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Epsilon-regularity for the solutions
of a free boundary system

Francesco Paolo Maiale, Giorgio Tortone and Bozhidar Velichkov

Abstract. This paper is dedicated to a free boundary system arising in the study of
a class of shape optimization problems. The problem involves three variables: two
functions u and v, and a domain €2; with u and v being both positive in €2, vanishing
simultaneously on 92, and satisfying an overdetermined boundary value problem
involving the product of their normal derivatives on dS2. Precisely, we consider solu-
tions u,v € C(By) of
—Au=f and —Av=g inQ={u>0}={v>0}

ou 9

Aoy _ Q ondQ2 N Bj.

an on

Our main result is an epsilon-regularity theorem for viscosity solutions of this free
boundary system. We prove a partial Harnack inequality near flat points for the
couple of auxiliary functions +/uv and %(u + v). Then, we use the gained space
near the free boundary to transfer the improved flatness to the original solutions.
Finally, using the partial Harnack inequality, we obtain an improvement-of-flatness
result, which allows to conclude that flatness implies C 1'% regularity.

1. Introduction

Let u, v € C(B;) be two continuos non-negative functions on the unit ball in R¢ such that
Q:={u>0}={v>0}

Suppose that u and v are also solutions of the free boundary problem

(1.1) —Au=0 inQ,

(1.2) —Av =0 in£,

(1.3) 8_ua_v:] on 02 N By,
on dn

where the two equations (1.1) and (1.2) hold in the classical sense in the open set 2.
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On the other hand, since we will not assume that €2 is regular, the boundary condi-
tion (1.3) is to be intended in a generalized sense. Following the classical approach of
Caffarelli [9, 10], for simplicity, in the introduction and in Theorem 1.3, we will assume
that (1.3) holds in the sense of Definition 1.1 below. Our main e-regularity result applies
to an even more general notion of solution, but in order to avoid technicalities in this
introduction, we postpone this discussion to Section 2.

Definition 1.1 (Definition of solutions). We say that (1.3) holds if, at any point x¢ €
d<2 N B at which €2 admits a one-sided tangent ball, we have that the functions u and v
can be expanded as

u(x) = a((x = xo) - v)+ + o(|x — xol),
v(x) = B((x —x0) - V)+ + o(lx — xo).

where v is a unit vector and « and f are positive real numbers such that o = 1.

Our main result is a regularity theorem which applies to solutions which are suffi-
ciently flat in the sense of the following definition.

Definition 1.2 (Definition of flatness). We say that ¥ and v are e-flat in B; if there are a
unit vector v € dB; and positive constants & and 8, with ¢ = 1, such that

a(x-v—g); <u(x) <a(x-v+e); foreveryx € By,

B(x-v—e)y <v(x) <B(x-v+e); foreveryx € By.
We will also say that u and v are e-flat in the direction v.
We prove the following theorem.

Theorem 1.3. There is a constant ey > 0 such that the following holds. Let u and v be two
non-negative continuous functions on By and let 2 := {u > 0} = {v > 0}. If u and v are
solutions of (1.1)=(1.2)—(1.3) and are e-flat in By, for some ¢ € (0, g¢], then dQ is C 1%
in BI/Z'

Theorem 1.3 follows from Theorem 3.1 (Section 3), in which we prove the same result
for a more general notion of solution, which we define in Section 2 in terms of the blow-
ups of u and v. The proof of Theorem 3.1 will be given in Sections 4 and 5.

The rest of the introduction is organized as follows. In Section 1.1, we briefly discuss
the relation of the system (1.1)—(1.2)—(1.3) to the well-known one-phase, two-phase and
vectorial Bernoulli problems, with which it shares several key features. In Section 1.2, we
briefly explain the overall strategy and the novelties of the proof. Finally, in Section 1.3,
we discuss the applications of our result to the theory of shape optimization.

1.1. The classical one-phase, two-phase and vectorial problems

The free boundary problem (1.1)—(1.2)—(1.3) is a vectorial analogue of the following clas-
sical one-phase problem:

(1.4)

Au=0 inQ:={u>0}
|[Vu| =1 ondQ2N By,
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which was introduced by Alt and Caffarelli in [1] in the early 80s. Later, in a series of
papers (see [9,10] and the book [11]), Caftarelli studied the following two-phase problem,
in which the solution is given by a single function u: B; — R that changes sign:
L5 Au=0 inQy :={u >0} and Q_ :={u <0},

(15) @Yu)? —(0,u)> =1 ondL NAIR_N By,
and where the transmission condition on the boundary 024 N dQ2_ is defined in terms
of Taylor expansions at points with one-sided tangent ball (contained in Q4+ or Q_),
exactly as in Definition 1.1; here n denotes the normal to 024 N d2_ at such points.
More recently, De Silva [14] gave a different proof to the one-phase e-regularity theorem
from [1]; the method found application to several generalizations of (1.5) (see [15-17])
and opened the way to the original two-phase problem of Alt—Caffarelli-Friedman [2],
for which the C % regularity of the free boundary in every dimension was proved only
recently in [13] by a similar argument.

Inspired by a problem arising in the theory of shape optimization, a cooperative vec-

torial version of the one-phase problem was introduced in [12], [23] and [25]. In this case,
the solutions are vector-valued functions

U=(u1,...,uk):B1—>]Rk

satisfying
k
(1.6) AU =0 inQ:={U[>0}, and > [Vu;|*=1 ondQn Bi.
j=1

The regularity of the vectorial free boundaries turned out to be quite challenging, espe-
cially when it comes to viscosity solutions. This is mainly due to the fact that the regularity
techniques, based on the maximum principle and on the comparison of the solutions with
suitable test functions (see for instance [14] and [13]), are in general hard to implement
in the case of systems. Epsilon-regularity theorems for the vectorial problem (1.6) were
proved in [12,23-26,29] and more recently, in [18], where the regularity of the flat free
boundaries was obtained directly for viscosity solutions.

1.2. Outline of the paper and sketch of the proof

The free boundary problem (1.1)—-(1.2)—(1.3) is also a vectorial problem and arises in
the study of a whole class of shape optimization problems (which we will discuss in
Section 1.3). On the other hand, unlike the one-phase ([1]), the two-phase ([2]) and the
vectorial problem [12,25] it does not have an underlying variational structure in terms of
the functions u and v, thus purely variational arguments as the epiperimetric inequality
(see [29]) cannot be applied.

Thus, we prove an improvement-of-flatness result for solutions of (1.1)—(1.2)—(1.3)
from which Theorem 1.3 follows by a standard argument (for more details, we refer for
instance to [30]). Precisely, the aim of the paper is to prove the following theorem (see
also the more general Theorem 5.1).
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Theorem 1.4 (Improvement of flatness). There are dimensional constants g9 > 0 and
C > 0 such that the following holds. Let u: By — R and v: By — R be two continuous
non-negative functions, which are also solutions to (1.1)—(1.2)—(1.3). Let Q := {u > 0} =
{v >0} andlet 0 € 0Q. If u and v satisfy

(xa —&)+ sulx) = (xg + &)+ and (xg—&)+ =v(x) = (xg +&)+ inBi,

for some & < &g, then there are a unit vector v € R? with |v — eq| < Ce and a radius
p € (0, 1) such that

“(X‘V—§)+§u(pX)S&(x-v+%)+ and ,3(x-v—§)+§v(px)

p

<Bx-v+E)

for all x € By, where&andﬁaresuchthat&/é =1|1—a| <Ceand |1 —B| <Ce.

In order to prove Theorem 1.4, we use the general strategy of De Silva developed
in [14] for viscosity solutions of the one-phase problem, which reduces the proof of The-
orem 1.4 to two key ingredients (partial Harnack inequality and analysis of the linearized
problem) at which are concentrated the whole difficulty of the proof and the insight on
the specific problem. The idea is the following. Arguing by contradiction, one considers
a sequence of solutions (u,, v,), which are g,-flat with &, — 0, and then produces the
linearizing sequence

() e s )

&n &n

Uy (x) =

The argument now can be divided into two main steps.

The first step is to show that i, and ¥, converge (see Section 4) to some functions v
and vo; this is done by proving a partial Harnack inequality, which is the hardest part of
the proof. Roughly speaking, the partial Harnack inequality in our case (see Lemma 4.3
for the precise statement) states that if # and v is any couple of e-flat solutions, for some
& < &g, then there is a constant ¢ € (0, 1) such that

1.7 (xa — (I =c)e)+ =u(x) < (xg + &)+ in By,
' (xa —(1=c)e)+ <v(x) < (xg + &)+ in By,

or

(1.8) (xad — &)+ Su(x) < (xg + (1 —c)e)y+ in By,
. (xa — &)+ =v(x) = (xg + (1 —c)e)+ in Byya,

that is, the flatness is improved from above or from below, in the same direction ey, but
without the scaling factor that would allow to iterate the statement without going above
the threshold &y.

The second step is to show that the 1, and v are solutions to a PDE problem (the
so-called linearized problem or limit problem), from which one can obtain an oscillation
decay for Uy, and veo that can then be transferred back to #, and v, for some n large
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enough. In our case, the linearized problem is the following system of PDEs on the half-
ball By N {xg > 0} (see Lemma 5.2 in Section 5):
(1.9) {AuoozAvo():O in By N {xg > 0},

Uoo = Voo aNd Ox,Uoo + 0x,V00 =0 on By N{xy = 0}.

In our case, the most challenging part of the proof is the partial Harnack inequality. In
fact, in the one-phase and the two-phase problems (see [14], [15—-17], and [13]) the validity
of (1.7)—(1.8) is obtained by constructing explicit competitors, which are essentially vari-
ations of the constructions in [14] . In our case though, the functions u and v, considered
separately, are not solutions (not even sub- or supersolutions) to any free boundary prob-
lem. Thus, a key observation in our case, which is inspired by [18] and turns out to be
crucial in both the partial Harnack inequality and the proof of (1.9), is that if ¥ and v are
solutions to (1.1)—(1.2)—(1.3), then ,/uv and %(u + v) are respectively a viscosity sub-
solution and viscosity supersolution of the one-phase problem (1.4) (see Lemma 2.9 and
Remark 4.1)'. Moreover, it is easy to check that both v/uv and 1 (u + v) inherit the flat-
ness of u and v. Thus, by using the competitors from [14] on these functions, we obtain
the following dichotomy in Bj/5:

the flatness %(u + v) is improved from above,
or
the flatness of Juv is improved from below.

Notice that we cannot transfer this information back to u# and v just by an algebraic manip-
ulation; for instance, a bound from below on +/uv does not a priori imply a bound from
below on both u and v. On the other hand, one can easily notice that the improved flat-
ness of \/uv or %(u + v), in particular, implies that in Bj/, the boundary 02 is trapped
between two nearby translations of a half-space, which are distant at most (2 — ¢) . Using
this geometric information and a comparison argument based on the boundary Harnack
principle, in Lemma 4.2 we obtain that also the flatness of # and v improves in Bj .

1.3. On the boundary condition du/dn dv/dn = 1 and its relation to a shape
optimization problem

Our result applies to a whole class of shape optimization problems, that is, variational
problems of the form
min{J(2) : Q € A},

where 4 is an admissible class of subsets of R¢ and J is a given function on . Typically,
the admissible set « is a family of sets of fixed measure, contained in a given bounded
open set D C Rd, while the functional J is monotone with respect to the set inclusion
and depends on the resolvent of an elliptic operator with Dirichlet boundary conditions

I'This situation is similar to the one of the vectorial problem (1.6), in which each of the components of U is
a viscosity supersolution, while, as it was shown in [25], the modulus |U| satisfies |[V|U|| = 1 on o{|U| > 0}
and is a viscosity subsolution of (1.4); this information was used in [18] to prove a partial Harnack inequality
and an e-regularity theorem for the solutions of (1.6).
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on d€2. The shape functionals are usually related to models in engineering, mechanics
and material sciences, and in most of the cases they fall in one of the following main
classes: spectral functionals and integral functionals (for more details, we refer to the
books [4, 19-21] and the survey paper [6]).

The spectral functionals are functionals of the form J(Q2) = F(A1(R2), ..., Ax(2)),
where F:R¥ — R is a monotone (in each variable) function and A(R2), ..., Ax () are
the eigenvalues of the Dirichlet Laplacian on 2. The regularity and the local structure
of these optimal sets were studied in [5, 23-25] (the special cases J(2) = A11(2) and
J(R2) = A,(R2) were studied in [3] and [27]), and are related to the vectorial Bernoulli
problem from [12,25,26]. An e-regularity theorem for general spectral functionals was
obtained in [24].

The integral functionals can be written in the general form

(1.10) J(Q)z/ jlug,x)dx,
D

where j:R x D — R is a given function and the state function ug is the solution to
~Au=f inQ, ueH}(Q),

the right-hand side f: D — R being a fixed measurable function. We will discuss the
regularity of the optimal sets for J in the subsequent paper [7]. In fact, as it was observed
already in [8], a free boundary system of the form (1.1)—(1.2)—(1.3) naturally arises in
the computation of the first variation of J. This is easy to see if one computes formally
the first variation of J for smooth sets. Indeed, if we suppose that €2 is an optimal set
and smooth, and that § € C®°(D;R¢) is a compactly supported vector field, then we can
define the family of sets ©2; := (Id + ¢&)(2) and the family of state functions u; := ug,.
Then, the first variation of J is given by

= % t=0/ﬂ Jug, x)dx
[/D (j(ue, x) — j(0,x)) dx+/$2,j(0’x)dx]

d
_ (.Y : -1
= [ u —(ug,x)dx + JjO,x)€E-ng dH* ",
@ Ou Bl

T
where ng(x) to be the exterior normal at x € Q2 and the formal derivative u’ (of u, at
t = 0) is the solution of the boundary value problem

A =0 inQ, u' =-£-Vug ondQ,

d
I = | _ @0

t=0

in which the condition on d€2 is a consequence of the fact that, given x € 92, we have
ur(x +t&(x)) =0 foreveryt € R.

‘We next define the function
9/
gx) 1=~ (Ug(x). %),
u

and the solution vg of the problem

—Av=g InQ,ve HOI(Q).
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Remark 1.5. Before we continue with the computation of the first variation, we notice
that, in order to have the monotonicity of J, it is natural to assume that f > 0 and
dj /0u < 0, which of course implies that g > 0 and that both ug and vg are non-negative.
On the other hand, if f and dj /du change sign, then in general an optimal set might not
exist (see [8]).

In order to complete the computation of §J(€2)[£], we integrate by parts in €2, getting

a d
—/ u’g(x)dx:/ u’Adexz—/ Vu’-Vdex—f—/ u'ﬂz/ u 22
Q Q Q IR on IQ on

But now, since Vug, is parallel to ng at the boundary, we have that
u' = —£-Vug = —(§ -ng)(ng - Vug).
Thus, the first variation of J is

dug dvg )
8J(Q)E] = / (— -— <+t j(O,x)) ng-§£.
90 on dn
Since the vector field £ is arbitrary and since €2 is a minimizer among the sets of prescribed
measure, we get that in a neighborhood B, (x¢) of a point xg of the free boundary 92 N D,
ugq and vgq are solutions of the system

—Au=f in 2 N By (xg),
—-Av=g in Q N By (xp),
ou v

- =c+j0,x)  ondQnN B (xo),
an on

where c is a positive constant.

Our Definition 1.1 is a generalization of the notion of solution and was proposed by
Caffarelli in [9, 10] in the context of a two-phase free boundary problem. In the subsequent
paper [7], we use Theorem 1.3 to obtain a regularity result for optimal sets for functionals
of the form (1.10). We notice that in Theorem 1.3 we do not assume that the functions u
and v are minimizers of a functional or solutions of a shape optimization problem of any
kind, so this result is of independent interest and can be seen as a one-phase vectorial
version of the classical results of Caffarelli [9, 10].

2. On the viscosity formulations of solution

In this section, we briefly discuss the boundary condition (1.3). In particular, in Defin-
ition 2.4 we give a more general notion of solution, which we will use throughout the
paper. We start by recalling the following definition.

Definition 2.1 (One sided tangent balls). Let & C R? be an open set and let x € 92. We
say that € admits a one-sided tangent ball at x if one of the following conditions hold:

(1) there are r > 0 and yo € 2 such that

Br(y0) C 2 and 09B,(yo) NI = {xo};
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(ii) there are r > 0 and yo € R? \ Q such that
Br(yo) CRY\Q and 9B, (yo) NI = {xo}.

Moreover, we will use the notation

Yo—Xo . .
(2.1) vxy,yo:=——— inthecase (i), and vy, y,:=

|yo —xol

Yo—Xo

— in the case (ii).
|yo—xol

We notice that when € is regular, the vector vy, ., is the inner normal to €2 at x,, while
for non-smooth domains it may depend on the ball B, (yg).

Let Q: B; — R be a C%%-regular function (for some « > 0), and suppose that
2.2) thereis Co > 1 such that Cél < Q0(x)<Co forallx € B;.

Then, Definition 1.1 can be generalized as follows.

Definition 2.2 (Definition of solutions I). Given two continuous non-negative functions
u,v: By — R with the same support Q2 = {u > 0} = {v > 0}, we say that

ou dv
— = Q2 NB
on on Q on v

if at any point xo € 2 N B; for which 92 admits a one-sided tangent ball at x(, we have
that the functions u and v can be expanded as

u(x) = a((x — xo) - v)+ + o(|x — xol)
v(x) = B((x —x0) - v)+ + o(]x — xo).

where v is the unit vector given by (2.1) and « and § are positive real numbers such that

ap = Q(xo).

In particular, this definition implies that if 2 admits a one-sided tangent ball at
Xo € 012, then this tangent ball is unique, which of course excludes a priori domains
with angles and cusps. Moreover, it implies that at such points the blow-ups of u# and v
are unique. Now, since in many situations this is not a priori known, we will work with
couples which are solutions in the more general sense described in the next subsection.

2.1. A more general notion of solution

For every xo € 32 N B; and every r > 0 small enough, we define

1 1
Upxo(X) = - u(xo +rx) and vy x(x) = - v(xg + rx).

Throughout the paper, we adopt the notation u, := u, o and v, := v, . Therefore, Defin-
ition 2.2 can be expressed in terms of the rescaling u, x, and v, x, in the following way.
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Remark 2.3. Let u, v: By — R be two non-negative continuous functions such that
Q:={u>0} ={v>0}

Then, the following are equivalent:
(1) du/dndv/dn = Q on 32 N By, in the sense of Definition 2.2.

(2) At any point xg € 32 N B; for which one of the conditions (i) and (ii) of Defin-
ition 2.1 hold, we have that u, y, and v, x, converge uniformy in By as r — 0
respectively to the functions

(2.3) x> a((x —x9)-v)+ and x> B((x —x9) V)4,

where o and B are positive constants such that & = Q(xo) and v € R¥ is the unit
vector given by (2.1).

In particular, Remark 2.3 implies that Definition 2.2 can be generalized as follows.

Definition 2.4 (Definition of solutions II). Given two continuous non-negative functions
u,v: By — R with the same support Q2 = {u > 0} = {v > 0}, we say that

ou 0
—u—sz on 42 N By
on on

if, at any point xo € 92 N B; for which one of the conditions (i) and (ii) of Definition 2.1
hold, there exist

 adecreasing sequence r, — 0,
* two positive constants « > 0 and B > 0 such that o8 = Q(xy),
+ and a unit vector v € R¢

such that u,, x, and v,, x, converge uniformly in B; respectively to the functions
upg(x) :=a(x-v)y and wvo(x):= B(x-v)4.

Remark 2.5. We say that uy and v are blow-up limits of ¥ and v at xo. We notice that the
blow-up limits at xo may not be unique, as they a priori depend on the sequence r,, — 0.

Remark 2.6. Theorem 1.3 holds also for solutions u and v of (1.1)—(1.2)—(1.3) in the
sense of Definition 2.4. In fact, the entire proof of this theorem will be given for solutions
in the sense of Definition 2.4.

Remark 2.7. The sequence r, — 0 from Definition 2.4 may depend on the tangent ball
B, (y0) at xo (which in turn may not be unique). Thus, in Definition 2.4 we do not assume
that the blow-ups of u and v at xg, as well as the tangent ball B, (yy), are unique.

2.2. Optimality conditions in viscosity sense

In view of the last notion of solutions, we can finally state the viscosity formulation of the
free boundary condition introduced in Definition 2.4.

Definition 2.8. Let u: B; — R (a continuous non-negative function) and ¢ € C*®(R%)
be given, and let ¢4 (x) := max{p(x), 0}.
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e We say that ¢ touches u from below at xo € d{u > 0} N By if u(xgp) = ¢(x9) =0
and
¢+(x) <u(x) forevery x in a neighborhood of x.

e We say that ¢4 touches u from above at xo € d{u > 0} N By if u(xg) = ¢(x9) =0
and
¢+ (x) > u(x) forevery x in a neighborhood of xj.

Lemma 2.9. Suppose that u and v satisfy
ou v
—— =1 02N B
an an o !
in the sense of Definition 2.4, where Q = {u > 0} = {v > 0}. Then, the following holds:
(@) If ¢4 touches Juv from below at a point xo € By N 0R, then |Vo(xg)| < 1.
(b) If ¢4 touches Juv from above at a point xo € By N 0, then |Vy(xg)| > 1.

(¢) If a and b are constants such that
a>0, b>0 and ab=1,

and if ¢+ touches the function wgp = %(au + bv) from above at xo € B1 N 09,
then [Vo(xo)| > 1.

Proof. We start by proving (c). Suppose that the function ¢ touches w,; from above at
Xxo € 02. Then, there is a ball touching d€2 at x¢ from outside (in the sense of Defin-
ition 2.1(ii)). But then, by Definition 2.4, there are blow-up limits of u# and v given
respectively by

24 upg(x) = a(x-v)y and vo(x) = B(x-v)4t.
Moreover, since ¢ is smooth, the blow-up of ¢ is given by

(2.5) @o(x) 1= (x - Vo(xo)) , -

By hypothesis, we have that ¢ touches from above (at zero) the function

ac + bp

) (x - v)4.

X % (auo(x) + bvg(x)) =

Now, since
W > Vaapb =1,
we have that g touches from above (again in zero) also the function
X (x-v)4.

Thus, Ve(xo) = v and in particular |Vo(xo)| > 1.

We next prove (a) and (b). If ¢ touches /uv from below (respectively, above) at
Xo € 0€2, then 0€2 has an interior (respectively, exterior) tangent ball at xo. In particular,
by Definition 2.4, ¥ and v have blow-ups uy and vy given by (2.4). But then the function
Juovo = (x - v)4 is a blow-up limit of \/uv. Now, using again that the blow-up limit
of ¢4 is given by (2.5), we get the claim. ]
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3. Statement of the main theorem

We now give the statement of our main theorem, which is a generalization of Theorem 1.3.

Theorem 3.1. Given f,g € L% (B;) non-negative and Q € C%*(By), consider u,v €
C(B1) non-negative functions which have the same support in By, and set Q := {u > 0}
= {v > 0}. Suppose, moreover, that u and v are solutions of the system

—Au=f in 2,

3.1) —Av=g in 2,
du dv
——= QNB
on on ond 1’

where the free boundary condition holds in the sense of Definition 2.4. Then, there is € > 0
such that if u and v are e-flat in By and

I f ooy + IgllLoo(sy) <& and [|Q(x) — 1|lLoos,) < &
then 3 is CV% in Bi/a.

Remark 3.2. We notice that the presence of f, g and Q entails only some minor technical
adjustments of the proof. Following the spirit of [14], for the sake of simplicity of the
presentation, we choose to carry out the proof in the case f = g =0 and Q = 1. The
main difference with respect to Theorem 1.3 is in the fact that the boundary condition is
given by Definition 2.4 instead of Definition 2.2. In fact, what we will use in the proof is
not even Definition 2.4, but the comparison properties listed in Lemma 2.9.

Remark 3.3. The positivity assumption on f and g is technical and is only required for
the estimate on the Laplacian of /uv (see Remark 4.1 below). Without this assumption,
one should know that the functions u and v are comparable on €2, i.e., that u /v is bounded
away from zero and infinity.

Remark 3.4. In most of the variational free boundary and shape optimization problems,
the flatness condition from Theorem 3.1 is satisfied in almost-every point on the free
boundary of the optimal sets. For instance, in Theorem 1.2 of [7] we show that this con-
dition is satisfied outside a closed set of Hausdorff dimension d — 5, which, thanks to
Theorem 3.1, implies that the free boundary is C !** smooth outside this singular set.

4. A partial Harnack inequality

In this section, we prove a Harnack type inequality for solutions to (3.1) in the spirit
of [14]. In our case, the boundary condition does not allow to work separately with ¥ and v.
Our strategy consists in tracking the improvement of flatness of the auxiliary functions
%(u + v) and /uv, in order to trap the boundary d$2 between nearby translations of a
half-space. Only at this point, by exploiting the gained space, we will be able to improve
the estimates on the solution (u, v).
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Remark 4.1. Our approach relies on the fact that the two auxiliary functions are respect-
ively subsolution and supersolution for the scalar one phase problem (1.4). Indeed, if u
and v are harmonic in 2 and satisfy Lemma 2.9 (c), then w := %(u + v) is a subsolution
since

Aw=0 inQ, |Vw|>1 ondQ.

On the other hand, the function z := /uv is a supersolution:
Az <0 inQ, |Vz|=1 ond.

The boundary condition follows again from Lemma 2.9, while the superharmonicity in 2
follows from the fact that if u, v: 2 — R are two positive and superharmonic functions on
an open set €2, then

qu—I—vVu> _ (wAv+vAu)  [uVv— vVu|? - (uAv+vAu) <0
2/uv 2w dwv)d2 T 2 /uv T

Finally, we notice that in the general case, when u and v are solutions to (3.1), we have

A(Vav) = div(

—Aw=13(f+g inQ, |Vwl>=/0 ondQ;
Az <0 inQ, |Vz|]=./0 ondQ.

The first step is to show that if one is able trap the set 2 between two nearby trans-
lations of a half-space, then one can also improve the flatness estimates on u# and v. This
principle is formulated in the following general lemma.

Lemma 4.2. Let ¢ > 0, and let ¢ € C(By) be a non-negative solution of
—A¢ = f inBiN{¢p >0},
with f € L°°(By). Assume that
4.1 y(xg+a)y <¢(x)<y(xqg+a+e)y forallx e By,
with |a| < 1 and y > 0, and that
either @ D {xg+a+Ce>0}N By, or QLC{xg+a+(1—-C)e>0}N By,

for some universal C € (0, 1). Then, there exist 5 € (0,1) and p € (0, 1), dimensional
constants, such that

either ¢(x) = y(xa +a+8e)4, or ¢p(x)<yxg+a+(1-58¢),
forevery x € B,,.

Proof. We consider two cases.
Case 1. Q D {xg +a+ Ce > 0} N Bys. We set

D := Byj4\{xqg < —a—Ce},
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and we consider the function ¢ defined by

Ap =0 inD,

¢=0 inByy\D,

¢ =w ondBjy,
with |

W= =30+ at CoLIS s,

Since ¢ > 0in D, we have —A¢ > —|| f||L(p,) in D, and consequently —Aw > 0in D.
Then, by applying the maximum principle in D, we get ¢ < w < ¢ in D. On the other

hand, since ¢ > 0 = ¢ in By4 \ D, it follows that ¢ < ¢ in B;,4. Therefore, we claim
that there is some universal § € (0, 1) such that

4.2) ¢ >y(xqg+a+8e)y forall x € Byyss,
from which the desired inequality follows immediately. By (4.1), we know that
14+C 1+C L=
y(xg +a+Ce)y < y(xd tat+— s)+ ¢+ 5 VE in Byya,
and since ¢ = ¢ on 0B} 4, we get
1+C
y(xgt+a+Cey <¢+ ye ondBjy.
Therefore, by applying the maximum principle in D, we get
1+C .
y(xg+a+Cey—¢ =< ye in Byy4.
Consider now the function
Ah =0 in D,
h=0 inB3/16\D,
h = # ye on dBj;6.
Clearly, 0 < h < %ys, and so, by the maximum principle,
(4.3) y(xqa +a+Cée)y —¢ <h inBje.

Now, by the boundary Harnack inequality, if we set X = %ed we get
h(x)
(1/84a+ Ce)+

for some universal constants Cy, C, > 0. This last inequality, together with (4.3), leads to

h(x) < C (xg +a+Ce)y <Crye(xg+a+Ce)y in By,

(I1-Cre)y(xg+a+Ce)y <¢ inBys.
On the other hand, since there exists § € (0,1),8 < C and p < 1/8 such that
(xg +a+68e)r <(1—-Cre)(xg+a+Ce)y forall x € By,

we obtain the desired claim (4.2).
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Case?2. Q C{xg+a+ (1—C)e>0}N Byy. Set
D =By \{xg <—a—-(1-C)¢}

and consider the function

Ap =0 inD,

=0 inBys\D,

¢ =w ondBju,
with |

w=¢+ (g +a+1=0)a) [l

Notice that w > 0 and —Aw < 0 in D. Therefore, by maximum principle, since w = 0

in Byj4 \ D, we get that ¢ > w in By/4. Therefore, since w > ¢ in Bj/4, we have ¢ > ¢
in Bj/4. We claim that

@ <y(xqg+a+(1-08)e)y forallx € Bz,

for some universal § € (0, 1), from which the desired inequality follows immediately.
By (4.1), we know that

1+C
¢ —

ysfy(xd +a+ 8)+§y(xd +a+(1-C)e)+ in By,

and since ¢ = ¢ on 0B} /4, we get

1+C
¢ —y(xa+ta+(1-Cle)y < ye ondBi.

Therefore, by applying the maximum principle in D, we get

o—y(rat+at(-Crey < €

ve in By4.
Consider now the function
Ah =0 in D,
h=0 in B3/16\D,
h = % ye on 0B3/.
Clearly, 0 < h < % ye, and by the maximum principle,
(44) ¢—)/(Xd +a+(1—C)€)+ < h in B3/16.

Now, by the boundary Harnack inequality, if we set X = %ed we get

h(%)

h) = O s et =0,

(xa+a+(1-C)e)y = Crye(xg+a+(1-C)e)y,
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for every x € By and for some universal constants Cy, C; > 0. This last inequality,
together with (4.4), leads to

¢p=(0+C)ylxg+a+(1-Cle)y inBys.
On the other hand, since there exists § € (0, 1), 8§ < C, such that
I+C)xg+a+(1-Cle)y <(xg+a+(1—-08)e)y forallx e B,
we conclude the proof. ]

Finally, we can prove a partial Harnack inequality for solutions to (3.1). We notice that
this result will be applied to the rescalings u,x, and v, of the solutions v and v at some
point x¢ € €2, where as usual we set 2 = {u > 0} = {v > 0}.

Lemma 4.3 (Partial Harnack). Given a constant K > 0, there exist &g, p > 0 such that the
Jollowing holds. If w and v are solutions of (3.1) in the sense of Definition 2.4, and are
such that 0 € Q and

a(xg +a);r <u(x)<a(xg+b)y forallx € By,
B(xa +a)y <v(x) < B(xqg+b)y forallx € By,
for some o and B satisfying
O<a<K, 0<B<K and aff =1,

and for some a and b such that

1 1
la| < —, |b|<— and b—a < ey,
10 10

then there are G and b satisfying b—a< (1 —=368)(b — a) for some § > 0 such that the
inequalities N

a(xg +a)y =ulx) <alxg+b)y,

B(xa + @)+ < v(x) < B(xa +b)+.

hold for all x € B, with p < 1/8 being a dimensional constant.

Proof. Asin[14], we fix apoint X := %ed and consider the function w: R? — R defined as
1 if x € Bl/zo()z'),

w(x) =140 if x ¢ B3ja(X),
c(lx — %74 = (3/4)77) ifx € B3/a(X) \ B1/20(%),

where ¢ := 20¢ — (4/3)?. Notice that the function w is nonzero exactly on B; /4(X) and
it satisfies the following properties on B34 (X) \ B, /20(%):

(w-1) the function w is subharmonic since
Aw(x) =2delx — 542 >2dé(3) 72 > 0;

(w-ii) dx,w is strictly positive on the half-space {xq < 1/10}.
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We divide the proof into three steps.
Step 1. Invariant transformation and flatness estimates.

Consider two functions u and v satisfying the hypotheses of the lemma. First, we
notice that

1 1
— <u(x) <10K and —— <vuv(x) <10K.
10K 10K

Thus, there is a constant

<c¢ < 100K,
100K

such that the couple & = cu, T = ¢~ v satisfies that
u(x) = v(x)
is also a solution to (1.1)—(1.2)—(1.3), and

@.5) A(xg +a); <u(x)<a(xg+b)y forallxe By,
' B(xqg +a)s <T(x) < PB(xqg +b)y forallx e By,

where ~ ~
G@:=ca, B:=c'p and ap=1.
We define the positive constants § and & as follows. We set
g:=b—a<g,

and, without loss of generality, we assume

1 ~
x:=14+86>1>—— = 8.
vi=l+dzlzmm=4p

Next, we notice that since #(X) = v(x), by (4.5), we have

d(%—i—a)fﬁ(%—l—b),

and thus,
1/54+b - 1/54+5b b —
lts=a< BFbg 1SH+b _ b=a g,
1/5+a 1/5+a 1/5+a
In particular, this implies that § < 10e and
~ 1
1>B=——>1-6>1-10¢.
= 1+6 ~ - &
Finally, we obtain
a+p 1 1
46 1 < :—(1 5 —)<1 52 <14 10062,
(4.6) = > + +1+8 <1+ <1+ &

This, together with (4.5), implies that for all x € B; we have

Vi(x)v(x) =< (xg+b)+

(va +a)s = 3 @00 + () = (1 +10082)(xg + )+

(xg +a)+

IA

“.7)

A
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with
_— — - ux) + v(x)
T(E) = (%) = VI () = —————-
Now, using again (4.5) and choosing &g such that § < 10e < 10gg < 1/2, we have
|t — V| <2& on Bj.

Moreover, since a,b < 1/10, we have

40
This implies that we can choose &y small enough such that on By, (X) we have
~  ~ 15— —=
48 o<t fv_ ir=a(1+5 ) -1+ = e,
u

where C is a numerical constant.

Step 2. Gaining space for the domain 2.
We consider two cases:

Case 1. %(ﬁ()'c) + v(x)) > ¢/2 4+ (X4 + a)+. Since |a| < 1/10, we have that
Bij10(¥) C{xg +a > 0},

and so the function 706 + 7
u(x) + v(x -
— 5 —Gatay

is non-negative and solves a uniformly elliptic equation in Bj/19(X) with right-hand side
bounded from above and below by £2. Therefore, since 4(X) > £/2, the Harnack inequality
gives that

h(x) =

h > C](E in Bl/zo()z'),
where Cyg is a (small) positive constant that depends only on the dimension d. Now,
using (4.8) and choosing ¢( small enough (depending on the dimension), we get that

1
NVUv — (xg +a) > 3 Cse in Byjro(X).

Now consider the family of functions

1 1
Yi(x) i=xqg +a+ 3 Cpe(wx)—1)+ 3 Cyet,
defined for ¢t > 0 and x € Bj. So far, we have proved that

4.9 Vi(x)v(x) > (Y¢(x))+ forevery x € By/y0(¥)and every ¢ < 1.

We will show that the same inequality holds for every x € Bj. Notice that the family
of functions ¥, satisfies, as a consequence of (w-i) and (w-ii) respectively, the following
properties:

(Y-i) Ay, > Ce >0 on By/4(X) \ By/20(X);
(P-il)  [Vyre|(x) > 1 on (B3j4(X) \ El/zo()_f)) N{xg < 1/10}.
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We argue by contradiction. Suppose that for some ¢ < 1 there exists y € B; such
that v, touches v/ ¥ from below at y. By Remark 4.1 and (y-1), we have that

y & QN (B3a(X) \ B1j20(X)).
On the other hand, by (¥-ii) and Lemma 2.9, we have that
y & 0Q2 N (B3/4(%) \ B1/20(X)).
which is a contradiction. Thus,
1
(4.10) Vi (x)v(x) > (xd +a+ 3 C,;gaw(x)>+ for every x € By,

and in particular,
1
4.11) QD{xeBl D Xg +a+§C3gsw(x)>0}.

Case 2. L (i(%) + U(X)) < &/2 + (X4 + a)+, which is equivalent to

& u(x) + v(x)
- << X b _ .
g =t 2
Using the above estimate, (4.7) and the Harnack inequality in By,10(X), we get that

(1 4+ 10062) (rg + b) — 22

> CJ(S in B]/z()()_C).
Now consider the family of functions
n:(x) := (1 + 100&?) (xg + b) — Cgee(w(x) — 1) — Cyet,
defined for ¢t > 0 and x € B;. Then
u(x) + v(x)
2
We next prove that the same inequality holds for every x € B;. Notice that, for every ¢ > 0,
(n)  An; < —Ce on B3/4(X) \ B1/20(%);
(-i)) |V, [(x) <1 on (B3/4(X) \ B120(X)) N {xg < 1/10}.
As in the previous case, we argue by contradiction. Suppose that, for some ¢ < 1, there
exists z € Bj such that n; touches from above %(77 + v) at z. By (-i), we have that

z ¢ QN (Bsa(X) \ Bi/ao(X)).
On the other hand, by (5-ii) and Lemma 2.9, we have that

z ¢ 02 N (B3/4(X) \ B1/20(X)).
which is a contradiction. Thus,

u(x) 4+ v(x)
2

(4.12) > (n:(x))4+ forevery x € By/po(X) and every ¢ < 1.

(4.13) < ((1+1008%) (x4 + b) — Cgeew(x)), forevery x € By,
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and, in particular,

Q C {x € By : (1+1008%) (xg +b) — Cpew(x) > 0}.
Choosing &9 small enough and using that w is bounded away from zero in By/4, we get
(4.14) QC{xeBys:xs+b—3Cxpew(x) >0}

Step 3. Conclusion.

As a consequence of Step 2, we have one of the two inclusions (4.11) and (4.14). More
precisely, there is a constant C > 0 such that

either @ D {xg +a+Ce>0}N By, or QC{xg+b—Ce>0}N Byya.

Then, by applying Lemma 4.2 to both u and v (by replacing y respectively with « and f),
there exists a universal constant § € (0, 1) such that

either ) =eba+b =80 —a)+, - Jul)=alxg+a+8b-a)s,
v(x) = B(xg +b—8(b—a))+, v(x) = B(xa +a+8(b—a)y.
for every x € By, with p < 1/8 a dimensional constant. ]

The following corollary is a consequence of the result above.

Corollary 4.4. Let (u,, v,) be a sequence of solutions to (3.1) in the sense of Defini-
tion 2.4. Let
Qy i={u, >0} = {v, > 0},

and suppose that 0 € 02, for every n € N. Suppose that there is a sequence &, — 0 such
that for every x € By,

(xg —en)+ Sup(x) < (xg +en)+ and (xg —en)+ < Vp(x) < (xg + &n)+.
Then, there are continuous functions
ﬁoo:Ef'—)]R and EOOZET—HR,

with B1+ = B1 N {xg > 0}, such that the following holds:
(a) The graphs over Q, of

Un — X4

and v, =
&n &n
Hausdorff converge respectively to the graphs of Us and Voo over ET.
(b) The graph over Q,, of
SUn Uy — Xg

En

Wy =

Hausdorff converges to the graph of % (Moo + Vo) OVer ET.
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Proof. The proof of claim (a) follows from Lemma 4.3 precisely as in [14]. In order to
prove (b), we first notice that for any fixed § > 0, the sequences #%, and v, converge
uniformly on By N {x; > §} respectively to the functions ¥ and V. In particular, this
implies that

VUnVn — X4 \/(xa’ +8n77n)(xd + &, 0p) — Xg

En En

r .
= 5 (un + Un) + O(Sn)a

which proves the claim on every By N {x; > §}. Now, in order to have the convergence of
the graphs over the whole of BIJr , we notice that by (4.7) the oscillation of ,/u,v, — x4
decays when passing from B to a smaller ball B,. Using again the argument from [14],

we get that the graphs of
SUn Uy — Xg
Wy = ————
&n

Hausdorff converge to the graph of a Holder continuous function Weo : Ef — R. Now,
since

1
Woo = E(ﬁoo 4+ Us) on By N{xg > 8},

for every § > 0, we get that Weo = %(ﬁoo + Vso) ON E'l". [ ]

S. Improvement of flatness

In this section, we prove our main theorem, from which the C* regularity of a flat free
boundary follows by standard arguments (see for example [18] for the vectorial case). In
view of the invariance of (3.1) under suitable multiplication (see Step 1 of the proof of
Lemma 4.3), the flatness conditions of Definition 1.2 can be expressed witha = 8 = 1.

Theorem 5.1. Let (1, v) be solutions to (3.1) in the sense of Definition 2.4. Let
Q:={u>0}={v>0},

and suppose that 0 € 092. There are constants g9 > 0 and C > 0 such that the following
holds. If (u,v) is a couple of solutions satisfying

(xg —&)4+ Su(x) = (xg +&+ and (xg—¢&)+ <v(x) < (xg +&)4 inBy,

for some & < &g, then there are a unit vector v € R? with |v — eq| < Ce and a radius
p € (0, 1) such that

Grv =51 Sup() <@ -v+5)s and Px-v—5)4 <v,(0) <Px-v+ 5,
for all x € By, where & and ﬁ are positive constants that satisfy
Gf=1, |l—G|<Ce and |1-B|<Ce.

‘We postpone the construction of the limiting problem arising from the linearization to
Lemma 5.2 and Lemma 5.4, and we directly prove the improvement of flatness result.
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Proof of Theorem 5.1. We argue by contradiction. Let (u,, v,) be a sequence of solutions
such that

(Xa —&n)+ Sun(x) = (xa +&n)+ and  (xg —&n)4 = Vn(x) < (xg + €n)+

where &, is an infinitesimal sequence. Let 2, := {u,, > 0} = {v, > 0} and consider

. Uy — Xqg ~ Un — X4 —
6.1 Uy = — and 7, = — on 2.
En &n

By the compactness result of Corollary 4.4, we get that (i,, V,) converge, up to a sub-
sequence, to a couple of continuous functions

5.2) Uoo : BiN{xg >0} >R and ¥y : By N{xgz >0} —> R.
By Lemma 5.2, we have that
1 ~ | -
M = E(uoo—i-voo) and D := z(uoo—voo)

are classic solutions to

AM =0 in B; N{x; > 0}, d AD =0 in B; N{xg > 0},
0x;,M =0 on By N{xg =0}, D=0 on B; N {x; = 0}.

Therefore, by the regularity result Lemma 5.4, we get
|floo(x) — x - Vileo(0)| < C4p® and  |Too(x) —x - VIeo(0)| < Cyp?,
for every x € B, N {xz > 0}. Now, we can write this as
{ X+ Viloo(0) — Cq p? < fiso(x) < x + Viiog(0) + Cyg p2.
X+ Vso(0) = Cg p? = Voo(x) = x - VIeo(0) + Ca p?,

for every x € B, N {xg > 0}. This implies that for n large enough,

X Vile(0) —2Cy p? < fin(x) < x - Vil (0) + 2Cy p?
X Vo(0) = 2C4 0% < Tn(x) < x - VTpo(0) +2C4 0?

forevery x € B, N Q,, which by the definition of i, and ¥, can be written as

X - (ed + aniioo(O)) —en2C3p < (Un)p(x) < x - (ed + enVﬁoo(O)) +e,2Cyp,
X - (ed + anUoo(O)) —£,2C3p < (Vp)p(x) <x- (ed + anEOO(O)) +e,2Cy4p,

for every x € B; N (%Qn). We next set

D
V:=VM@O) and c:= a—(0).
0xg
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Thus,

x-(eq +enV +ceneq) —en2Cap < (Up)p(Xx) < x-(eq + €,V + ceneq) +€,2C4p,
x-(eq + e,V —ceneq) —en2Cqp < (vn)p(x) <x-(eq + &,V —ceneq) + en2Cqp.

Now, since by Lemma 5.2, V and e; are orthogonal, we can compute

lea(1 £ cen) +enV| = /1 £ 2ceq +e2(2 + VD) = 1 £ ey + O(ED).

Then, fixing p > 0 small enough and taking ¢, sufficiently small with respect to p, we get

V 1 1 |4 1
. eq +éen e, < () () < x - eq +éen S,
leq +e, V| 2 1+ cey leq + e, V| 2
eq +e,V 1 eq + e,V 1
X ——— ——& =< (1 4+cep)v X)<x:—+ <&,
ey 2o = (a0 S v o 4

forevery x € By N ( %Q ). Finally, the contradiction follows by taking

e eV ~
v=d+—n, Gd=1+ce, and B=a L. L]
leq +enV|

Under the notations of the proof of Theorem 5.1, we next discuss the limiting problem
arising from the linearization near flat free boundary points.

Lemma 5.2 (The linearized problem). Let tioo and Vs be as in (5.2), and set
1 _ ~ I . ~
M = E(uoo—i—voo) and D := E(uoo—voo).
Then, M and D are classical solutions respectively of
(53) AM =0 in By N{xg >0}, J AD =0 inByN{xg >0},
’ dx,M =0 on By N{xg =0}. D=0 onB;N{xy =0\
Proof. We divide the proof into several steps.
Step 1. Equations in {xg > 0}. First we notice that the equation
AM = AD =0 in B; N{xg > 0}

follows from the fact that on every compact subset of B; N {xg > 0}, the functions i,
and v, given by (5.1), are harmonic and converge uniformly to %, and Veo.

Step 2. Boundary condition for D. In order to prove the boundary condition
D =0 onB;N{xg; =0},

we notice that the graphs of i, and v,, over 02, are both given by the graph of the
function —éxd. Thus, by the Hausdorff convergence of the graphs, we get that
Uso = Voo ON By N{xy = 0}.
Finally, it remains to prove that the following boundary condition for M,
oM

— =0 on By N{xg =0},
0xq
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is satisfied in viscosity sense. Notice that the fact that M is a classical solution of (5.3)
follows by Lemma 2.6 in [14]).

Step 3. The boundary condition for M from below. Suppose that a quadratic poly-
nomial P touches M strictly from below at a point xo € {x; = 0}. We will show that
04 P(x¢) < 0. Therefore, suppose by contradiction that

P
(5.4) LR
8xd

and notice that we can assume that AP > 0 in a neighborhood of x¢. Let now

Wy, 1= VUnUn 7 Xd Q, - R.
&n
By Corollary 4.4, we have that the sequence of graphs of @, over , converge in the
Hausdorff sense to the graph of M over By N {x4 > 0}. In particular, this means that
the graph of P touches from below the graph of i, at some point x,, € £,. Since 0, is
superharmonic in €2, (see Remark 4.1), we have that x,, € 0€2,. But then

Px) < Yintn—Yd

n

for x € Qn,

with an equality when x = x,. This can also be written as

enP(x) + xq4 < Vun(x)vp(x) forx € Q,.

Now, setting
(5.5) @(x) :=en P(x) + x4,

we get that ¢ touches /u,v, from below at x,. On the other hand, from Lemma 2.9
we know that

oP
I+e¢ 8_(xn) = axd‘P(xn) < |Velxa)| <1,
Xd
which is a contradiction with (5.4), as we claimed.

Step 4. The boundary condition for M from above. Suppose that a quadratic poly-
nomial P touches M strictly from above at a point yg € {xg = 0}. We will prove that
d4 P(y9) > 0. Conversely, suppose that

P

(5.6) a—(}’o) <0,
X4

and notice that we can assume that AP < 0 in a neighborhood of y. By the Hausdorff
convergence of the graphs, the graph of P touches from above the graph of %(ﬁ n + Uy) at
apoint y, € Q,,. Since i, and T, are harmonic in 2,, we have that Yn € 02,. But then,

we have
— X4 Up — X,

P(x)zé(u" d) for x € Q,,

n &n
with an equality when x = y,,, which can be written as

Un (x) + vn(x)

3 for x € Q,.

xXq + &, P(x) >
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Let now
5.7 Y(x) = xq + en P(x).
Then, v/ touches %(un(x) + v, (x)) from above at y,. Thus, by Lemma 2.9,

opP
[ |V1//(yn)|2 =1+2¢, E(Yn) + 8% |VP(Yn)|2’

which can be written as 9P

£
— () + = |VP(yn)|2 > 0.
8xd 2

Passing to the limit as n — oo, we get g)c—’;(yo) > (), which is a contradiction. [
Remark 5.3. For the vectorial Bernoulli problem, in [18, 23] the authors proved that
the linearized problem arising by the improvement of flatness technique is a system of
decoupled equations in which the first component satisfies a Neumann problem, while
the others have Dirichlet boundary conditions. On the contrary, in our case, the nonlinear
formulation of the free boundary condition (1.3) requires to consider suitable linear com-
binations of the solutions u, v in order to detect the problem solved by the limits %, Voo-

For the sake of completeness, we briefly sketch the proof of the decay for the solutions
of the linearized problem (5.3), which we used in the proof of Theorem 5.1.

Lemma 5.4 (First and second order estimates for o, and Ueo). Let oo and Voo be as in
Lemma 5.2. Then il oo, and Voo are C*° in By N {xg > 0}, and we have the estimates
(5.8) IVitioollLoo(B, nixgz0h F IV VsollLoe (B, nixy>0h < Ca,

and

N .
59) {mw(x) x - Voo (0)] < Ca ||,

B () — x - Vo (0)] < Cy |x]2. for every x € Byj, N{xg > 0}.

Moreover, we have
(oo — D,
( o; o0) o).
Xd
Proof. Let M and D be as in Lemma 5.2. Then, both M and D can be extended to
respectively an even and an odd harmonic functions in the ball B;. We can the use the

classical gradient and second order estimates (see, for instance, Lemma 7.17 in [30]) for
a harmonic function #: Bg — R, that is,

(5.10) Vilso(0) = Vs (0) + ey

Cq
VAllLoo(BR) = 53 2]l Lo (BR)»

and
Ca
|h(x) — h(0) — x - VR(0)] < =2 |x|? hl|Lo(Bg) forevery x € Brya,

where Cy is a dimensional constant. Now since %o (0) = Voo(0) = 0 and

|Uoo| <1 and || <1 in By N{xg >0},
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and since M = oo + Voo and D = U — Vo, We get that

D(x)—x-VD()| <C 2,
{' (x) —x O = Cal] for every x € By, N {xg > 0},

[M(x) —x - VM(0)| < Cqlx|?,

which gives (5.9). Finally, (5.10) follows from the fact that D = 0 on {x; = 0}. [ ]
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