. By Holder’s inequality and Young’s inequality,
we obtain

/3/2” 2

Inz < elnzP Loy + Cn.q) €27 |9 2P 2| L2(p,).

Then we choose & = (4Co ||gllze(s,) B + 1)7/2. By (3.21),

1nz#213 o8,
(3.22) < Cﬁ"‘( (Au)""'|Dn|?z? dx +/

Au-nzzﬂdx-i-/ n
B,

2,8 dx),
B,

B,

where o = Z;—En. Then by Holder’s inequality, we have

(3.23) / (Aw)" Dl zP dx < | AullLom(sy) - || Dn)z ‘S/ZIIZ 2n
B ””_"+1(31)

(3.24) / Au-n?zP dx < | Aulponsy) - 102207 0

B Lpn=1(By)
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Combining (3.22), (3.23) and (3.24), we get

[UE 17PN
< Cﬁ“/2(|||Dn|zf’/2||

S LS WP VELL PRYPRY
1(B1)

Pn
n—n+1 (Bl)

< g (D=2 + Izt

B (B1) s (B, ))

Now forany 0 < r < R < 1, we choose a cutoff function n € C5°(Br) such that

0<n<1, n=1inB, and |Dn|<

Then we obtain

B/2 -B/2
125 N er ) = I e B
n(n 1) D;
By the assumption p, > , we know p > ron T Denote
—n+1
Pn
Then
Cc?/Bpa/b
(3.25) Iz

Ln n+1X(B) ~ (R—r)2/8 I= ”Lp “nFT (Bg)

We iterate (3.25) to get the desired estimate. Set

; R—r |
Bi=2y and Ri=r+———, i=0,1,2,...,

21
ie.,
R—r .
ﬂizxﬂi_l and Ri—l_Ri: 2i ’ l =1’2""
By (3.25),
z i
l || ‘X“(BRI-H)
i 2 i i 1
< CZ;:o 5. 1_[ ﬂq/ﬂj '421':0 B , Nzl 2o .
J (R — r)Z}=o(2/Bj) L Pn=n+T1 (BR)

Jj=0

Letting i — oo, by Young’s inequality, we have

pn—n+1 pn+n—1
PO - = n . 2pn
||Z||L°°(Br) = (R _ r)% ”Z”L%(BR) (R _ r) x ” ”Ll(BR) ||Z||L°°(BR)

C

X _._2pn ||Z||L1(BR)'
x—1 pn—n+1

1
< §||Z||L°°(BR) +

—r)
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Set f(t) = ||z||L>(B,) fort € (0, 1]. Then forany0 <r < R < R < 1,

X 2pn ”Z”LI(BE)'
— ) %=1 a1

F0) <5 FR) +
(

We apply Lemma 3.5 below to get

C
(3.26) fr) < o 1211 (Bg)-

(R — r)ﬁ'pn—n-#l

It remains to show ||z||L1(Bﬁ) < C. Itis clear that Au € L'(Bg), hence it is suffices to
estimate the integral of v. Let n € C5°(B1) be a cutoff function such that n = 1 in By.
Multiplying (1.5) by ¢ = n?w and integrating by parts, we have

f Uijwiw,-nzdx—i—Z/ Uijwinjnwdx= fwn?dx.
By ' Bi ' B
Then by the Cauchy inequality, we get

1 ; ;
—/ U7 wiw;n? dx 52/ U”nin_jwzdx+/ | flwn? dx
2 B B B,

<2 (Au)"_1|Dn|2w2dx+/ | flwn? dx.
Bl Bl

Hence
/ Wk wpw; dx < €
Bg

follows by Au € LP"(By), f € L?(B1). Then we complete the proof by choosing r = 1/2
and R = R in (3.26). [

Lemma 3.5 (Lemma4.31in [15]). Let f(t) > 0 be bounded in |1y, t1] with tg > 0. Suppose
that for tgo <t < s < 11 we have

f@) = Bf(s)+ + B

(s —0)®

for some B € [0, 1). Then for any 19 <t < s < 1y, there holds

A
1) < C(a, { + B}.
S0 = Ce bl
Remark 3.6. Note that for n = 2, we have already got an L”-bound of Au in Theorem 3.3
for all p € [1, 400). However, it is still unknown how to obtain L?-bound of Au when
n > 3 by the integral method used in Theorem 3.3. We also do not know how to obtain
higher estimates for other exponents 6 by the above method.
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4. An interior estimate in higher dimensions

In this section, we will prove Theorem 1.5. By [2,3], it suffices to get the interior estimates
on the upper and lower bound of det D?u. Note that there exists a constant ¢, > 0 such
that
det D%y
cn - Au

4.1) I <UY <c,(Au)" " '1.

In view of (3.2) and (4.1), we first consider the following degenerate linear elliptic equa-
tion:

4.2) —Dj(a;j(x)Diu) + c(x)u = f(x) in Q.
Lemma 4.1. Assume {a;;(x)} satisfies

“3) % <ay(x) < A" in By,

where A(x) € L?(B;), d~' € L4(By). Assume c(x), f(x) € LP°(By). Letu € W17 (B)
be a subsolution in the following sense:

4.4) / a;;DiuDjg + cupdx < | fodx forany ¢ € W, P (By) and ¢ > 0.
Bl Bl

Suppose p, q and pg satisfyn/p + 1/q <2/n and po > p/(n — 1). Then

supu < C (et iz + 1 Izeocay)) -
1/2

where C depends only on p, ||Al|Lr(B,), |d " |La(By) and ||c||Lro(By)-

Proof. Forsome k > Oandm > 0, set## = u™ + k and

_ u, u<m,
u =
" k+m, u>m.

Let n € Cg°(B1). We choose a test function
¢ = > (@ha—kP*) e WP (B)

for some B > 0 to be determined later. Substituting ¢ into (4.4), we have
ﬂ[ aijD,-ﬁDjﬁmﬁﬁ,_lﬁnzdx—i—/ aijDiﬁDjﬁﬁfnnzdx
B By

5—2/ aijD,-ﬁDjnﬁiﬁndx—l—/ (Iclnzft,‘;ﬁz—l—lflnzﬁ,’i,ﬁ)dx.
Bl Bl
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Note that Du = Diiy, in {u < m} and Di,, = 0 in {u > m}. By the Cauchy inequality,
we have

B a,-jD,-ﬁijﬁmﬁﬁ,_lﬁnzdx—i—/ a,-jD,-ﬁDjftﬁﬁ,nzdx
B, B,

1
55/ aijDiﬁDjﬂﬁfnnzdx+4/ a;j DinD;nub u* dx
B, By

/(|c|n2uﬂu2+|f|n2uﬂ i) dx.
B,
Then by (4.3),
d 1 d
4 piRaf 2 d _/_D—z—ﬂ 2
B s Pl x5 [ St ipaPa ax
1
<p aijDiﬁijﬁmﬁgl_lﬁnzdx+—[ ai; DiuD; uu dx
Bl 2 B]
(4.5) <4 A(x)"—1|Dn|2af’na2dx+/ con?ub u? dx,

B By

where co = |c| + | f|/k. Choose k = || f|lLro(p,) if f is not identically 0. Otherwise
choose arbitrary k > 0 and let k — 0. Let

w = uﬁ/2
There holds

|Dw|? = (é b2V 4, Dty + ub/? Dﬂ‘z < (1 + B)(Bub | D) + ul | Du|?).
Therefore, by (4.5),

/ —|Dw|2772 dx <8(1+ ,3)/ A)" Y DyPw?dx +2(1 + B) cow?n? dx.
B, Ax) B B

By
|D(wn)|* < 2|Dw|*n* + 2| Dn>w?,

we have

d
[ S P
</ (% +16(1 + A (x)"™ 1)|D77|2w2 dx + 41 —l—ﬂ)/ cow?n?

(4.6) <18(1 —|—ﬂ)/ A)" Y DyPw? dx + 4(1 +ﬁ)/ cow?n? dx.
B, By
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Next, we deal with the A(x) in the above estimate. By the assumptions A € L?(B;) and
d=' € LY(B,), wehave Ad~! € L7t (B1). By Holder’s inequality, we have

1
4.7 D 2 Ad! / ———|D % dx,
4.7 [ (wr’)””qup‘&qw) [ IIL;gq(B) e A0d |D(wn)|* dx
“8) /‘Auw UDyw? dx < |AlLe,) - lwDn|? ,
B, Lr- ”+1 (B1)
2 2 2pg_ 1-1/po
49) cow?r? dx < flcollLroqmy - [ (rwym T ax)
B, By
Combining (4.6)—(4.9), we get
D(w <C(l1+ 1/2 ( w )
| D( ")||quip§+q(31) <=Ca+B) |l Pty + I 77I|L 0
<Cc1+p)Y? ( )
<C(1+p) e B + lw nlle 2 )

for C depending on [|Al|Lr(8,), [|d " |La(By), lIc]lLro(B,)- Here we used pg > (n — 1)/ p.
By the Sobolev inequality,

lwhllzees, = €1+ B2 (

fer gy I 2 "+1(B>>

where

T_pra+tptqg 1

(4.10)
o 2pq n

Now forany 0 < r < R < 1, we choose a cutoff function n € C§°(Br) such that

0<n<1, n=1inB, and |Dp|<

Then we obtain
C(1+ p)'/?
—— [lwl

w =< ’
lwlze,) = —F%— L7 (Bg)

By (4.10) and the assumption n/p + 1/q < 2/n, we have o > m We can do the
iteration as follows.
Recalling the definition of w, we have

C(1 1/2
D jwgean

iB/2
2 R_»r m oM 2 sy

ullpe(s,) <
Sety =B + 2> 2. Byu, < u, we obtain

|| 72|

13%/2 || a8,y <

LT (Bg)|
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Letting m — oo, we get

12| Lep,) < />
7wy = L I, 22er
i.e.,
cy)l/v
il raraay < ~L |
(R—r)2lr LE 5o n+1(BR)
Denote
— 1
2p
Then
_ cn'r
(4.11) Iz ]

L7 (B,) = (R — )27 1 LT (B’

We iterate (4.11) to get the desired estimate. Set

vi=24 and Ri=r+ ;r, i=0,1,2,...,
i.e.,
R—r .
yl =Xyl—1 and Rl—l_Rl = 21 ’ l :1»2»"'
By (4.11),
ioa ! ) i 1
T —— <CFn w4 il
LnFI (Br;,,) i=o (R— r)Z,:orj L7=1¥T (Bg)
Letting i — oo, by Young’s inequality, we have
_ C _
llloocB,) < ——— llull
R—I’)X L p— n+1(B)
C p—n+1 ptn—1
— W ” ”Ll(BR) ” ||L°°(BR)
_ c _
< 5 lullL(Br) + ——————=— lullL1(BR)-
R — r)x=T"p=n+1
Set f(t) = ||it||Lo(B,) fort € (0,1]. Thenforany 0 <r < R <1,
1 C _
f(r) < Ef(R) + S ”u”Ll(Bl)'

(R — r) x—1 p—n+1

We apply Lemma 3.5 to get

Cc _
Sr) £ ——————— llulleia)-

(R — r)ﬁ’pfnJrl

The lemma follows by choosing r = 1/2 and R = 1. |
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Now we can use Lemma 4.1 to obtain the interior estimates for (1.1). For simplicity,
we only consider the homogeneous equation.

Proof of Theorem 1.5. Denote a;; = UV, A = Au and d = det D?u. Firstly, we consider
the case 0 < 6 < 1. We apply Lemma 4.1 to equation (1.3), which yields

supw < Cllwllzip,y < Cllwl|

_q .
Bijs LT6 (By)

Since w = (det D2u)~1=9 e L9 (B;), we know supg, , {(det D?u)~!} < C. For the
upper bound of the determinant, we set w = 1/v. A direct calculation yields
1% 21),'1)]' Vij

— i —
w; = 2 and w;; =

v3 v2

Then v satisfies

. 2 1 ) B
— Uiy = Z Ulpv: — — Uy > —— Uy,
0=U"w;; = 3 UY v;v; 2 UYv;j > 2 UYvij,

ie.,
—D,’(UUDJ'U) <0 in Bj.

Similarly, we use Lemma 4.1 to obtain

supv < Clvllpyy <Clvll _»
BI/IZ B Ln(=0) (By)
which implies supg, P det D?u < C.

Next, we consider the case # = 1. Write w = log d, where d € L?/"(B;). Then we
have

w; = j and w;; :_% %,
which yields
. | R | | G-
0=U"wy = ——3 UVdid; + S UYdy; = < U dy,
i.e.,

—D;(U"D;d) <0 in By.
Similarly, write w = —log z with z = (det D?u)~! € L4(B;). We have

Zj ZiZj Zij
w, =—— and w;; = L2
2
z z z

which means
0=U"w; = iz UYzizj — ! UYz; > ! Uz,
z z z
ie., N
—D;(UYDjz) <0 in Bj.

Then we use Lemma 4.1 to obtain the bounds of det D?u.
Once we have the determinant estimates, all the interior estimates follow. [
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Remark 4.2. To get the upper bound of det D?u, we only need u € W2?(By) with
p > n?/2. In fact, by taking det D2y = v/0=% (0 < § < 1), where v defined as in the
proof of Theorem 1.5, condition (4.3) in Lemma 4.1 becomes

p1/(1-6)

eS) <ajj(x) < A(x)"!

Then the upper bound can be obtained by similar arguments as in Lemma 4.1 without
assumption on (det D?u)~!.

Remark 4.3. We can also consider the inhomogeneous equation
(4.12) D;(U”D;w) = f in By,

where f € LP°(By). For the lower bound of det D2u, if we assume py > p/(n — 1), we
can apply Lemma 4.1 to (4.12) directly for all 8 € [0, 1). However, for the upper bound of
det D?u, v = 1/w satisfies

(4.13) —D; (U7 D;v) < fv?® in By.

Even we assume py = oo, we only know fv € Lﬁ(Bl). Then we can only apply
Lemma 4.1 to the equation (4.13) to get the upper bound of det D2y when 1/n < 0 < 1.
Hence, we have all the higher interior estimates for 6 € [1/n, 1). Note that the case § = 0
(Abreu’s equation) and 6 = 1/(n + 2) (affine mean curvature equation) are not included.

Finally, we prove a Liouville type theorem.

Proof of Corollary 1.6. Foru inany Bg C R”, define ug(x) = %M(RX). Then we know
that U (wg);; = 0 in Bj. Since u satisfies (1.7), we know u g satisfies

/ |D?ug|? + (det D*ug)?dx < C.

B

Applying Theorem 1.5 to u g, we find that there exists a C > 0 independent of R, such
that ||UR||C4,a(Bl/2) < C. In particular, we know that ||D3UR||L00(BI/2) < C. Hence

C
I D*u(Rx)|| L8, ) < 2

i.e.,
C
I D3u(x) | Lo (Bgyn) < e
Let R — 400, we have D3y = 0, which means u is a quadratic function. [
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