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SL2.R/-developments and signature asymptotics
for planar paths with bounded variation

Horatio Boedihardjo and Xi Geng

Abstract. The signature transform, defined by the formal tensor series of global
iterated path integrals, is a homomorphism between the path space and the tensor
algebra that has been studied in geometry, control theory, number theory as well as
stochastic analysis. An elegant isometry conjecture states that the length of a bounded
variation path  can be recovered from the asymptotics of its normalised signature:

Length./ D lim
n!1

nŠ Z
0<t1<���<tn<T

dt1 ˝ � � � ˝ dtn

1=n:
This property depends on a key topological non-degeneracy notion known as tree-
reducedness (namely, with no tree-like pieces). Existing arguments have relied cru-
cially on  having a continuous derivative under the unit speed parametrisation. In
this article, we prove the above isometry conjecture for planar paths by assuming
only local bounds on the angle of  0 (which ensures the absence of tree-like pieces).
Our technique is based on lifting the path onto the special linear group SL2.R/ and
analysing the behaviour of the associated angle dynamics at a microscopic level.

1. Introduction

The signature transform (or simply the signature) of a multidimensional path  W Œ0; L�!
Rd is the formal tensor series

S./ ,
1X
nD0

Z
0<t1<���<tn<L

dt1 ˝ � � � ˝ dtn

formed by the global iterated path integrals of all orders. Such a transformation was ori-
ginally introduced by K. T. Chen [8] to construct a cohomology theory on loop spaces over
manifolds, which had led to far-reaching applications in geometry and algebraic topology.
It also played an essential role in Dyson’s quantum field theory (cf. [10]). Due to the
vast development of analytic techniques in the rough path theory, the study of the sig-
nature transform has been enhanced to a new level of maturity over the last decade by
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many authors. A landmark result was the uniqueness theorem proved by Hambly–Lyons
in their well-known work [13] in 2010. The uniqueness theorem asserts that the signature
of a bounded variation path uniquely determines the underlying path up to tree-like pieces
(heuristically, a tree-like piece is a portion of the path in which it travels out and reverses
back along itself). This result was later generalised to the rough path context in [3]. The
uniqueness theorem has stimulated a stream of exciting problems related to reconstructing
paths from their signatures and studying paths through functions on the signature space
(see [5, 6, 12, 17]). One reason to work with the signature transform is that it has a nice
intrinsic algebraic structure (linearisation of non-linear path functions) that is concealed
at the level of paths (cf. [18]).

As a consequence of the uniqueness theorem, one naturally expects that many quant-
itative properties of a path can be recovered from its signature. In the bounded variation
case, there is an elegant and important question along this line. A simple application of
the triangle inequality shows that the signature of a continuous path  with finite length
satisfies the following estimate: Z

0<t1<���<tn<L

dt1 ˝ � � � ˝ dtn

 6
Z
0<t1<���<tn<L

jdt1 j � � � � � jdtn j D
Length./n

nŠ

for every n > 1: What is non-trivial and surprising is that this estimate becomes asymp-
totically sharp as n!1: It was conjectured implicitly in [13] and later made explicit by
Chang–Lyons–Ni [7] that, for any continuous, tree-reduced (i.e., not containing tree-like
pieces) path with finite length, after normalisation one expects that

(1.1) Length./ D lim
n!1

nŠ � Z
0<t1<���<tn<L

dt1 ˝ � � � ˝ dtn

�1=n:
This conjectural property is deep and surprising, as it suggests that the tree-reduced prop-
erty is eliminating the fine-scale interactions and cancellations of the path increments in
the n-th order iterated integral as n increases. Understanding such a phenomenon is an
important step towards obtaining effective signature lower bounds, which is in turn essen-
tial for establishing convergence of signature inversion schemes. This point is particularly
relevant in the work of Chang–Lyons [6], which is also a key missing ingredient to theorise
their proposed inversion algorithm in the general bounded variation context.

The signature asymptotics formula (1.1) was established in [13,16] for C1-paths (i.e.,
continuously differentiable) parametrised at unit speed. There is an important reason for
pushing our understanding towards the general bounded variation case. The conjectural
formula (1.1), as well as other similar signature inversion properties, if proven to be
true, should be a pure consequence of tree-reducedness as suggested by the uniqueness
theorem. As a result, identifying a suitable condition to quantify the “degree of being tree-
reduced” is an essential step towards establishing general signature inversion properties.
If a path  is C1 at unit speed, one can see that  cannot produce a tree-like piece. Indeed,
if  0 is a continuous function on Sn, it immediately rules out the possibility that  makes
an �-turn at some point. However, this viewpoint embeds regularity assumptions of the
path into the detection of tree-reducedness, making the latter property opaque.

For a deeper understanding about the essence of the underlying phenomenon, it is
important to develop an approach that separates the non-degeneracy property of tree-
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reducedness from regularity properties of the path and reveals a property like (1.1) as a
consequence of tree-reducedness. The main contribution of the present article is to provide
an attempt along this philosophy. Our intuition behind capturing tree-reducedness is very
simple: we require that the path does not make a �-turn locally, and if it does it makes it
in a way avoiding the creation of a tree-like piece (cf. Definition 2.5 for a more precise
formulation). Our main result is stated in Theorem 2.6 below, which confirms the conjec-
tural formula (1.1) for planar paths with bounded variation that satisfy such a condition.
At the moment, extending the current analysis to higher dimensions is a challenging task
(see Section 7 for a brief discussion). Nonetheless, the two dimensional situation already
appears to be highly non-trivial and contains several essential ideas. Our methodology,
which is partly inspired by the series [4, 9, 13, 15, 16] of works, is based on lifting the
underlying path onto the special linear group SL2.R/ and developing fine analysis on
the behaviour of the associated angle dynamics. It has a similar nature as the method
developed in [4], but the underlying difficulties are in different directions. The method
in [4] deals with multi-level interactions of different signature components (which is only
relevant if the path is rough), while the current work deals with fine-scale interactions of
different time periods due to rapid oscillations of the path. It is reasonable to expect that
suitable combination of the two viewpoints may lead to deeper understanding towards the
more general rough path situation. We mention that SL2.R/-developments were also used
by Lyons–Sidorova [15] to establish a decay property of the logarithmic signature. In their
work, the SL2.R/-structure was mainly used for the geometry of its exponential map. In
our approach, the SL2.R/-structure surprisingly simplifies the ODE dynamics by produ-
cing a decoupled ODE system for the SL2.R/-action which may not be the case under
other types of developments.

Organisation. In Section 2, we recall a few notation and state our main theorem. In Sec-
tion 3, we recall some basic notions on Cartan developments of paths and derive the core
equations in the context of SL2.R/-developments. In Section 4, we establish several pre-
liminary lemmas on the angle dynamics that are critical for later analysis. In Section 5, we
develop the proof of the main theorem. In Section 6, we discuss how our method can be
adapted to deal with a more singular type of paths. In Section 7, we discuss a few natural
questions to be further investigated.

2. Statement of the main result

In this section, we provide the main set-up of the present article and state our main result.
We start by recalling some standard notation about paths and their signatures. Let V

be a Banach space. For each n > 1; we denote V ˝n as the completion of the algebraic
tensor product V ˝an under the projective tensor norm, which is defined by (cf. [19])

(2.1) k�k� , inf
°X

i

jvi1j � � � � � jv
i
nj W � D

X
i

vi1 ˝ � � � ˝ v
i
n

±
; � 2 V ˝an:

The projective tensor norm is the largest among all admissible tensor norms (cf. [19]).
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Definition 2.1. Let  W Œ0; L�! V be a continuous path with finite length. The signature
of  is the formal tensor series of global iterated path integrals against  defined by

S./ ,
�
1; L � 0; : : : ;

Z
0<t1<���<tn<L

dt1 ˝ � � � ˝ dtn ; � � �
�
2

1Y
nD0

V ˝n:

Let  be a given continuous path with finite length. We define the following normalised
signature asymptotics functional:

(2.2) L1./ , lim
n!1

nŠ � Z
0<t1<���<tn<L

dt1 ˝ � � � ˝ dtn

�1=n
�
:

It is known (cf. [1, 7]) that the limit in (2.2) is well defined and that the quantity L1./
remains the same if the limit is replaced by the supremum over n > 1. Using the triangle
inequality, it is immediate to see that L1./ 6 kk1-var. The reverse inequality (for tree-
reduced paths) is the main challenging question.

In the present article, we restrict ourselves to two dimensional paths. We assume
that R2 is equipped with the Euclidean norm, and that the tensor products .R2/˝n, n > 1,
are equipped with the associated projective tensor norm (cf. (2.1)). We consider continu-
ous paths in R2 with finite lengths, parametrised at unit speed. Mathematically, these paths
are defined by

(2.3)  W Œ0; L�! R2; t D .xt ; yt / D
�
x0 C

Z t

0

cosˇs ds; y0 C
Z t

0

sinˇs ds
�
;

where ˇW Œ0; L�! R is a (Lebesgue) measurable function. For the purpose of this paper,
readers may take (2.3) as the definition of  . In the arXiv version of this article [2], we
outline an argument that every non-constant continuous path with finite 1-variation can be
reparametrised into the form (2.3).

We are going to propose a natural sufficient condition that captures the tree-reduced
property, and to establish the asymptotics formula (1.1) for paths satisfying such condition.
For the sake of preciseness, we recapture the definition of tree-reducedness as follows
(cf. [3]). Recall that a real tree is a metric space in which any two distinct points can be
joined by a unique non-self-intersecting path up to reparametrisation, and such a path is a
geodesic in the metric sense.

Definition 2.2. Let  W Œs; t �! E be a continuous path in some topological space E. We
say that  is tree-like if there exists a real tree T and two continuous maps

� W Œs; t �! T and ˆ W T ! E;

such that �s D �t and  D ˆ ı �: A tree-like piece of a path  W Œs; t �! E is a portion
Œu; v� � Œs; t � such that  jŒu;v� is tree-like. A path is said to be tree-reduced if it does not
contain any tree-like pieces.

Heuristically, being tree-reduced means that there is no portion of the path  along
which it reverses back to cancel itself right away. In the figure below, the first path is
tree-reduced, while the second one contains a tree-like piece.
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Figure 1. Tree-reduced and non-tree-reduced paths.

From now on, we consider a path  W Œ0;L�! R2 given by (2.3), where ˇW Œ0;L�! R
is a given measurable function. It is clear that  is parametrised at unit speed, and L is the
length of  .

A natural idea to capture the tree-reduced property in terms of the angular path ˇ is to
require that ˇt locally takes values in an interval of length less than �: This rules out the
possibility that  turns around to cancel itself. On the other hand, making a �-turn does
not necessarily produce a tree-like piece, as illustrated by the cusp path in Figure 1 (i). In
order to include this possibility, a natural extension is to make the above requirement on ˇ
hold outside an arbitrarily small interval that contains the cusp singularity.

To make the above idea precise, we first introduce the following definition.

Definition 2.3. Let  W Œ0; L�! R2 be a path given by (2.3). We say that  is a regular
cusp, if the following two conditions hold:

(i) there is a real number a 2 R such that

ˇt 2 Œa; aC �� for a.a. t 2 Œ0; L�;

(ii) for any ı > 0; there is a closed subset F � L which is a finite disjoint union of
closed intervals, as well as two real numbers aı > a, bı < aC � , such that

�.F c/ < ı and ˇt 2 Œaı ; bı � for a.a t 2 F .

Here � denotes the Lebesgue measure.

Since the definition is only concerned with the angular path ˇ; we sometimes simply
say that ˇ is a regular cusp. The typical shape of a regular cusp is illustrated by Figure 1 (i).
We mention that there is another type of cusps that is more singular in terms of detecting
the tree-reduced property and is thus harder to deal with. We discuss this case in Section 6
(see Theorem 6.1 below).

Example 2.4. A special situation of Definition 2.3 is when

(2.4) ˇt 2 Œa; b� for a.a. t 2 Œ0; L�

for some a; b 2 R satisfying b � a < � . In this case, there is no cusp singularities and the
conditions in Definition 2.3 are satisfied trivially.

Note that Definition 2.3 is global, while producing a tree-like piece or not is a local
issue. To capture the tree-reduced property, it is more natural to localise Definition 2.3.
This leads to the following definition, which will be assumed throughout the rest of the
present article.
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Definition 2.5. We say that  is strongly tree-reduced if, for any t 2 .0;L/; there exists a
neighbourhood .ut ; vt / of t such that  jŒut ;vt �\Œ0;L� is a regular cusp.

Our main result is stated as follows.

Theorem 2.6. Let  W Œ0; L�! R2 be a path given by (2.3). Suppose that  is strongly
tree-reduced. Then the signature asymptotics formula (1.1) holds.

Theorem 2.6 contains the case of C1-paths at unit speed as a particular example.
Indeed, if the angular path ˇt is continuous, for each given t the path ˇs takes values in
an interval of length less than � when s is near t . The result also contains the case of
piecewise C1-paths whose intersection angles are strictly less than � . For the situation
where the intersection angle is � , Theorem 2.6 still applies if the cusp singularity has the
nature of Definition 2.3. Also see Section 6 below for adapting the analysis to the case of
even more singular cusps.

On the other hand, the property stated in Definition 2.5 is a condition that captures the
tree-reduced property and has no implication on the regularity of the path  . Our analysis
relies purely on such a non-degeneracy condition. In contrast to the analysis developed
in [13,16], regularity assumptions on ˇ are not relevant here and measurability is sufficient
for our purpose.

Remark 2.7. It is also interesting to point out that, although heuristically convincing, it is
not at all obvious to directly show that strong tree-reducedness implies tree-reducedness
in the sense of Definition 2.2. This is however an immediate consequence of Theorem 2.6
and the uniqueness theorem in [3].

To summarise the main idea in our strategy, we consider the development of  into the
special linear group SL2.R/ which acts on the plane R2 in the canonical way. The core
of our approach is to look at the action of �L (where .�t /06t6L is the development of  )
from a dynamical viewpoint, and to carefully examine the behaviour of the associated
angle dynamics at a microscopic level. We will elaborate this point more precisely as we
develop the analysis in the following sections.

3. SL2.R/-developments and the associated ODE dynamics

Our starting point of proving Theorem 2.6 is to develop the path  onto a suitably chosen
Lie group from Cartan’s perspective. In this section, we first recall the general construction
of path developments under the framework of [4]. We then specialise the development to a
particular Lie group and establish the associated ODE dynamics. The analysis of this ODE
dynamics is the core ingredient in our approach, which will be performed in later sections.

3.1. The Cartan development of rough paths and the intermediate lower estimate

Let V be a finite dimensional normed vector space. LetG be a finite dimensional Lie group
with Lie algebra g. Suppose that F WV ! g is a given linear map, and �Wg! End.W / is
a given representation (i.e., a Lie algebra homomorphism) of g over a finite dimensional



Signature asymptotics 1979

normed vector space W . Set

ˆ , � ı F W V ! End.W /:

Let X D .Xt /06t6L be a geometric rough path over V (cf. [14]).

Definition 3.1. The Cartan development of X onto G under F is the solution to the dif-
ferential equation ´

dGt D Gt � F.dXt /; 0 6 t 6 L;

G0 D e;

where e is the identity of G. Respectively, the Cartan development of X onto Aut.W /
under ˆ is the solution to the linear differential equation´

d�t D �t �ˆ.dXt /; 0 6 t 6 L;

�0 D Id:

Remark 3.2. There are two important reasons for considering path developments. The
first one is that the end point �L of the development, when one varies g and the repres-
entation � in a suitably chosen class, should encode essentially all information about the
original rough path X (up to tree-like pieces). The second one is that the development is
defined by a “linear” equation, hence linearising the analysis of nonlinear functionals on
path space. These two points are similar to the philosophy of working with the signature
of X, but the path development allows much richer algebraic structures through choos-
ing the Lie algebras and representations properly. This philosophy has not yet been fully
explored in the literature, and could be of potential interest for further applications in the
study of rough paths and stochastic processes.

We now recall a general lower estimate proved in [4]. We only state the version for
bounded variation paths. Let  W Œ0;L�! V be a continuous path with finite length. Recall
that L1./ is the functional defined by the normalised signature asymptotics (2.2). Under
the above set-up, for each � > 0; let .��t /06t6L be the Cartan development of � �  onto
Aut.W / under ˆ.

Proposition 3.3. The quantity L1./ admits the following lower estimate:

L1./ > lim
�!1

log k��LkW!W
�kˆkV!End.W /

;

where k � kX!Y denotes the operator norm between Banach spaces X and Y .

3.2. SL2.R/-developments

We now specialise our study to the context of Theorem 2.6. In particular, let V D R2

whose canonical basis is denoted as ¹e1; e2º. Let  W Œ0;L�! V be a continuous path with
finite length L, parametrised at unit speed. More explicitly, the path  is defined by the
integral (2.3), where the angular path ˇW Œ0; L�! R2 is a given measurable function.

Under the setting of Section 3.1, we choose G D SL2.R/; the space of real 2 � 2
matrices with determinant one. The group SL2.R/ is a three dimensional Lie group, whose
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Lie algebra is given by g D sl2.R/, the space of real 2 � 2 matrices with zero trace. The
Lie algebra sl2.R/ admits a Lorentzian metric defined by

hA;Bi ,
1

2
Tr.AB/; A;B 2 sl2.R/;

which has signature .C;C;�/. An element A 2 sl2.R/ is hyperbolic/elliptic/parabolic
if hA;Ai is positive/negative/zero. An orthonormal basis of sl2.R/ under the Lorentzian
metric h� ; �i is given by

E1 D

�
1 0

0 �1

�
; E2 D

�
0 1

1 0

�
; E3 D

�
0 1

�1 0

�
:

Note that E1 and E2 are hyperbolic elements, and that E3 is elliptic.
We define the linear map F W V ! sl2.R/ explicitly by mapping the basis ¹e1; e2º to

the hyperbolic elements ¹E1; E2º respectively, i.e., F.ei / , Ei , for i D 1; 2.
Finally, the representation �W sl2.R/! End.W / is taken to be the canonical matrix

representation, i.e., the action of g on W D R2 via matrix multiplication. We assume
that W is also equipped with the Euclidean norm. Note that the group SL2.R/ also acts
on W via matrix multiplication. If we view SL2.R/ as a subspace of the matrix algebra
Mat2.R/ŠEnd.W /; the Cartan developments onto SL2.R/ and Aut.W / are identical. For
each � > 0; the Cartan development of � �  onto SL2.R/ is denoted as �� D .��t /06t6L.
More explicitly, �� satisfies the differential equation

d��t
dt
D ���t �

�
cosˇt sinˇt
sinˇt � cosˇt

�
; ��0 D Id:

Note that such equation needs to be understood in the integral sense or in the t -a.e. sense.
Under the above specific choice, Proposition 3.3 yields the following lower estimate

for the quantity L1./:

(3.1) L1./ > lim
�!1

log k��LkR2!R2

�
:

To see this, we only need to check that the operator ˆ D � ı F WR2! End.R2/ has norm
one. But this follows from the relation

jˆ.v/.w/j D jvj � jwj; 8v;w 2 R2;

which can be verified explicitly.

Remark 3.4. From the geometric viewpoint, it is also natural to consider the action of
SL2.R/ on the upper half plane H via Möbius transformation, since SL2.R/ is the iso-
metry group of H when H is equipped with the Lobachevsky hyperbolic metric. In this
case, the action of ��t on H gives the hyperbolic development of  (see [13] for an equival-
ent hyperbolic framework). However, we do not take this geometric viewpoint and work
with linear actions instead.
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3.3. The decoupled ODE system and the associated angle dynamics

In view of (3.1), in order to obtain a sharp lower bound for L1./, we need to estimate
k��LkR2!R2 effectively. For this purpose, we look at the action of ��L from a dynamical
perspective which we now describe.

We denote by ��s;t , t 2 Œs; L� the Cartan development of � �  jŒs;L� evaluated at time t .
A simple calculation shows that

(3.2) ��s;u D �
�
s;t � �

�
t;u; 8s 6 t 6 u:

As a result, for a given initial vector �� 2 R2; the action ��L �
� can be studied through the

following dynamical perspective:

(3.3) ��L �
�
D ��t0;t1 � �

�
t1;t2
� � � ��tn�1;tn �

�;

where P D ¹tiº06i6n is an arbitrarily fine partition of Œ0; L�. The dynamics (3.3) reduces
to the following simple equation when we take mesh.P /! 0:

Lemma 3.5. Let w�t , ��L�t;L �
�: Then w�L D �

�
L �

�; and .w�t /06t6L is the unique solu-
tion to the differential equation

(3.4)

8<: dw�t
dt
D �

�
cosˇL�t sinˇL�t
sinˇL�t � cosˇL�t

�
� w�t ; 0 6 t 6 L;

w�0 D �
�:

Proof. Let t be given, and let h > 0: According to the relation (3.2), we have

w�tCh D �
�
L�t�h;L�t � w

�
t :

It follows from the equation of the Cartan development that

w�
tCh
� w�t

h
D
��
L�t�h;L�t

� Id

h
� w�t

D
�

h

Z L�t

L�t�h

��L�t�h;u

�
cosˇu sinˇu
sinˇu � cosˇu

�
� w�t du;

The result follows by letting h! 0C:

Notation. From now on, we denote ˛t , ˇL�t . It is obvious that ˛ satisfies Definition 2.5
if and only if ˇ does.

Our next step is to rewrite the equation (3.4) using polar coordinates. Let

w�t D �
�
t e

i��t ; t 2 Œ0; L�:

We also write the initial vector as �� D ��0 e
i��0 ; where ��0 D 1 and the angle ��0 is given

fixed.
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Lemma 3.6. The pair .��t ; �
�
t / satisfies the following ODE system:8̂̂<̂
:̂
d��t
dt
D ���t cos.˛t � 2��t /;(3.5)

d��t
dt
D � sin.˛t � 2��t /:(3.6)

Proof. Firstly, note that we have

dw�t D d�
�
t �

�
cos��t
sin��t

�
C ��t d�

�
t �

�
� sin��t
cos��t

�
D

�
cos��t � sin��t
sin��t cos��t

�
�

�
d��t
��t d�

�
t

�
:(3.7)

In addition, according to the equation (3.4), we have

(3.8) dw�t D ��
�
t dt �

�
cos˛t sin˛t
sin˛t � cos˛t

�
�

�
cos��t
sin��t

�
:

By comparing (3.7) and (3.8), we arrive at�
d��t
��t d�

�
t

�
D ���t dt �

�
cos.˛t � 2��t /
sin.˛t � 2��t /

�
;

which yields the desired ODE system.

It is clear that the angular path ��t is absolutely continuous. Observe that the ODE
system for .��t ; �

�
t / is decoupled, in the sense that the angular equation (3.6) does not

depend on ��t . In addition, by linearity the radial component ��t can be easily solved from
the radial equation (3.5) (recall ��0 D 1) as

(3.9) ��t D exp
�
�

Z t

0

cos.˛s � 2��s / ds
�
; t 2 Œ0; L�:

Remark 3.7. The following viewpoint can be taken to avoid ambiguity when choosing
the angular component ��t . Given the initial angle ��0 , the angular equation (3.6) admits
a unique solution ��t : Define ��t by the formula (3.9) accordingly. Then w�t , ��t e

i��t

gives the solution to the equation (3.4) which clearly coincides with .��L�t;L�
�/06t6L by

uniqueness.

Since ��L D j�
�
L �

�j and �� is assumed to be a unit vector, we have the following
important lemma, which is a direct consequence of the estimate (3.1).

Lemma 3.8. The quantity L1./ satisfies

(3.10) L1./ > lim
�!1

Z L

0

cos.˛t � 2��t / dt;

where the initial angle ��0 2 R is arbitrarily given.
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Lemma 3.8 provides a clearer picture of proving Theorem 2.6. In order to produce
the lower bound of L1./ given by the length L, we are led to showing that the angular
path 2��t is close to ˛t for most of the time when � is large. At a heuristic level, this
phenomenon is reasonable, since the angular equation (3.6) is suggesting a strong mean-
reversing behaviour of 2��t towards the path ˛t when � is large. However, making this
phenomenon mathematically precise is a non-trivial challenging task, since no regularity
assumptions are made on the path ˛t and one has to rely on fine measure-theoretic argu-
ments. The analysis simplifies substantially if ˛t is assumed to be a continuous function
(see Appendix A for a discussion on this case).

4. Some important lemmas on the global behaviour of the angle
dynamics

The core of our approach is to analyse the angle dynamics for ��t . In this section, we
derive several key lemmas on the behaviour of ��t relative to the path ˛t under global
assumptions on ˛t . These results will be used in a localised situation when we prove the
main theorem in the next section.

The first lemma tells us that 2��t remains in the same range as ˛t ’s provided that the
initial angle 2��0 does.

Lemma 4.1. Let a 2 R, and suppose that ˛t 2 Œa; a C �� for a.a. t 2 Œ0; L�. If 2��0 2
.a; aC �/; then 2��t 2 .a; aC �/ for every t 2 Œ0; L� and � > 0:

Proof. Recall that 2��t is absolutely continuous. Set b , aC �: Suppose on the contrary
that 2��t leaves .a; aC �/ at some time, and let us assume that 2��t hits the end point b
before hitting a. Define

t2 , inf
®
t W 2��t D b

¯
and t1 , sup

°
t < t2 W 2�

�
t <

aC b

2

±
:

We take t1 D 0 if 2��t > .aC b/=2 for all t < t2. Apparently, we have 2��t1 < b; 2�
�
t2
D b

and 2��t 2 Œ.a C b/=2; b� for all t 2 Œt1; t2�. By using the equation (3.6) of ��t ; for a.a.
t 2 Œt1; t2� we have

d��t
dt
D � sin.˛t � 2��t /

D � sin.˛t � 2��t / 1¹a6˛t<.aCb/=2º C � sin.˛t � 2��t / 1¹.aCb/=26˛t6bº:

In the first region, we know that ˛t � 2��t 2 Œ��; 0� and thus the sine function is non-
positive. In the second region, note that both of ˛t � 2��t and b � 2��t lie in Œ��=2;�=2�.
As a result, we have

sin.˛t � 2��t / 6 sin.b � 2��t /

in this region. Note moreover that b � 2��t 2 Œ0; �=2� for t 2 Œt1; t2�. It follows that

d��t
dt

6 � sin.b � 2��t / 1¹.aCb/=26˛t6bº 6 �.b � 2��t /:
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Equivalently, we have
d

dt
.2e2�t��t / 6 2�be2�t :

By integrating the above inequality over Œt1; t2�; we arrive at

2��t2 6 b � .b � 2��t1/ e
�2�.t2�t1/ < b;

which is a contradiction. A similar argument also leads to a contradiction in the case
when 2��t hits a before b. Therefore, we conclude that 2��t 2 .a; b/ for all time.

The next lemma quantifies how much 2��t can deviate from an interval Œa; b� if the
path ˛t does not always stay in this interval.

Lemma 4.2. Let a; b 2 R be such that 0 < b � a < �: Define

r , 2��
�
¹t W ˛t … Œa; b�º

�
;

Suppose that b � aC r < � and that 2��0 2 Œa; b�: Then

2��t 2 Œa � r; b C r�; 8t 2 Œ0; L�:

Proof. Suppose on the contrary that 2��t exits the interval Œa � r; b C r� at some time,
and assume that it exits at the end point b C r: We can then find a time � such that

b C r < 2��� < aC �:

Define

t2 , inf¹t < � W 2��t D 2�
�
� º and t1 , sup¹t < t2 W 2��t 2 Œa; b�º;

and write
A , ¹t W ˛t 2 Œa; b�º:

Note that 2��t1 D b: It follows from the angular equation (3.6) that

2��t2 � b D �2�

Z t2

t1

sin.2��t � ˛t / dt

D �2�

Z
Œt1;t2�\A

sin.2��t � ˛t / dt � 2�
Z
Œt1;t2�\Ac

sin.2��t � ˛t / dt

6 �2�
Z
Œt1;t2�\Ac

sin.2��t � ˛t / dt 6 2��.Œt1; t2� \ A
c/:

Therefore, we have

b C r < 2��� D 2�
�
t2

6 b C 2��.Œt1; t2� \ A
c/ 6 b C r;

which is a contradiction. The case when 2��t exits Œa � r; b C r� through the end point
a� r can be treated in a similar way. Consequently, we conclude that 2��t 2 Œa� r; bC r�
for all time.
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Remark 4.3. Heuristically, Lemma 4.2 tells us that the longer ˛t stays in Œa; b� (equi-
valently, the smaller r is), the less will 2��t deviate from Œa; b�: In the special case when
˛t 2 Œa; b� a.a. t 2 Œ0; L� (i.e., when r D 0), we have 2��t 2 Œa; b� for all time. But this
conclusion is slightly weaker than Lemma 4.1 since we have assumed b < aC � here.

The final lemma quantifies how fast 2��t gets attracted to the region where ˛t stays
for most of the time, if initially 2��0 is far away from this region.

Lemma 4.4. Let a < b be such that b � a < � . Let c < d and " > 0 be such that

Œc � "; d C "� � .a; b/ and " < � � .b � a/:

Suppose that ˛t 2 Œa; b� for a.a. t 2 Œ0; L�, and

(4.1) 2��0 2 .a; b/nŒc � "; d C "�:

Define B , ¹t W ˛t 2 Œc; d �º and

� , inf¹t W 2��t 2 Œc � "; d C "�º:

Then

(4.2) � 6
b � a

2� sin "
C
1C sin "

sin "
�.Bc/:

Proof. First of all, we know from Lemma 4.1 that 2��t 2 Œa; b� for all t . In view of the
assumption (4.1), suppose that 2��0 2 .d C "; b/: Then for a.a. t 2 Œ0; ��; we have

d

dt
.2��t / D �2� sin.2��t � ˛t / D �2� sin.2��t � ˛t / 1B � 2� sin.2��t � ˛t / 1Bc :

Note that for t 2 B \ Œ0; �� we have

" 6 2��t � ˛t 6 b � a < �:

Since " < � � .b � a/; it follows that

sin.2��t � ˛t / > sin " on B \ Œ0; ��:

Therefore,
d

dt
.2��t / 6 �2�.sin "/ 1B C 2� 1Bc a.a. t 2 Œ0; ��:

By integrating the above inequality, we obtain

2��� 6 2��0 � 2� sin " � �.B \ Œ0; ��/C 2��.Bc \ Œ0; ��/

D 2��0 � 2� sin " � .� � �.Bc \ Œ0; ��//C 2��.Bc \ Œ0; ��/

D 2��0 � 2�� sin "C 2�.1C sin "/ �.Bc \ Œ0; ��/:

Therefore,

2�� sin " 6 2��0 � 2�
�
� C 2�.1C sin "/ �.Bc \ Œ0; ��/

6 b � aC 2�.1C sin "/ �.Bc \ Œ0; ��/:
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Rearranging the terms gives the estimate (4.2). A similar argument gives the same con-
clusion for the case 2��0 2 .a; c � "/. Note that the situation when � D L (i.e., when 2��t
never enters Œc � "; d C "�) is included in the above argument.

Remark 4.5. Heuristically, Lemma 4.4 tells us that, if ˛t stays in Œc; d � for most of the
time (i.e., if �.Bc/ is small) and if � is large, it takes a short period of time for 2��t to
enter the interval Œc � "; d C "� (i.e., � is small).

Remark 4.6. The fact that b � a < � is critical to make use of the monotonicity property
of the sine function in the proof of Lemma 4.4. The precise use of this lemma in the proof
of the main theorem requires a minor technical modification (cf. Lemma 5.3 below).

5. Proof of the main theorem

In this section, we develop the proof of Theorem 2.6. To make our strategy more transpar-
ent, we first prove the theorem under the global assumption of regular cusps (cf. Defin-
ition 2.3). This part contains the essential idea of the proof. After that, we localise the
result to the context of strongly tree-reduced paths (cf. Definition 2.5).

5.1. Proof of Theorem 2.6: the global case

Suppose that  W Œ0; L�! R2 is a path defined by (2.3), where ˇW Œ0; L�! R, the angular
path, is a given measurable function. In this subsection, we aim at proving the following
result.

Theorem 5.1. Suppose that  is a regular cusp in the sense of Definition 2.3. Then the
signature asymptotics formula (1.1) holds.

Vaguely speaking, our strategy is to analyse the local behaviour of the angle dynam-
ics (3.6) on each sub-interval of suitable partitions of Œ0;L�; and then to examine how these
microscopic effects accumulate on the global scale. The analysis for the former point is
based on suitable localisation of the results obtained in Section 4.

We now develop the precise details of the proof of Theorem 5.1. To better convey the
logic and reasoning, we shall divide the argument into several major steps. Recall that
˛t , ˇL�t : From Definition 2.3 (i), we know that the angular path ˛t satisfies

˛t 2 Œa; aC �� for a.a. t 2 Œ0; L�;

where a 2 R is given fixed. If one does not want to bother with cusps, the argument below
appears to be simpler under the assumption that ˛t 2 Œa; b� for a.a. t , where b � a < �
(cf. Example 2.4).

5.1.1. Step one: localising the path ˛t . Fix ı > 0. According to Definition 2.3(ii), there
is a closed subset F1 � Œ0; L�, which is a finite disjoint union of closed intervals, as well
as two real numbers aı > a; bı < b , aC � , such that �.F c1 / < ı and

˛t 2 Œaı ; bı � for a.a. t 2 F1:
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To proceed further, we first recall the classical Lusin theorem (cf. Folland [11]) as
follows.

Theorem 5.2. Let f W Œp; q�!C be a Lebesgue measurable function. Then for any � > 0,
there exists a compact set E � Œp; q�; such that �.Ec/ < � and f jE is continuous.

Let � > 0 be another given number, and let " > 0 be such that

(5.1) " < min
°
aı � a; b � bı ;

�

4

±
:

Note that " is independent of �: According to the above Lusin theorem, we can choose a
compact subset F2 � F1; such that �.F1nF2/ < � and ˛jF2 is (uniformly) continuous. As
a result, there exists � > 0 such that

s; t 2 F2; jt � sj < � H) j˛t � ˛sj < ":

Since ˛t 2 Œaı ; bı � a.e. on F1; by further reducing F2 if necessary, we may assume that

˛t 2 Œaı ; bı � for every t 2 F2:

Recall that F1 is a finite disjoint union of, say,Nı closed intervals. Given �> 0;we set

(5.2) n , Œc � ��C 1; where c , " sin ":

The reason for choosing this c will be clear later on. We consider the partition Pn D

¹tni º06i6n of F1 which divide each closed interval in F1 into small sub-intervals of equal
length. When � (and thus n) is large enough, we can ensure that

(5.3) mesh.Pn/ D
�.F1/

n
< �:

Note. We have introduced several parameters ı, ", � and �. At some point later on, we will
introduce one more independent parameter M: All these parameters need to pass to the
limit in the last step. It may be helpful to keep in mind that the following order of taking
limits will be implemented eventually:

(5.4) �!1; �! 0C; M !1; "! 0C; ı ! 0C:

In what follows, we work with any given � > 0 that satisfies (5.3). This is legal in the
spirit of (5.4), since the first limiting procedure we will take is sending �!1. For each
1 6 i 6 n; we write I ni , Œtni�1; t

n
i � and define

˛ni , inf¹˛t W t 2 F2 \ I ni º and ˇni , sup¹˛t W t 2 F2 \ I ni º:

Note that

(5.5) 0 6 ˇni � ˛
n
i < " and ˛ni ; ˇ

n
i 2 Œaı ; bı �:
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5.1.2. Step two: the local behaviour of the angle dynamics. Now we consider the
SL2.R/-development of t constructed in Section 3.2. Recall that the function ��t sat-
isfies the angular equation (3.6). We assume that 2��0 2 .a; b/: The core of our argument
concerns with understanding the local behaviour of 2��t on each sub-interval I ni and its
accumulated effect on the global scale. In particular, there are two key points that we shall
establish in a precise way:

(i) The time it takes 2��t (t 2 I ni ) to enter the interval Œ˛ni � ";ˇ
n
i C "� adds up (over i )

to a negligible quantity.
(ii) Once 2��t 2 Œ˛

n
i � ";ˇ

n
i C "� at some t 2 I ni ; the portion of 2��u on Œt; tni � provides

a main contribution in the lower estimate of the radial function ��t defined by (3.9) (or
equivalently, the integral appearing in (3.10)).

We quantify these two points precisely in Step three below. The main ingredient in the
current step is the following localised version of Lemma 4.4. Let us introduce

�ni , inf¹t 2 I ni W 2�
�
t 2 Œ˛

n
i � "; ˇ

n
i C "�º and �ni , �ni � t

n
i�1:

The quantity �ni gives the amount of time within I ni before 2��t enters the “good” region
Œ˛ni � ";ˇ

n
i C "�. If 2��

tni�1
2 Œ˛ni � ";ˇ

n
i C "�, we trivially have �ni D 0:Otherwise, we have

the following estimate for the time period �ni , which is a minor adaptation of Lemma 4.4.

Lemma 5.3. The quantity �ni satisfies the following estimate:

�ni 6
�

2� sin "
C
1C sin "

sin "
�..F1nF2/ \ I

n
i /:

Proof. We expect to apply Lemma 4.4 to the context of

Œa; b� D Œaı ; bı �; Œc; d � D Œ˛ni ; ˇ
n
i � and Œ0; L� D I ni :

However, the application is not entirely obvious, since we do not know if 2��
tni�1
2 Œaı ; bı �:

The point is, we do know that 2��t 2 Œa; b� for all t (cf. Lemma 4.1), and the previous
proof of Lemma 4.4 remains valid under the requirement (5.1). To elaborate this, we only
consider the case when 2��

tni�1
> ˇni C ", as the other scenario is similar. We set

Bni , ¹t 2 I ni W ˛t 2 Œ˛
n
i ; ˇ

n
i �º:

In the same way as in that proof, we have

d

dt
.2��t / 6 �2� sin.2��t � ˛t / 1Bni C 2� 1.Bni /c

for a.a. t 2 Œtni�1; �
n
i �: Note that 2��t 2 Œˇ

n
i C "; b� on Œtni�1; �

n
i �: Therefore, we have

" 6 2��t � ˛t 6 b � ˛ni 6 b � aı on Bni \ Œt
n
i�1; �

n
i �:

By using the choice (5.1) of ", we see that

sin.2��t � ˛t / > sin " on Bni \ Œt
n
i�1; �

n
i �:
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The rest of the argument is identical to the proof of Lemma 4.4, yielding the estimate

2��ni sin " 6 2��tni�1
� 2���i C 2�.1C sin "/ �..Bni /

c
\ I ni /:

Since F2 \ I ni � B
n
i , we have

2��ni sin " 6 2��tni�1
� 2���i C 2�.1C sin "/ �..F1nF2/ \ I ni /

6 b � aC 2�.1C sin "/ �..F1nF2/ \ I ni /
D � C 2�.1C sin "/ �..F1nF2/ \ I ni /:

Rearranging the inequality gives the desired estimate.

5.1.3. Step three: the global estimate. According to the intermediate lower estimate
given by Lemma 3.8, our task is to estimate the integral

I� ,
Z L

0

cos.2��t � ˛t / dt

from below when � is large. For this purpose, we first write

I� D

Z
F c2

cos.2��t � ˛t / dt C
Z
F2

cos.2��t � ˛t / dt

> ��.F c1 / � �.F1nF2/C
nX
iD1

Z
F2\I

n
i

cos.2��t � ˛t / dt

> �ı � �C
nX
iD1

Z
F2\I

n
i

cos.2��t � ˛t / dt:

To analyse the summation on the right-hand side, we decompose it as

nX
iD1

Z
F2\I

n
i

cos.2��t � ˛t / dt D Jn CKn;

where

Jn ,
nX
iD1

Z
F2\Œt

n
i�1;�

n
i �

cos.2��t � ˛t / dt and Kn ,
nX
iD1

Z
F2\Œ�

n
i ;t

n
i �

cos.2��t � ˛t / dt;

respectively.
For the term Jn; according to Lemma 5.3 and the choice (5.2) of n, we have

Jn > �
nX
iD1

�.F2 \ Œt
n
i�1; �

n
i �/ > �

nX
iD1

�ni

> �
�n

2� sin "
�
1C sin "

sin "

nX
iD1

�..F1nF2/ \ I
n
i / > �

�"

2
�
.1C sin "//�

sin "
�(5.6)
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For the term Kn; we introduce an extra independent parameter M > 0. Define Bn to
be the collection of those i ’s such that

�..F1nF2/ \ I
n
i / >

M

n
�;

and set Gn , Bc
n. Then we have

� > �.F1nF2/ D

nX
iD1

�...F1nF2// \ I
n
i / > jBnj �

M�

n
;

where jBnj denotes the number of elements in Bn: In particular, jBnj 6 n=M: It follows
that

Kn D
� X
i2Bn

C

X
i2Gn

� Z
F2\Œ�

n
i ;t

n
i �

cos.2��t � ˛t / dt

> �
X
i2Bn

�.F2 \ Œ�
n
i ; t

n
i �/C

X
i2Gn

Z
F2\Œ�

n
i ;t

n
i �

cos.2��t � ˛t / dt

> �
L

n
� jBnj C

X
i2Gn

Z
F2\Œ�

n
i ;t

n
i �

cos.2��t � ˛t / dt

> �
L

M
C

X
i2Gn

Z
F2\Œ�

n
i ;t

n
i �

cos.2��t � ˛t / dt:(5.7)

We now estimate the last term on the right-hand side of (5.7). The point is to apply
Lemma 4.2 to the context where

Œ0; L� D Œ�ni ; t
n
i �; Œa; b� D Œ˛ni � "; ˇ

n
i C "�;

and
r D rni , 2� � �

�
¹t W ˛t … Œ˛

n
i � "; ˇ

n
i C "�º \ Œ�

n
i ; t

n
i �
�
:

As one assumption in the lemma, we already have 2��
�ni
2 Œ˛ni � "; ˇ

n
i C "�:We must also

verify the other standing assumption that

(5.8) .ˇni C "/ � .˛
n
i � "/C r

n
i < �:

To this end, first note that
rni 6 2��..F1nF2/ \ I

n
i /:

Furthermore, for those i 2 Gn, we have

�..F1nF2/ \ I
n
i / 6

M�

n
�

As a result,

rni 6
2�M�

n
D
2M�

" sin "
�
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It follows from (5.5) that

.ˇni C "/ � .˛
n
i � "/C r

n
i < 3"C

2M�

" sin "

for each i 2 Gn: For fixed " andM , when � is small we can ensure that the condition (5.8)
is met. We emphasise that such a requirement is legal in view of the limiting order (5.4)
that will be implemented eventually. Now we can apply Lemma 4.2 to conclude that

2��t 2 Œ˛
n
i � " � r

n
i ; ˇ

n
i C "C r

n
i �; 8t 2 Œ�

n
i ; t

n
i �:

Consequently, for each i 2 Gn and t 2 F2 \ Œ�ni ; t
n
i �, we have

(5.9) j2��t � ˛t j 6 ˇni � ˛
n
i C "C r

n
i < 2"C

2M�

" sin "
�

For fixed " and M; we further require � to be small enough so that 2"C 2M�
" sin " <

�
2

. As a
consequence, we obtainX
i2Gn

Z
F2\Œ�

n
i ;t

n
i �

cos.2��t � ˛t / dt > cos
�
2"C

2M�

" sin "

�
�

X
i2Gn

�.F2 \ Œ�
n
i ; t

n
i �/

D cos
�
2"C

2M�

" sin "

�
�

X
i2Gn

�
�.F2 \ I

n
i / � �.F2 \ Œt

n
i�1; �

n
i �/
�

D cos
�
2"C

2M�

" sin "

�
� �.F2/ � cos

�
2"C

2M�

" sin "

�
�

X
i2Bn

�.F2 \ I
n
i /

� cos
�
2"C

2M�

" sin "

�
�

nX
iD1

�.F2 \ Œt
n
i�1; �

n
i �/

> cos
�
2"C

2M�

" sin "

�
� .L � ı � �/ �

L

M
cos

�
2"C

2M�

" sin "

�
� cos

�
2"C

2M�

" sin "

�
�

��"
2
C
.1C sin "/�

sin "

�
:

To reach the second term in the last inequality, we have used the fact that

(5.10)
X
i2Bn

�.F2 \ I
n
i / 6

L

n
� jBnj 6

L

M
;

and to reach the third term we have used the estimate (5.6).
Gathering all the above estimates we have obtained so far, we arrive at

I� > �ı � � �
�"

2
�
.1C sin "/�

sin "
�
L

M
C cos

�
2"C

2M�

" sin "

�
� .L � ı � �/

�
L

M
cos

�
2"C

2M�

" sin "

�
� cos

�
2"C

2M�

" sin "

�
�

��"
2
C
.1C sin "/�

sin "

�
:(5.11)

The proof of Theorem 5.1 is thus completed by passing to the limit in the order specified
by (5.4).
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The following estimate is a direct consequence of the above argument. It plays an
essential role for proving Theorem 2.6 in the more general context in the next subsection.
We continue to use the same notation as before and to make all the standing requirements
for the parameters ı, �, " and M: However, we do not take limit for these parameters.

Corollary 5.4. There exists ƒ D ƒ.ı; �; ";M/ such that, whenever � > ƒ and s 2 Œ0;L�
satisfies 2��s 2 .a; b/; we have

(5.12) �
�°
t 2 F2 \ Œs; L� W j2�

�
t � ˛t j > 2"C

2M�

" sin "

±�
6
�"

2
C
1C sin "

sin "
�C

L

M
�

Proof. The number ƒ is chosen so that for any � > ƒ, we have ˇni � ˛
n
i < " (see the

discussion in Section 5.1.1 leading to the property (5.5)). Recall that " depends on ı; and
that � is small depending on " andM . Henceƒ depends on all these parameters. Suppose
that 2��s 2 .a; b/: We treat 2��s as the initial condition and restrict the previous analysis
to the interval Œs; L�: The argument leading to (5.9) implies that°
t 2 F2 \ Œs;L� W j2�

�
t � ˛t j> 2"C

2M�

" sin "

±
�
�
[i2Bn

.F2 \ I
n
i /
�
[
�
[i2Gn Œt

n
i�1; �

n
i �
�
:

The inequality (5.12) then follows from (5.10) and (5.6).

5.2. Proof of Theorem 2.6: the local case

We now proceed to develop the proof of Theorem 2.6 in general. Let us suppose that
 W Œ0; L�! R2 is strongly tree-reduced in the sense of Definition 2.5. Our strategy is to
cover the path by small intervals, so that on each local interval the corresponding estim-
ate (5.12) holds. There is a key missing ingredient in order to patch the estimates (5.12)
over different intervals. We must make sure that the initial condition for 2��s on each of
the covering intervals falls in an appropriate region .a; b/ to trigger the relevant estim-
ate. Obtaining such consistency property is non-trivial, since the initial condition for the
current covering is the terminal condition for the previous covering.

To reduce technical considerations, let us first make one simplification by assuming
that, in Definition 2.5 the open interval .0; L/ is replaced by the closed interval Œ0; L�:
Namely, we assume that for each t 2 Œ0; L�; there exists a neighbourhood .ut ; vt / of t
such that  jŒut ;vt �\Œ0;L� is a regular cusp. This simplification allows us to make use of
compactness and finite covers. At the end of this subsection, we discuss how to remove
this restriction (cf. Section 5.2.4).

5.2.1. Step one: a covering lemma. To make the intuition clearer, it is important to
choose a nice covering of Œ0; L� out of the above assumption. This is the content of the
following lemma.

Lemma 5.5. There exist points u1; : : : ; uk�1 and v1; : : : ; vk ; such that

(i) Œ0; L� D Œv0; v1� [ Œv1; v2� [ � � � [ Œvk�1; vk �, where v0 , 0;
(ii) ui 2 .vi�1; vi / for each 1 6 i 6 k � 1;

(iii) ˛jŒui�1;vi � is a regular cusp for each 1 6 i 6 k, where u0 , 0.
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Proof. By compactness, we can find a finite family A D ¹Ii W i D 1; : : : ; lº of distinct
intervals that cover Œ0;L�, where each interval Ii is relatively open in Œ0;L� and ˛jIi\Œ0;L�
is a regular cusp for each i . The point t D 0 is covered by some member in A; say I1 D
.0; v1/: If v1 > L, we set v1 , L and we are done. Otherwise, the point t D v1 is covered
by some member in An¹I1º; say I2 D .u01; v2/: If v2 > L; we are done by setting v2 , L

and choosing any point u1 2 .u01; v1/: If v2 < L, we continue the process. Inductively,
vi is covered by some member in An¹I1; : : : ; Iiº, say IiC1 D .u0i ; viC1/: We choose
ui 2 .max¹u0i ; vi�1º; vi / and proceed further. The process terminates after finitely many
steps since A is finite.

The figure below illustrates the covering specified by Lemma 5.5 when k D 4:

Figure 2. The covering structure when k D 4.

In what follows, we always work with a fixed covering structure given by Lemma 5.5.

5.2.2. Step two: consistency of initial conditions. From Lemma 5.5, we know that
˛jŒui�1;vi � is a regular cusp. In particular, we know by assumption that

˛t 2 Œai ; ai C �� for a.a. t 2 Œui�1; vi �

with some ai 2 R. The main issue here is that, we cannot directly apply the results from
Section 5.1, since we do not know whether 2��ui�1 2 .ai ; ai C �/: Such a requirement
on the initial condition is critical in the previous argument. Nonetheless, the following
lemma tells us that we can find si 2 Œui�1; vi�1/ (which may depend on �) such that
2��si 2 .ai ; ai C �/. As a result, si can be treated as the initial time over the portion
of Œsi ; vi �.

Lemma 5.6. There exists ƒ > 0 such that, for any � > ƒ and 1 6 i 6 k � 1; we can
always find si 2 Œui�1; vi�1/ satisfying

2��si 2 .ai ; ai C �/:

Proof. We continue with the notation in Section 5.1 but applied to the context of ˛jŒui�1;vi �
for each i . Recall that ı, ", � and M are given parameters. We are then able to define two
compact subsets Fi � F 0i of Œui�1; vi � playing the roles of F1 and F2, and two numbers
a0i > ai ; b

0
i < bi , ai C� playing the roles of aı and bı in that section. We further require

that these parameters satisfy the following constraints:

(5.13) 2"C
2�M

" sin "
< min
16i6k

min¹a0i � ai ; bi � b
0
iº;
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and

(5.14)
��"
2
C
1C sin "

sin "
�C

L

M

�
C 2.ı C �/ < min

16i6k�1
.vi � ui /:

More quantitatively, we first choose ı and " to be small, then M to be large, and finally �
to be small. This is consistent with the limiting order (5.4). Now we are in a position to
apply the quantitative estimate given by Corollary 5.4 to each portion ˛jŒui�1;vi �. Note that
we do not take limits for the parameters ı, ", � and M here. The constant ƒ appearing in
Corollary 5.4 depends on these parameters as well as on the fixed covering structure given
by the Œui�1; vi �’s.

For any given � > ƒ; we are going to choose si 2 Œui�1; vi�1/ inductively on i , such
that 2��si 2 .ai ; bi /. We start by fixing 2��0 2 .a1; b1/ and choosing s1 , 0: Suppose that
si 2 Œui�1; vi�1/ is already selected with the desired property, and we want to define siC1
properly. According to Corollary 5.4 and the requirement (5.14), we have

�
�°
t 2 F 0i \ Œsi ; vi � W j2�

�
t � ˛t j > 2"C

2�M

" sin "

±�
< vi � ui � 2ı � 2�:

Since �..F 0i /
c/ < ı C � from Section 5.1, it follows that

�
�°
t 2F 0i \ Œsi ; vi � W j2�

�
t � ˛t j 6 2"C

2�M

" sin "

±�
> �.F 0i \ Œsi ; vi �/ � .vi � ui � 2ı � 2�/

> .vi � si / � .ı C �/ � .vi � ui � 2ı � 2�/ D ui � si C ı C �:

As a result, we have
�.Ci \ Œui ; vi �/ > ı C �;

where
Ci ,

°
t 2 Œsi ; vi � W j2�

�
t � ˛t j 6 2"C

2�M

" sin "

±
:

Since �..F 0iC1/
c/ < ı C �, we conclude that

Ci \ F
0
iC1 \ Œui ; vi / ¤ ;:

Pick any point in the above set and define it as siC1: Note that from Section 5.1 we also
have ˛siC1 2 Œa

0
iC1; b

0
iC1� (since siC1 2 F 0iC1). Therefore, the requirement (5.13) further

implies that 2��siC1 2 .aiC1; biC1/: This gives the desired construction of siC1:

5.2.3. Step three: patching up the estimates. We now proceed to establish the global
lower estimate. We continue to work in the previous set-up. For each given � > ƒ; the
previous choice of si allows us to apply the estimate (5.12) to ˛jŒsi ;vi �. In particular, for
each i we have

�
�°
t 2 F 0i \ Œsi ; vi � W j2�

�
t � ˛t j > 2"C

2�M

" sin "

±�
6
�"

2
C
1C sin "

sin "
�C

L

M
�

Let us define
D ,

°
t 2 Œ0; L� W j2��t � ˛t j > 2"C

2�M

" sin "

±
:
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Then we have

�.D/ 6
kX
iD1

�
�°
t 2 Œsi ; vi � W j2�

�
t � ˛t j > 2"C

2�M

" sin "

±�
6 k

��"
2
C
1C sin "

sin "
�C

2L

M
C �C ı

�
;(5.15)

andZ L

0

cos.˛t � 2��t / dt > ��.D/C cos
�
2"C

2�M

" sin "

�
�.Dc/

> L cos
�
2"C

2�M

" sin "

�
�

�
1C cos

�
2"C

2�M

" sin "

��
�.D/:

By substituting the estimate (5.15) and taking limit in the order (5.4), we conclude that

lim
�!1

Z L

0

cos.˛t � 2��t / dt > L:

5.2.4. Step four: removing the assumption at the end points. Finally, we come back
to relax the requirement on the endpoints t D 0; L: More precisely, we now assume that
for each t 2 .0; L/ (not including the endpoints), there is a neighbourhood .ut ; vt / of t
on which  is a regular cusp. Having all the previous analysis at hand, dealing with this
situation only requires minor technical effort.

To elaborate this, let � > 0 be a given number. Then we can writeZ L

0

cos.˛t � 2��t / dt > �2� C
Z L��

�

cos.˛t � 2��t / dt:

On the other hand, we know that  jŒ�;L��� satisfies Definition 2.5 up to the end points �
and L � �. In order to apply the previous results to  jŒ�;L���, the only requirement is a
suitable initial condition for 2��� : But we know that (cf. Lemma 3.4)

��� e
i��� D w�� D �

�
L��;L �

�:

Since ��L��;L is invertible, by choosing �� properly we can certainly guarantee that 2���
satisfies a desired condition (i.e., 2��� 2 .a1; a1C �/ using the notation from the previous
discussion). As a result, we conclude that

lim
�!1

Z L

0

cos.˛t � 2��t / dt > �2� C .L � 2�/ D L � 4�:

By letting � ! 0C; we obtain the desired estimate.
Up to this point, the proof of Theorem 2.6 is complete.
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6. An extension: singular cusps

We have mentioned at the beginning that there is another type of cusps which is more sin-
gular in terms of detecting the tree-reduced property and is thus harder to deal with. In this
section, we discuss how the previous analysis, when combined with a suitable comparison
lemma, can be adapted to treat this more singular case. For the sake of conciseness and for
conveying the essential idea better, we only consider a typical example instead of trying
to write down an abstract condition capturing such type of cusps. We remark at the end of
this section on how the argument can be adapted to a more general situation.

We first illustrate this singular type of cusps in the figure below.

Figure 3. Regular cusp, singular cusp and tree-like cusp.

The leftmost path represents a typical regular cusp in the sense of Definition 2.3. The
middle path represents the singular cusp that we are considering here. The rightmost path
represents a tree-like cusp that has trivial signature. Note that these paths are all local, i.e.,
we are only zooming in the part near the cusp singularity.

It is not hard to describe why these two types of cusps are different in terms of the
“degree of tree-reducedness”. For the moment let us assume that the paths are C 2 near the
cusp singularity point. For the regular cusp in Figure 3 (i), one detects its tree-reducedness
directly from the fact that the second derivative of the path (more precisely, the first deriv-
ative of the angular path ˇt ) does not change sign when passing through the singularity.
This also accounts for the property that ˇt takes values in an interval of length strictly less
than � after removing an arbitrarily small neighbourhood of the singularity (cf. Defin-
ition 2.3). However, for the singular cusp in Figure 3 (ii), one cannot detect whether it
is tree-reduced or not by examining the sign of the second derivative. Instead, the way
to distinguish it from the tree-like cusp in Figure 3 (iii) is through looking at the precise
magnitude of the second derivative on both sides of the singularity. To put it in another
way, it is the speed of change for ˇt rather than the direction of change that distinguishes
it from being tree-like. Such information is finer than what is contained in Definition 2.3.
As a result, dealing with this case requires more delicate analysis.

In what follows, we consider one typical example of singular cusps. To be more con-
venient for using the equation (3.4), we directly specify ˛t instead of ˇt (recall that they
are related by ˛t D ˇL�t ). Let L; r > 0 and a 2 R be given fixed. Consider a given
continuous, strictly increasing function

� W Œ0; L=2�! Œa � r; a�
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with �0 D a� r and �L=2 D a. The simplest example of � is the linear function. We define
the angular path ˛W Œ0; L�! R by

(6.1) ˛t ,

´
�t ; t 2 Œ0; L=2/;

c � .�L�t � a/C .a � �/; t 2 .L=2;L�;

where c > 0 is a given fixed number. Note that ˛L=2� D a and ˛L=2C D a � �: The
resulting path t is given by the equation (2.3) where ˇt , ˛L�t :

When c D 1;  is tree-like. When c ¤ 1;  has the shape of Figure 3 (ii). By consider-
ing the reversal path if necessary, we may assume without loss of generality that 0 < c < 1:
In addition, since only the local behaviour of  near the singularity is relevant, we may
also assume that r is small, say r < �=4:

Our main result of this section is the following.

Theorem 6.1. The signature asymptotics formula holds for the path  defined as above.

To prove this result, we first state a lemma which also directly solves the case when
˛W Œ0; L� ! R is a continuous function (i.e., the C1-case). We defer its proof to the
appendix so as not to distract the reader from the main discussion. In the C1-case, Lyons
and Xu [16] also had a similar result for the equations of the hyperbolic development.

Lemma 6.2. Let ˛W Œ0; L�! R be a continuous function. Recall that the function ��t is
defined by the angular equation (3.6). Suppose that there exists � 2 .0; �/ such that

j2��0 � ˛0j 6 � for all � > 0:

Then for any t0 > 0; 2��t converges uniformly to ˛t on Œt0; L� as �!1. In addition,
if 2��0 D ˛0 for all �; then the uniform convergence holds on Œ0; L�:

The key point for proving Theorem 6.1 is to compare the angle dynamics 2��t asso-
ciated with the cusp path ˛t to the one corresponding to the tree-like case. Let us begin
with the trivial observation that the angular equations (3.6) on Œ0; L=2� for the two cases
(c ¤ 1 vs c D 1) are identical. In addition, if we take 2��0 D ˛0, according to Lemma 6.2
and Lemma 4.1, we have

2��t 2 R1 , Œa � r; a�; 8t 2 Œ0; L=2�;

and k2��� � ˛�k1IŒ0;L=2� can be made arbitrarily small when � is large.
To understand the portion of ŒL=2;L�, we first look at the tree-like situation c D 1. Let

us use  �t to denote the corresponding solution to the angular equation (3.6) on ŒL=2; L�
for this case. By the definition (6.1) with c D 1, we know that, for all t 2 ŒL=2;L�,

(6.2)
d

dt
 �t D �� sin.2 �t � .�.L � t / � �// D � sin.2 �t � �.L � t //:

As a result of uniqueness, we have

 �t D  
�
L�t D �

�
L�t ; 8t 2 ŒL=2;L�:

In other words, on the second half ŒL=2; L�, the path  �t is just the reversal of the first
half Œ0; L=2�.
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Now we return to the cusp situation with 0 < c < 1 given fixed. The angular equa-
tion (3.6) can be rewritten as

(6.3)
d��t
dt
D � sin

�
2��t � �L�t � " � .a � �L�t /

�
; 8t 2 ŒL=2;L�;

where " , 1 � c: Recall that

 �t , ��L�t .t 2 ŒL=2;L�/

gives the angular solution in the tree-like case on ŒL=2;L�:
The following comparison lemma is the key step towards the proof of Theorem 6.1.

Lemma 6.3. For each � > 0; we have

��t 6  �t ; 8t 2 ŒL=2;L�:

Proof. Let
�t ,  �t � �

�
t ; t 2 ŒL=2;L�:

Then �L=2 D 0, and using the equations (6.2), (6.3) for the two functions, we see that �t
satisfies the equation

d�t

dt
D 2� cos

.2 �t � �L�t /C .2�
�
t � �L�t / � ".a � �L�t /

2
sin
�
�t C

".a � �L�t /

2

�
:

Firstly, we claim that �t > 0 when t is small. To this end, we set

�t , ".a � �L�t /=2:

By the assumption on �t ; the function �t is non-negative, and strictly increases from 0

to "r=2. Therefore, we have

j�t j 6 2�

Z t

L=2

j sin.�s C �s/j ds 6 2�

Z t

L=2

j�sj ds C 2�
�
t �

L

2

�
�t :

It follows from Grönwall’s inequality that

j�t j 6 2�
�
t �

L

2

�
�t � e

2�.t�L=2/; t 2 ŒL=2;L�:

As a consequence, we have

�t C �t >
�
1 � 2�

�
t �

L

2

�
e2�.t�L=2/

�
�t :

In particular, there exists �1 2 .L=2;L/ (depending on �) such that

�t C �t >
1

2
�t > 0; 8t 2 ŒL=2; �1�:
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We also require that �t C �t 6 � by shrinking �1 if necessary. As a result, we have

sin.�t C �t / > 0; 8t 2 ŒL=2; �1�:

On the other hand, observe that

j2 �t � �L�t j 6 r

since they both stay in the region R1: By the relation ��
L=2
D  �

L=2
and the continuity

of ��t at t D L=2, there exists �2 2 .L=2;L/ (depending on �) satisfying

cos
.2 �t � �L�t /C .2�

�
t � �L�t / � ".a � �L�t /

2
> cos

.3C "/r

2
DW �r > 0

for t 2 ŒL=2; �2� (recall we have presumed that c 2 .0; 1/ and r < �=4). By taking

� , �1 ^ �2;

we obtain

�t > 2��r

Z t

L=2

sin.�s C �s/ ds > 0; 8t 2 ŒL=2; ��:

Next, we claim that �t > 0 for all t 2 ŒL=2; L�: Suppose on the contrary that, there is
some t such that �t < 0: This t must be in the interval .�;L�: A standard argument allows
us to find t1; t2 2 Œ�; L� such that �t1 D 0 and �t < 0 for t 2 .t1; t2�. However, since �t is
strictly increasing, we know that �t1 2 .0; "r=2/: As a result,

�0t1 D 2� cos
�
2 �t1 � �L�t1 �

".a � �L�t1/

2

�
sin �t1 > 2� cos

� .2C "/r
2

�
sin �t1 > 0;

which is clearly a contradiction. Therefore, �t > 0 on ŒL=2;L�:

Now we are in a position to give the proof of Theorem 6.1. The idea is that, at any
fixed time t� > L=2, when � is large, 2��t� gets pushed into the interval

R2 , Œa � � � cr; a � ��

(the range of ˛ on ŒL=2; L�). As a consequence, we can then apply results obtained in
Section 5 to the portion of Œt�; L�: The theorem then follows as t� � L=2 can be made
arbitrarily small.

Proof of Theorem 6.1. Let t1 < t2 be two fixed times in .L=2; L/: We claim that there
exists ƒ > 0 such that

(6.4) 2��t2 2 R2; 8� > ƒ:

If this is true, the argument developed in Section 5 applied to the portion of Œt2;L� implies
that

lim
�!1

Z L

0

cos.˛t � 2��t / dt D lim
�!1

� Z L=2

0

C

Z t2

L=2

C

Z L

t2

�
cos.˛t � 2��t / dt

>
L

2
C .L � t2/ �

�L
2
� t2

�
:

The desired lower bound follows by letting t2 ! L=2.
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The proof of the claim (6.4) contains the following three observations.
(i) From Lemma 6.3, we know that

2��t1 6 2 �t1 D 2�
�
L�t1

:

(ii) According to Lemma 6.2, 2 �t1 and �L�t1 can be made arbitrarily close when � is
large.

(iii) The distance between ˛t1 and �L�t1 is strictly less than �: Indeed,

�L�t1 � ˛t1 D �L�t1 � c � .�L�t1 � a/ � aC � D � � .1 � c/.a � �L�t1/;

which is less than � since c 2 .0; 1/ and �L�t1 < a.
To prove the claim (6.4) precisely, first observe from Lemma 4.1 that, if 2��t ever

enters the region R2 during .L=2; t2/, it will remain in R2 afterwards since ˛t 2 R2 for
t 2 ŒL=2; L�. In particular, we have 2��t2 2 R2 in this case. Let us now assume the other
case that 2��t 2 Œa � �; a� for t 2 ŒL=2; t2�. According to the above points (i)–(iii), in this
case we see that the distance between 2��t1 and ˛t1 is uniformly less than � for all large �.
As a consequence of Lemma 6.2, we conclude that

lim
�!1

j2��t2 � ˛t2 j D 0:

In particular, 2��t2 2 R2 when � is large. This proves the desired claim.

We give some further comments to conclude the discussion for this section. Although
we are only considering a particular type of examples here, the above argument can be
adapted to deal with the more general situation where ˛t is C 2 near the singularity t� 2
.0; L/ and j˛0.t��/j ¤ j˛0.t�C/j. For simplicity, suppose that on the portion of Œ0; t�� we
are in the setting of Section 5, so that we have the estimate

(6.5)
Z t�

0

cos.˛t � 2��t / dt & t�

when � is large. To deal with the portion after t�, the point is that (6.1) provides a good
approximation of the actual path ˛t in a small neighbourhood .t� � h; t�C h/ of t�, where
the parameter c ¤ 1 captures the difference between the magnitudes of the left and right
derivatives of ˛ at the singularity t�: Using a suitable comparison lemma, one can then
show that, after passing through the singularity t�, when � is large the angular path 2��t
gets pushed into the region where ˛j.t�;t�Ch/ belongs. As a result, the initial condition
of 2��t on the portion of Œt� C h; L� is favorable (relative to ˛.t� C h/), and the analysis
developed in Section 5 again leads to the estimate

(6.6)
Z L

t�Ch

cos.˛t � 2��t / dt & L � t� � h

when � is large. By adding up the two estimates (6.5), (6.6) and letting h! 0C; we arrive
at the formula (1.1).
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7. Some further questions

One may wonder how much further one needs to go towards a complete solution to
the length conjecture (1.1). In our modest opinion, a critical step is to identify a suit-
able way to capture the degree of tree-reducedness at a quantitative level, which is at
the same time convenient to be utilised in the signature analysis. This is a quite challen-
ging part of the problem as the tree-reduced property is essentially topological. Although
Theorem 2.6 does not resolve the problem completely, we believe that it provides an inter-
esting and important attempt along this philosophy. For instance, in the simplified context
of Example 2.4, the condition that ˇt stays in an interval of length r < � reflects the extent
to which the path cannot turn around immediately (thus being tree-reducedness). As r gets
smaller, the path tends to be “more tree-reduced”. While as r gets closer to �; the condi-
tion becomes less sensitive for detecting the tree-reduced property, and the extreme case
of r D � allows the possibility of creating tree-like pieces.

To go deeper into the study, among others there are at least two interesting questions
one can raise and investigate.

Question 7.1. Can we extend the current approach to higher dimensional paths?

At the moment, this is not entirely straight forward. For higher dimensional paths, one
may resort to Cartan developments onto higher dimensional Lie groups, e.g., SLn.R/;
SO.p; q/ etc. If one designs the development in a clever way, it may not be too surprising
to end up with an ODE system in which the angular component for the group action is
decoupled from the radial component just like the equations (3.5) and (3.6). However,
one faces another level of challenge (which is harder to overcome) due to the lack of
monotonicity properties for the angular equation, since the angle dynamics is now taking
values in the n-sphere Sn rather than in R (or S1).

On the other hand, we have made use of the intuition that the tree-reduced property
is reflected by the incapability of making a �-turn locally. There is a weaker type of
conditions that captures this property in a more direct way, which is expressed in terms of
turning angles:

(7.1) jˇt � ˇsj 6 �; for a.a. s; t;

with some given constant � 2 .0; �/:

Question 7.2. Is it possible to prove the signature asymptotics formula (1.1) under the
condition (7.1), or more generally under a suitably localised version of (7.1)?

Clearly, the condition (2.4) implies the condition (7.1). However, it is possible to con-
struct a bounded variation path that satisfies (7.1) but is not strongly tree-reduced in the
sense of Definition 2.5. For instance, let ¹A; B; C º be a Lebesgue measurable partition
of Œ0; 1�; such that for every open subset U of Œ0; 1� one has

�.U \ A/ > 0; �.U \ B/ > 0 and �.U \ C/ > 0:

The existence of ¹A;B;C º is a (non-trivial) exercise in real analysis. Define ˇW Œ0;1�! S1

by
ˇt D 0 � 1A.t/C e2�i=3 � 1B.t/C e4�i=3 � 1C .t/:
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Then ˇt satisfies (7.1) with � D 2�=3, where the distance jˇt � ˇsj is understood as
the S1-distance. The resulting path t ,

R t
0
ˇs ds is tree-reduced but not strongly tree-

reduced. At this point, it is not so clear if the current strategy can be adapted to deal with
this weaker type of conditions.

A. Proof of Lemma 6.2 and the C 1-case

In this section, we give the proof of Lemma 6.2, which also directly implies the signature
asymptotics formula (1.1) for planar C1-paths. Let ˛W Œ0; L�! R be a given continuous
function.

We first consider the case when the initial condition of 2��t coincides with ˛0:

Lemma A.1. For each � > 0; let .��t /06t6L be the solution to the differential equation

(A.1)

´
d��t D � sin.˛t � 2��t / dt; 0 6 t 6 L;

��0 D ˛0=2:

Then 2��t converges uniformly to ˛t on Œ0; L� as �!1:

Proof. Let
!.h/ , sup

js�t j<h

j˛t � ˛sj

be the modulus of continuity of ˛: Given " 2 .0; �=4/; choose h D h" so that !.h/ < ":
Let

� >
k˛k1

h sin "
�

We claim that j2��t � ˛t j<2" for all t 2 Œ0;L�: Suppose on the contrary that j2��t � ˛t j>
2" for some t . Define

t2 , inf¹s 2 Œ0; L� W j2��s � ˛sj > 2"º;

t1 , sup¹0 6 s 6 t2 W j2�
�
s � ˛sj 6 "º:

Apparently, 0 < t1 < t2 6 L: Moreover, j2��t1 � ˛t1 j D " and

" 6 j2��s � ˛sj 6 2"; 8s 2 Œt1; t2�:

Using the differential equation (A.1), we also have

(A.2) 2��t2 � ˛t2 D 2�
�
t1
� ˛t1 C 2�

Z t2

t1

sin.˛s � 2��s / ds C .˛t1 � ˛t2/:

If 2��t2 � ˛t2 D 2"; by the definition of t1 we must have 2��t1 � ˛t1 D " and thus

" 6 2��s � ˛s 6 2"; 8s 2 Œt1; t2�:
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Therefore, (A.2) implies that

2" 6 " � 2�.t2 � t1/ sin "C j˛t1 � ˛t2 j

6

´
"C !.h/ < 2"; if t2 � t1 < h;
"C 2k˛k1 � 2�h sin " < "; if t2 � t1 > h:

This is clearly a contradiction. The case when 2��t2 � ˛t2 D �2" is treated in a similar
way. Consequently, we conclude that j2��t � ˛t j < 2" for all t 2 Œ0; L�; provided that
� > k˛k1=.h sin "/.

Now we extend the above argument to give a proof of Lemma 6.2. Namely, under the
assumption that

(A.3) j2��0 � ˛0j 6 � < � 8� > 0;

we want to establish the uniform convergence of 2��t towards ˛t on Œt0; L� where t0 > 0
is a given fixed time. In order to use the previous proof, the crucial point is to see that,
when � is large, the quantity 2��t � ˛t can be brought down to the region .�"; "/ at
some time in Œ0; t0�: The heuristic reason for such a property is simple to describe. Since
j2��0 � ˛0j is uniformly less than � , at the initial stage of the dynamics (i.e., when t is
small), the quantity sin.2��t � ˛t / is uniformly away from zero. Therefore, when � is
large, the mean-reversing property gets rather significant and is thus pushing 2��t to be
close to ˛t very quickly. Let us now make the heuristics precise.

Lemma A.2. Suppose that (A.3) holds for some given constant � 2 .0; �/: Let t0 > 0 be
fixed. Then for any " > 0; there exists ƒ D ƒ";t0 > 0 such that for each � > ƒ we have

(A.4) j2��s � ˛sj < " for some s 2 Œ0; t0�:

Proof. Let �0 2 .�;�/ be fixed. By the continuity of ˛t at the origin, there exists ı 2 .0; t0/
such that

t 2 Œ0; ı� H) j˛t � ˛0j < �
0
� �:

Given " > 0; we define

ƒ ,
2k˛k1 C �

2ı sin "
�

For each given � > ƒ; we claim that (A.4) holds. Suppose on the contrary that

j2��s � ˛sj > "; 8s 2 Œ0; t0�:

By continuity, we have either

.i/ 2��s � ˛s > "; 8s 2 Œ0; t0� or .ii/ 2��s � ˛s 6 �"; 8s 2 Œ0; t0�:

Suppose that case (i) holds. Define

s1 , inf¹s 2 Œ0; t0� W 2��s � ˛s D �
0
º:



H. Boedihardjo and X. Geng 2004

Then we must have s1 > ı: Indeed, consider the equation

(A.5) 2��s1 � ˛s1 D 2�
�
0 � ˛0 � .˛s1 � ˛0/ � 2�

Z s1

0

sin.2��s � ˛s/ ds:

Note that
" 6 2 �s � ˛s 6 �0 < �; 8s 2 Œ0; s1�;

and thus sin.2��s � ˛s/ is positive on Œ0; s1�: If s1 6 ı; the left-hand side of (A.5) equals �0,
while the right-hand side is strictly less than

� C .�0 � �/ � 2�

Z s1

0

sin.2��u � ˛u/ du 6 �0:

This is clearly a contradiction. Therefore, s1 > ı: Now using the same equation (A.5), we
see that the left-hand side is bounded below by " while the right-hand side is bounded
above by

� C 2k˛k1 � 2�s1 sin " 6 � C 2k˛k1 � 2�ı sin ":

This leads to a contradiction, since the quantity on the right hand side of the above inequal-
ity is negative when � >ƒ by the definition ofƒ: The discussion of case (ii) is similar.

Now we are able to complete the proof of Lemma 6.2.

Proof of Lemma 6.2. Given " > 0; define

ƒ1 ,
k˛k1

h sin "
and ƒ2 ,

2k˛k1 C �

2ı sin "
;

which are the two constants appearing in the proofs of Lemma A.1 and Lemma A.2,
respectively. Define ƒ , max¹ƒ1;ƒ2º. For each � > ƒ; we know from Lemma A.2 that
there is s 2 Œ0; t0� (which may depend on �) such that (A.4) holds. In addition, exactly the
same argument as in the proof of Lemma A.1 allows us to conclude that

j2��t � ˛t j 6 2"; 8t 2 Œs; L�

In particular, we have
sup

t2Œt0;L�

j2��t � ˛t j 6 2":

This gives the desired uniform convergence.

Remark A.3. It is not hard to see why 2��0 D ˛0 ˙ � are “bad” initial conditions. Con-
sider the extreme example where ˛t � ˛0: If 2��0 D ˛0 ˙ � , then we have ��t � ��0 ,
which is never close to ˛t=2. If we perform an explicit calculation for the tree-like path
v t .�v/ (v 2 R2), this is exactly what happens in the .�v/-part.

Corollary A.4. Let  W Œ0; L� ! R2 be a path defined by the equation (2.3), where the
angular path ˇW Œ0; L� ! R2 is a continuous function. Then the signature asymptotics
formula (1.1) holds for :
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Proof. With ˛t , ˇL�t and 2��0 , ˛0; Lemma 6.2 shows that the angular path 2��t
converges uniformly to ˛t as � ! 1: The result then follows from the lower estim-
ate (3.10).
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