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Spans of translates in weighted `p spaces

Karim Kellay, Florian Le Manach and Mohamed Zarrabi

Abstract. We study the cyclic vectors and the spanning set of the circle for the
`
p
ˇ
.Z/ spaces of all sequences u D .un/n2Z such that .un.1C jnj/ˇ /n2Z 2 `

p.Z/,
with p > 1 and ˇ > 0. The uniqueness set of the distribution on the circle whose
Fourier coefficients are in `q

�ˇ
.Z/ is the spanning set for the `p

ˇ
.Z/ spaces, where q is

the conjugate of p. Our characterizations are given in terms of the Hausdorff dimen-
sion and capacity.

1. Introduction and main results

Cyclic vectors are, amongst others, an important tool in the study of invariant subspaces
and their characterization [1, 20, 25]. For the shift operator, the problem of cyclic vectors
in the space of sequences `p.Z/ goes back to the works of Wiener [26] for p D 1 and
p D 2, Beurling [3] and Salem [24] for 1 < p < 2, and Newman [18] for p > 1. This
problem is still far from being resolved.

A vector u 2 `p.Z/ is called cyclic in `p.Z/ if the linear span of its translates,

¹.unCk/n2Z; k 2 Zº;

is dense in `p.Z/. The Fourier transform of u 2 `p.Z/ is given by yu.t/ D
P
n2Z un e

int ,
where the trigonometric series is to be interpreted as a distribution on the circle group
T D R n 2�Z. For u 2 `p.Z/ with 1 � p � 2, yu becomes a function. We denote by Z.yu/

the zero set of yu in T . Notice that for u 2 `1.Z/, the set Z.yu/ is well-defined, since yu
is continuous. The cyclicity can be viewed as an approximation problem or a unique-
ness/removable singularities problem. Following Newman [18], a closed subset E � T is
called p-spanning if every u 2 `1.Z/ with Z.yu/ � E, is cyclic in `p.Z/. On the other
hand, E is called a q-uniqueness set if E does not support any non-vanishing distributionP
n2Z cn e

int with .cn/n2Z in `q.Z/. It is well known that E is p-spanning if and only
if E is a q-uniqueness set, where q is the conjugate of p.

Wiener [26] characterized the cyclic vectors in `1.Z/ and in `2.Z/. Further, Beurling,
Salem, and Newman [3, 18, 24] provided either necessary or sufficient conditions for u
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to be cyclic in `p.Z/ for p > 1. These conditions were given in terms of the size (capa-
city and Hausdorff dimension) of the zero set of the Fourier transform yu. However, Lev
and Olevskii [14–16] showed that for 1 < p < 2, the problem of cyclicity in `p.Z/ is
more complicated even for sequences in `1.Z/: we cannot characterize the cyclicity of u
in `p.Z/ in terms of Z.yu/ alone, which contradicts Wiener’s conjecture.

We summarize the results of the previous works cited above. We denote by q the
Hölder conjugate of p � 1, with 1=p C 1=q D 1, and write dim.E/ for the Hausdorff
dimension of a subset E � T .

(1) (Wiener): u is cyclic in `1.Z/ if and only if yu has no zeros on T .
(2) (Wiener): u is cyclic in `2.Z/ if and only if yu is non-zero almost everywhere.
(3) (Beurling): Let 1 � p � 2. If dim.E/ < 2=q, then E is a p-spanning.
(4) (Salem): Let 1� p � 2. For 2=q < ˛ � 1, there existsE � T such that dim.E/D ˛

and E is not p-spanning
(5) (Newman): There exists a p-spanning set E for all 1 < p < 2 such that dim.E/D 1.
(6) (Lev and Olevskii): If 1 < p < 2, there exist u and v in `1.Z/ such that Z.yu/DZ.yv/,

u is not cyclic in `p.Z/, and v is cyclic in `p.Z/.
In this paper, we shall focus on the cyclic vectors on weighted `p.Z/ spaces, namely

`
p

ˇ
.Z/, the space of sequences u D .un/n2Z for which .un.1C jnj/ˇ / 2 `p.Z/ for p � 1

and ˇ > 0, endowed with the norm

kuk
p

`
p
ˇ
.Z/
D

X
n2Z

junj
p .1C jnj/pˇ :

Note that the space `p
ˇ
.Z/ (but not the norm) is invariant under translations. A vector u 2

`
p

ˇ
.Z/ is called cyclic in `p

ˇ
.Z/ if the linear span of ¹.unCk/n2Z; k 2Zº is dense in `p

ˇ
.Z/.

For every closed subset E of T , E is called .p; ˇ/-spanning if every u 2 `1.Z/ \ `p
ˇ
.Z/

such that Z.yu/ � E is cyclic in `p
ˇ
.Z/, and E is called a .q; ˇ/-uniqueness set if E does

not support any non-zero distribution
P
n2Z cne

int with .cn/n2Z in `q
�ˇ
.Z/. If E is a

.q; ˇ/-uniqueness set, then E is .p; ˇ/-spanning, where 1=p C 1=q D 1 (see Remark 2.5
below). Observe that the shift operator does not act as an isometry on `p

ˇ
.Z/ unlike on

`p.Z/ spaces; this represents a difficulty for the study of cyclic vectors in `p
ˇ
.Z/.

Notice that `p
ˇ
.Z/ is a Banach algebra if and only if ˇq > 1 (see [6]). Hence, in this

case we have an analogue of .1/ in Wiener’s theorem: a vector u 2 `p
ˇ
.Z/ is cyclic if and

only if yu has no zeros on T . Thus in the sequel of the paper we will only be interested in
pairs .p; ˇ/ such that ˇq < 1.

Richter, Ross and Sundberg [23] gave a complete characterization of hyperinvariant
subspaces of the weighted harmonic Dirichlet spaces `2

ˇ
.Z/, 0 < ˇ � 1=2. Their charac-

terization and a relation between capacity and Hausdorff dimension led to the result that
u 2 `1

ˇ
.Z/ is cyclic in `2

ˇ
.Z/ if and only if dim.Z.yu// � 1 � 2ˇ. Their result may be

considered as an analog of Wiener’s theorem about the cyclic vector of `2. Hence, we
study the case of p ¤ 1 and p ¤ 2. Our main result for 1 < p < 2 is the following (see
Theorem 3.3).
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Theorem A. Let 1 < p < 2 and ˇ > 0 be such that ˇq � 1, and let E be a closed subset
of T .

(1) If dim.E/ < 2
q
.1 � ˇq/, then E is .p; ˇ/-spanning.

(2) If dim.E/ > 1 � ˇq, then E is not .p; ˇ/-spanning.

(3) For 2
q
.1 � ˇq/ � ˛ � 1, there exists a closed subset E � T such that dim.E/ D ˛

and E is not .p; ˇ/-spanning.

(4) If p D 2k=.2k � 1/ for some k 2 N n ¹0º, there exists a .p; ˇ/-spanning E � T
such that dim.E/ D 1 � ˇq.

The property (4) shows that the constant 1 � ˇq obtained in .2/ is sharp. Indeed, on
one hand, there is no cyclic vector u such that dim.Z.yu// > 1� qˇ, and on the other hand,
we can find some cyclic vector u with dim.Z.yu//D 1� ˇq. However, this is only proved
when p D 2k=2k � 1 for some positive integer k. The proof is based on the construction
of a closed subset E of T whose k-sums E C � � � C E are of zero capacity and of given
Hausdorff dimension (see Lemma 3.2). The arithmetic structure of E allows us to reach
the best constant 1 � ˇq only for p D 2k=.2k � 1/.

Next we will deal with the case p > 2. Newman in [18] showed that for all " > 0,
there exists a p-spanning set E � T which has a Lebesgue measure jEj > 2� � ". The
existence of q-uniqueness sets of arbitrary large measure for the spaces `q.Z/, 1 < q < 2,
was established by Katznelson [11] (see also the Theorem in Chapter IV, Section 2.5,
in [12]). Extensions of their results to a more general setting were given in [7], where they
studied the uniqueness set of `q

�ˇ
.Z/. We have the following result.

Theorem B. Let p > 2 and ˇ > 0 be such that ˇq � 1.

(1) If ˇ > 1=2� 1=p, then every closed subset E of T of positive Lebesgue measure is
not .p; ˇ/-spanning.

(2) If ˇ < 1=2 � 1=p, then for every " > 0, there exists a .p; ˇ/-spanning set E � T
such that jEj > 2� � ".

Nikolski, in Corollary 6 of [21], considered the weighted space

`p!.Z/ D
°
.un/n2Z � C : kukp! WD

X
n2Z

junj
p!pn <1

±
;

where !n D log.eC jnj/
 , 
 > 0. He showed that if p > 2=.1 � 
/, 0 < 
 < 1, then there
existsE �T with large Lebesgue measure which is a uniqueness set for the dual of `p!.Z/,
which implies the cyclicity in `p!.Z/ of every u 2 `1!.Z/ satisfying Z.yu/ � E. As a by-
product of Theorem B, we show in Corollary 5.1 that the result of Nikolski remains valid
for all p > 2 and 
 > 0.

This paper is organized as follows. In the next section, we present the background
and recall some properties of distribution spaces. Section 3 is devoted to the proof of
Theorem A. We construct in Lemma 3.2 a Cantor type set of zero capacity whose kth

sum remains of zero capacity. Section 4 provides the proof of Theorem B based on the
estimation of power sums of unimodular complex numbers (see Lemma 4.1). Finally,
Section 5 is dedicated to some results on the `p spaces with logarithmic weights.



K. Kellay, F. Le Manach and M. Zarrabi 1928

2. Notations and preliminaries

2.1. Background on `p weighted spaces

Let 1 � p < 1 and ˇ 2 R. We denote by D 0.T / the set of distributions on T , and
by M.T / the set of measures on T . For S 2 D 0.T /, we denote by yS D . yS.n//n2Z the
sequence of Fourier coefficients of S , and we write S D

P
n
yS.n/en, where en.t/D eint .

Notice that we use the same notation yu and yS to denote respectively the Fourier transform
of u 2 `p and of S 2 D 0.T /. The space Ap

ˇ
.T / will be the set of all distributions S 2

D 0.T / such that yS belongs to `p
ˇ
.Z/. We endow A

p

ˇ
.T / with the norm

kSkAp
ˇ
.T/ D k

ySk`p
ˇ
D

�X
n2Z

j yS.n/jp.1C jnj/ˇp
�1=p

:

We will write Ap.T / for the space Ap0 .T /. By construction, the Fourier transform u! yu

is an isometric isomorphism between `p
ˇ
.Z/ and Ap

ˇ
.T /. We prefer to work with Ap

ˇ
.T /

rather than `p
ˇ
.Z/. In this section, we establish some properties of Ap

ˇ
.T / which will be

needed to prove Theorem A and Theorem B.
For 1 � p <1 and ˇ � 0, we define the product of f 2 A1

ˇ
.T / and S 2 Ap

ˇ
.T / by

fS D
X
n2Z

.bf � yS/.n/ en DX
n2Z

�X
k2Z

bf .k/ yS.n � k/� en;
and we see that kfSkAp

ˇ
.T/ � kf kA1

ˇ
.T/kSkAp

ˇ
.T/. Note that if S 2 Ap

�ˇ
.T /, we can also

define the product fS 2 Ap
�ˇ
.T / by the same formula and obtain a similar inequality:

kfSkAp
�ˇ
.T/ � kf kA1

ˇ
.T/kSkAp

�ˇ
.T/.

For p ¤ 1, the dual space of Ap
ˇ
.T / can be identified with Aq

�ˇ
.T /, 1=p C 1=q D 1,

by the formula

hS; T i D
X
n2Z

yS.n/bT .�n/; S 2 A
p

ˇ
.T /; T 2 Aq

�ˇ
.T /:

We need the following lemma, which gives us different inclusions between the Ap
ˇ
.T /

spaces.

Lemma 2.1. Let 1 � r , s <1 and ˇ; 
 2 R.

(1) If r � s, then Ar
ˇ
.T / � As
 .T / if and only if 
 � ˇ.

(2) If r > s, then Ar
ˇ
.T / � As
 .T / if and only if ˇ � 
 > 1=s � 1=r .

Proof. (1) Suppose that r � s. If 
 � ˇ, then As
ˇ
.T / � As
 .T /. Since k � k`s � k � k`r , we

get Ar
ˇ
.T / � As
 .T /. Now suppose 
 > ˇ. Let S 2 D 0.T / such that yS.n/.1C jnj/ˇ D

.1Cm/�2=r if jnj D 2m and yS.n/ D 0 otherwise. Then we have S 2 Ar
ˇ
.T / n As
 .T /.

(2) Suppose that r > s. If ˇ � 
 > 1=s � 1=r , then by Hölder’s inequality, we obtain
Ar
ˇ
.T /� As
 .T /. Now suppose that ˇ � 
 < 1=s � 1=r . Let " > 0 be such that ˇ � 
 C "

< 1=s � 1=r , ˛ D �1=s � 
 C ", and let S 2 D 0.T / be such that yS.n/ D n˛ . We have
S 2 Ar

ˇ
.T / n As
 .T /.
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Suppose now that ˇ�
 D 1=s�1=r , and let S 2D 0.T / be such that yS.n/r .1Cjnj/ˇr

D 1=.1C jnj/ ln.1C jnj/1C", with "D r=s � 1 > 0. We have S 2Ar
ˇ
.T / nAs
 .T /, which

proves that Ar
ˇ
.T / 6� As
 .T /.

2.2. Cyclicity in A
p

ˇ
.T /

We denote by P .T / the set of trigonometric polynomials on T . We say that S 2 Ap
ˇ
.T /

is a cyclic vector in Ap
ˇ
.T / if the set ¹PS; P 2 P .T /º is dense in Ap

ˇ
.T /. It is clear that

the cyclicity of S in Ap
ˇ
.T / is equivalent to the cyclicity of the sequence yS in `p

ˇ
.Z/.

Moreover, for 1 � p <1 and ˇ � 0, S is cyclic in Ap
ˇ
.T / if and only if there exists a

sequence .Pn/ of trigonometric polynomials such that

(2.1) lim
n!1

k1 � PnSkAp
ˇ
.T/ D 0:

We obtain the first cyclicity results for the spacesAp
ˇ
.T /whenAp

ˇ
.T / is a Banach algebra.

More precisely, we have the following (see [6]).

Lemma 2.2. Let 1 � p <1 and ˇ > 0. Then Ap
ˇ
.T / is a Banach algebra if and only

if ˇq > 1. Moreover, when ˇq > 1, a vector f 2 Ap
ˇ
.T / is cyclic in Ap

ˇ
.T / if and only

if f has no zeros on T .

Let f 2 A1
ˇ
.T / and S 2 D 0.T /. We denote by Z.f / the zero set of the function f :

Z.f / D ¹� 2 T : f .�/ D 0º:

Lemma 2.3. Let 1 � p <1 and 0 � ˇ < 1=2. Let f 2 A1
ˇ
.T / and S 2 Ap

�ˇ
.T /. If for

all n 2 Z, hS; enf i D 0, then supp.S/ � Z.f /.

Proof. Recall that en.t/ D eint . We have

hS; enf i D hfS; eni D 0:

Hence fS D 0. Let ' 2 C1.T / be such that supp.'/ � T nZ.f /. We claim that '=f 2
A1
ˇ
.T / � Aq

ˇ
.T /, where 1=p C 1=q D 1. So we obtain

hS; 'i D hfS; '=f i D 0;

which proves that supp.S/ � Z.f /.
Now we prove the claim. Let " D min¹jf .t/j; t 2supp.'/º > 0, and let P 2P .T / be

such that kf � P kA1
ˇ
.T/ � "=3. By the Cauchy–Schwarz and the Parseval inequalities,

(2.2) kgkA1
ˇ
.T/ � kgk1 C 2

1Cˇ

s
1 � ˇ

1 � 2ˇ
kg0k1

for every g 2 C 1.T /. As in [19], by applying (2.2) to '=P n, we see that

'

f
D

X
n�1

'
.P � f /n�1

P n
2 A1ˇ .T /;

which finishes the proof.



K. Kellay, F. Le Manach and M. Zarrabi 1930

Lemma 2.4. Let 1 < p <1 and f 2 A1
ˇ
.T / with ˇ � 0. We have:

(1) If f is not cyclic in Ap
ˇ
.T /, then there exists S 2 Aq

�ˇ
.T / n ¹0º such that supp.S/�

Z.f /.

(2) If there exists a nonzero measure � 2 Aq
�ˇ
.T / such that supp.�/ � Z.f /, then f

is not cyclic in Ap
ˇ
.T /.

Proof. .1/ If f is not cyclic in Ap
ˇ
.T /, by duality there exists S 2 Aq

�ˇ
.T / n ¹0º such that

hS; enf i D 0; 8n 2 Z:

Thus, by Lemma 2.3, we have supp.S/ � Z.f /.
.2/ Let�2Aq

�ˇ
.T /\M.T / n ¹0º be such that supp.�/�Z.f /. Since� is a measure

on T , we have h�; enf i D 0 for all n 2 Z. So f is not cyclic in Ap
ˇ
.T /.

Remark 2.5. If we suppose that f 2 A1.T / (instead of f 2 A1
ˇ
.T /), then the result (1)

of Lemma 2.4 remains valid. To prove this, it suffices to show that A1.T / \ Ap
ˇ
.T / is a

Banach algebra and we can make the same proof of Lemma 2.4.
Now, let us show that the spaceA1.T /\Ap

ˇ
.T /, p� 1, ˇ >0, endowed with the norm

kf kA1.T/\Ap
ˇ
.T/ D kf kA1.T/ C kf kAp

ˇ
.T/; f 2 A1.T / \ Ap

ˇ
.T /

is a Banach algebra. Since

.1C jk C l j/ˇ � .1C jkj/ˇ C .1C jl j/ˇ and kfgkAp
ˇ
.T/ � kf kA1.T/kgkAp

ˇ
.T/;

if we write f D
P
anen and g D

P
bnen, where en.t/ D eint , we get

kfgkAp
ˇ
.T/

�

�X
n2Z

h X
m2Z

jan�mbmj.1Cjn �mj/
ˇ
ip
C

X
n2Z

h X
m2Z

jan�mbmj.1Cjmj/
ˇ
ip�1=p

�

�X
n2Z

h X
m2Z

jbmj jan�mj.1C jn �mj/
ˇ
ip�1=p

C

�X
n2Z

h X
m2Z

jan�mj jbmj.1C jmj/
ˇ
ip�1=p

� kgkA1.T/ kf kAp
ˇ
.T/ C kf kA1.T/ kgkAp

ˇ
.T/; for f; g 2 A1.T / \ Ap

ˇ
.T /;

which allows us to conclude.

Recall that A1
ˇ
.T / is a Banach algebra. Let I be a closed ideal in A1

ˇ
.T /. We denote

by ZI the set of common zeros of the functions of I :

ZI D
\
f 2I

Z.f /:

We have the following result about spectral synthesis in A1
ˇ
.T /, for the case ˇ D 0, also

called the Beurling–Pollard technique, see [9], pp. 121–123.
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Lemma 2.6. Let 0 � ˇ < 1=2. Let I be a closed ideal in A1
ˇ
.T /. If g is a Lipschitz

function which vanishes on ZI , then g 2 I .

Proof. Notice first that since g is Lipschitz function, Bernstein’s theorem (see [8], p. 13)
gives that g 2 A1

ˇ
.T /. Let I? be the set of all S in the dual space of A1

ˇ
.T / satisfying

hS; f i D 0 for all f 2 I . Hence, S 2 I? and supp.S/ � ZI , see Remarque 1.3 in [4].
For h > 0, we set Sh D S � �h, where �hW t 7! �jt j=h2 C 1=h if t 2 Œ�h; h�, and 0
otherwise. We have

c�h.0/ D 1=2� and c�h.n/ D 1

2�

4 sin.nh=2/2

.nh/2
for n ¤ 0:

Since S is in the dual of A1
ˇ
.T /, Sh 2 A1.T /. Moreover, we have supp.Sh/ � supp.S/C

supp.�h/ � ZhI WD ZI C Œ�h; h�. Let g be a Lipschitz function which vanishes on ZI .
We have

jhSh; gij
2
D

ˇ̌̌ Z
ZhI nZ.g/

Sh.x/g.x/dx
ˇ̌̌2
�

�X
n2Z

j yS.n/c�h.n/j2�� Z
ZhI nZ.g/

jg.x/j2dx
�
:

Since ZI � Zg , for every x 2 ZhI , jg.x/j � ch for some positive constant c. Thus

jhSh; gij
2
� c2

�X
n2Z

yS.n/2

1C n2

� �
jZhI nZ.g/j

�
:

Hence limh!0hSh; gi D 0: By the dominated convergence theorem, we obtain that

lim
h!0
hSh; gi D lim

h!0

X
n2Z

cSh.n/bg.�n/ D 1

2�

X
n2Z

yS.n/bg.�n/ D 1

2�
hS; gi:

So hS; gi D 0. Therefore, g 2 I .

We also need the following lemma, which is a consequence of Lemma 2.6. Newman
gave a proof of this when ˇ D 0 (see Lemma 2 in [18]).

Lemma 2.7. Let 0 � ˇ < 1=2 and consider a closed set E � T . There exists a sequence
of Lipschitz functions .fn/ which vanish on E such that

lim
n!1

kfn � 1kAp
ˇ
.T/ D 0

if and only if every f 2 A1
ˇ
.T / satisfying Z.f / D E is cyclic in Ap

ˇ
.T /.

We finish this subsection with the following result of Newman (see the proof of The-
orem 5 in [18]).

Lemma 2.8. Let p > 2. Assume that for every " > 0, there exists a Lipschitz function f
such that jZ.f /j > 2� � " and

kf � 1kAp
ˇ
.T/ � ":

Then for every ", there exists a .p; ˇ/-spanning closed set E � T with Lebesgue measure
jEj > 2� � ".
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2.3. Generalized Cantor set and capacity

Given E � T and a non-decreasing continuous function h such that h.0/ D 0, we define
the h-measure of E by

Hh.E/ D lim
ı!0

inf
° 1X
iD0

h.jUi j/; E �

1[
iD0

Ui ; jUi j � ı
±
;

where each Ui is an open interval inside T and jUi j denotes its length.
We also define the Hausdorff dimension of a subset E � T as

dim.E/ D inf¹˛ 2 .0; 1/;H˛.E/ D 0º D sup¹˛ 2 .0; 1/;H˛.E/ D1º;

where H˛ D Hh for h.t/ D t˛ (see [9], pp. 23–30).
Let � be a probability measure on T and let ˛ 2 .0; 1/. We define its ˛-energy by

I˛.�/ WD

“
d�.t/ d�.s/

jt � sj˛
�

Note that I˛.�/ 2 Œ0;C1�. Simple calculations shows that

I˛.�/ �
X
n�1

jb�.n/j2
.1C jnj/1�˛

�

The ˛-capacity of a Borel set E is given by

C˛.E/ D
1

¹inf¹I˛.�/; � 2MP .E/º
;

where MP .E/ is the set of all probability measures on T which are supported on a com-
pact subset of E.

An important property which connects capacity and Hausdorff dimension is (see [9],
p. 34) that

(2.3) dim.E/ D inf¹˛ 2 .0; 1/; C˛.E/ D 0º D sup¹˛ 2 .0; 1/; C˛.E/ > 0º:

ForE �T , we denote byAp
ˇ
.E/ the collection of S 2Ap

ˇ
.T / such that supp.S/�E,

where supp.S/ denotes the support of the distribution S . The following lemma is a direct
consequence of the definition of capacity and the inclusion Aq

�ˇ
.T /� A2

.˛�1/=2
.T / when

q � 2 and 0 � ˛ < 2
q
.1 � ˇq/.

Lemma 2.9. Let E be a Borel set, ˇ � 0 and q � 2. If there exists ˛ 2 R with 0 � ˛ <
2
q
.1 � ˇq/ such that C˛.E/ D 0, then Aq

�ˇ
.E/ D ¹0º.

Let us recall Salem’s theorem (see [24] and [9], pp. 106–110).

Theorem 2.10. Let 0 < ˛ < 1 and q > 2=˛. There exists a compact set E � T which
satisfies dim.E/ D ˛ and there exists a positive measure � 2 Aq.T / n ¹0º such that
supp.�/ � E.
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The following theorem is due to Körner (see Theorem 1.2 in [13]).

Theorem 2.11. Let hW Œ0;1/! Œ0;1/ be an increasing continuous function such that
h.0/ D 0, and let �W Œ0;1/! Œ0;1/ be a decreasing function. Suppose that

(1)
R1
1
�.x/2dx D1,

(2) there existK1;K2 >1 such that for all 1� x � y � 2x,K1�.2x/� �.x/�K2�.y/,

(3) there exists 
 > 0 such that limx!1 x
1�
�.x/ D1,

(4) there exist 0 < K3 < K4 < 1 such that for all t > 0, K3h.2t/ � h.t/ � K4h.2t/.

Then there exists a probability measure � with support of Hausdorff h-measure zero such
that

jb�.n/j � �� 1

h.jnj�1/

��
ln
� 1

h.jnj�1/

��1=2
; 8n ¤ 0:

We finish this section by describing the construction of the generalized Cantor set. Let
.kj /j�0 be a sequence of integers and let .lj /j�0 be a sequence of positive numbers such
that k0 D 1 and

kj � 2; and kj lj < lj�1; j � 1:

LetE0D Œ0; l0�. We dissect the intervalE0D Œ0; l0� in 2k1 � 1 intervals of lengths respect-
ively l1 and d1 D .l0 � k1l1/=.k1 � 1/:

Œ0; l1�I �l1; d1 C l1ŒI

:::

Œmd1 Cml1; md1 C .mC 1/l1�I �md1 C .mC 1/l1; .mC 1/d1 C .mC 1/l1ŒI

:::

�l0 � l1 � d1; l0 � l1ŒI Œl0 � l1; l0�:

We delete the k1 � 1 open interval of length d1 and we keep the k1 equidistant closed
intervals of length l1. We set

E1 D

k1�1[
mD0

Œmd1 Cml1; md1 C .mC 1/l1�:

Suppose that the set En�1 , n � 1, has already been constructed, and that this set consists
of pn�1 closed intervals of length ln�1:

En�1 D

pn�1[
jD1

Œaj ; aj C ln�1�:

We operate the same dissection on each of the intervals Œaj ;aj C ln�1�with the parameters
.ln; kn/ instead of .l1; k1/, thus we obtain

En D

pn[
jD1

kn�1[
sD0

Œaj C s.ln C dn/; aj C s.ln C dn/C ln�;
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where dn D .ln�1 � knln/=.kn � 1/. The compact set

E D
\
n�0

En

is called the generalized Cantor set.
Ohtsuka [22] obtained a criterion for vanishing C˛.E/, see also [5]:

Theorem 2.12. Let E be a generalized Cantor set. Then

C˛.E/ D 0 ”
X
n�0

1

.k0k1 : : : kn/ l˛n
D1:

3. Proof of Theorem A

3.1. Cyclicity and the set of all sums of k elements from Z.f /

For k 2 N and E � T , let k �E denote the set of all sums of k elements from E,

k �E D E CE C � � � CE D
° kX
nD1

xn; xn 2 E
±
:

We have the following result (the case ˇ D 0 was considered by Newman in [18]).

Lemma 3.1. Let 1 < p < 2 and ˇ > 0 be such that ˇq � 1, and let f 2 A1
ˇ
.T /.

(a) Let k 2 N n ¹0º be such that k � q=2. If C˛.k � Z.f // D 0 for some ˛ < 2
q
.1 �

ˇq/k, then f is cyclic in Ap
ˇ
.T /.

(b) Let k 2 N n ¹0º be such that q=2 � k � 1=.2ˇ/. If C˛.k � Z.f // D 0, where
˛ D 1 � 2kˇ, then f is cyclic in Ap

ˇ
.T /.

Proof. Let k 2 N n ¹0º. Suppose that f is not cyclic in Ap
ˇ
.T /. Then there exists L 2

A
q

�ˇ
.T /, the dual of Ap

ˇ
.T /, such that L.1/ D 1 and L.Pf / D 0, for all P 2 P .T /.

Since ˇ < 1=2, by (2.2), we get C 1.T / � A1
ˇ
.T / � Ap

ˇ
.T /. Moreover, by [17] (see

also Lemma 5 in [18]), there exists � 2 L2.T / such that

L.g/ D

Z
T

�
g0.x/�.x/C g.x/

�
dx; g 2 C 1.T /:

Since L 2 Aq
�ˇ
.T / which implies .L.en//n2Z 2 `

q

�ˇ
.Z/, we obtain

(3.1)
X
n2Z

jnb�.n/jq .1C jnj/�ˇq <1:
Moreover, we haveZ

T

�
.enf /

0.x/ �.x/C .enf /.x/
�

dx D 0; n 2 Z;

and hence h�0 � 1; enf i D 0, where �0 is defined in the sense of distributions. By (3.1),
�0 � 1 2 A

q

�ˇ
.T /, by Lemma 2.3, we get supp.�0 � 1/ � Z.f /.
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For m 2 N, we denote by ��m the result obtained from convolving � with itself m
times. Using the fact that S 0 � T D S � T 0 and 1 � S 0 D 0 for any distributions S and T ,
we have

.�0 � 1/ �
�
.��.m�1//.m�1/ C .�1/m�1

�
D .��m/.m/ C .�1/m:

By induction and by the formula supp.T � S/ � supp.T /C supp.S/, we get that

(3.2) supp
�
.��m/.m/ C .�1/m

�
� m �Z.f /; m � 1:

Note that 3.��k/.k/.n/ D iknkb�.n/k for k � 1 and n 2 Z.
(a) Suppose that 0 < k � q=2 and C˛.k �Z.f // D 0 for some ˛ < 2

q
.1� ˇq/k. We

rewrite (3.1) as X
n2Z

�
jnb�.n/jk�q=k .1C jnj/� qk ˇk <1:

Setting q0D q=k � 2 and ˇ0D ˇk, we have .��k/.k/2Aq
0

�ˇ 0
.T /. By (3.2) and Lemma 2.9,

we obtain that .��k/.k/ D .�1/k�1. This contradicts the fact that 3.��k/.k/.0/ D 0.
(b) Now suppose that k � q=2 and C˛.k � Z.f // D 0, where ˛ D 1 � 2kˇ. Since

q � 2k, we have by (3.1), X
n2Z

jnb�.n/j2k .1C jnj/�2kˇ <1:
So .��k/.k/ 2 A2

�kˇ
.T / and .��k/.k/ D .�1/k�1, which contradicts 3.��k/.k/.0/D 0.

3.2. Construction of generalized Cantor set

We need to compute the capacity of the Minkowski sum of some Cantor type subset of T .
We denote by Œx� the integer part of x 2 R. For � 2 Œ0; 1� and k 2 N n ¹0º, we define

Kk� D ¹m 2 N; 9j 2 N; m 2 Œ2j ; 2j .1C �C 1=j / � k C 1�º;

and we set, in R=Z ' Œ0; 1Œ,

Sk� D
°
x D

1X
iD0

xi

2iC1
; .xi / 2 ¹0; 1º

N such that i 2 Kk� ) xi D 0
±
:

We denote K� D K1� and S� D S1� . We have the following lemma.

Lemma 3.2. For all k � 1, we have

(1) k � S� � Sk� ,

(2) C˛.Sk� / D 0 if and only if ˛ � .1 � �/=.1C �/,

(3) dim.k � S�/ D .1 � �/=.1C �/ and C.1��/=.1C�/.k � S�/ D 0.
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Proof. .1/We prove this by induction. If k D 1, we have S� D S1� . We suppose the result
true for k � 1 for some k � 2, and we will show that k � S� � Sk� . Observe that we have

k � S� � .k � 1/ � S� C S� � S
k�1
� C S�:

Let x 2 Sk�1
�

, y 2 S� and zD xC y. Denote by .xi /, .yi / and .zi / their binary decompos-
itions. Letm 2Kk

�
. Then there exists j 2N such thatm 2 Œ2j ; 2j .1C �C 1=j /� kC 1�.

Since m 2 Kk
�

and m; m C 1 2 Kk�1
�
� K�, we get xm D ym D xmC1 D ymC1 D 0.

Therefore, we write

z D x C y D

m�1X
iD0

xi C yi

2iC1
C

1X
iDmC2

xi C yi

2iC1
�

For infinitely many i � mC 2, we have xi C yi < 2, and hence

1X
iDmC2

xi C yi

2iC1
<

1

2mC1
�

Denoting by Œs� the integer part of s, we have

Œ2mC1z� D 2Œ2mz� D 2mC1
m�1X
iD0

xi C yi

2iC1
�

Therefore, we obtain by the uniqueness of the decomposition that

zm D Œ2
mC1z� � 2Œ2mz� D 0:

This proves that z D x C y 2 Sk
�

and k � S� � Sk� .
.2/ We will first show that the set Sk

�
is a generalized Cantor set. Let

�j D Œ2
j .1C �C 1=j / � k C 1�C 1

and N0, depending only on k and �, be such that for all j � N0, 2j < �j < 2jC1. We set
for N � N0,

lN D

1X
jDN

� 1

2�j
�

1

22
jC1

�
:

Since
2j .1C �C 1=j / � k C 1 < �j � 2

j .1C �C 1=j / � k C 2;

we have
1X
jDN

1

2
2j .1C�C 1

j /

� 1

22�k
�

1

2
2j .1��� 1j /

�
� lN �

1X
jDN

1

2
2j .1C�C 1

j /

� 1

21�k
�

1

2
2j .1��� 1j /

�
:

There exists C � 1 such that, for all j � N ,

1

C
�

1

22�k
�

1

22
j .1���1=j /

�
1

21�k
�

1

22
j .1���1=j /

� C:
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And for N � N0,

1

22
N .1C�C1=N/

�

1X
jDN

1

22
j .1C�C1=j /

�
1

22
N .1C�C1=N/

C

1X
jD0

� 1

22
NC1.1C�/

�2j
�

1

22
N .1C�C1=N/

C

1X
jD0

� 1

22
NC1.1C�/

�jC1
�

1

22
N .1C�C1=N/

C
2

22
NC1.1C�/

�
3

22
N .1C�C1=N/

�

Hence we obtain that lN is comparable to 2�2
N .1C�C1=N/, that is,

(3.3)
1

C22
N .1C�C1N/

� lN �
3C

22
N .1C�C1=N/

�

Moreover, we have

(3.4) lN D
1

2�N
�

1X
jDNC1

� 1

22
j
�

1

2�j

�
<

1

2�N
�

1

22
N
�

For N � N0, we set

EN D
° 2N�1X
iD0

xi

2iC1
C lN z; z 2 Œ0; 1�; xi 2 ¹0; 1º; i 2 K

k
� ) xi D 0

±
:

Observe that we can write EN as a union of disjoint intervals:

EN D
[

.xi /2¹0;1º
2N

i2Kk
�
)xiD0

E
.xi /
N ;

where

E
.xi /
N D

2N�1X
iD0

xi

2iC1
C lN Œ0; 1Œ:

Since by (3.4), lN < 1=22
N

, the intervals E.xi /N are disjoint:

E
.xi /
N \E

.x0i /

N D ;; .xi / ¤ .x
0
i /:

For fixed N � N0, let .xi /0�i�2N�1 2 ¹0; 1º2
N

and .yi /0�i�2NC1�1 2 ¹0; 1º2
NC1

. We
claim that:

E
.yi /
NC1�E

.xi /
N if and only if xiDyi for all 0 � i < 2N , and yi D 0 for all 2N � i < �N :

Indeed, suppose that E.yi /NC1 � E
.xi /
N and let u 2 E.yi /NC1. We have

u D

2NC1�1X
iD0

yi

2iC1
C lNC1 z2 D

2N�1X
iD0

xi

2iC1
C lN z1;
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where z1; z2 2 Œ0; 1Œ. By (3.4), lN < 1=2�N , and using the uniqueness of the binary rep-
resentation, we obtain xi D yi for all 0 � i < 2N and yi D 0 for all 2N � i < �N . Now
suppose xi D yi for all 0 � i < 2N and yi D 0 for all 2N � i < �N . Let u 2 E.yi /NC1. We
write

u D

2N�1X
iD0

xi

2iC1
C

2NC1�1X
iD�N

yi

2iC1
C lNC1 z; z 2 Œ0; 1Œ:

Since
2NC1�1X
iD�N

1

2iC1
C lNC1 D

1

2�N
�

1

22
NC1
C lNC1 D lN ;

we get

2N�1X
iD0

xi

2iC1
�

2N�1X
iD0

xi

2iC1
C

2NC1�1X
iDZN

yi

2iC1
C lNC1 z �

2N�1X
iD0

xi

2iC1
C lN ;

and u 2 E.xi /N . This concludes the proof of the claim.
By the claim, for fixed .xi / and for N � N0, we have the following properties:

(i) the interval E.xi /N contains precisely

kNC1 D #
®
.yi /�N�i�2NC1�1: yi 2 ¹0; 1º

¯
D 22

NC1��N

intervals of the form E
.yi /
NC1.

(ii) The intervals of the form E
.yi /
NC1 contained in E.xi /N are equidistant intervals of

length lNC1; the distance of two consecutive intervals of the form E
.yi /
NC1 is equal to

1=.22
NC1
� lNC1/.

(iii) Writing E.xi /N D Œa; b�, there exist .yi / and .zi / such that E.yi /NC1 D Œa; aC lNC1�

and E.zi /NC1 D Œb � lNC1; b�.

Finally, we can write Sk
�

as

Sk� D
\
N�N0

EN :

This shows that Sk
�

is a generalized Cantor set. By Theorem 2.12, we have for 0 < ˛ < 1
that C˛.Sk� / D 0 if and only if

1X
NDN0

1

.kN0 � � � kN�1/ l
˛
N

D1;

where kN0 D 1. Since

2.k�2/.N�N0/C.2
N�2N0 /.1��/��N � kN0 � � � kN�1 � 2

.k�1/.N�N0/C.2
N�2N0 /.1��/��N ;
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where

�N D

N�1X
jDN0

2j

j
;

we have, by (3.3), that C˛.Sk� / D 0 if and only if

1X
NDN0

22
N .˛.1C�/�.1��//C˛2N =NC�N�.k�1/.N�N0/C2

N0 .1��/
D1:

Therefore, C˛.Sk� / D 0 if and only if ˛ � .1 � �/=.1C �/.
Finally, .3/ follows from .1/, and .2/ by the capacity property.

3.3. Proof of Theorem A

We are now ready to prove Theorem A. It follows immediately from the following the-
orem, stated in Ap

ˇ
.T / spaces.

Theorem 3.3. Let 1 < p < 2 and ˇ > 0 be such that ˇq � 1.

(1) If f 2 A1
ˇ
.T / and dim.Z.f // < 2

q
.1 � ˇq/, then f is cyclic in Ap

ˇ
.T /.

(2) If f 2 A1
ˇ
.T / and C1�ˇq.Z.f // > 0, then f is not cyclic in Ap

ˇ
.T /.

(3) For 2
q
.1� ˇq/ � ˛ � 1, there exists a closed set E � T such that dim.E/ D ˛ and

every f 2 A1
ˇ
.T / satisfying Z.f / D E is not cyclic in Ap

ˇ
.T /.

(4) Let k D Œq=2�. For all " > 0, there exists a closed set E � T such that

(3.5) dim.E/ � max
�
2
q
.1 � ˇq/k � "; 1 � 2.k C 1/ˇ

�
and every f 2 A1

ˇ
.T / satisfying Z.f / D E is cyclic in Ap

ˇ
.T /. Furthermore, if

pD 2k=.2k � 1/ for some k 2N n ¹0º,E can be chosen such that dim.E/D 1�ˇq.

Proof. .1/ Note that, by (2.3), dim.Z.f // < 2
q
.1 � ˇq/ if and only if there exists ˛ <

2
q
.1 � ˇq/ such that C˛.Z.f // D 0. If C˛.Z.f // D 0, by Lemma 2.9, there is no S 2
A
q

�ˇ
.T / n ¹0º such that supp.S/ � Z.f /. So, by Lemma 2.4 (1), f is cyclic in Ap

ˇ
.T /.

.2/ Suppose that C1�ˇq.Z.f // > 0. There exists a probability measure � of energy
I1�ˇq.�/ <1, such that supp.�/ � Z.f / . So � 2 A2

�ˇq=2
.T / n ¹0º. Since jb�.n/j � 1

for all n 2 Z and q � 2, we have � 2 Aq
�ˇ
.T /. By Lemma 2.4 (2), f is not cyclic in

A
p

ˇ
.T /.

.3/ Suppose that 2
q
.1� ˇq/ < ˛ � 1. There exists " > 0 such that 2

q
.1� ˇq/C " < ˛.

Let q0 be such that 2=q � 2ˇC "D 2=q0. Since ˇ > 1=q � 1=q0, by Lemma 2.1,Aq
0

.T /�
A
q

�ˇ
.T /. By Theorem 2.10, as q0 satisfies q0 > 2=˛, there exist a closed subset E � T

such that dim.E/ D ˛ and a non-zero positive measure � 2 Aq
0

.T / � Aq
�ˇ
.T / such that

supp.�/ � E. Now .3/ follows from Lemma 2.4(2).
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Now if ˛D 2
q
.1�ˇq/ and 
 > 2=q, then, by Theorem 2.11 with �.t/D .t ln.et//�1=2

for t � 1 and h.t/ D t˛

ln.e=t/
 for t 2 Œ0;1/, there exists a probability measure � with
support of Hausdorff h-measure zero such that

jb�.n/j � �� 1

h.jnj�1/

��
ln
� 1

h.jnj�1/

��1=2
� .jnj˛ ln.ejnj/
 /�1=2;

for n ¤ 0. SoX
n¤0

jb�.n/jq.1C jnj/�ˇq � CX
n¤0

jnj�˛q=2�ˇq ln.ejnj/�
q=2

� C
X
n¤0

1

jnj ln.ejnj/
q=2
<1;

with C a positive constant. Hence, � 2 Aq
�ˇ
.T /. We set E D supp.�/. By Lemma 2.4 the

result is proved.
.4/ Let k D Œq=2�. Suppose first 2

q
.1 � ˇq/k > 1 � 2.k C 1/ˇ and let 0 < "0 < "

satisfy 1 � 2.k C 1/ˇ � 2
q
.1 � ˇq/k � "0. Consider the set S�, where � satisfies

2

q
.1 � ˇq/k � "0 <

1 � �

1C �
<
2

q
.1 � ˇq/k:

By Lemma 3.2(3), we have dim.S�/ D .1 � �/=.1C �/ and C.1��/=.1C�/.k � S�/ D 0.
Therefore, by Lemma 3.1(a), every f 2 A1

ˇ
.T / such that Z.f /D S� is cyclic in Ap

ˇ
.T /.

Now, suppose 2
q
.1 � ˇq/k � 1 � 2.k C 1/ˇ. We consider S�, where

1 � �

1C �
D 1 � 2.k C 1/ˇ:

By Lemma 3.2(3), we have

dim.S�/ D
1 � �

1C �
D 1 � 2.k C 1/ˇ and C.1��/=.1C�/..k C 1/ � S�/ D 0:

Thus, by Lemma 3.1(b), every f 2 A1
ˇ
.T / such that Z.f / D S� is cyclic in Ap

ˇ
.T /.

Suppose now that p D 2k=.2k � 1/ for some k 2N n ¹0º. As before, we consider S�,
where

1 � �

1C �
D 1 � 2kˇ D 1 � ˇq:

Again by Lemma 3.1(b), every f 2 A1
ˇ
.T / such that Z.f / D S� is cyclic in Ap

ˇ
.T /.

Note that the set E which was considered in Theorem 3.3(4) satisfies C˛.E/ D 0,
where

˛ � max
�
2
q
.1 � ˇq/k � "; 1 � 2.k C 1/ˇ

�
:
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4. Proof of Theorem B

4.1. Some power sum

To prove Theorem B, we need the following lemmas.

Lemma 4.1. Let R be a prime power and m a positive integer. We set k D RmC1 and
N D .R � 1/.RmC1 C 1/. Then there exist N th roots of unity z1; : : : ; zk such that

ˇ̌̌ kX
jD1

zrj

ˇ̌̌
�
p
k; r D 1; : : : ; N � 1:

Proof. The proof is inspired from a result by Andersson, see Lemma 1 in [2]. Let F D
¹xj ; 1 � j � kº be a finite field of order k, and let E be an extension field of F of
order k2. Let ! be an element that generates the multiplicative group E�, and let � be a
multiplicative character on E of order k2 � 1. We set

zj D �
d .! C xj /; 1 � j � k;

where d D
Pm
jD0R

j . SinceNd D k2 � 1, the zj areN th roots of unity. For 1� r �N � 1,
the characters �rd are non-trivial on E, thus by Theorem 1 in [10] we get

ˇ̌̌ kX
jD1

zrj

ˇ̌̌
D

ˇ̌̌ kX
jD1

�rd .! C xj /
ˇ̌̌
�
p
k; r D 1; : : : ; N � 1:

Lemma 4.2. With the notation of Lemma 4.1, we set

cn D

�Pk
jD1 z

n
j

�
k

� sin.�n=N/
�n=N

�2
; n 2 Z:

Then X
n2Zn¹0º

jcnj
p .1C jnj/ˇp �

N 1Cˇp

kp=2
�

Proof. We have

crCN` D

�Pk
jD1 z

r
j

�
k

� sin.�r=N /
�r=N C �`

�2
and

X
n2Zn¹0º

jcnj
p .1C jnj/ˇp D

N�1X
rD1

X
`2Z

jcrCN`j
p .1C jN`C r j/ˇp

D

N�1X
rD1

ˇ̌Pk
jD1 z

r
j

ˇ̌p
kp

X
`2Z

j sin.�r=N /j2p

�2pjr=N C `j2p
.1C jN`C r j/ˇp:
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To estimate
j sin.�r=N /j2p

�2pjr=N C `j2p
.1C jN`C r j/ˇp;

we will consider two cases.
Case 1. N � 2r . In this case,

sin2
�
.r=N /�/

�
�2.r=N C `/2

.1C jr C `N j/ˇ �
.r=N /2�ˇ

.j`j � 1=2/2
.r=N C r2=N C j`jr/ˇ

�
1

22�ˇ
1

.j`j � 1=2/2
.1=2C r=2C j`jr/ˇ �

1

22�ˇ
.j`j C 1=2/ˇ

.j`j � 1=2/2
.1C r/ˇ :(4.1)

Therefore,

(4.2)
X
`2Z

j sin.�r=N /j2p

�2pjr=N C `j2p
.1C jN`C r j/ˇp �

1

2.2�ˇ/p

X
`2Z

.j`j C 1=2/ˇp

.j`j � 1=2/2p
.1C r/ˇp:

Case 2. N � 2r . For jr C `N j < N ,

sin2..r=N /�//
�2.r=N C `/2

.1C jr C `N j/ˇ � .1CN/ˇ � 2ˇ .1C r/ˇ :

We remark that there are at most two integers of the form r C `N with jr C `N j < N .
Thus,

(4.3)
X

` W jrC`N j<N

j sin.�r=N /j2p

�2pjr=N C `j2p
.1C jN`C r j/ˇp � 21Cˇp.1C r/ˇp:

Assume now that jr C `N j � N and ` 2 Z. We note that in this case jr=N C `j D
jr C `N j=N � 1. We have

sin2.r�=N/
�2.r=N C `/2

.1C jr C `N j/ˇ �
1

.r=N C `/2 �2
N ˇ .1=N C jr=N C `j/ˇ

�
22ˇ

�2 jr=N C `j2�ˇ
rˇ :

Then we getX
`2ZW jrC`N j�N

j sin.�r=N /j2p

�2pjr=N C `j2p
.1C jN`C r j/ˇp(4.4)

�

X
`2ZW jr=NC`j�1

22ˇp

�2pjr=N C `j.2�ˇ/p
rˇp �

22ˇpC1

�2p

X
`�1

1

`.2�ˇ/p
rˇp:

Combining (4.3) and (4.4), we obtainX
`2Z

j sin.�r=N /j2p

�2p jr=N C `j2p
.1CjN`Cr j/ˇp � max

�
21Cˇp;

22ˇpC1

�2p

X
k�1

1

k.2�ˇ/p

�
„ ƒ‚ …

cˇ;p

.1C r/ˇp:
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Therefore,

X
n2Zn¹0º

jcnj
p .1Cjnj/ˇp D

N�1X
rD1

j
Pk
jD1 z

r
j j
p

kp

X
`2Z

j sin.�r=N /j2p

�2pjr=NC`j2p
.1CjN`Cr j/ˇp

� cˇ;p

N�1X
rD1

j
Pk
jD1 z

r
j j
p

kp
.1C r/ˇp � cˇ;p

N 1Cˇp

kp=2
�

4.2. Proof of Theorem B

To prove (1), we suppose that p � 2 and ˇ > 1=2 � 1=p. It suffices to check that the
characteristic function of E, �E , is in `q

�ˇ
, the dual space of `p

ˇ
. By Hölder’s inequality,

X
n2Z

jc�E .n/jq .1C jnj/�ˇq � �X
n2Z

jc�E .n/j2�q=2�X
n2Z

.1C jnj/
�
2ˇq
2�q

� 2�q
q
:

The sums
P
n2Z jc�E .n/j2 and

P
n2Z.1C jnj/

�
2ˇq
2�q converge since �E is in L2.T / and

ˇ > 1=q � 1=2.
In order to prove (2), using notations from Lemmas 4.1 and 4.2, we first define

f .x/ D
X
n2Z

cn e
inx :

The function f is the sum of k triangles each with base 4�=N and height N=k, then f is
a Lipschitz function and its support has measure 4�k=N .

We recall that k D RmC1 and N D .R � 1/.RmC1 C 1/. Let 0 � ˇ < 1=2� 1=p and
choose m such that ˇ < 1

2
mC1
mC2
�

1
p

. We have

N 1Cˇp

kp=2
�
R.mC2/.1Cˇp/

R
mC1
2 p

� R
p.mC2/.ˇC 1

p�
1
2
mC1
mC2 /:

Since
p.mC 2/

�
ˇ C

1

p
�
1

2

mC 1

mC 2

�
< 0;

we have that
N 1Cˇp

kp=2
! 0; as R!1:

By Lemma 4.1, we have

kf � 1k
p

A
p
ˇ
.T/
�
N 1Cˇp

kp=2
�

On the other hand, k=N ! 0 as R ! 1, and hence, for every " > 0, there exists a
Lipschitz function f such that kf � 1kAp

ˇ
.T/ < " and with support of measure less than ".

Finally, Lemma 2.8 concludes the proof.
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5. Remarks

We say that .!n/ 2 R is a weight if there exists a constant C > 0 such that wn � 1 and
!nCk � C!n!k for all k; n 2 Z. For a weight ! and 1 � p <1, we set

Ap!.T / D
°
f 2 C.T / : kf kp

A
p
!.T/
D

X
n2Z

jbf .n/jp!pn <1±:
Note that

kfSkAp!.T/ � kf kA1!.T/ kSkA
p
!.T/

for f 2 A1!.T / and S 2 Ap!.T /.

Hence we have the same result as (2.1) to characterize cyclicity in Ap!.T / by norm.
When !n D O..1C jnj/"/ for all " > 0, for instance, by letting !n D ln.e C jnj/
 ,

where 
 � 0, we can show the same result as Lemma 2.7. By noting that

A
p

ˇ
.T / � Ap!.T / � A

p.T /

for all p � 1 and ˇ > 0, we obtain the following result by Theorem A and Theorem B:

Corollary 5.1. Let ! D .!n/n2Z be a weight such that limn!C1
log!n
logn D 0.

(1) Let 1 < p < 2.

(a) If f 2 A1!.T / and dim.Z.f // < 2=q, then f is cyclic in Ap!.T /.

(b) For 2=q < ˛ � 1, there exists a closed subset E � T such that dim.E/ D ˛

and every f 2 A1!.T / satisfying Z.f / D E is not cyclic in Ap!.T /.

(c) For all 0 < " < 1, there exists a closed subsetE � T such that dim.E/D 1� "
and every f 2 A1!.T / satisfying Z.f / D E is cyclic in Ap!.T /.

(2) Let p > 2. For every " > 0, there exists a closed subsetE �T such that jEj> 2� � "
and every u 2 A1

ˇ
.Z/ satisfying Z.yu/ D E is cyclic in Ap

ˇ
.Z/.

Proof. .1/ Suppose that 1 < p < 2.
(a) Let f 2A1!.T / be such that dim.Z.f // < 2=q. Then there exists 0<ˇ < 1=2 such

that dim.Z.f // < 2
q
.1 � ˇq/. By Theorem 3.3(1), every g 2 A1

ˇ
.T / satisfying Z.g/ D

Z.f / is cyclic in Ap
ˇ
.T /. Therefore, by Lemma 2.7, there exists a sequence of Lipschitz

functions .fn/ which are zero on Z.f / such that

lim
n!1

kfn � 1kAp
ˇ
.T/ D 0:

Moreover, !n D O..1C jnj/ˇ /, therefore,

lim
n!1

kfn � 1kAp!.T/ D 0:

Again by Lemma 2.7 in Ap!.T /, we obtain that f is cyclic in Ap!.T /.
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(b) By Theorem 2.10, there exists a closed setE � T such that dim.E/D ˛ and every
f 2 A1.T / satisfying Z.f / D E is not cyclic in Ap.T /. Let f 2 A1!.T / be such that
Z.f /DE. Since f 2A1.T /, f is not cyclic inAp.T /. However, k � kAp.T/ � k � kAp!.T/,
therefore f is not cyclic in Ap!.T /.

(c) Let 0 < " < 1 and ˇ > 0 be such that 1 � 2.Œq=2� C 1/ˇ � 1 � ". By The-
orem 3.3(4), there exists a closed set E � T such that

dim.E/ � 1 � 2.Œq=2�C 1/ˇ � 1 � ";

and every f 2 A1
ˇ
.T / satisfying Z.f / D E is cyclic in Ap

ˇ
.T /. Since Ap

ˇ
.T / � Ap!.T /,

by Lemma 2.7, we get our result.
.2/ If p > 2, then the result immediately follows from Theorem B.

Note added in proof. Mohamed Zarrabi passed away in December 2021. The remaining
authors sadly dedicate this article to his memory.
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