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On the Sobolev quotient
of three-dimensional CR manifolds

Jih-Hsin Cheng, Andrea Malchiodi and Paul Yang

Abstract. We exhibit examples of compact three-dimensional CR manifolds of pos-
itive Webster class, Rossi spheres, for which the pseudo-hermitian mass, as defined
by Cheng–Malchiodi–Yang (2017), is negative, and for which the infimum of the
CR-Sobolev quotient is not attained. To our knowledge, this is the first geometric
context on smooth closed manifolds where this phenomenon arises, in striking con-
trast to the Riemannian case.

1. Introduction

The Yamabe problem consists in deforming conformally the metric of a manifold of
dimension n � 3 so that its scalar curvature becomes a constant. Apart from being a nat-
ural conformal extension of the uniformization problem in two dimensions, the question
was introduced in [37] for trying to attack Poincaré’s conjecture. Yamabe metrics have
also been applied to other contexts, such as the study of degeneration of conformal struc-
tures. For example, in [34] it is shown that the set of Yamabe Bach-flat metrics on a
four-manifold is compact up to orbifold degeneration.

If one wishes to have S Qg constant, the following elliptic problem must be solved:

�
4.n � 1/

n � 2
�guC Sgu D S u

.nC2/=.n�2/ on M , for S 2 R:(Y )

Notice that the exponent on the right-hand side of the equation is critical with respect to
the Sobolev embeddings. In [37], an attempt was made to solve (Y ) by lowering the expo-
nent by a small amount, but the possible weak convergence to zero of solutions was not
excluded. Another way to attack (Y ) was to view S as a Lagrange multiplier, considering
the Sobolev quotient
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where cn D 4.n � 1/=.n � 2/ and 2� D 2n=.n � 2/. If one could realise the minimum of
Q.M;g/.u/ over all non-zero u’s of class W 1;2.M; g/, this would give rise to a solution
of (Y ): notice that it is sufficient to consider functions in W 1;2.M; g/ that are non-
negative, therefore by regularity theory one would obtain a positive smooth solution.
Defining then

Y.M; g/ WD inf
u2W 1;2.M;g/;u6�0

Q.M;g/.u/;

it can be proved that this quantity is independent of the conformal representative of g, and
will therefore be denoted from now on by Y.M; Œg�/. Depending on the sign of the latter
quantity, .M; Œg�/ is said to be of negative, null or of positive Yamabe class.

It was proved in [35] that there exists a dimensional constant "n>0 such that Y.M;Œg�/
is attained (and hence (Y ) is solvable) provided Y.M; Œg�/ � "n. The result applies in
particular to all manifolds with conformal classes of metrics of negative or null Yamabe
class.

Consider the (normalized) Sobolev quotient in Rn

(1.2) Sn WD inf
u2C1c .Rn/;u6�0

R
Rn cnjruj

2 dx

.
R

Rn juj2
�
dx/2=2

�
�

Using the stereographic projection from Sn to Rn, it can be proved that the above quantity
coincides with the Yamabe quotient of the round sphere, i.e., for all n � 3 one has Sn D
Y.Sn; ŒgSn �/: It was shown in [2] that one always has Y.M; Œg�/ � Sn, and that (Y ) is
solvable provided the strict inequality holds. It was also shown in [2] that Y.M; Œg�/ < Sn
provided n � 6 andM is not locally conformally flat, i.e., when the Weyl tensor of .M;g/
is not identically zero. It was proved then in [26] that Y.M; Œg�/ < Sn in all complementary
cases (provided .M; g/ is not conformally equivalent to the round sphere), i.e., when
.M; g/ has dimension less or equal to 5 or when it is locally conformally flat. While the
argument in [2] was based on a local energy expansion, the one in [26] relied on the
positive mass theorem in general relativity, see [27–30], which is in turn related to the
expansion of the Green function of the conformal Laplacian Lg near its pole, where

Lgu WD �
4.n � 1/

n � 2
�guC Sgu:

In both [2] and [26], the strict inequality was proved by evaluating the Yamabe–Sobolev
quotient on (suitable perturbations of) highly concentrated extremals of (1.2) (classified
in [2,33]), suitably glued to .M;g/. Such extremals, parametrized using the Möbius group
of Sn, can be chosen arbitrarily peaked near any point: these decay faster at infinity in
higher dimensions and therefore the correction to the quotient due to the geometry ofM is
more localized in space for n large. In any case, we always have Y.M; Œg�/ < Sn provided

that .M; g/
conf.
6' .Sn; gSn/.

We consider in this paper compact three dimensional pseudo-hermitian manifolds
.M;J;�/: these are CR manifolds, i.e., endowed with a contact structure � and a CR struc-
ture J W �! � such that J 2 D�1. We assume .M;J / to be strictly pseudo-convex, namely
that it is globally defined a contact form � which annihilates �, and for which � ^ d�
is always non-zero (see [3]). We define the Reeb vector field as the unique T for which
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�.T / � 1 and T y d� D 0. Given J as above, we can define locally a vector field Z1
such that

JZ1 D iZ1 and JZ1 D �iZ1; where Z1 D .Z1/:

We also let .�; �1; �1/ be the dual triple to .T;Z1; Z1/, so that

d� D ih11 �
1
^ �1 for some h11 > 0 .possibly replacing � by � �/:

In the following, we will always assume that h11 � 1.
The connection 1-form !11 and the torsionA1

1
are uniquely determined by the structure

equations

(1.3)

´
d�1 D �1 ^ !11 C A

1
1
� ^ �1;

!11 C !
1
1
D 0:

The Tanaka–Webster curvature (or Webster curvature) R� (or, simply, R) is then defined
by the formula

d!11 D R� �
1
^ �1 .mod �/:

A model with positive curvature is the round sphere .S3; JS3 ; O�/, with S3 � C2 D

¹.z1; z2/º, and

(1.4)

O� D
1

2
i.N@ � @/.jz1j2 C jz2j2/ D

1

2
i

2X
kD1

.zkdz
Nk
� z

Nkdzk/;

Z1 D Z
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1 D z
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@z1
� z1

@

@z2
�

Similarly to what happens with the classical stereographic projection, the CR three-sphere
is CR equivalent to the Heisenberg group H1 D ¹.z; t/; z 2 C; t 2 Rº, see e.g. [11].

The Tanaka–Webster curvature enjoys conformal properties similar to the scalar cur-
vature on Riemannian manifolds. More precisely, scaling the contact form � by a positive
function, one has the following law for the transformation of the Webster curvature:

(1.5) Lbu WD �4�buCR� u D R Q� u
3
I Q� D u2�:

Here, R Q� is the Tanaka–Webster curvature corresponding to the pseudo-hermitian struc-
ture .J; Q�/, and �b stands for the operator defined as follows:

�bf D f;
1

1 Cf;
1

1
D f;11 C f;11;

where we have used h11 D h11 D 1 to raise or lower the indices, and where we set

f1 D f;1 WD Z1f; f;11D Z1Z1f � !
1
1.Z1/Z1f and f;0D Tf:

The CR-invariant sub-Laplacian transforms covariantly as follows:

OLb.'/ D u
�.QC2/=.Q�2/Lb.u'/I O� D u2�;

whereQD 4 is the homogeneous dimension of the manifold. By (1.5), finding Q� with con-
stant Webster curvature corresponds to solving the following analogous problem to (Y ):

Lbu D Ru
.QC2/=.Q�2/ on M; for R 2 R; u > 0:(W )
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In [19], the counterpart of the result in [2] was obtained, i.e., if the infimum of the
CR-Sobolev quotient satisfies

Y.M; J / WD inf
O�

R
M
R O�
O� ^ d O�

.
R
M
O� ^ d O�/1=2

D inf
u2C1.M/;u>0

R
M
.4 jrbuj

2 CR�u
2/ � ^ d�

.
R
M
u4 � ^ d�/1=2

< Y.S3; JS3/;

then it is attained and a solution of (W ) exists (indeed, this holds true in any dimension).
The same authors verified this condition when the dimension is greater or equal to five
and .M; J / is not spherical, see [21] and [20].

However, in the CR setting new phenomena appear, related to the fact that most three-
dimensional structures are non-embeddable, differently from the higher-dimensional case,
see [4,6]. In [11], some results in the above directions were proved, assuming some global
conditions related to the embeddability of the abstract CR structure.

More precisely, a notion of pseudo-hermitian mass was defined for three-dimensional
asymptotically-Heisenberg manifolds (we refer to the latter paper for precise definitions
and details) by setting

m.J; �/ WD i

I
1

!11 ^ � WD lim
ƒ!C1

i

I
Sƒ

!11 ^ �;

where Sƒ D ¹� D ƒº, �4 D jzj4 C t2 (with .z; t/ coordinates on the Heisenberg group),
and where !11 stands for the connection form of the structure. The above definition was
introduced considering an analogue of the Einstein–Hilbert action.

As it happens in the Riemannian case, this mass is related to the expansion of the
Green function of the conformal sub-Laplacian Lb on a compact manifold M . When
Y.M; J / > 0, the latter operator is invertible, so for any p 2 M there exists a Green
function Gp satisfying distributionally

.�4�b CR/Gp D 64�ıp;

where ıp in the right-hand side stands for the Dirac delta with respect to the volume
measure � ^ d . In CR normal coordinates .z; t/ (introduced in [21] and discussed in
Section 2), Gp writes as

Gp D 2�
�2
C ACO.�/;(1.6)

for some A 2 R, and where �4.z; t/ is as above. For the latter expansion, we refer to
Proposition 5.2 in [11] (here we use an extra factor 4� in the definition of Gp), and to
Subsection 2.1 for our notation O.�/. Given .M; J; / compact and p 2 M , consider a
blow-up of contact form as follows:

N D .M n ¹pº; J;G2p�/:

As it is shown in [11], via an inversion of coordinates, the manifold N turns out to have
asymptotically the geometry of the Heisenberg group, and its pseudo-hermitian mass sat-
isfies

(1.7) m D 12�A

(see Lemma 2.5 there, and recall the difference of 4� in our current notation), where A is
as above.
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Using crucially a result in [18], in the same paper it was also proved that the pseudo-
hermitian mass is non-negative (and zero only when .M; J; / is CR equivalent to S3),
provided that the CR Paneitz operator P on .M; J / is non-negative definite. The latter
operator is

P' WD 4.' N1
N1
1 C iA11'

1/1;

and it has a relation to the log-term coefficient in the Szegö kernel expansion, and it is
pseudo-hermitian-covariant, namely P O�' D e

4f P�' for the conformal change � D e2f O�
(see [17]). By a result in [9], manifolds for which P is non-negative and R > 0 can be
embedded into some CN (see also [7]).

The assumption on the positivity of the Paneitz operator is not technical, as in [11]
some counterexamples for the positivity of the pseudo-hermitian mass were also given
for structures (arbitrarily) close to the spherical one, and hence with positive Webster
curvature. In a recent work [32], the positivity of the Paneitz operator is shown to hold for
embeddable .M; J /.

In this paper we are concerned with Rossi spheres: these are a one-parameter-family
of CR structures on the 3-sphere of the form S3s WD .S

3; J.s/; O�/, where O� is as in (1.4),
and where J.s/ is characterized by

(1.8) J.s/Z1.s/ D iZ1.s/I Z1.s/ D Z1 C
s

p
1C s2

Z N1; Z N1.s/ D Z N1 C
s

p
1C s2

Z1:

Rossi spheres are interesting because they are simple examples of CR structures on the
three-sphere that cannot be embedded in CN . In [5], it was shown that all the holomorphic
functions on such structures are even functions if s ¤ 0. On the other hand, there are
explicit embeddings in C3 of the quotient of the Rossi spheres by the antipodal map,
see [10]. By the above discussion, it follows that the Paneitz operator cannot be non-
negative here. In addition, this family of CR structures are homogeneous and if we take
the standard contact form, it is pseudo-Einstein, i.e., R;1 � iA11; N1 D 0, see [8] as well as
our notation for covariant derivatives in Section 2.1.

Our first main result in this paper is the following theorem.

Theorem 1.1. For jsj small, s ¤ 0, the pseudo-hermitian mass of the Rossi spheres S3s is
negative. More precisely, one has the expansion

ms D �18�s
2
C o.s2/ for s ' 0:

Remark 1.2. (a) We can generalize the construction of Rossi spheres in Theorem 1.1 as
follows. According to Proposition 3.3 in [13], there exist deformations of the standard CR
structure on S3=� (� D Z2 for the case of Rossi spheres), whose universal covers are not
embeddable. These CR structures (i.e., universal covers) are likely to have negative mass.

(b) We can embed S3s =Z2 into C3 (see, for instance, [10]). So according to [32], the
CR Paneitz operator P on S3s =Z2 is non-negative definite. On the other hand, P on S3s
cannot be non-negative definite by Theorem 1.1 and the positive mass theorem in [11]
for jsj small, s ¤ 0, so that the Webster curvature of S3s is positive. Thus, for jsj small,
s ¤ 0, S3s =Z2 provides an example of CR manifold having non-negative definite P while
its covering space S3s does not have non-negative definite P , answering a question raised
by Ngaiming Mok in a conference held in Hong Kong, 2014.
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We saw before (in both low-dimensional Riemannian and CR cases) that positivity
of the mass implies attainment of the Sobolev quotient. We also strengthen the relation
between mass and quotient by means of the following result, which is in striking contrast
with the Riemannian case.

Theorem 1.3. For jsj small, s ¤ 0, the infimum of the CR-Sobolev quotient of S3s coin-
cides with Y.S3; JS3/ and is not attained.

Remark 1.4. (a) The phenomenon in Theorem 1.3 is typical of some critical problems in
a PDE context, like the Yamabe equation on Euclidean domains with Dirichlet boundary
conditions or the case of some general elliptic operators on manifolds. However, to our
knowledge this is the first time this is displayed in a purely geometric smooth context.

(b) We recall that in [15] and [16] the CR-Yamabe problem was solved for every three
dimensional CR manifolds, but there solutions were found via variational arguments and
they are not of minimal type. Theorem 1.3 shows that the use of such methods is in some
cases somehow necessary.

Determining or estimating the mass of a manifold is in general a hard problem, since
this is deeply related to the Green function of the conformal (sub-)Laplacian, which is a
global object. The mass also appears as its zero-th order coefficient after a proper choice
of conformal representative and local coordinates. After recalling some preliminary facts
in Section 2 on CR normal coordinates (introduced in [21] and suited for the above expan-
sion) and on Rossi spheres, we specialize in Section 3 to the latter manifolds. For doing
this we need first to derive a suitable conformal factor satisfying a list of conditions, and
then express pseudo-hermitian coordinates depending on s. By the special expression of
the Green function in these coordinates, we are able to determine it quite precisely near
the north pole, up to the constant term A appearing in (1.6). However, as we remarked
before, also some global features of the Green function have to be understood.

For doing this, by a Taylor expansion in s worked-out at the beginning of Section 4 it
is possible to characterize formally the Green function for the conformal sub-Laplacian on
Rossi spheres up to an order O.s3/. One problem with this expansion is that it generates
singular terms, with a particularly bad behavior near the pole, if expressed with respect to
the standard complex coordinates of C2, where S3 embeds. Also in this case non-local
terms appear, which we are able to evaluate at the pole via some integral formula.

Via a careful analysis of all terms of order 1, s and s2, we verify then in the second
part of the section that the global singular expansion on S3 matches with the one done
in CR normal coordinates up to an order O.s3/. This allows us to prove Theorem 1.1.

In Section 5, arguing by contradiction, we analyse the possible behaviours of min-
imizers for the CR Sobolev quotient. Due to a non-degeneracy result from [24], the
analysis of minimizers can be reduced to a finite-dimensional one, and we show that the
CR-Sobolev quotient of all candidate minimizers is strictly above the spherical one, i.e.,
Y.S3; JS3/. With negative mass, this is expected for highly concentrated profiles, revers-
ing the expansion in [26]: however such a property has to be obtained in all cases, i.e., even
for non-concentrated profiles, in order to guarantee that the infimum of the CR-Sobolev
quotient is not attained. In Proposition 5.5 this is proved for s small in a fixed compact set
of the CR maps of S3. This is done starting with the expansion of the quotient on Rossi
spheres over the extremals of the quotient on the standard S3, adding to them a correction
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term that improves their accuracy as approximate critical points for s non-zero. One needs
then to analyze the quotient in a regime with loss of compactness, which is particularly
delicate due to the following reason. It is known from [26] that the mass of a (given) man-
ifold plays a role in the expansion for Sobolev quotients of highly concentrated functions.
In our case this must be done uniformly in s, and the problem could be that the prin-
cipal term coming from the mass could become negligible as s ! 0. To solve this issue
we exploit a symmetry s ! �s for Rossi spheres, discussed in Section 2, which implies
that all variational expansions are indeed even in s and hence the mass, which vanishes
with s, gives still a dominant sign to the asymptotic expansion of the CR-Sobolev quo-
tient. Two appendices are devoted to the estimates of the latter quantity in two different
scaling regimes. To make the above arguments rigorous, we employ a finite-dimensional
reduction of the problem, via a fixed point argument, which allows to solve for the CR-
Yamabe equation on Rossi spheres up to a Lagrange multiplier. We obtain in this way
a manifold of approximate solutions containing by construction all possible minimizers:
our expansion shown then that on this manifold the CR-Sobolev quotient is strictly higher
than Y.S3; JS3/, yielding our result.

2. Background material

In this section we recall some useful facts about CR manifolds and the properties of CR
normal coordinates, constructed in [21]. We then describe some general features of Rossi
spheres.

2.1. Preliminary facts on CR manifolds

Let us begin by recalling the following commutation relations on tensors, see Lemma 2.3
in [23] (we also refer to this paper for our tensorial notation):8<: c;11� c;11D ic;0C k cR;

c;01� c;10D c;1A11 � k cA11;1 ;

c;01� c;10D c;1A11 C k cA11;1 :

Here, c is a tensor with 1 or N1 as sub-indices, k is the number of 1-sub-indices of c minus
the number of 1-sub-indices of c and where, we recall, we are assuming that h11 D 1 (so
A N1 N1 D A

1
N1

and A11 is the complex conjugate of A N1 N1/:
In the system of coordinates we will describe below, for .z; t/ 2 H1 near zero we

will set
�4 D jzj4 C t2:

For k 2Z we denote by QO.�k/ a function f .z; z; t/ for which jf j � C�k for some C > 0;
we use instead the symbol QO 0.�k/ for a function f .z; z; t/ such that

jf j � C�k ; j@zf j � C�
k�1
j@z�j ; j@zf j � C�

k�1
j@z�j ; j@tf j � C�

k�1
j@t�j :

One can define similarly the symbols QO 00.�k/, QO 000.�k/, etc. We will use O.�k/ for a
function which is of the form QO.j /.�k/ for every integer j , or for j large enough for our
purposes.
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Large positive constants are always denoted by C , and the value of C is allowed to
vary from one formula to another and also within the same line. When we want to stress
the dependence of the constants on some parameter (or parameters), we add subscripts
to C , as Cı , etc. Also constants with this kind of subscripts are allowed to vary.

Let us recall the notions of pseudo-hermitian geometry from [36] and [22]. We would
need the following result in [21] (Proposition 2.5 in p. 313). For a differential form �, let
us denote by �.m/ the part of its Taylor series that is homogeneous of degree m in terms
of parabolic dilations (see [21] for more details).

Proposition 2.1. Let QZ1 be a special frame dual to Q�1 (with Qh11 D 2/, and let �1 D
p
2 Q�1

be a unitary coframe .h11 D 1/. Then in pseudo-hermitian normal coordinates .z; t/ with
respect to QZ1 and Q�1, we have the following.

(a) For m � 4,

�.2/ D
ı

�; �.3/ D 0; �.m/ D
1

m

p
2 .iz �1 � iz �1/.m/:

(b) For m � 3,

�1.1/ D
p
2 dz; �1.2/ D 0; �1.m/ D

1

m
.
p
2 z!11 C 2tA11 �

1
�
p
2 zA11 �/.m/:

(c1) .!11/.1/ D 0.

(c2) For m � 2,

.!11/.m/D
1

m

�p
2R.z�1�z�1/CA11;1.

p
2z��2t�1/�A11;1.

p
2z� � 2t�1/

�
.m/
:

Here,
ı

� D dt C iz dz � iz dz.

Definition 2.2. Given a three dimensional pseudo-hermitian manifold .M; �/, we define
a real symmetric tensor Q as

Q D Qjk �
j
˝ �k ; j; k 2 ¹0; 1; 1º;

with �0 WD � , whose components with respect to any admissible coframe are given by

Q11 D Q11 D 3iA11; Q11 D Q11 D h11R;

Q01 D Q10 D Q01 D Q10 D 4A
1

11; C iR;1; Q00 D 16 ImA 11
11; � 2�bR:

We have then the following result, see Theorem 3.1 in p. 315 of [21].

Proposition 2.3. Suppose M is a strictly pseudo-convex pseudo-hermitian manifold of
dimension three, and let q 2 M . Then for any integer N � 2, there exists a choice of
contact form � such that all symmetrized covariant derivatives of Q with total order less
or equal than N vanish at q, that is,

Qhjk;li D 0 at q if O.jkl/ � N:
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By CR normal coordinates of orderN , we mean the pseudo-hermitian normal coordin-
ates with � chosen as in Proposition 2.3. We recall ([21]) that for a multi index l D
.l1; : : : ; ls/, we count its order as

O.l/ D O.l1/C � � � CO.ls/;

where O.1/ D O.1/ D 1 and where O.0/ D 2. The symmetrized covariant derivatives
are defined by

Qhli D
1

sŠ

X
�2Ss

Q�l ; �l D .l�.1/; : : : ; l�.s//:

In Proposition A.5 of [11], the following result was proved.

Proposition 2.4. In CR normal coordinates of order N D 4, we have a contact form �

such that

� D .1CO.�4//
ı

� CO.�5/ dz CO.�5/ dz;

�1 D .1CO.�4//
p
2 dz CO.�4/ dz CO.�3/

ı

�;

!11 D O.�
3/ dz CO.�3/ dz CO.�2/

ı

�;

Z1 D .1CO.�
4//
ı

Z1 CO.�
4/
ı

Z1 CO.�
5/
@

@t
;

T D .1CO.�4//
@

@t
CO.�3/

ı

Z1 CO.�
3/
ı

Z1;

where we recall that

(2.1)
ı

� D dt C iz dz � iz dz;
ı

Z1 D
1
p
2

� @
@z
C iz

@

@t

�
and �4 D t2 C jzj4:

2.2. Rossi spheres

We recall here some properties of Rossi spheres, introduced in [25] as a non-embeddable
example of CR manifold (see also [5]). These are families of CR structures on S3, con-
taining the standard one, obtained in the following way.

Considering the complex vector field Z1 as in (1.4) and its conjugate Z N1, one defines
the CR structure J.s/ by setting J.s/Z1.s/ D iZ1.s/, where

(2.2) Z1.s/ D Z1 C
s

p
1C s2

Z N1 and Z N1.s/ D Z N1 C
s

p
1C s2

Z1 �

Corresponding to these vector fields, we have the dual forms

�1.s/ D .1C s
2/�1 � s

p
1C s2 �

N1 and �
N1
.s/ D .1C s

2/�
N1
� s

p
1C s2 �1;

where �1 D z2dz1 � z1dz2. Compute

(2.3) i �1.s/ ^ �
N1
.s/ D .1C s

2/ i�1 ^ �
N1
D .1C s2/ d O�;
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where d O� D i�1 ^ � N1, i.e., h1 N1 D 1: Hence, from (2.3) we get

h
.s/

1 N1
D

1

1C s2
and h1

N1
.s/ WD .h

.s/

1 N1
/�1 D 1C s2:

By taking
Q�1.s/ D

1p
2.1C s2/

�1.s/;

we have Qh.s/
1 N1
D 2: The Webster curvature R of .J; O�/ is identically equal to 2. Then we

should take !11 D �2i O� in the structure equation (1.3), such that d!11 D 2�1 ^ �
N1: We

can then determine, from the structure equation for .J.s/; O�/, that

!11.s/ D �2i.1C 2s
2/ O�; h1

N1
.s/A N1 N1.s/ D 4is

p
1C s2 and R.s/ D 2.1C 2s

2/:

Dual to �1 D z2dz1 � z1dz2, we have

Z1 D Z
S3

1 D z
N2 @

@z1
� z
N1 @

@z2
�

The sub-Laplacian associated to .J.s/; O�/ reads

4
.s/

b
D h1

N1
.s/ .Z1.s/Z N1.s/ CZ N1.s/Z1.s// D .1C 2s

2/4
.0/

b
C 2s

p
1C s2 .Z21 CZ

2
N1
/:

It follows that, at s D 0, the first-and second-order derivatives of 4.s/
b

with respect to s
are given by

(2.4) � P�b D 2Z1Z1 C conj. and � R�b D �4�b :

Moreover, since Rs D 2.1C 2s2/, it follows that, still at s D 0,

(2.5) PR D 0 and RR D 8:

We next analyze a symmetry property of Rossi spheres, that will imply in particular
the symmetry of the mass in s. Consider the diffeomorphism �WS3 ! S3 defined by

(2.6) �.z1; z2/ D .iz1; z2/;

which fixes the point .0; 1/. A direct computation shows that ��ZS
3

1 D iZ
S3

1 , and hence
��Z

S3

N1
D (�i/ZS

3

N1
: By (2.2), we compute

(2.7) ��Z1.s/ D ��Z1 C
s

p
1C s2

��Z N1 D iZ1 C
s

p
1C s2

.�i/Z N1 D iZ1.�s/:

It follows that

.��J.�s//Z1.s/ D �
�1
� J.�s/.��Z1.s//

(by (2.7))
D ��1� J.�s/.iZ1.�s// D �

�1
� .�Z1.�s//

(by the inverse of (2.7))
D .�1/.�i/Z1.s/ D iZ1.s/ D J.s/Z1.s/:
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Hence we have shown

(2.8) J.s/ D �
�J.�s/:

Let v.s/ denote the conformal factor in L�.s/ D e2v.s/ O� , yielding CR normal coordinates
with respect to J.s/. It then follows that

(2.9) v.s/ D �
�v.�s/ and L�.s/ D �

� L�.�s/;

and hence LGs D �� LG�s by observing

�� O� D O�:

Write
LGs D 2�

�2
s C As CO.�s/

in s-CR normal coordinates near .0; 1/. Then �s D ����s D ��s ı �, and

As D �
�A�s D A�s ı � D A�s

near the point .0; 1/. So, we have obtained

m.J.s/; �.s// D 12�As D 12�A�s D m.J.�s/; �.�s//;

where �.s/ D LG2.s/
L�.s/. This property (and other related ones) will be crucial in the last

section of the paper.

3. CR normal coordinates on Rossi spheres

In this section, we will find the main-order terms of CR normal coordinates on Rossi
spheres. We first determine the principal term in the required conformal factor, then dis-
cuss pseudo-hermitian coordinates and finally CR normal coordinates. This will allow us
to express with a good precision the Green function of the conformal sub-Laplacian near
its pole.

3.1. Conformal factor in normalized contact form on Rossi spheres

Fix p D .0; 1/ 2 S3 � C2, and consider a contact form L� 0
.s/
D e2v.s/ O� 0, where O� 0 D 2 O� D

i.N@� @/.jz1j2C jz2j2/, yielding CR normal coordinates (see Proposition 2.3) with respect
to J.s/ forN D 4. We are going to solve an equation for v.s/ as in Lemma 3.11 of Jerison–
Lee’s paper ([21]). Write

(3.1) v.s/ D v2 C v3 C � � � ;

where v2 2 R2 � P2 and v3 2 P3. Recall that, in the notation of [21], Pm denotes the
vector space of polynomials in .z; t/ that are homogeneous of degree m in terms of para-
bolic dilations (for which t has homogeneity 2), and Rm � Pm denotes the subspace of
polynomials independent of t .
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First, write v2 2R2 as v2 D az2 C bz Nz C c Nz2 ((z; t/ being pseudo-hermitian normal
coordinates for O� 0 at p/, satisfying

L2v2 D �z
2Q11 � Nz

2Q N1 N1 � z NzQ1 N1 � NzzQ N11 and L2 D �2jzj
2.@z@ Nz C @ Nz@z/� 12:

HereQ11D 3iAJL
11.s/
DQ N1 N1 andQ1 N1DR

JL
1 N1.s/
DQ N11 are with respect to the Jerison–Lee

coframe �1JL D �
1
.s/
=
p
1C s2, with hJL

1 N1.s/
D 2 with respect to O� 0 by the formulas for Qjk

on p. 315 in [21] and (2.3). We compute

QQ11 D 3iA11.s/ D
12s
p
1C s2

D QQ N1 N1 and QQ1 N1 D R1 N1.s/ D h
.s/

1 N1
R.s/ D 2

1C 2s2

1C s2
;

with respect to the co-frame �1
.s/

. A direct computation shows that

L2v2 D �12az
2
� 12c Nz2 � 16b jzj2;

where Q11 D 12a, Q N1 N1 D 12c, Q1 N1 D Q N11 D 8b, and

(3.2) a D c D s
p
1C s2 and b D

1

4
.1C 2s2/:

For v3, we observe that allQjk;l ’s for j;k; l being 1 or N1 vanish since the space derivatives
of the constant R0 is zero. On the other hand, Q0k and Qk0 for k D 1 or N1 also vanish
since they involve space derivatives by formulas on p. 315 in [21]. Altogether, the right-
hand side of the equation in Lemma 3.11 in [21] for m D 3 equals zero, so we have

L3v3 D 0:

By Lemma 3.9 in [21], we learn that L3 is invertible on P3: It follows that

(3.3) v3 D 0:

Therefore, from (3.2) and (3.3), we get the following result.

Lemma 3.1. In pseudo-hermitian coordinates, the conformal factor expands in homogen-
eous powers as

v.s/ D s
p
1C s2 .z2 C Nz2/C

1

4
.1C 2s2/ jzj2 C v4 C � � �

3.2. Pseudo-hermitian normal coordinates on Rossi spheres

Recall that, on Rossi spheres, we have

�1.s/ D .1C s
2/�1 � s

p
1C s2 �1 and !11.s/ D �i.1C 2s

2/2 O�;

and that pseudo-hermitian coordinates near .0; 1/ are defined by the equation

(3.4) r P� P� D 2c OT
0; �.0/ D .0; 1/;
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where OT 0 is the unique vector field such that O� 0. OT 0/ D 1 and d O� 0. OT 0; �/ D 0. Recall also
that

O� 0D i

2X
iD1

.zidzi �zidzi / and OT 0D�Im
�
z1

@

@z1
Cz2

@

@z2

�
D
1

2
i

2X
iD1

�
zi
@

@zi
�zi

@

@zi

�
:

Setting
P� D ˛ZJL

1.s/ C ˇZ
JL
1.s/
C 
 OT 0;

equation (3.4) becomes

2c OT 0 D r P� P� D . P̨ C ˛!
1
1.s/. P�//Z

JL
1.s/ C .

P̌ C ˇ!1
1.s/
. P�//ZJL

1.s/
C P
 OT 0

D . P̨ � i˛.1C 2s2/
/ZJL
1.s/ C .

P̌ C iˇ.1C 2s2/
/ZJL
1.s/
C P
 OT 0:(3.5)

If � parametrizes the curve � , the above formulas imply that


 D 2c�;
P̨

˛
D i.1C 2s2/
 and

P̌

ˇ
D �i.1C 2s2/
;

which in turn yields

˛.t/ D ˛.0/ eic.1C2s
2/�2 and ˇ.t/ D ˇ.0/ e�ic.1C2s

2/�2 :

Therefore, we obtained

P� D ˛.0/ eic.1C2s
2/�2 ZJL

1.s/ C ˇ.0/ e
�ic.1C2s2/�2 ZJL

1.s/
C 2c� OT :

Recall also that Z1.s/ D Z1.0/ C sp
1Cs2

Z1.0/. Hence we need to solve for

Pz1.�/ D dz1. P�.�//

D ˛.0/ eic.1C2s
2/�2 dz1.Z

JL
1.s//C ˇ.0/ e

�ic.1C2s2/�2 dz1.Z
JL
1.s/
/C 2c� dz1. OT

0/

D

p
1C s2

�
˛.0/ eiı�

2

z2.�/C ˇ.0/ e
�iı�2 s

p
1C s2

z2.�/
�
C c� i z1.�/;

where ı D c.1C 2s2/. Similarly, we obtain

Pz2.�/ D
p
1C s2

�
� ˛.0/ eiı�

2

z1.�/ � ˇ.0/ e
�iı�2 s

p
1C s2

z1.�/
�
C c� i z2.�/:

Once we will solve for this system, the pseudo-hermitian coordinates will be given by the
map

(3.6) .z; z; t/ D .˛.0/�; ˇ.0/�; c�2/ 7�! .0; 1/C

Z t

0

P�.�/ d�:

Setting, for simplicity,

A0 D ˛.0/; B0 D ˇ.0/
s

p
1C s2

; C0 D 2c;

F0.�/ WD
p
1C s2 .A0 e

iı�2 C B0 e
�iı�2/ D f0.�/C ig0.�/;
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we have then the system of ODEs

Pz1.�/ D F0.�/ z2.�/C iC0 � z1.�/; Pz2.�/ D �F0.�/ z1.�/C iC0 � z2.�/;

which in real form becomes8̂̂̂<̂
ˆ̂:
Px1.�/ D f0.�/x2.�/C g0.�/y2.�/ � C0� y1.�/;

Py1.�/ D g0.�/x2.�/ � f0.�/y2.�/C C0� x1.�/;

Px2.�/ D �f0.�/x1.�/ � g0.�/y1.�/ � C0� y2.�/;

Py2.�/ D f0.�/y1.�/ � g0.�/x1.�/C C0� x2.�/:

We rewrite this system as
PX.�/ D A.�/X.�/;

where

A.�/ D

0BB@
0 �C0� f0.�/ g0.�/

C0� 0 g0.�/ �f0.�/

�f0.�/ �g0.�/ 0 �C0�

�g0.�/ f0.�/ C0� 0

1CCA :
We can Taylor-expand the solution to an arbitrary order in � . Differentiating the above
ODE, we obtain

RX.�/ D PA.�/X.�/CA.�/2X.�/;

«X.�/ D RA.�/X.�/C .A.�/ PA.�/C 2 PA.�/A.�//X.�/CA.�/3X.�/:

We have that

A.0/ D
p
1C s2

0BB@
0 0 ReA0 C ReB0 ImA0 C ImB0
0 0 ImA0 C ImB0 �ReA0 � ReB0

�ReA0 � ReB0 �ImA0 � ImB0 0 0

�ImA0 � ImB0 ReA0 C ReB0 0 0

1CCA ;

PA.0/ D

0BB@
0 �C0 0 0

C0 0 0 0

0 0 0 �C0
0 0 C0 0

1CCA ;

RA.0/ D

0BB@
0 0 2d.ImB0 � ImA0/ �2d.ReB0�ReA0/
0 0 �2d.ReB0�ReA0/ 2d.ImA0�ImB0/

2d.ImA0�ImB0/ 2d.ReB0�ReA0/ 0 0

2d.ReB0�ReA0/ 2d.ImB0�ImA0/ 0 0

1CCA;
where d D ı

p
1C s2. In conclusion, looking at the first three terms in the Taylor expan-

sion of X.�/ near .0; 1/, we find that

X.�/D

0BB@
Q�.ReA0 C ReB0/
Q�.ImA0 C ImB0/

1 � 1
2
Q�2
�
.ImA0 C ImB0/2 C .ReA0 C ReB0/2

�
C0 Q�

2

2
1

2.1Cs2/

1CCAC o.�2/; Q� D
p
1C s2 �:

Recalling (3.6), we then obtain the following result.
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Lemma 3.2. Pseudo-hermitian normal coordinates near .0; 1/ on Rossi spheres with
respect to O� 0 D 2 O� are given by the following map:

.z; z; t/ 7�!

 p
.1C s2/

�
z C sp

1Cs2
z
�

1 � 1
2
.1C s2/

ˇ̌
z C sp

1Cs2
z
ˇ̌2
C i t

2

!
C o.�2/:

Inverting in the first component, we have in particular that

(3.7) z D
1

p
1C s2

.1C s2/
�
z1 �

s
p
1C s2

z1

�
C o.�2/:

3.3. CR normal coordinates

Recalling (3.1), Lemma 3.1 and using (3.7), we get

v2 D
1

4

�
3.z21 C z

2
1/s
p
s2 C 1 .2s2 C 1/ � jz1j

2 .12s4 C 12s2 � 1/
�

D A1 .z
2
1 C z

2
1/C B1 jz1j

2;

where

A1 D
1

8
2.s2 C 1/1=2 3s .2s2 C 1/ and B1 D �

1

8
2.12s4 C 12s2 � 1/:

Recall that also

O�1.0/ D z
2dz1 � z1dz2 and O� 0 D i

2X
iD1

.zidzi � zidzi /;

and that
O�1.s/ D .1C s

2/ O�1.0/ � s
p
1C s2 O�1.0/:

Conformally changing the contact form and recalling Appendix 1.1.1 in [11], we have
that O�1

.s/
transforms as

(3.8) O�1.s/ 7�! ev. O�1.s/ C 2iv
1 O� 0/;

where d O� 0 D 2i O�1
.0/
^ O�1

.0/
and

v1 D h011.s/
OZ1.s/v D

.1C s2/

2
OZ1.s/v:

By computing explicitly, it turns out that

.v2/
1
D

� .s2 C 1/
2

z2 s.2A1 z1 C B1 z1/
p
s2 C 1

C
.s2 C 1/

2
z2 .2A1 z1 C B1 z1/

�
;

which can be written as

(3.9) .v2/
1
D A2 z1 z2 C B2 z1 z2 C C2 z1 z2 CD2 z1 z2;

with

A2 D
1

2
.s2C 1/B1; B2 D sA1

p
s2 C 1; C2 DA1 .s

2
C 1/; D2 D

1

2
sB1

p
s2 C 1:
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Up to higher order terms, we have that

.v2/
1
D .A2 C B2/z1 C .C2 CD2/z1:

Taylor expanding (3.8), up to higher-order terms, O�1
.s/

transforms into

O�1.s/ C
�
v2 O�

1
.s/ C 2i.v2/

1 O� 0
�
:

We now multiply by a complex unit factor ei , and impose a closeness condition on ei 

multiplied by the latter form, up to higher-order terms, since by Proposition 2.4 it should
be approximately a constant multiple of d QzCR, up to higher order terms. We then find

0 D d
®
ei 

�
O�1.s/ C Œv2

O�1.s/ C 2i.v2/
1 O� 0 �

�¯
D ei 

®
i d ^ O�1.s/ C i d ^ Œv2

O�1.s/ C 2i.v2/
1 O� 0 �

¯
(3.10)

C ei 
®
d O�1.s/Cdv2 ^

O�1.s/Cv2d
O�1.s/C2id..v2/

1/ ^ O� 0C2i.v2/
1d O� 0

¯
Ch.o.t.

We also have

d O�1.s/ D 2.1C s
2/ dz2 ^ dz1 � 2s

p
1C s2 dz2 ^ dz1:

We expand d and O�1
.s/

in homogeneous powers of the .z; t/ coordinates (with respect
to parabolic scaling, including differentials) as follows:

d D .d /0 C .d /1 C .d /2 C � � � :

Taylor-expanding the above system up to order one, we obtain the relations

(3.11)

8<: .d /0 ^ O�1.s/ D 0;i.d /1 ^ O�
1
.s/
C d O�1

.s/
C .dv2/ ^ O�

1
.s/
C 2i.v2/

1d O� 0 C 2i.d.v2/
1/ ^ O� 0 D 0:

The first component is easy to solve setting .d /0 D � O�1.s/ for some � 2 R.
For the second component, recall that we have

O!11.s/ D �i.1C 2s
2/ O� 0 and OA1

1.s/
D 2is

p
1C s2:

It then follows that

d O�1.s/ D
O�1.s/ ^ O!

1
1.s/ C

OA1
1.s/
O� 0 ^ O�1.s/ D �i.1C 2s

2/ O�1.s/ ^
O� 0 C 2is

p
1C s2 O� 0 ^ O�1.s/:

Moreover, we have that

d O� 0 D 2ih11.s/
O�1.s/ ^

O�1.s/ D
2i

1C s2
O�1.s/ ^

O�1.s/;

and that (up to O� 0)

d.v2/
1
D OZ1.s/.v2/

1 O�1.s/ C
OZ1.s/.v2/

1 O�1.s/:
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By the above expression of .v2/1 and (3.9), this becomes

d.v2/
1
D
�
.s2C1

2
/B1.jz2j

2
� jz1j

2/CB2 Nz
2
2 � C2 Nz

2
1 C s

p
1Cs2A1 z

2
2 � s

2A1 z
2
1

�
O�1.s/

C
�
s
p
1C s2B1.jz2j

2
� jz1j

2/ � B2 z
2
1 C s

2A1 Nz
2
2 � s

p
1C s2A1 Nz

2
1

C C2 z
2
2

�
O�
N1
.s/ mod O� 0:

We next write

.d /1 D .A3z1 CB3z1/ O�
1
.s/ C .A3 z1 CB3 z1/

O�1.s/ C C3
O� 0; A3 D �A3; B3 D �B3:

The . O�1
.s/
^ O�1

.s/
)-component of the second equation in (3.11) is given by

i .A3 z1 C B3 z1/C
6

1C s2
.v2/

1
D 0:

This determines A3 and B3 by

iA3 C
6

1C s2
.C2 CD2/ D 0; iB3 C

6

1C s2
.A2 C B2/ D 0;

giving

A3 D �
3

8

2is
p
1C s2

.7C 6s2/ and B3 D �
3

8
2i .1 � 6s2/:

Next, the ( O� 0 ^ O�1
.s/

)-component gives

iC3 C i.1C 2s
2/C OT v2 � 2i OZ1.s/.v2/

1
D 0:

Finally, the ( O� 0 ^ O�1s )-component of the second equation in (3.11) is given by

2is
p
1C s2 � 2i OZ1.s/.v2/

1
D 0:

This is true because, as one can check,

OZ1.s/.v2/
1
D .C2 CD2/C

s
p
1C s2

.A2 C B2/;

OZ1.s/.v2/
1
D .A2 C B2/C

s
p
1C s2

.C2 CD2/:

By a direct computation, it follows that

OZ1.s/.v2/
1
D s.s2 C 1/1=2 and OZ1.s/.v2/

1
D
1

8
.2s2 C 1/:

These also imply

C3 D �
3

4
.1C 2s2/ D �

3

2
s2 �

3

4
�

Let us now try to integrate for the phase  . There holds

O�1.s/ D .1C s
2/ dz1 � s

p
1C s2 dz1 C h.o.t.;

O� 0 D i Œ.z1dz1 � z1dz1/C .dz2 � dz2/�C h.o.t.
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In this way, we have that .d /1 becomes�
.A3 z1 C B3 z1/.1C s

2/C .A3 z1 C B3 z1/s
p
1C s2 � iC3 z1

�
dz1

C conj. � iC3 .dz2 � dz2/

D
®�
.1C s2/A3 C s

p
1C s2B3

�
z1 C

�
.1C s2/B3 C s

p
1C s2A3 � iC3

�
z1
¯
dz1

C conj. � iC3.dz2 � dz2/:

Since .1C s2/B3 C s
p
1C s2A3 � iC3 D 0, we get

.d /1 D A4 z1 dz1 C B4 dz2 C conj.;

with
A4 D �6is

p
1C s2 and B4 D �iC3 D

3

4
i.1C 2s2/:

Integrating, we find

. /2 D
1

2
A4 z

2
1 C B4 z2 C conj.

Taylor-expanding, we then get

(3.12) dz0CR D
O�1.s/.1C v2 C i. /2/C 2i.v2/

1 O� 0 C h.o.t.

Writing the homogeneous 0-th and 2nd order terms in .z; t/ of the right-hand side, we
obtain�
1C A1.z

2
1 C Nz

2
1/C

1
2
iA4 .z

2
1 � Nz

2
1/C B1jz1j

2
C iB4.z2 � Nz2/

�
�
®
.1C s2/z2 dz1 � s

p
1C s2 Nz2 d Nz1 � .1C s

2/z1 dz2 C s
p
1C s2 Nz1 d Nz2

¯
� 2

�
.A2 C B2/z1 C .C2 CD2/ Nz1

� �
z1 d Nz1 � Nz1 dz1 C d Nz2 � dz2

�
:

Further expanding this, gives

.1C s2/z2 dz1 � s
p
1C s2 Nz2 d Nz1 � .1C s

2/z1 dz2 C s
p
1C s2 Nz1 d Nz2(3.13)

C ŒA1.z
2
1 C Nz

2
1/C

1

2
iA4.z

2
1 � Nz

2
1/C B1jz1j

2
C iB4.z2 � Nz2/�

� Œ.1C s2/ dz1 � s
p
1C s2 d Nz1�

� 2Œ.A2 C B2/z1 C .C2 CD2/ Nz1� Œz1 d Nz1 � Nz1 dz1 C d Nz2 � dz2�:

We next set
w D z2 � Nz2;

and rewrite the terms involving z2 as

z2 D 1C
1

2
w �

1

2
jz1j

2; Nz2 D 1 �
1

2
w �

1

2
jz1j

2;

dz2 D
1

2
dw �

1

2
. Nz1dz1 C z1d Nz1/; d Nz2 D �

1

2
dw �

1

2
. Nz1dz1 C z1d Nz1/:(3.14)
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Here, Lemma 3.2 has been used. Write (3.13) as

C6.z2 dz1 � z1 dz2/CD6. Nz2 d Nz1 � Nz1 d Nz2/(3.15)

C ŒA1.z
2
1 C Nz

2
1/C

1

2
iA4.z

2
1 � Nz

2
1/C B1 jz1j

2
C iB4w�ŒC8 dz1 CD8 d Nz1�

� 2Œ.A2 C B2/z1 C .C2 CD2/ Nz1� Œz1 d Nz1 � Nz1 dz1 � dw�;

where
C6 D C8 D 1C s

2 and D6 D D8 D �s
p
1C s2:

We now substitute C6.z2dz1 � z1dz2/ C D6. Nz2d Nz1 � Nz1d Nz2/ D C6[.1 C 1
2
w/dz1 C

1
2
z21d Nz1 �

1
2
z1dw� + D6Œ.1 �

1
2
w/d Nz1 C

1
2
Nz21dz1 C

1
2
Nz1dw� into (3.15) and collect

terms involving w as follows:�
iB4C8 C

1

2
C6

�
w dz1 C

h
2.A2 C B2/ �

1

2
C6

i
z1 dw(3.16)

C

�
iB4D8 �

1

2
D6

�
w d Nz1 C

h
2.C2 CD2/C

1

2
D6

i
Nz1 dw:

A direct computation shows that

(3.17) iB4C8 C
1

2
C6 D 2.A2 C B2/ �

1

2
C6 D .1C s

2/
�
�
3

2
s2 �

1

4

�
:

Similarly, we have

(3.18) iB4D8 �
1

2
D6 D 2.C2 CD2/C

1

2
D6 D s

p
1C s

�3
2
s2 C

5

4

�
:

In view of (3.17) and (3.18), we can write (3.16) as

(3.19) d
h
.1C s2/

�
�
3

2
s2 �

1

4

�
z1w C s

p
1C s

�3
2
s2 C

5

4

�
Nz1w

i
:

On the other hand, we can write terms only involving z1 and Nz1 in (3.15) as

(3.20) .K11 z
2
1 CK N1 N1 Nz

2
1 CK1 N1 jz1j

2/ dz1 C .N11 z
2
1 CN N1 N1 Nz

2
1 CN1 N1 jz1j

2/ d Nz1;

where

K11 D
�
A1 C

1

2
iA4

�
C8; KN1 N1 D

1

2
D6 C

�
A1 �

1

2
iA4

�
C8 C 2.C2 CD2/;

K1 N1 D B1C8 C 2.A2 C B2/; N11 D
1

2
C6 C

�
A1 C

1

2
iA4

�
D8 � 2.A2 C B2/;

N N1 N1 D
�
A1 �

1

2
iA4

�
D8; N1 N1 D B1D8 � 2.C2 CD2/:

Observe that

(3.21)
K N1 N1 D

1

2
N1 N1 D s

p
1C s2

�3
2
s4 C

3

4
s2 � 1

�
;

N11 D
1

2
K1 N1 D .1C s

2/
�
�
3

2
s4 �

9

4
s2 C

1

4

�
;
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and

(3.22) K11 D s.1C s
2/3=2

�3
2
s2 C

15

4

�
; NN1 N1 D �s

2.1C s2/
�3
2
s2 �

9

4

�
:

In view of (3.21) and (3.22), we can express (3.20) as

(3.23) d
°1
3
K11 z

3
1 C

1

3
N N1 N1 Nz

3
1 CK N1 N1 Nz

2
1 z1 CN11 z

2
1 Nz1

±
:

Altogether, from (3.19) and (3.23) we obtain QzCR (see (3.12)) as follows:

QzCR D .1C s
2/z1 � s

p
1C s2 Nz1 C .1C s

2/
�
�
3

2
s2 �

1

4

�
z1w(3.24)

C s
p
1C s2

�3
2
s2 C

5

4

�
Nz1w C s.1C s

2/3=2
�1
2
s2 C

5

4

�
z31

� s2.1C s2/
�1
2
s2 �

3

4

�
Nz31 C s

p
1C s2

�3
2
s4 C

3

4
s2 � 1

�
Nz21 z1

C .1C s2/
�
�
3

2
s4 �

9

4
s2 C

1

4

�
z21 Nz1 C h.o.t.

The CR normal coordinate z0CR with respect to Jerison–Lee’s frame reads

z0CR D
QzCR

p
1C s2

�

We want next to determine the t -component of CR normal coordinates. Recall the
definition of O� and (3.14): after some cancellations, one can check that

O� 0 D i
°
z1dz1 � z1dz1 � dw C

1

2
jz1j

2dw �
1

2
w.z1dz1 C z1dz1/

±
:

We now need to consider the conformal change of contact form

L� 0 D e2v O� 0 D .1C 2v2 C � � � / O�
0:

Recalling that v2 D A1.z21 C z
2
1/C B1jz1j

2, we obtain that

L� 0 D i .1C 2A1.z
2
1 C z

2
1/C 2B1jz1j

2/

�

°�
z1 �

1

2
wz1

�
dz1 �

�
z1 C

1

2
wz1

�
dz1 �

�
1 �

1

2
jz1j

2
�
dw
±
C h.o.t.

From straightforward computations, one finds

L� 0 D i
�
z1 C 2A1.z

2
1 C z

2
1/z1 C 2B1jz1j

2 z1 �
1

2
wz1

�
dz1

� i
�
z1 C 2A1.z

2
1 C z

2
1/z1 C 2B1jz1j

2 z1 C
1

2
wz1

�
dz1

� i
�
1C 2A1.z

2
1 C z

2
1/C 2B1 jz1j

2
�
1

2
jz1j

2
�
dw C h.o.t.
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Therefore, from (3.24) we deduce

d QzCR D .1C s
2/ dz1 � s

p
1C s2 dz1 C .1C s

2/
�
�
3

2
s2 �

1

4

�
.wdz1 C z1dw/

C s
p
1C s2

�3
2
s2 C

5

4

�
.wdz1 C z1dw/CK11 z

2
1 dz1 CN11 z

2
1 dz1

CK11 .2z1 z1 dz1 C z
2
1 dz1/CN11 .2z1 z1 dz1 C z

2
1 dz1/C h.o.t.

One can then expand L� 0 C i Nz0CRdz
0
CR � iz

0
CRd Nz

0
CR to find that

(3.25) t 0CR D �iw.1C 1=2jz1j
2/C isjz1j

2.z21 � Nz
2
1/C is

2. Nz41 � z
4
1/C h.o.t.

We can summarize the above discussion into the following result.

Proposition 3.3. The CR normal coordinates on Rossi spheres with respect to L� 0 D e2v O� 0

are given by the formulas z0CR D
QzCRp
1Cs2

, with QzCR as in (3.24) and t 0CR as in (3.25).

We next collect some useful formulas derived from the latter proposition. Taylor-
expanding z0CR one finds

jz0CRj
2
D jz1j

2
�
1C

1

2
jz1j

2
�
� s .z21 C Nz

2
1 C w.z

2
1 � Nz

2
1//

C
1

2
s2 .4 jz1j

2
� 4 jz1j

4
� z41 � Nz

4
1/C h.o.t.;

while taking its square we obtain

jz0CRj
4
D jz1j

4.1C jz1j
2/ � sjz1j

2..z21 C Nz
2
1/.2C jz1j

2/C 2w.z21 � Nz
2
1//(3.26)

C s2..z41 C Nz
4
1/.1 � jz1j

2/C 2jz1j
4.3 � jz1j

2/C 2w.z41 � Nz
4
1//C h.o.t.

The square of t 0CR is given by

.t 0CR/
2
D �w2.1C jz1j

2/C 2swjz1j
2.z21 � Nz

2
1/C 2s

2w. Nz41 � z
4
1/C h.o.t.

Summing the latter formula and (3.26) we obtain that, up to higher-order terms

.�0CR/
4
D .1C jz1j

2/.jz1j
4
� w2/ � s jz1j

2 .z21 C Nz
2
1/.2C jz1j

2/

C s2
�
.z41 C Nz

4
1/.1 � jz1j

2/C 2 jz1j
4 .3 � jz1j

2/
�
:

It is also useful to expand the quantity ev2.�0CR/
�2, related to the conformal covariance for

the Green function, which up to higher-order terms is given by

ev2.�0CR/
�2
D

jz1j
2 C 4

4
p
.jz1j2 C 1/.jz1j4 � w2/

C s
.z21 C Nz

2
1/.12 jz1j

4 C 8 jz1j
2 � 6w2/

8..jz1j2 C 1/.jz1j4 � w2//3=2

C
s2

8..jz1j2 C 1/.jz1j4 � w2//5=2

�
.z41 C Nz

4
1/.20 jz1j

6
C 8 jz1j

4

C 4w2 � 5 jz1j
2w2/ � 4 jz1j

10
C58 jz1j

6w2 C 24 jz1j
4w2 � 24 jz1j

2w4
�
:(3.27)

Note that, with respect to the contact from O� D 1
2
O� 0, the CR normal coordinates and

the Heisenberg distance would be .zCR; tCR/ D .z0CR=
p
2; t 0CR=2/ and �CR D �0CR=

p
2,

respectively.
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4. Proof of Theorem 1.1

In this section, we determine the Green function for the conformal sub-Laplacian on Rossi
spheres, up to an error of order s3. This allows to estimate the mass of Rossi spheres, which
turns out to be negative for s¤ 0 small. This is done by deriving a formal expansion in s of
the Green functionGs globally away from the pole with respect to the standard coordinates
.z1; z2/ of S3, and comparing this with the expression for Gs in CR-normal coordinates.

4.1. Formal expansion of the Green function in powers of s

Let Ls denote the conformal sub-Laplacian for the J.s/-structure on S3. For s D 0, the
fundamental solution of L0G0 D 64�ıp with pole at p D .0; 1/ is given by

G0 D 2..1 � z2/.1 � z2//
�1=2:

We next solve formally, up to an errorO.s3/, LsGs D 0 away from p in power series of s
in the form

(4.1) Gs D G0 C sG1 C
1

2
s2.G2 C ˛G0 � G3/C o.s

2/;

where ˛ 2 R, G1 and G2 are suitable explicit singular functions near p, and G3 is a Hölder
continuous function near p for which we would need to determine only G3.p/. We chose
to expand the second-order term including separately ˛G0: this will be useful later in order
to fix the distributional component of the solution at the pole p. In principle, this should
be done also for the first-order term, but by our choice of G1, this further correction will
not be necessary.

For the above expansion, the following formulas will be used:

Z1Z1 z
a
1 .1 � z2/

b.1 � Nz2/
c(4.2)

D za�21 .1 � z2/
b�2 .1 � Nz2/

c
�
b .jz2j

2
� 1/.2a Nz2 .z2 � 1/ � jz2j

2
C 1/

C .a � 1/a Nz22 .z2 � 1/
2
C b2 .jz2j

2
� 1/2

�
;

Z N1Z N1 z
a
1 .1 � z2/

b .1 � Nz2/
c
D .c � 1/c zaC21 .1 � z2/

b .1 � Nz2/
c�2;(4.3)

Z N1Z1 z
a
1 .1 � z2/

b .1 � Nz2/
c(4.4)

D za1 .1�z2/
b�1 .�.1� Nz2/

c�1/.a.z2�1/..cC1/ Nz2 � 1/Cb.c.jz2j
2
�1/

C . Nz2 � 1/z2//;

Z1Z N1 z
a
1 .1 � z2/

b .1 � Nz2/
c
D �c za1 .1 � z2/

b�1 .1 � Nz2/
c�1 ..aC 1/ Nz2 .z2 � 1/(4.5)

C b.jz2j
2
� 1//;

with similar ones for Nza1 .1 � z2/
b.1 � Nz2/

c , passing to conjugates.
To find the first-order correction G1, we differentiate the relation LsGs D 0 with

respect to s, evaluating it for s D 0. Using (2.4) and (2.5), this yields

L0G1 D � PLG0 D 8Z1Z1G0 C 8Z1Z1G0 on S3 n ¹pº;
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where PL D d
ds
jsD0Ls . The right-hand side is given by

12.. Nz2 � 1/
2 Nz21 C z

2
1 .z2 � 1/

2/

.. Nz2 � 1/.z2 � 1//5=2
�

By formulas (4.2)–(4.5), the first-order correction G1 to Gs can be chosen as

(4.6) G1 D
1

2
.z21 C z

2
1/
h 1

1 � z2
C

1

1 � z2
C 2

i 1

..1 � z2/.1 � z2//1=2
�

We pass next to the second order expansion for Gs: we will find it up to a smooth
function that can be determined at p, which is enough for our purposes. Differentiating
the relation LsGs D 0 twice with respect to s and evaluating at s D 0, we obtain (with
analogous notation to above for the s-derivatives)

L0 RG D �2 PL PG � RLG0:

Recalling from (2.4), (2.5) that RL D 4L0, we have

L0. RG C 4G0/ D �2 PL PG D 16Z1Z1G1 C 16Z1Z1G1:

It is possible to show by direct computation, again from (4.2)–(4.5), that 16Z1Z1G1 C
16Z1Z1G1 equals

�1

..1 � z2/.1 � z2//7=2

�
z41
�
30.z2 � 1/

3
C 6.z2 � 1/

2.z2 � 1/ � 12.z2 � 1/
3.z2 � 1/

�
C z41

�
30.z2 � 1/

3
C 6.z2 � 1/

2 .z2 � 1/ � 12.z2 � 1/
3 .z2 � 1/

�
C 30.z2 � 1/

5
C 30.z2 � 1/

5
C 18.z2 � 1/

4 .z2 � 1/C 18.z2 � 1/
4 .z2 � 1/

C6.z2�1/
5.z2�1/

2
C6.z2�1/

5.z2�1/
2
�18.z2�1/

4.z2�1/
3
�18.z2�1/

3.z2�1/
4

� 12.z2 � 1/
3 .z2 � 1/

5
� 12.z2 � 1/

3 .z2 � 1/
5
�
;

where we grouped the terms by homogeneity in z2 � 1 and Nz2 � 1.
We can invert L0 explicitly for the terms with factors z41 and z41. The solution is

given by

G2;1 WD
.z41 C z

4
1/ g2;1

..1 � z2/.1 � z2//
5=2
;

where

g2;1 WD
3

8
.z2 � 1/

2
C
3

8
.z2 � 1/

2
C
1

4
.z2 � 1/.z2 � 1/C

3

2
.z2 � 1/

2 .z2 � 1/
2

�
3

4
.z2 � 1/

2 .z2 � 1/ �
3

4
.z2 � 1/.z2 � 1/

2:

For the other terms, we can only find an explicit approximate solution. We set

g2;2 D .z2 � 1/
4
C . Nz2 � 1/

4
�
4

3
.z2 � 1/

4 . Nz2 � 1/ �
4

3
. Nz2 � 1/

4 .z2 � 1/

C 4. Nz2 � 1/
3 .z2 � 1/

2
C 4.z2 � 1/

3 . Nz2 � 1/
2

C
11

3
.z2 � 1/

4 . Nz2 � 1/
2
C
11

3
. Nz2 � 1/

4 .z2 � 1/
2
C 6.z2 � 1/

3 . Nz2 � 1/
3;
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and
G2;2 WD

3

4

g2;2

..1 � z2/.1 � z2//
5=2
�

Defining
G2 D G2;1 C G2;2;

still by (4.2)–(4.5), one finds that

L0G2 � 16Z1Z1G1 � 16Z1Z1G1 D �12
.z2 � 1/

2 C . Nz2 � 1/
2 � 3.z2 � 1/. Nz2 � 1/

..1 � z2/.1 � z2//
1=2

DW „.z2; Nz2/;(4.7)

with the right-hand side now bounded on S3.
It will be now sufficient to add a more regular correction (which is Hölder continu-

ous by standard regularity theory) to solve the equation for G2 pointwise, away from p.
From (4.7), setting G3 D L

�1
0 „.z;w/, we then find that

L0.G2 � G3/ � 16Z1Z1G1 � 16Z1Z1G1 D 0 on S3 n ¹pº;

which corresponds to (4.1) up to the term s2˛G0, which will be determined later. To
obtain G3.p/, we use the Green representation formula, convoluting „.z2; Nz2/ with G0:

G3.p/ D
1

64�2

Z
S3
�24

.z2 � 1/
2 C . Nz2 � 1/

2 � 3.z2 � 1/. Nz2 � 1/

..1 � z2/.1 � z2//
O� ^ d O�:

The Taylor expansion of the integrand in z2; z2 is

.24 � 24 Nz52 � 24 Nz
4
2 � 24 Nz

3
2 � 24 Nz

2
2/C .24 Nz

5
2 C 24 Nz

4
2 C 24 Nz

3
2 C 24 Nz

2
2 C 48 Nz2/z2

C.24 Nz2 � 24/z
2
2 C .24 Nz2 � 24/z

3
2 C .24 Nz2 � 24/z

4
2 C .24 Nz2 � 24/z

5
2 C � � � :

Integrated, this givesZ
S3
.24C 48 jz2j

2/ O� ^ d O� D 48 � 2�2 C 96�2 D 192�2;

which implies that

(4.8) G3.p/ D 3:

In conclusion, we found that

RG D G2 � G3 C ˛G0;

i.e., (4.1), where ˛ is a real number to be determined later. We proved therefore the fol-
lowing result.

Proposition 4.1. For every compact setK in S3 n ¹pº, p D .0; 1/, there exists a constant
CK > 0 such that the function Gs WD G0 C sG1 C

1
2
s2 .G2 C ˛G0 � G3/ in (4.1) satisfies

jLsGsj � CK s
3 on K:
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4.2. Rigorous estimates

We prove next that the function Gs in Proposition 4.1 well matches with the expression of
the Green function of Ls in CR normal coordinates. Recall from the end of Section 3 that
�2CR D

1
2
.�0CR/

2. Then, from (3.27) we obtain that

4ev2 ��2CR D
jz1j

2 C 4p
.jz1j2 C 1/ .jz1j4 � w2/

C s
.z21 C Nz

2
1/.12 jz1j

4 C 8 jz1j
2 � 6w2/

2 ..jz1j2 C 1/ .jz1j4 � w2//3=2
(4.9)

C s2
1

2 ..jz1j2 C 1/ .jz1j4 � w2//5=2

�
�
.z41 C Nz

4
1/.20 jz1j

6
C 8 jz1j

4
C 4w2 � 5 jz1j2w2/

� 4 jz1j
10
C 58 jz1j

6w2 C 24 jz1j4w2 � 24 jz1j2w4
�

CO.s3��2/;

where w D z2 � Nz2. Given the covariance property of the Green function (that is, G
. Q�/
D

euG.�/ if Q� D e2u ), we aim to compare this expression to the function Gs in Proposi-
tion 4.1 on a suitable small annulus centered around p. We do it term by term for the
Taylor series in s, and for this purpose the following formulas will be useful. Since z2 � Nz2
is purely imaginary, we can write

jz1j
4
C jz2 � Nz2j

2
D jz1j

4
� .z2 � Nz2/

2
D .jz1j

2
C .z2 � Nz2//.jz1j

2
� .z2 � Nz2//:

As jz1j2 C jz2j2 D 1, we get

(4.10) jz1j
4
� w2 D jz1j4 C jz2 � Nz2j2 D .1C z2/.1C Nz2/.1 � z2/.1 � Nz2/:

Setting vD z2 C Nz2 � 2 (which is real), we have that z2 D 1C v=2C w=2, which implies

jz2j
2
D 1C vC

v2

4
�

w2

4
C o.�4/:

Squaring this relation, we obtain

(4.11) jz1j
4
D v2 C

v3

2
�

vw2

2
C o.�6/:

We also have that jz2j2 D 1C v up to an errorO.�4/, so v2 D jz1j4C o.�4/. These imply
that

(4.12) jz2j2 C 1 � .z2 C Nz2/ D
1

4
jz1j

4
�
1

4
w2 C o.�4/ D

1

4
jz1j

4
C
1

4
jwj2 C o.�4/:

Furthermore, there holds

(4.13) 1C z2 C Nz2 C jz2j
2
' 3C vC jz2j2 ' 2C 2 jz2j2 D 4 � 2 jz1j2 C o.�2/:

Recalling our notation from Section 2, we have then the following result.
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Lemma 4.2. For ˛ D �3=4, the following estimate holds:

(4.14) 4ev2 ��2CR D

�
G0 C sG1 C

1

2
s2 .G2 C ˛G0/

�
C o.s2/O 00.��2/C o�.1/;

where o�.1/! 0 as �! 0.

Proof. We analyse separately different orders in s for the left-hand side, and the first term
in the right-hand side of (4.14).

Zero-th order in s. Recalling that G0 D 2..1 � z2/.1 � Nz2//
�1=2, we need to compare

the two quantities

(4.15)
jz1j

2 C 4p
.jz1j2 C 1/ .jz1j4 � w2/

and
2

..1 � z2/.1 � Nz2//
1=2
�

Taylor-expanding the terms involving jz1j2 in the left-hand side, we are left with compar-
ing

4.1 � 1
4
jz1j

2/p
.jz1j4 � w2/

and
2

..1 � z2/.1 � Nz2//1=2
�

Using (4.10) and multiplying by ..1� z2/.1� Nz2//1=2, we are left with the comparison of

4.1 � 1
4
jz1j

2/

..1C z2/.1C Nz2//1=2
and 2:

From (4.13), we are left with comparing

4.1 � 1
4
jz1j

2/

.4 � 2 jz1j2/1=2
and 2;

which holds true up to an error of order O.�4/. Therefore, the two quantities in (4.15)
coincide up to an error of order O.�2/.

First order in s. Recalling (4.6), we have that

G1 D
1

4
.z21 C Nz

2
1/
h4 � 3z2 � 3 Nz2 C 2 jz2j2

.1 � z2/.1 � Nz2/

i
G0:

Considering the first-order term in s of (4.9), we need to compare the two quantities

.z21 C Nz
2
1/.12 jz1j

4 C 8 jz1j
2 � 6w2/

2..jz1j2 C 1/.jz1j4 � w2//3=2
and

1

4
.z21 C Nz

2
1/
h4 � 3z2 � 3 Nz2 C 2 jz2j2

.1 � z2/.1 � Nz2/

i
G0:

Using the expression of G0, dividing by .z21 C Nz
2
1/ and multiplying by 2, we need to

compare

.12 jz1j
4 C 8 jz1j

2 � 6w2/
..jz1j2 C 1/.jz1j4 � w2//3=2

and
h4 � 3z2 � 3 Nz2 C 2 jz2j2
..1 � z2/.1 � Nz2//3=2

i
:
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Using (4.10), this is equivalent to the comparison of

.12 jz1j
4 C 8 jz1j

2 � 6w2/
..jz1j2 C 1/.1C z2/.1C Nz2//3=2

and 4 � 3z2 � 3 Nz2 C 2 jz2j
2:

Using (4.13) and Taylor-expanding the left-hand side, we arrive to comparing

.1 � 3
4
jz1j

2/.12 jz1j
4 C 8 jz1j

2 � 6w2/
8

and 4 � 3z2 � 3 Nz2 C 2 jz2j
2:

Using instead (4.12), we transform the right-hand side, arriving to the comparison of

.1 � 3
4
jz1j

2/.12 jz1j
4 C 8 jz1j

2 � 6w2/
8

and jz1j
2
C
3

4
jz1j

4
�
3

4
w2;

which is again true up to an error of order O.�6/. Therefore, we get matching of the
first-order terms in s in both sides of (4.14) up to an error O.�2/.

Second order in s. Recalling again (4.9) and the fact that G2 comes with a factor 1=2,
let us first compare

.z41C Nz
4
1/.20jz1j

6C8 jz1j
4C4w2�5 jz1j2w2/

2 ..jz1j2 C 1/ .jz1j4 � w2//5=2
and

1

2
G2;1 WD

1

2

.z41 C z
4
1/ g2;1

..1�z2/.1�z2//5=2
;

where, up to order O.�8/,

g2;1 WD
3

8
.z2 � 1/

2
C
3

8
.z2 � 1/

2
C
1

4
.z2 � 1/.z2 � 1/ �

3

4
.z2 � 1/

2 .z2 � 1/

�
3

4
.z2 � 1/.z2 � 1/

2:

Factoring out .z41 C Nz
4
1/ and using (4.10), we need to compare

.20 jz1j
6 C 8 jz1j

4 C 4w2 � 5 jz1j2w2/

2 ..jz1j2 C 1/.1C z2/.1C z2//
5=2

and
1

2
g2;1:

Using then (4.13) and Taylor-expanding the denominator in the first term in jz1j2, we
arrive to comparing�

1 �
5

4
jz1j

2
� .20 jz1j6 C 8 jz1j4 C 4w2 � 5 jz1j2w2/

64
and

1

2
g2;1:

Expanding g2;1 and using (4.11), we come to the comparison of�
1�

5

4
jz1j

2
� .20jz1j6C8jz1j4C4w2�5jz1j2w2/

64
and

1

2

1

16
.�3v3C4v2C3vw2C2w2/;

which is correct, up to an error of order O.�12/.
We need next to compareh
�4 jz1j

10 C 58 jz1j
6w2 C 24 jz1j4w2 � 24 jz1j2w4

2..jz1j2 C 1/.jz1j4 � w2//5=2

i
and

1

2

3

4

g2;2

..1�z2/.1�z2//5=2
;
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where, up to higher order terms,

g2;2 D .z2 � 1/
4
C . Nz2 � 1/

4
�
4

3
.z2 � 1/

4 . Nz2 � 1/ �
4

3
. Nz2 � 1/

4 .z2 � 1/

C 4. Nz2 � 1/
3 .z2 � 1/

2
C 4.z2 � 1/

3 . Nz2 � 1/
2:

Using again (4.10), we then need to compareh
�4 jz1j

10 C 58 jz1j
6w2 C 24 jz1j4w2 � 24 jz1j2w4

2..jz1j2 C 1/.1C z2/.1C z2//5=2

i
and

3

8
g2;2:

As before, we are then comparing�
1 �

5

4
jz1j

2
�
�4 jz1j

10 C 58 jz1j
6w2 C 24 jz1j4w2 � 24 jz1j2w4

64
and

3

8
g2;2:

In fact, we can add to G2 any multiple of G0. In the latter formula, we can then replace g2;2
with Qg2;2, where

Qg2;2 D g2;2 � 2.z2 � 1/
2 . Nz2 � 1/

2:

It turns out that
3

8
Qg2;2 D

1

16
v.v4 � 4v2w2 C 6vw2 C 3w4/:

Using (4.11) and the previous formula to expand jz1j2 as jz1j2 D �v � 1
4

v2 C 1
4

w2, the
left-hand side in the above formula becomes

v5

16
C
3v2w2

8
�

v3w2

4
C
3vw4

16
CO.�12/;

so it coincides with the right-hand side, i.e., with 3
8
Qg2;2 up to error terms of orderO.�12/.

Therefore, also the second-order terms in s of both sides of (4.14) coincide up to an error
of order O.��2/.

It is standard to check that the above matching also holds up to computing first- and
second-order derivatives, which then implies the conclusion.

Proof of Theorem 1.1. Consider a small annulus of the form

Ar WD ¹r � � � 2rº;

and a smooth cut-off function �r satisfying8̂<̂
:
�r D 1 on ¹� � rº;
�r D 0 on ¹� � 2rº;
jrb�r j � C=r and jr2

b
�r j C jrT�r j � C=r

2:

If v is the conformal factor as in Proposition 2.3 then, with obvious notation, the Green
function conformally transforms as G� D e�vG O� . Consider then the function

QGs D �r

�
2��2CR �

1

2
G3.p/s

2
�
C .1 � �r / e

�vG O� :
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From the conformal covariance of Ls , Proposition 4.1 and Lemma 4.2, it follows that,
applying the conformal sub-Laplacian with respect to the contact form � ,

jLvs
QGsj � Cr o.s

2/ pointwise on S3:

It then follows from standard regularity theory that the Green functionG� of the conformal
sub-Laplacian satisfies kG� � QGskL1.S3/ D o.s2/. Sending s to zero and recalling that
G3.p/ D 3, we deduce

(4.16) A D �
3

2
s2 C o.s2/:

Therefore, given that m D 12�A (see (4.8) and (1.7)), we obtain the conclusion.

5. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 by an implicit function argument and some asymp-
totic expansions, which crucially use also Theorem 1.1.

We start by analysing the relation of the CR Sobolev quotient on Rossi spheres with
the minimizers on standard spheres found in [20]. Recall that in [19] it was proved that for
any three-dimensional CR manifold one has Y.M; J / � Y.S3; JS3/, which in particular
implies

(5.1) Y.S3; J.s// � Y.S3; JS3 D J.0//:

In [20], it was proven that Y.S3; JS3/ is precisely attained by the following functions, up
to composing .z1; z2/ with elements of SU(2):

(5.2) '� D �
� .jz1j

2 C jz2 C 1j
2/2 � .z2 � z2/

2

.�2 jz1j2 C jz2 C 1j2/2 � �4 .z2 � z2/2

�1=2
; � > 0:

Recalling that O� ^ d O� is a volume form double with respect to the Euclidean one, the '�’s
satisfy the following normalization condition:Z

S3
'4�
O� ^ d O� D 4�2 for all � > 0:

On the standard S3, see [14], the Folland–Stein space S1;2.S3/ is defined as the comple-
tion of the (complex-valued) C1 functions on S3 with respect to the norm

kukS1;2 WD

� Z
S3
.u;1u;1 C u;1u;1/

O� ^ d O�
�1=2
C

� Z
S3
juj2 O� ^ d O�

�1=2
:

Notice that, for jsj small, this defines an equivalent norm on Rossi spheres too: from now
on, this will be assumed understood.

We show next that, if a minimizer for the CR-Sobolev quotient on Rossi spheres exists
for jsj small, it must be close in S1;2.S3/ to some function '� as in (5.2). We have indeed
the following result.
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Lemma 5.1. Fix s 2 R, jsj small. Assume us > 0 attains infQ.s/ D Y.S3; J.s//. Then,
if us is normalized so that

R
S3
u4s
O� ^ d O� D 4�2, up to a homogeneous action on S3 there

exists � > 0 such that
kus � '�kS1;2.S3/ D os.1/;

where os.1/! 0 as s ! 0.

Proof. It is sufficient to notice that, if Z1.s/ is as in (1.8), then for all smooth u’s one hasZ
S3
.Z1.s/uZ1.s/uCZ1.s/uZ1.s/u/

O� ^ d O�

D .1C os.1//

Z
S3
.Z1uZ1uCZ1uZ1u/

O� ^ d O�:

Since we are assuming us to be normalized in L4.S3/ as in the statement, its S1;2.S3/-
norm is uniformly bounded from above, and thereforeZ
S3
.Z1us Z1us CZ1us Z1us/

O� ^ d O�

D

Z
S3
.Z1.s/us Z1.s/us CZ1.s/us Z1.s/us/

O� ^ d O� C os.1/:

This relation implies that us is nearly a minimizer also for the Sobolev-type quo-
tient in (5.4) on the standard CR-sphere .S3; JS3 D J.0//. By the Ekeland variational
principle (see, e.g., Chapter I in [31]), us is close in S1;2.S3/ to a minimizing Palais–
Smale sequence for such quotient. Palais–Smale sequences for problems involving critical
Sobolev embeddings can be characterized by a well-known decomposition due to Struwe.
For the subelliptic case, this feature is analyzed e.g. in Theorem 2.1 of [12] for domains of
the Heisenberg group and functions vanishing at the boundary (the same arguments apply
in the present case using dilations in normal coordinates as those introduced in [19]), or
for CR manifolds in Proposition 8 of the later paper [16]. The minimality condition implies
that us can only develop a single bubble profile, which is precisely our conclusion.

5.1. Finite-dimensional reduction

Let '� be as in (5.2), and define the following family of functions:

(5.3) M D ¹'�.U.�// W � > 0;U 2 SU.2/º :

Even though SU(2) is a three-dimensional Lie group, since '� is invariant by a complex
rotation in z1, the result of these compositions is also a set of three dimensions. We previ-
ously saw that the functions in M are global minimizers of the CR-Sobolev quotient Q.s/
on the standard S3 when s D 0, where

(5.4) Q.s/.u/ D

R
S3
uLsu O� ^ d O�� R

S3
u4 O� ^ d O�

�1=2 �
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In Lemma 5 of [24], it was proved that the linearization of the Yamabe equation
(with s D 0) at M is minimally degenerate, in the sense that its kernel coincides with
the tangent space to M.

As a consequence, one has that the CR-Sobolev quotient on the standard sphere is
non-degenerate in the sense of Bott on M. Thanks to this fact and to Lemma 5.1, for s
small we can characterize with particular precision all the solutions of the CR-Yamabe
equation lying in a fixed neighborhood (in S1;2) of the manifold M, and in particular
the (hypothetical) minimal ones. We first show that the CR-Yamabe equation is always
solvable, in a fixed neighborhood of M, up to a Lagrange multiplier: see [1] for a general
reference on this method.

Proposition 5.2. For '� as in (5.2), there exists a unique w� 2 S1;2.S3/, depending
smoothly on �, such that kw�kS1;2.S3/ � Cs, and which satisfies

(5.5)
Z
S3
'2�
@'�

@�
w� O� ^ d O� D 0 and Ls.'� C w�/ � 2.'� C w�/

3
D ` '2�

@'�

@�

for some ` 2 R. Moreover, there exists ı > 0 with the following property: if there exists
a critical point of Q.s/ in a ı-neighborhood of M (in S1;2 norm), then it must be of the
form '� Cw� up to a homogeneous action on S3 and up to a scalar multiple, with w� as
above.

Proof. For � > 1, '� has a global maximum at .z1; z2/ D .0; 1/. Locally near these func-
tions, all other extremals can be obtained composing on the right with elements of SU(2).
When also � varies, the extremals can be described locally near the '�’s by

˙ƒ;
 D
®
'a;�.z1; z2/ WD '�.Ua.z1; z2// W a 2 .�
; 
/3; � 2 Œ1=2; 2ƒ�

¯
�M;

where

(5.6) Ua.z1; z2/ D
�

exp
�
�i a3 a1 C i a2

�a1 C i a2 i a3

���
z1
z2

�
; a D .a1; a2; a3/:

Consider next the CR-Yamabe equation on the standard sphere,

L0u D 2u
3 on S3:

It was proved in [24] (see Lemma 5 there) that solutions of the linearized equation at '�,

L0v D 6'
2
�v on S3;

are of the form

v D l0
@'a;�

@�
C

3X
iD1

li
@'a;�

@ai
;

where li 2 R and where the latter derivatives are evaluated at a D 0.
Define zW D zW� to be the space of functions Qw satisfying the four constraints

(5.7)
Z
S3
'2a;�

@'a;�

@�
Qw O� ^ d O� D 0I

Z
S3
'2a;�

@'a;�

@ai
Qw O� ^ d O� D 0I i D 1; 2; 3;

where, again, the derivatives are evaluated at a D 0.
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It follows from the classification result in [24] and Fredholm’s theory that the operator

A zW W Qw 7! P zW ŒLs Qw � 6'
2
� Qw�;

where P zW denotes the projection onto zW , is invertible from zW in itself, endowed with
the S1;2.S3/-norm.

Setting Sa;�. Qw/ WD Ls.'� C Qw/ � 2.'a;� C Qw/
3, equation (5.5) has a relation to the

condition P zW Sa;�. Qw/ D 0, as we will explain below. Since A zW is invertible (with the
norm of the inverse uniformly bounded), we have that

P zW Sa;�. Qw/ D 0 ” Qw D Ta;�. Qw/;

where

Ta;�. Qw/ D �.A zW /
�1
®
Sa;�.0/ � 2Œ.'a;� C Qw/

3
� '3a;� � 3'

2
a;� Qw�

¯
:

From the smoothness in s of the J.s/ structures, it follows that kTa;�.0/k D O.s/, where
here and below k � k D k � kS1;2.S3/. Moreover, it is quite standard that for s and ı small,

kTa;�. Qw1/ � Ta;�. Qw2/k D o.1/k Qw1 � Qw2k; k Qw1k; k Qw2k � ı:

It follows that for s small, Ta;� is a contraction in a normed ball of radius Cs for C > 0

large and fixed, so in such a ball there exists a unique fixed point w� of Ta;�.
In this way we found a (unique) solution to the problem

Ls.'� C w�/ � 2.'� C w�/
3
D ` '2�

@'�

@�
C

3X
iD1

`i '
2
�

@'a;�

@ai

ˇ̌̌
aD0

for some Lagrange multipliers `; `i . However, the last three vanish by Palais’ criticality
principle. In fact, let us recall that, being .S3;J.s// a homogeneous space,Q.s/ is invariant
under the maps Ua as in (5.6). Therefore, with obvious notation, we have with the same
Lagrange multipliers that

Ls.'�;a C w�;a/ � 2.'�;a C w�;a/
3
D ` '2�;a

@'�;a

@�
C

3X
iD1

`i '
2
�;a

@'a;�

@ai
;

for a in a neighborhood of zero. Differentiating with respect to ai and then scalar-multi-
plying by @'a;�=@aj , one obtains an invertible system for .`i /i , yielding that `i D 0 for
i D 1; 2; 3, as desired.

Let now u be a critical point of Q.s/ in a ı-neighborhood of M for s small. Then
it satisfies Lsu D � u3 for some Lagrange multiplier �. Since u is close to the family
of '�’s, satisfying L0'� D 2'3�, the multiplier � must be ı-close to 2.

Defining Qu D ��1=2u, this is still close of order ı to M, and it satisfies Ls Qu D 2 Qu3,
i.e., the second equation in (5.5) with ` D 0. By uniqueness of the fixed point, we must
then have QuD '�Cw�, up to a homogeneous action on S3. This concludes the proof.

Remark 5.3. In Proposition 5.2, it is possible to replace the '�’s with other approximate
solutions to the CR-Yamabe equation on Rossi spheres. With a better approximate solu-
tion, for example, one would then require a correction as in (5.5) of smaller norm, yielding
a more precise expansion for the quotient Q.s/. This observation will be crucially used in
the next two sections.
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5.2. Expansion of the CR Sobolev quotient

Recalling the second statement in Proposition 5.2, we analyze the CR Sobolev quotient on
functions of the form '�Cw�, showing that it is strictly higher than the standard spherical
one. We first show that the latter expansion is always even in s.

Lemma 5.4. Let s > 0 be small, and let w.s/
�

and w.�s/
�

denote the counterparts of w� in
Proposition 5.2 for s and �s, respectively. Then one has that

Q.s/.'� C w
.s/

�
/ D Q.�s/.'� C w

.�s/

�
/:

Proof. Let � WS3! S3 be the diffeomorphism given in (2.6). We notice that '� is invariant
under � and that, due to (2.7), (2.8) and (2.9), for any u 2 S1;2.S3/ one has

Q.s/.�
�u/ D Q.�s/.u/:

From this covariance property and the uniqueness in Proposition 5.2, it follows thatw.s/
�
D

��w
.�s/

�
, and therefore we get

Q.s/.'� C w
.s/

�
/ D Q.s/.�

�.'� C w
.�s/

�
// D Q.�s/.'� C w

.�s/

�
/;

which is the desired conclusion.

We analyse next two situations. The first is when the parameter � in the previous
lemma tends to infinity or to zero, and the second when log� remains bounded. In the latter
case, we will show that the CR Sobolev quotient would be strictly higher than Y.S3; JS3/,
which would give a contradiction to (5.1). On the other hand, we can also rule out the
former case using the estimates on the Green function in Section 4, and in particular the
negativity of the mass of .S3; J.s// for s small and non-zero. The proofs of the next two
results, beginning from the latter case, are given in Appendices A and B.

Proposition 5.5. Let ƒ > 1 be a fixed number. Then there exists Cƒ > 0 such that, for
� 2 Œ1=ƒ;ƒ� and for s small, one has Q.s/.'� C w�/ D 4� C s2A� CB�;s , where

A� D
16��2.3C 12�2 C 2�4 C 12�6 C 3�8/

.1C �2/6
;

and where jB�;sj � Cƒ s
3.

Notice that the minimizers in [20] stay unchanged when we compose with the anti-
podal map on S3 and replace � by 1=�: this symmetry implies that A�DA1=�. Therefore,
in the next proposition it is sufficient to consider large values of �.

Proposition 5.6. The following expansion holds true, uniformly in s (small ):

Q.s/.'� C w�/ D 4� �
8

3

ms

�2
CO

� s2
�3

�
D 4� C 48�

s2

�2
.1C os.1//CO

� s2
�3

�
;

for � large.
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Remark 5.7. The above function � 7! A� is positive and strictly decreasing for � > 1,
see Figure 1. Notice that the matching of the first-order correction terms for � large in the
above two propositions: the expansions are indeed obtained with two completely different
approaches. However, while the mass does not appear in the expansions of Appendix A,
it is somehow hidden in the fact that there we are using standard coordinates on S3, and
not CR normal coordinates.

2 3 4 5 6 7 8
λ

5

10

15

20

25

Figure 1. Graph of the function A�.

We can finally prove our second main result.

Proof of Theorem 1.3. Assume by contradiction that u is a minimizer of the CR-Sobolev
quotient Q.s/ for s ¤ 0 small. By Lemma 5.1, u must then lie in a ı-neighborhood of the
manifold M defined in (5.3). From the second part of Proposition 5.2 we have also that
u D '� C w� up to a homogeneous action on S3, where w� is as in the first part of the
proposition. The conclusion then follows from Proposition 5.5 and Proposition 5.6, which
cover all ranges of � for s small enough.

A. Proof of Proposition 5.5

We consider the Cayley map from S3 into H1 given by

F .z1; z2/ D
� z1

1C z2
;Re

�
i
1 � z2

1C z2

��
;

with inverse

F �1.z; t/ D
� 2iz

t C i .1C jzj2/
;
�t C i.1 � jzj2/

t C i.1C jzj2/

�
:

Using F , we can derive explicit expressions for the CR maps on S3. Letting d� denote
the natural dilation in the Heisenberg group,

d�.z; t/ D .� z; �
2 t /; � > 0;

consider the map ˆ�WS3 ! S3 defined by

ˆ�.p/ D .F
�1
ı d� ı F /.p/:
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By explicit computations, one finds that the inverse is given by

(A.1) ˆ�1� .z1; z2/ D
� 2�.z2 C 1/z1

�2 jz2C1j2Cz2Cjz1j2 � z2
;
�2 jz2C1j

2�z2�jz1j
2Cz2

�2 jz2C1j2Cz2Cjz1j2 � z2

�
:

For later purposes, the following formula will be useful:

'�.ˆ
�1
� .z1; z2//

�3
D
1

2
��1

�
j1C z2j

2

.�2j1C z2j2 C jz1j2/2 � .z2 � z2/2

�1=2
:

Notice also that '�D1 � 1 on S3.

A.1. Approximate solutions

We construct next, on every compact interval in the range of �, approximate solutions
to the CR-Yamabe equation with s ¤ 0 up an order O.s2/, improving the accuracy of
the '�’s (approximate up to order O.s/) for s ¤ 0.

Lemma A.1. Let ƒ > 1 be a fixed number. Then there exist Cƒ > 0 and regular func-
tions Ow�, depending smoothly on �, such that, for � 2 Œ1=ƒ;ƒ� and for s small, one has

Ls.'� C s Ow�/ � 2.'� C s Ow�/
3
D f�;

with kf�kL1.S3/ � Cƒ s2.

Proof. Recall that the extremals of the CR-Sobolev inequality (up to a homogeneous CR-
action of S3) have the expression in (5.2), namely

'� D �
� .jz1j

2 C jz2 C 1j
2/2 � .z2 � z2/

2

.�2 jz1j2 C jz2 C 1j2/2 � �4 .z2 � z2/2

�1=2
D 2�

�
j1C z2j

2

.�2 jz1j2 C jz2 C 1j2/2 � �4 .z2 � z2/2

�1=2
;

and for all � > 0, they satisfy the equation

(A.2) L0'� D �4�b '� C 2'� D 2'
3
� on S3:

Our goal is to find a correction s Ow� such that '�C s Ow� satisfies the CR-Yamabe equation
on .S3; J.s// up to an order s2. Recalling (2.4) and (2.5), it is sufficient to solve for

�4�b Ow� C 2 Ow� � 6'
2
� Ow� D G� WD 8Z1Z1'� C conj.

From a straightforward computation, one has that

G�.z1; z2/

D
192�.�2 � 1/2 j1C z2j

8 Re Œz21 .1C z2 C �
2.z2 � 1//

2�

Œ.�2 jz1j2 C jz2 C 1j2/2 � �4 .z2 � z2/2�5=2Œ.jz1j2 C jz2 C 1j2/2 � .z2 � z2/2�3=2

D
3

4
��4

.�2 � 1/2 ReŒz21 .1C z2 C �
2 .z2 � 1//

2�

Œ.�2 jz1j2 C jz2 C 1j2/2 � �4 .z2 � z2/2�5=2
'�.z1; z2/

5:



J.-H. Cheng, A. Malchiodi and P. Yang 2052

It is useful to evaluate this expression after composing with the inverse CR map defined
in (A.1): by direct computation, using also (A.1), one finds that

G�.ˆ
�1
� .z1; z2// D

3

4
��3 .�2 � 1/2

�
j1C z2j

2

.�2 j1C z2j2 C jz1j2/2 � .z2 � z2/2

�3=2
�
�
z21 .1 � z2 C �

2 .1C z2//
4
C z21 .1 � z2 C �

2 .1C z2//
4
�
:(A.3)

Let us recall the covariance of the conformal sub-Laplacian L� : for a conformal contact
form Q� D u4=.Q�2/ � , one has

L Q� ' D u
�.QC2/=.Q�2/L� .u �/:

Let L'� be the linearized CR-Yamabe operator at '� on .S3; J.0//, i.e.,

(A.4) L'�v D �4�bv C 2v � 6'
2
�v;

and let w� denote the pull-back of Ow� via ˆ�, namely

(A.5) w�.z/ D '
�1
� .ˆ�1� .z// Ow�.ˆ

�1
� .z//:

Then the covariance of L� implies that

(A.6) .L'1�1w�/.x/ D '�.ˆ
�1
� .x//

�3 .L'� Ow�/.ˆ
�1
� .x//:

It follows from this formula and (A.3) that the pull-back w� satisfies the following equa-
tion on S3, which has constant coefficients on the left-hand side:

(A.7) �4�bw� � 4w� D 12.�
2
� 1/2 Re

.1 � z2 C �
2 .1C z2//z

2
1

.1 � z2 C �2 .1C z2//3
�

This last equation can be solved explicitly in w� via Fourier decomposition: in fact, the
right-hand side in (A.7) is given by

12
.�2 � 1/2

.�2 C 1/2
Re
z21 .1 � � z2/

.1 � � z2/3
; with � D

1 � �2

1C �2
�

Since we have the expansion

1

.1 � �z2/3
D 1C 3� z2 C 6�

2 z22 C 10�
3 z32 C 15�

4 z42 C � � � ;

we obtain that

12
.�2 � 1/2

.�2 C 1/2
Re
z21 .1 � � z2/

.1 � � z2/3

D 12
.�2 � 1/2

.�2 C 1/2
Re
®
z21
�
1C 3� z2 C 6�

2 z22 C 10�
3 z32 C 15�

4 z42 C � � �

� � z2 .1C 3� z2 C 6�
2 z22 C 10�

3 z32 C 15�
4 z42 C � � � /

�¯
:
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While the set of functions of the right–hand side in the first line are spherical harmonics,
i.e., satisfying

(A.8) ��b.z
2
1 z

k
2 / D .k C 2/z

2
1 z

k
2 ;

the functions on the second line of the right-hand side are not. However, they can be easily
modified in order to satisfy an eigenvalue equation. More precisely, one has that (see [21])

(A.9) ��b

�
zk2

�
z2 z2 �

k C 1

k C 4

��
D .10C 3k/

�
zk2

�
z2 z2 �

k C 1

k C 4

��
:

Hence we rewrite the right-hand side in (A.7) in the following way:

12
.�2 � 1/2

.�2 C 1/2
Re
z21 .1 � � z2/

.1 � � z2/3

D 12
.�2 � 1/2

.�2 C 1/2
Re
°
z21

h
1C 3� z2 C 6�

2 z22 C 10�
3 z32 C 15�

4 z42 C � � �

� � z2 � 3�
2
�
z2 z2 �

1

4

�
� 6�3 z2

�
z2 z2 �

2

5

�
� 10�4 z22

�
z2 z2 �

3

6

�
C � � �

� 3�2
1

4
� 6�3 z2

2

5
� 10�4 z22

3

6
� � � �

i±
:

The latter expression can in turn be rewritten as

12�2 Re
²
z21

h 1X
kD0

.k C 1/.k C 2/

2
.� z2/

k
�
1 � �2

k C 3

k C 4

�
� �2

1X
kD�1

.k C 2/.k C 3/

2
.� z2/

k
�
z2 z2 �

k C 1

k C 4

�i³
:(A.10)

Recall that by (A.7), to obtain w�, we need to invert the operator �4�b � 4 on the latter
expression, so we have to divide the coefficients of the spherical harmonics respectively
by (using (A.8) and (A.9)) 4.kC 2/� 4D 4.kC 1/ and by 4.3kC 10/� 4D 12.kC 3/.
We then find

(A.11)

w� D
3

2
�2 Re

²
z21

h 1X
kD0

.k C 2/ .�z2/
k
�
1 � �2

k C 3

k C 4

�
�
1

3
�2

1X
kD�1

.k C 2/ .�z2/
k
�
z2 z2 �

k C 1

k C 4

�i³
;

with
� D .1 � �2/=.1C �2/:

Notice that since j�j < 1 all the above series are absolutely converging on S3. Finally, the
correction Ow� to '� for the CR-Yamabe equation can be obtained from (A.5).
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A.2. Second order expansion of the CR Sobolev quotient

We want next to analyse the order s2 in the expansion of the CR Sobolev quotient.

Lemma A.2. If Q.s/ is as in (5.4), then we have that

Q.s/.'� C s Ow�/ D 4� C
16��2.3C 12�2 C 2�4 C 12�6 C 3�8/

.1C �2/6
s2 CB�;s;

with jB�;sj � Cƒ s
3.

Proof. Recall that, at s D 0, from (2.5) one has d
ds
Rs D 0 and d2

ds2
Rs D 8. We use the

choice of contact form

O� D
1

2
i

2X
iD1

.zi dzi � zi dzi / ; O� ^ d O� D 2 d�Eucl:

From the expression of� R�b (in (2.4)) and of RR, we have that the second derivative RQ.'�/
of Q.s/.'�/ at s D 0 is given by

RQ.'�/ D

Z
S3
'� .�4 R�b '� C RR'�/ O� ^ d O� D

Z
S3
'� .�16�b '� C 8'�/ O� ^ d O�:

Using (A.2), this also becomes

(A.12) RQ.'�/ D 8

Z
S3
'4�
O� ^ d O� D 32�2;

since the integral is independent of � and since '�D1 � 1.
Our next goal is to expand to second order in s the quantity Q.s/.'� C s Ow�/. We

claim that

Q.s/.'� C s Ow�/ D 4� C
s2

2�

�1
2
RQ.'�/ �

Z
S3
Ow�L'� Ow�

O� ^ d O�
�
C o.s2/

D 4� C
s2

2�

�1
2
RQ.'�/ �

Z
S3

w�L'1 w�
O� ^ d O�

�
C o.s2/:(A.13)

Here, w� is given in (A.11) (see also (A.5)), and L'� is given in (A.4). The latter equal-
ity follows from the covariance property (A.6). To check this claim, we want to expand
Q.s/.'� C s Ow�/, which we write asR

S3
.'� C s Ow�/ .L0 C s PLC

1
2
s2 RL/ .'� C s Ow�/ O� ^ d O�� R

S3
.'� C s Ow�/4 O� ^ d O�

�1=2 :

Expanding in s, we find that this quantity is equal to

Q.s/.'� C s Ow�/

D

R
S3

�
'�L0'�Cs.'� PL'�C2 Ow�L0'�/Cs

2.1
2
'� RL'�C2 Ow� PL'�C Ow�L0 Ow�/

�
O�^d O�� R

S3
.'4
�
C 4s'3

�
Ow� C 6s2'

2
�
Ow2
�
/ O� ^ d O�

�1=2
C o.s2/:
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The first-order term in s vanishes, as one can see using the Euler equation for '�, so we
will just consider the second-order term. Since w� only consists of spherical harmonics
of positive order, see (A.11), using (A.5) it also turns out thatZ

S3
'3� Ow�

O� ^ d O� D

Z
S3

w�
O� ^ d O� D 0;

so there is no contribution to the expansion of the denominator from the first-order term
(in s) in the denominator.

Since
R
S3
'�L0'� O� ^ d O� D 8�2 and

R
S3
'4
�
O� ^ d O� D 4�2, we can collect these

numbers in the numerator and denominator respectively to get that

Q.s/.'� C s Ow�/ D
8�2

.4�2/1=2

1C s2

8�2

R
S3
.1
2
'� RL'� C 2 Ow� PL'� C Ow�L0 Ow�/ O� ^ d O��

1C s2

4�2

R
S3
6'2

�
Ow2
�
O� ^ d O�

�1=2
C o.s2/:

Taylor-expanding, one finds

Q.s/.'� C s Ow�/ D
8�2

.4�2/1=2

h
1C

s2

8�2

� Z
S3

�1
2
'� RL'�C2 Ow� PL'�C Ow�L0 Ow�

�
O�^d O�

�

Z
S3
6'2� Ow

2
�
O� ^ d O�

�i
C o.s2/:

We now use the fact that Ow� satisfies

L'� Ow� WD L0 Ow� � 6'
2
� Ow� D �

PL'�

to deduce that

Q.s/.'� C s Ow�/ D
8�2

.4�2/1=2

h
1C

s2

8�2

� Z
S3

�1
2
'� RL'� � Ow�L'� Ow�

�
O�^d O�

�i
Co.s2/

D
8�2

.4�2/1=2

h
1C

s2

8�2

� Z
S3

�1
2
'� RL'��w�L'1w�

�
O�^d O�

�i
Co.s2/:(A.14)

We next compute the last integral. To explicitly integrate spherical harmonics, we need
the following explicit formula (see Proposition 5.3 in [21]):

(A.15)
Z
S3
jz1j

4
jz2j

2k O� ^ d O� D
8�2

.k C 1/.k C 2/.k C 3/
�

Both w� and L'1w� consist of two types of spherical harmonics, orthogonal to each-other.
For the first series, taking real parts, we need to compute integrals of the form (notice that
only products of conjugate terms contribute)

1

4

Z
S3
.z21 z

k
2 C z

2
1 z
k
2/
2 O� ^ d O� D

4�2

.k C 1/.k C 2/.k C 3/
�
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For the second series, still taking real parts, we need to compute instead

1

4

Z
S3

h
z21 z

k
2

�
z2 z2 �

k C 1

k C 4

�
C z21 z

k
2

�
z2 z2 �

k C 1

k C 4

�i2
O� ^ d O�

D
1

2

Z
S3
jz1j

4
jz2j

2k
�
jz2j

4
� 2 jz2j

2 k C 1

k C 4
C

�k C 1
k C 4

�2�
O� ^ d O�:

Using (A.15), the expression becomes

12�2

.k C 2/.k C 3/.k C 4/2 .k C 5/
�

Therefore, from (A.10) and (A.11) we obtain

�

Z
S3

w�L'1w�
O� ^ d O�

D �24
3

2
�4
² 1X
kD0

.k C 1/.k C 2/2

2

�
1 � �2

k C 3

k C 4

�2
�2k

2�2

.kC1/.kC2/.kC3/

C

1X
kD�1

�4

6
.k C 2/2 .k C 3/�2k

6�2

.k C 2/.k C 3/.k C 4/2.k C 5/

³
:

After some simplification, this gives

�

Z
S3

w�L'1w�
O� ^ d O�

D �36�4�2
° 1X
kD0

k C 2

k C 3

�
1 � �2

k C 3

k C 4

�2
�2k C

1X
kD�1

�4
�2k .k C 2/

.k C 4/2 .k C 5/

±
:

Notice that the last series starts from k D �1, so after relabelling we get

�

Z
S3

w�L'1w�
O� ^ d O�

D �36�4�2
° 1X
kD0

k C 2

k C 3

�
1 � �2

k C 3

k C 4

�2
�2k C

1X
kD0

�2
�2k.k C 1/

.k C 3/2 .k C 4/

±
:

After some manipulation, the series reduces to a finite one, and we find

�

Z
S3

w�L'1w�
O� ^ d O� D 8�2�4 .�2 � 3/:

Collecting this formula and (A.14), from (A.12) and (A.13) we obtain the second order
expansion

Q.s/.'� C s Ow�/ D 4� C
s2

2�

�1
2
RQ.'�/ �

Z
S3

w�L'1w�
O� ^ d O�

�
C o.s2/

D 4� C 4� s2 .�6 � 3�4 C 2/C o.s2/; with � D
1 � �2

1C �2
�

This concludes the proof.
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We display next, see Figure 2, the graph of the function 4�.�6 � 3�4 C 2/ in � . This
shows that the second-order correction of the Sobolev quotient is always positive in �, and
tends to zero as �!1.

0.2 0.4 0.6 0.8 1.0
Γ

5

10

15

20

25

Figure 2. Graph of the function 4�.�6�3�4C2/.

A.3. Conclusion

We can use the observation in Remark 5.3 to work out the contraction argument in Propos-
ition 5.2 starting from '� C s Ow� instead of from '� only. Given the improved accuracy
in Lemma A.1, the contraction can be performed in a ball of radius O.s2/ in S1;2.S3/,
yielding a corresponding correction Lw� of that order. By Lemma A.1 and the smoothness
of Q.s/, we then have that

Q.s/.'� C s Ow� C Lw�/ D Q.s/.'� C s Ow�/C dQ.s/.'� C s Ow�/Œ Lw��CO.k Lw�k
2/

D Q.s/.'� C s Ow�/CO.s
4/:

By uniqueness in the fixed point of the contraction, it must be '�C s Ow�C Lw�D '�Cw�,
so the conclusion follows from Lemma A.2.

B. Proof of Proposition 5.6

The goal of this section is to expand Q.s/ on the functions '� C w� given by Proposi-
tion 5.2 for large values of �. Since the estimates of the previous section deteriorate for �
in this range, we choose approximate solutions in terms of CR normal coordinates, better
suited for highly-concentrated profiles.

Recall from the results in Section 5 of [11] that, given p 2 M , the Green function of
the conformal sub-Laplacian satisfies, in CR normal coordinates

Gp D 2�
�2
C ACO.�/:
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B.1. Approximate solutions

For p 2 S3, fix a small number r > 0 and define in CR normal coordinates a function F
such that ´

F.z; t/ D jzj2 for � � r;
F � 0 for � � 2r:

In this way, F can be extended via cut-offs to all of S3 as the zero function away from p,
so F can be written as

F.z; t/ D jzj2 CO.�5/:

For � > 0 large, let us consider a test function in CR normal coordinates as follows:

(B.1) M'� D
�

.1C �2F C �4 QG/1=2
;

where QG D G�2p .

Lemma B.1. In CR normal coordinates, one has the expansion

Lb M'� D M'
3
� .2CO.�

3/C ��2O.�2//

C M'5�

h
�
3

2
jzj2�2.4C �2 jzj2/ACO.�5/CO.�2�7/

i
:

Proof. By direct computation, we have that

M'�;1 D �
1

2

�3

.1C �2F.z/C �4 QG/3=2
ŒF;1 C �

2 QG;1� D �
1

2
M'3� ŒF;1 C �

2 QG;1�;

and similarly for its conjugate. As a consequence, we have that

M'�;1 N1 D �
1

2
M'3� ŒF;1 N1 C �

2 QG;1 N1�C
3

4
M'5� jF;1 C �

2 QG;1j
2;

which implies

�b M'� D �
1

2
M'3� Œ�bF C �

2�b QG�C
3

2
M'5� jF;1 C �

2 QG;1j
2:

By direct computation, one finds (with G D Gp)

�b QG D �2G
�3�bG C 12G

�4G;1G; N1:

We then deduce

Lb M'� D 2 M'
3
� Œ�bF C �

2.12G�4G;1G; N1 � 2G
�3�bG/�� 6 M'

5
� jF;1 C �

2 QG;1j
2
CR M'�:

We can next write
R M'� D R M'

3
� .�
�2
C F C �2G�3G/:
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Since G satisfies LbG D 0, we get some cancellation and find that

Lb M'� D M'
3
� .2�bF C �

�2RCRF /

C 6 M'5�
�
4G�4G;1G; N1 .1C �

2F.z/C �4 QG/ � jF;1 C �
2 QG;1j

2
�
:

Using some further cancellation, we then obtain

Lb M'� D M'
3
� .2�bF C �

�2RCRF /

C 6 M'5�
�
4G�4G;1G; N1 .1C �

2F.z// � F;1F; N1 � �
2 .F;1 QG; N1 C

QG;1F; N1/
�
:

From Proposition A.5 in [11] (where a different but analogous notation is used), one has
that, in CR normal coordinates,

Z1 D .1CO.�
4//
ı

Z1 CO.�
4/
ı

Z N1 CO.�
5/
@

@t
;

!11 D O.�
3/ dz CO.�3/ d Nz CO.�2/

ı

�;

see (2.1). By direct computation, one then has

G;1 D �
i
p
2 Nz

.t C i jzj2/�2
CO.1/; F;1 D

Nz
p
2
CO.�4/;

QG;1 D
2
p
2 Nz .jzj2 C i t/

.A�2 C 2/3
CO.�6/; �bF D 1CO.�

3/:

Using these expressions in the above formula for Lb M'�, one finally finds

Lb M'� D M'
3
� .2C �

�2O.�2/CO.�3//

C 6 M'5�

h
�
1

4
jzj2�2 .4C �2 jzj2/ACO.�5/CO.�2�7/

i
;

which is the desired result.

If the contact form � involved in the definition of CR normal coordinates writes as
� D e2v O� , setting

(B.2) N'� D e
�v
M'�;

and by the covariance property of the conformal sub-Laplacian, one has that

(B.3) M'4� � ^ d� D N'
4
�
O� ^ d O�; M'�L

.�/

b
M'� � ^ d� D N'�Ls N'� O� ^ d O�; Ls D L

. O�/

b
:

These imply the invariance

Q.s/. N'�/ D

R
S3
N'�Ls N'� O� ^ d O�

.
R
S3
N'4
�
O� ^ d O�/1=2

D

R
S3
M'�L

.�/

b
M'� � ^ d�

.
R
S3
M'4
�
� ^ d�/1=2

�

We then get the following consequence of Lemma B.1, concerning the differential ofQ.s/
at N'�.
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Corollary B.2. There exists a constant C > 0 such that, for all s small and � large, one
has the inequality jdQ.s/. N'�/Œv�j � C

�2
kvkS1;2 for every v 2 S1;2.S3/.

Proof. By direct computation, for v 2 S1;2.S3/, one has

(B.4)

dQ.s/. N'�/Œv� D
2

.
R
S3
N'4
�
O� ^ d O�/3=2

Z
S3

h� Z
S3
N'4�
O� ^ d O�

�
Ls N'�

�

� Z
S3
N'�Ls N'� O� ^ d O�

�
N'3�

i
v O� ^ d O�:

From (B.3) and Lemma B.1, it follows thatZ
S3
N'�Ls N'� O� ^ d O�

D 2

Z
S3
M'4� � ^ d� C

Z
S3
Œ M'4� .O.�

3/C �2O.�2//C M'6� .O.�
4/C�2O.�6//� � ^ d�:

Using a change of variable, it is possible then to showZ
S3
M'4� � ^ d� D �

Z
S3
M'�L

�
b M'� � ^ d� CO.�

�2/:

Therefore, inserting the latter estimate and the result of Lemma B.1 into (B.4), we find
that

jdQ.s/. N'�/Œv�j �

Z
S3
M'3�
�
O.�2/CO.��2/C M'5�

�
O.�4/C �2O.�6/

��
jvj � ^ d�:

Applying Hölder’s inequality, we get that

jdQ.s/. N'�/Œv�j �
h
O.��2/C

� Z
S3
M'4�O.�

8=3/
�3=4
C

� Z
S3
M'
20=3

�
O.�16=3/

�3=4
C �2

� Z
S3
M'
20=3

�
O.�8/

�3=4 i
kvkS1;2 ;

where all integrals are computed with respect to the volume form � ^ d� . By the expres-
sion of M'�, all terms are integrable and of order ��2, which concludes the proof.

B.2. Expansion of the CR Sobolev quotient

We expand next the CR Sobolev quotient Q.s/ on the approximate solutions N'� in (B.2),
obtaining the following result.

Lemma B.3. Let M'� be defined in (B.1). Then for � large, one has the expansion

Q.s/. N'�/ D 4� C 48�
s2

�2
.1C os.1//CO

� 1
�3

�
:
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Proof. We use (B.3), Lemma B.1 and integrate: expanding the numerator inQ.s/, we find
thatZ

S3
M'�L

.�/

b
M'� � ^ d�

D 2

Z
S3
M'4� � ^ d� �

3

2
A

Z
H1

jzj2 .4C �2jzj2/�2
ı
'6�
ı

� ^ d
ı

�

C

Z
S3
'4.O.�2�2/CO.�3// � ^ d� C

Z
S3
'6.O.�5/CO.�2�7// � ^ d�;

where
ı
'� D

�

.1C �2 jzj2 C 1
4
�4 .jzj4 C t2//1=2

; .z; t/ 2 H1:

For the first term, which also appears in the above expression, we Taylor-expand QG as

QG D
�2C A�2

�2

��2
D
1

4
�4 .1 � A�2/CO.�8/:

Therefore, M'� expands as

M'� D
��

1C �2 .jzj2 CO.�5//C 1
4
�4 Œ�4 .1 � A�2/CO.�8/�

�1=2
D

�
1C

1

8

A�6�4

1C �2 jzj2 C 1
4
�4�4

CO
� �12�8

.1C �4�4/2

��
ı
'�

D
ı
'� C

1

8
A�6�2

ı
'�
3
CO

� �12�8

.1C �4�4/2

�
ı
'�:

Taylor-expanding the integral of the fourth power of M'� and using a change of variable we
get thatZ

S3
M'4� � ^ d� D

Z
H1

ı
'4�
ı

� ^ d
ı

� C
1

2
A�2

Z
H1

�6
ı
'6�
ı

� ^ d
ı

� CO.1=�3/:

Hence, using the fact that
R

H1

ı
'4
�

ı

� ^ d
ı

� is independent of �, Q.s/. N'�/ becomes

2
� R

H1

ı
'4p

2

ı

� ^ d
ı

�C 1
2
A�2

R
H1 �

6 ı'6
�

ı

� ^ d
ı

�
�
�
3A
2

R
H1 jzj

2�2.4C �2jzj2/
ı
'61
ı

� ^ d
ı

�� R
H1

ı
'4p

2

ı

� ^ d
ı

� C 1
2
A�2

R
H1 �6

ı
'6
�

ı

� ^ d
ı

�
�1=2

CO.1=�3/:
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We can expand the denominator in the latter expression as� Z
H1

ı
'4p

2

ı

� ^ d
ı

� C
1

2
A�2

Z
H1

�6
ı
'6�
ı

� ^ d
ı

�
��1=2

D

� Z
H1

ı
'4p

2

ı

� ^ d
ı

�
��1=2 �

1C

1
2
A�2

R
H1 �

6 ı'6
�

ı

� ^ d
ı

�R
H1

ı
'41
ı

� ^ d
ı

�

ı

� ^ d
ı

�

��1=2

D

� Z
H1

ı
'4p

2

ı

� ^ d
ı

�
��1=2 �

1 �
1

4
A�2

R
H1 �

6 ı'6
�

ı

� ^ d
ı

�R
H1

ı
'41
ı

� ^ d
ı

�

�
CO.1=�3/;

which gives

Q.s/. N'�/ D
� Z

H1

ı
'4p

2

ı

� ^ d
ı

�
��1=2 h

2

Z
H1

ı
'4p

2

ı

� ^ d
ı

�

C
1

2
A�2

Z
H1

�6
ı
'6�
ı

� ^ d
ı

� �
3

2
A

Z
H1

jzj2�2 .4C �2 jzj2/
ı
'61
ı

� ^ d
ı

�
i
CO

� 1
�3

�
;

equivalent to

Q.s/. N'�/ D
� Z

H1

ı
'4p

2

ı

� ^ d
ı

�
��1=2 h

2

Z
H1

ı
'4p

2

ı

� ^ d
ı

�(B.5)

�
1

2
A

Z
H1

�
3 jzj2 .4C �2 jzj2/ � �2�4

�
�2
ı
'6�
ı

� ^ d
ı

�
i
CO

� 1
�3

�
:

The computation on page 177 in [19] (where �1, in their notation, equals 2 O� ) shows
that

ı
'4p

2
is the scaling factor for the volume of the Cayley map. Recalling that O� ^ d O� is

twice the (induced) Euclidean volume on S3, this implies

(B.6)
Z

H1

ı
'4p

2

ı

� ^ d
ı

� D

Z
S3

O� ^ d O� D 4�2:

We now make the following change of variables: �z 7!
p
2z0, �2 t 7! 2t 0, and notice that

ı
'�.z; t/ D

�
p
2

p
2

..1C jz0j2/2 C .t 0/2/1=2
D

�
p
2

ı
'p2 .z

0; t 0/:

In this way, we haveZ
H1

�
3 jzj2 .4C �2 jzj2/ � �2�4

�
�2
ı
'6�
ı

� ^ d
ı

�.z; t/

D
4

�2

Z
H1

�
3 jz0j2 .2C jz0j2/ � .�0/4

�
.�0/2

ı
'6p

2

ı

� ^ d
ı

�.z0; t 0/:
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One checks by direct computations that the primitive with respect to t of the integrand is

�
3.jz0j6 C 8 jz0j4 C 19 jz0j2 C 8/ jz0j6

2.jz0j2 C 1/5 .2 jz0j2 C 1/3=2

� log
� t2 .jz0j4C4jz0j2C2/�2t .jz0j2C1/p2jz0j2C1pt2Cjz0j4C.jz0j2C1/2 jz0j4

jz0j4 .t2C.jz0j2C1/2/

�
�

t
p
t2 C jz0j4

.jz0j2 C 1/4 .2 jz0j2 C 1/.t2 C .jz0j2 C 1/2/2

�
�
t2.3jz0j8C4jz0j6�17jz0j4�4jz0j2C2/C.jz0j3Cjz0j/2.3jz0j6�8jz0j4�55jz0j2�24/

�
:

As a consequence, we deduce thatZ
R
.3 jz0j2 .2C jz0j2/ � .�0/4/.�0/2

ı
'6p

2
dt

D

�3.jz0j6C8jz0j4C19jz0j2 C 8/ jz0j6 log
�
jz0j4�2.

p
2jz0j2C1�2/ jz0j2�2

p
2jz0j2C1C2

jz0j4C2.
p
2jz0j2C1C2/ jz0j2C2.

p
2jz0j2C1C1/

�
2.jz0j2 C 1/5 .2 jz0j2 C 1/3=2

�
4.jz0j2 C 1/

p
2jz0j2 C 1.3 jz0j8 C 4 jz0j6 � 17 jz0j4 � 4 jz0j2 C 2/

2.jz0j2 C 1/5 .2 jz0j2 C 1/3=2
�

Multiplying this quantity by 2�jz0j, its primitive with respect to jz0j is

�

3� .jz0j2 C 2/ jz0j8 log
�
jz0j4�2.

p
2 jz0j2C1�2/ jz0j2�2

p
2jz0j2C1C2

jz0j4C2.
p
2 jz0j2C1C2/ jz0j2C2.

p
2 jz0j2C1C1/

�
2.jz0j2 C 1/4

p
2jz0j2 C 1

�
4�
p
2jz0j2 C 1.jz0j6 C 6 jz0j4 C 6 jz0j2 C 1/

2.jz0j2 C 1/4
p
2jz0j2 C 1

;

whose difference between the values jz0j ! C1 and jz0j D 0 is 8� . Therefore, recalling

that the volume form
ı

� ^ d
ı

� is four times the Euclidean one, we obtain thatZ
H1

.3 jzj2.4C �2 jzj2/ � �2�4/ �2
ı
'6�
ı

� ^ d
ı

� D 32�:

Recalling (B.6) and the fact that A D �3
2
s2.1C os.1//, from (4.16) and (B.5) we deduce

that

Q.s/. M'�/D 4� �
32�A

�2
s2.1C os.1//CO

� 1
�3

�
D 4� C

48�

�2
s2.1C os.1//CO

� 1
�3

�
:

This concludes the proof.

B.3. Conclusion

We can use the observation in Remark 5.3, to perform the contraction argument in Pro-
position 5.2 starting from M'� instead of from '� only. Given the improved accuracy in
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Lemma 5.5, the contraction can be performed in a ball of radius O.1=�2/ in S1;2.S3/,
yielding a corresponding correction Mw� of that order. By Lemma 5.5 and the smoothness
of Q.s/, we then have, similarly to Subsection A.3,

Q.s/. M'� C Mw�/ D Q.s/. M'�/CO.k Mw�k
2/ D Q.s/. M'�/CO

� 1
�4

�
:

By uniqueness of the fixed point, it must be M'� C Mw� D '� C w�, so from Lemma B.3
we get that

(B.7) Q.s/.'� C w�/ D 4� C 48�
s2

�2
.1C os.1//CO

� 1
�3

�
:

Notice that
Q.0/.'� C w�/ D Q.0/.'�/ � 4�;

and therefore the term O.1=�3/ appearing in (B.7) is identically zero for s D 0, even
and smooth in s. It therefore must be of the form O.s2=�3/: Hence the statement of the
proposition holds true.
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