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Paraproducts, Bloom BMO and sparse BMO functions

Irina Holmes Fay and Valentia Fragkiadaki

Abstract. We address Lp.�/! Lp.�/ bounds for paraproducts in the Bloom set-
ting. We introduce certain “sparse BMO” functions associated with sparse collections
with no infinitely increasing chains, and use these to express sparse operators as sums
of paraproducts and martingale transforms – essentially, as Haar multipliers – as well
as to obtain an equivalence of norms between sparse operators A� and compositions
of paraproducts …�a…b .

1. Introduction

In 1985, Steven Bloom proved [3] that the commutator Œb; H�f D b �Hf �H.b � f /,
whereH is the Hilbert transform, is boundedLp.�/!Lp.�/, where � and � are twoAp
weights (1 < p <1), if and only if b is in a weighted BMO space determined by the two
weights � and �, namely b 2 BMO.�/, where � WD �1=p��1=p , and

kbkBMO.�/ WD sup
Q

1

�.Q/

Z
Q

jb.x/ � hbiQj dx:

In [8], this result was extended to commutators Œb; T � in Rn with Calderón–Zygmund
operators T . Soon after, [12] gave a different proof which yielded a quantitative result for
the upper bound:

(1.1) kŒb; T � W Lp.�/! Lp.�/k . kbkBMO.�/
�
Œ��Ap Œ��Ap

�max.1;1=.p�1//
:

The proof in [8] took the route of Hytönen’s representation theorem (the Rn, Calderón–
Zygmund operator generalization of Petermichl’s result [15] on the Hilbert transform),
and relied heavily on paraproduct decompositions. The proof in [12] used sparse opera-
tors and Lerner’s median inequalities to obtain directly a sparse domination result for the
commutator Œb; T � itself, avoiding paraproducts altogether.

This paper addresses Lp.�/ ! Lp.�/ bounds for the paraproducts. Based on the
one-weight situation, we suspect that these bounds should be smaller than the ones for
commutators: in the one-weight case,

kŒb;H� W Lp.w/! Lp.w/k . kbkBMO Œw�
2max.1;1=.p�1//
Ap

2020 Mathematics Subject Classification: Primary 42B20; Secondary 42B35, 47A30.
Keywords: BMO, weighted inequalities, paraproducts, sparse operators.

https://creativecommons.org/licenses/by/4.0/


I. Holmes Fay and V. Fragkiadaki 2080

and
k…b W L

p.w/! Lp.w/k . kbkBMO Œw�
max.1;1=.p�1//
Ap

;

are both known to be sharp – see [4,14] and the references therein – (throughout this paper,
A . B is used to mean A � C.n/B , with a constant depending on the dimension and
maybe other quantities such as p or Carleson constantsƒ of sparse collections, but in any
case not depending on any Ap characteristics of the weights involved). In the two-weight
Bloom situation, we show in Theorem 4.3 that

k…b W L
p.�/! Lp.�/k . kbkBMO.�/ Œ��

1=.p�1/
Ap

Œ��Ap :

We do not know if this bound is sharp, and this is subject to future investigations, but the
bound is smaller than the one in (1.1). In fact, it is strictly smaller with the exception of
p D 2, when both bounds are Œ��A2 Œ��A2 . We can however show that our bound is sharp
in one particular instance, namely when � D w and � D w�1 for some A2 weight w. We
show this in Section 4.1 via an appeal to the one-weight linear A2 bound for the dyadic
square function.

Obviously, this bound does not recover the one-weight situation: letting � D � D w
for some w 2 A2, and � D 1, our bound would give

k…b W L
2.w/! L2.w/k . kbkBMO Œw�

2;

when we know that the optimal bound is linear in the A2 characteristic – this was shown
in [1] using Bellman function techniques. If the optimal Bloom paraproduct bound is to
recover this one-weight situation, we suspect it would need a dependency on Œ��A2 – as it
would need to somehow account for the case � D �, or � D 1.

The proof of the Bloom paraproduct bound above relies on dominating the paraprod-
uct by a “Bloom sparse operator” A�

�
f WD

P
Q2� h�iQhf iQ1Q; where � is a sparse

collection, and proving that A�
�

satisfies the bound Œ��1=.p�1/Ap
Œ��Ap above. We do this in

Theorem 3.9. The domination of the paraproduct is treated in Section 4.
Before all this, however, we consider in Section 3 a special type of sparse collections,

‡D.Rn/, which are sparse collections with no “infinitely increasing chains” (a terminol-
ogy borrowed from [9]). We see that any such collection can be associated with a BMO
function

b� WD

X
Q2�

1Q;

which satisfies kb�kBMO � ƒ, where ƒ is the Carleson constant of � (we show this in
Appendix A). Once we have a BMO function, we can immediately talk about paraproducts
with symbol b� . In fact, we see in Section 3.3 that these functions allow us to express any
sparse operator A� , � 2 ‡D.Rn/, as a sum of paraproducts and a martingale transform:

A�f D …b�
f C…�b�

f C T��f;

where T�� is a martingale transform:

T�� D
X
J2D

.�� /J .f; hJ / hJ ; where .�� /J WD
1

jJ j

X
I2�;I¨J

jI j � ƒ; 8J 2 D :
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As discussed in Section 3.3, this gives us an upper bound for norms of sparse operators in
terms of norms of paraproducts and martingale transforms, and in fact, the equivalence

sup
�2‡D

kA�kLp.w/!Lp.w/ 'n;p;ƒ sup
b2BMOD

k…bkLp.w/!Lp.w/

kbkBMOD

C sup
b2BMOD

k…�
b
kLp.w/!Lp.w/

kbkBMOD

C sup
�2`1

kT�kLp.w/!Lp.w/

k�k1
�

The process used to obtain the BMO function b� associated with � also works with
weights, and obtaining a function in weighted BMO spaces associated with � 2 ‡D.Rn/:
if w 2 Ap , the function

bw� WD
X
Q2�

hwiQ 1Q

is in BMOD.w/, with
kbw� kBMOD .w/ � 2Œw�Apƒ

p:

Repeating the process above, we try to express A� as a sum of the paraproducts associated
with bw

�
and a martingale transform, but we discover instead the operator

Aw
� f WD

X
Q2�

hwiQ hf iQ 1Q;

and its decomposition as

Aw
� f D …bw

�
f C…�bw

�
f C T�w

�
f;

detailed in Proposition 3.4.
While it would be interesting if the paraproducts and the martingale transform could

somehow be “separated” above, giving an independent proof that these operators have
the same dependency on Œw�Ap by showing each is equivalent to norms of A� , we are
able to show that norms of sparse operators are equivalent to certain compositions of
paraproducts. In Section 3.4, we see that

A� ' …
�
zb�
…zb�

;

where zb� is another BMO function we can easily associate with � (omitting signatures,
see Remark 2.1):

zb� WD

X
Q2�

p
jQj hQ:

This provides the following upper bound:

sup
�2‡D .Rn/
ƒ.�/Dƒ

kA� W L
p.w/! Lp.w/k

ƒ
� sup
a;b2BMOD

k…�a…b W L
p.w/! Lp.w/k

kakBMOD kbkBMOD

�
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For the other direction, we show in Appendix B – using a bilinear form argument – that
for all Bloom weights �; �; �, BMO functions a 2 BMOD , b 2 BMOD.�/, and ƒ > 1,

k…�a…b W L
p.�/! Lp.�/k

� C.n/kakBMOD kbkBMOD .�/ sup
�2‡D .Rn/
ƒ.�/Dƒ

� ƒ

ƒ � 1

�3
kA�

� W L
p.�/! Lp.�/k:

Note that taking � D � D w above, for some w 2 Ap , we have the one-weight result

k…�a…b W L
p.w/! Lp.w/k . kakBMOD kbkBMOD Œw�

max.1;1=.p�1//
Ap

:

Moreover, we obtain the equivalence of norms

sup
�2‡D .Rn/

kA� W L
p.w/! Lp.w/k 'ƒ;p;n sup

a;b2BMOD .Rn/

k…�a…b W L
p.w/! Lp.w/k

kakBMODkbkBMOD

�

Section 4 gives a proof of a pointwise domination of paraproducts by sparse operators.
It relies on first proving certain local pointwise domination results, which are then applied
to BMOD.w/ functions with finite Haar expansion, and extending to the general case. So
this argument works whenever …b acts between Lp spaces where the Haar system is an
unconditional basis – Lebesgue measure or Ap weights. The argument also works with the
weighted BMO norm,

kbkBMOD .w/ WD sup
Q2D

1

w.Q/

Z
Q

jb � hbiQj dx;

defined in terms of an L1.dx/ quantity – the Haar system is not unconditional in L1.dx/,
but we can choose an ordering of the Haar system that ensures convergence in L1.dx/.
The choice to work with b rather than with compactly supported f is motivated by
the desire to obtain domination by sparse operators with no infinitely increasing chains.
Specifically, we work with restricted paraproducts:

…b;Q0f .x/ WD
X
Q2Q0

.b; hQ/ hf iQ hQ.x/; 8Q0 2 D ;

and construct a sparse collection �.Q0/�D.Q0/which “ends” atQ0, and such that Aw
�
f

pointwise dominates …b;Q0f on Q0. Since the Haar expansion of b effectively dictates
the Haar expansion of …b (as well as …�

b
and �b), this will lead from finite Haar expan-

sion b’s to collections in ‡D.Rn/.

2. Setup and notations

2.1. Dyadic grids

By a dyadic grid D on Rn we mean a collection of cubes Q � Rn that satisfies
• every Q 2 D has side length 2k for some k 2 Z: `.Q/ D 2k ;
• for a fixed k0 2 Z, the collection ¹Q 2 D W `.Q/ D 2k0º forms a partition on Rn;
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• for every P;Q 2 D , the intersection P \Q is one of ¹P;Q;;º. In other words, two
dyadic cubes intersect each other if and only if one contains the other.
For example, the standard dyadic grid on Rn is:

D0 WD ¹2
�k.Œ0; 1/n Cm/ W k 2 Z; m 2 Znº:

We assume such a collection D is fixed throughout the paper. For every Q 2 D and
positive integer k � 1, we let Q.k/ denote the kth dyadic ancestor of Q in D , i.e., the
unique R 2 D such that R � Q and `.R/ D 2k`.Q/. Given Q0 2 D , we let D.Q0/

denote the collection of dyadic subcubes of Q0:

D.Q0/ WD ¹Q 2 D W Q � Q0º:

2.2. Haar functions

Given a dyadic grid D on R, we associate to each I 2 D the cancellative Haar func-
tion hI WD h0I D

1p
jI j
.1IC � 1I�/, where IC and I� are the right and left halves of I ,

respectively. The non-cancellative Haar function is h1I WD
1p
jI j

1I . The cancellative Haar

functions ¹hI ºI2D form an orthonormal basis for L2.R; dx/, and an unconditional basis
for Lp.R/, 1 < p < 1. Throughout this paper, we let .� ; �/ denote inner product in
L2. dx/, so we write for example

f D
X
I2D

.f; hI / hI ;

where .f; hI / D
R
f hI dx is the Haar coefficient of f corresponding to I .

In Rn, we have 2n � 1 cancellative Haar functions and one non-cancellative: for every
dyadic cubeQD I1 � I2 � � � � � In, where every Ik 2D is a dyadic interval with common
length jIkj D `.Q/, we let

h"Q.x/ WD h
."1;:::;"n/
I1�����In

.x1; : : : ; xn/ D

nY
kD1

h
"k
Ik
.xk/;

where "k 2 ¹0; 1º for all k, and " D ."1; : : : ; "n/ is known as the signature of h"Q. The
function h"Q is cancellative except in one case, when " � 1. As in R, the cancellative
Haar functions form an orthonormal basis for L2.Rn; dx/, and an unconditional basis for
Lp.Rn; dx/, 1 < p <1.

Remark 2.1. We often write

f D
X
Q2D

.f; hQ/ hQ

to mean
f D

X
Q2D;
" 6�1

.f; h"Q/ h
"
Q;
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omitting the signatures, and understanding that hQ always refers to a cancellative Haar
function. There is really only one instance for us where the signatures matter, and that is
in the definition of the paraproduct �b in Rn, n > 1.

Note that whenever P ¨ Q for some dyadic cubes P and Q, the Haar function hQ
will be constant on P . We denote this constant by

hQ.P / WD the constant value hQ takes on P ¨ Q:

It is easy to show that

hf iQ D
X
R©Q

.f; hR/ hR.Q/; 8Q 2 D ;

where throughout the paper

hf iQ WD
1

jQj

Z
Q

f dx

denotes average over Q, and sums such as
P
P�Q or

P
R�Q are understood to be over

dyadic cubes.

2.3. Ap weights

A weight is a locally integrable, a.e. positive function w.x/ on Rn. Any such weight
immediately gives a measure on Rn via dw WD w.x/dx andZ

f dw WD

Z
f .x/w.x/ dx

yields the obvious Lp-spaces associated with the measurew, which we denote by Lp.w/:

kf k
p

Lp.w/
WD

Z
jf .x/jp w.x/ dx:

Given 1 < p <1, we say w 2 Ap if

Œw�Ap WD sup
Q

hwiQ hw
0
i
p�1
Q <1;

where the supremum is over cubesQ � Rn, p0 denotes the Hölder conjugate of p, that is,
1=p C 1=p0 D 1; and the conjugate weight w0 is given by

w0 WD w1�p
0

D w�p
0=p
D w�1=.p�1/:

In fact, w 2 Ap if and only if the conjugate weight w0 is in Ap0 , with

Œw0�Ap0 D Œw�
1=.p�1/
Ap

:

We restrict our attention to dyadic Ap weights, denoted AD
p , and defined in the same way

except the supremum is only over dyadic cubes Q 2 D . Sometimes we use the standard
Lp-duality .Lp.w//� D Lp

0

.w/ with inner product .�; �/dw , and other times we think of
.Lp.w//� ' Lp

0

.w0/ with regular Lebesgue inner product .�; �/. We refer the reader to
Chapter 9 of [7] for a thorough treatment of Ap weights.
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2.4. Paraproducts and BMO

We say b 2 BMO.Rn/ if

kbkBMO.Rn/ WD sup
Q

1

jQj

Z
Q

jb.x/ � hbiQj dx <1;

where the supremum is over cubes Q � Rn. Given a weight w on Rn, we say that b is in
the weighted BMO space BMO.w/, b 2 BMO.w/, if

kbkBMO.w/ WD sup
Q

1

w.Q/

Z
Q

jb.x/ � hbiQj dx <1:

We similarly restrict our attention to dyadic BMO spaces, BMOD and BMOD.w/ for
the weighted version, both defined in the same way except the supremum is over dyadic
cubes Q 2 D .

In R, we have two paraproducts:

…bf .x/ WD
X
I2D

.b; hI /hf iI hI .x/ and …�bf .x/ WD
X
I2D

.b; hI /.f; hI /
1I .x/

jI j
�

They have the property that

bf D …bf C…
�
bf C…f b;

and their boundedness is usually characterized by some BMO-type norm of the symbol b.
In Rn, we have three paraproducts:

…bf .x/ WD
X
Q2D

.b; hQ/hf iQhQ.x/;

…�bf .x/ WD
X
Q2D

.b; hQ/.f; hQ/
1Q.x/

jQj
;

�bf .x/ WD
X
Q2D

X
";� 6�1I"¤�

.b; h"Q/.f; h
�
Q/

1p
jQj

h
"C�
Q :

The paraproducts …b and …�
b

are adjoints in L2.Rn/, and �b is self-adjoint. Again, keep
in mind that signatures are omitted in the definitions of…b and…�

b
since all Haar functions

involved have the same signature. As for �b , signatures are included because they differ
– see [8] for details. Generally, in the Lp-situation, we still have

.…bf; g/ D .f;…
�
bg/;

so if we think of …b WL
p.�/ ! Lp.�/ for two Ap weights � and �, then its adjoint

is …�
b
WLp

0

.�0/! Lp
0

.�0/ – where we are thinking of Banach space duality in terms of
.Lp.�//� ' Lp

0

.�0/ and .Lp.�//� ' Lp
0

.�0/, both with regular Lebesgue inner prod-
uct .�; �/.
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3. Sparse BMO functions

3.1. Sparse families

Let 0 < � < 1. A collection � � D is said to be �-sparse if for every Q 2 � there is a
measurable subset EQ � Q such that the sets ¹EQºQ2� are pairwise disjoint, and satisfy
jEQj � � jQj for all Q 2 � .

Let ƒ > 1. A family � � D is said to be ƒ-Carleson ifX
P2�;P�Q

jP j � ƒjQj; 8Q 2 D :

It is easy to see that it suffices to impose this condition only on Q 2 � . It is also easy
to see that any �-sparse collection is 1=�-Carleson. Far less obvious is the remarkable
property that anyƒ-Carleson collection is 1=ƒ-sparse, which is proved in the now classic
work [11].

A special type of sparse collection which appears most frequently in practice is defined
in terms of so-called “�-children.” Suppose a family � � D has the property thatX

P2ch� .Q/

jP j � ˛jQj; 8Q 2 � ;

where ˛ 2 .0; 1/ and ch� .Q/, the �-children of Q, is the collection of maximal P 2 �

such that P ¨ Q. Then � is .1 � ˛/-sparse: let

EQ WD Q n
[

P2ch� .Q/

P;

which are clearly pairwise disjoint, and satisfy jEQj � .1 � ˛/jQj. A collection that is
sparse with respect to the Lebesgue measure is also sparse with respect to any Ap mea-
sure w. Recall that (see [7], Proposition 9.1.5) an equivalent definition for Œw�Ap is

Œw�Ap D sup
Q2D

sup
f 2Lp.Q;w/
jQ\¹jf jD0ºjD0

hjf ji
p
Q

EwQ.jf j
p/
;

where
EwQf WD

1

w.Q/

Z
Q

f dw:

Taking f D 1A above, for some measurable subset A of a fixed dyadic cube Q, we get�
jAj

jQj

�p
� Œw�Ap

w.A/

w.Q/
; 8A � Q;Q 2 D :

So, say � is �-sparse with pairwise disjoint ¹EQºQ2� subsets EQ �Q and jEQj � �jQj.
Then

�p �
�
jEQj

jQj

�p
� Œw�Ap

w.EQ/

w.Q/
;

and

(3.1) w.Q/ �
1

�p
Œw�Ap w.EQ/; 8Q 2 � :
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3.2. Sparse BMO functions

We borrow the following terminology from [9]: we say a collection � �D has an infinitely
increasing chain if there exist ¹QKºk2N , Qk 2 � , such that Qk ¨ QkC1, for all k 2 N.
The following lemma is also found in [9].

Lemma 3.1. If a collection � � D has no infinitely increasing chains, then every Q 2 �

is contained in a maximalQ� 2 � , in the sense that there exists noR 2 � such thatR©Q.
Any two maximal elements P � and Q� of � are disjoint.

This type of collections will be important for us, so we let

‡D.Rn/

denote the set of all sparse collections in D which have no infinitely increasing chains.

Lemma 3.2. Let � 2 ‡D.Rn/ be a sparse collection with no infinitely increasing chains.
Then the set of points contained in infinitely many elements of � has measure 0.

Proof. Let �� denote the collection of maximal elements of � . Since � 2 ‡D.Rn/, every
Q 2 � is contained in a uniqueQ� 2 ��. Any x which belongs to infinitely may elements
of � must then belong to an infinitely decreasing chain

x 2 � � � ¨ Qk ¨ � � � ¨ Q2 ¨ Q1 D Q
�

terminating at some maximal Q� 2 ��. Fix any such chain and let A be the set of points
contained in all Qk , that is, A D

T1
kD1Qk . Then for any k 2 N,

kjAj �

kX
iD1

jQi j � ƒjQ
�
j;

whereƒ is the Carleson constant of � . So jAj � 1
k
ƒjQ�j for all k 2N, and then jAj D 0.

Alternatively, since ¹Qkº is a decreasing nest of sets, we have jAj D limk!1 jQkj,
and limk!1 jQkj D 0 because the series

1X
kD1

jQkj �
X

Q2�;Q�Q�

jQj � ƒjQ�j

converges.

The lemma above ensures that the following definition is sound: with every sparse
collection � 2 ‡D.Rn/ with no infinitely increasing chains we associate the function

b� WD

X
Q2�

1Q:

By Lemma 3.2 we know that b� is almost everywhere finite: if x is contained in infinitely
many elements of � , then b� .x/ D1, but this can only happen on a set of measure zero.
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Note also that b� is locally integrable: for some Q0 2 D ,

hb� iQ0 D
1

jQ0j

� X
Q2�;Q�Q0

jQj C
X

Q2�;Q©Q0

jQ0j
�

D
1

jQ0j

X
Q2�;Q�Q0

jQj„ ƒ‚ …
�ƒ

C #¹Q 2 � W Q © Q0º„ ƒ‚ …
<1 because �2‡D

<1:

Then, for some Q0 2 D ,

.b� � hb� iQ0/ 1Q0 D
X

Q2�;Q�Q0

1Q C #¹Q 2 � W Q © Q0º 1Q0

�
1Q0
jQ0j

X
Q2�;Q�Q0

jQj � #¹Q 2 � W Q © Q0º1Q0

D

X
Q2�;Q�Q0

1Q �
1Q0
jQ0j

X
Q2�;Q�Q0

jQj:

In fact, we can reduce this further to

(3.2) .b� � hb� iQ0/ 1Q0 D
X

Q2�;Q¨Q0

1Q �
1Q0
jQ0j

X
Q2�;Q¨Q0

jQj;

which is clear if Q0 … � , and if Q0 2 � , then 1Q0 �
1Q0
jQ0j
jQ0j cancel. A simple estimate

then shows that

1

jQ0j

Z
Q0

jb� � hb� iQ0 j dx �
1

jQ0j
2

X
Q2�;Q¨Q0

jQj � 2ƒ; 8Q0 2 D ;

so b� 2 BMOD.Rn/. However, a more careful estimate is possible. We prove1 the follow-
ing in Appendix A.

Theorem 3.3. Let � 2‡D.Rn/ be a sparse collection with no infinitely increasing chains
and Carleson constant ƒ. Then the function b� D

P
Q2� 1Q is in BMOD.Rn/, with

kb�kBMOD .Rn/ � ƒ:

This process works to yield a weighted BMO function as well: with any � 2 ‡D.Rn/
and w 2 AD

p we associate the function

bw� WD
X
Q2�

hwiQ 1Q:

1We include this proof simply because we found it interesting, and we hope the process of breaking down
the integrals outlined in this proof can be adapted to the weighted situation in a future work.
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As before, � 2 ‡D.Rn/ ensures that bw
�

is a.e. finite, locally integrable, and

1Q0.b
w
� � hb

w
� iQ0/ D

X
Q2�;Q¨Q0

hwiQ 1Q �
1Q0
jQ0j

X
Q2�;Q¨Q0

w.Q/; 8Q0 2 D :

By (3.1),
1

jQ0j

X
Q2�;Q¨Q0

w.Q/ � Œw�Ap ƒ
p
hwiQ0 ;

which then easily gives

1

w.Q0/

Z
Q0

jbw� � hb
w
� iQ0 j dx � 2Œw�Apƒ

p;

so
bw� 2 BMOD.w/; with kbw� kBMOD .w/ � 2Œw�Apƒ

p:

In fact, appealing to A1 instead, we can eliminate the power of ƒ and simply obtain

kbw� kBMOD .w/ . Œw�A1ƒ � Œw�Apƒ:

3.3. Sparse operators as sums of paraproducts and martingale transforms

For ease of notation, we work in R below, but the obvious analog for Rn follows easily in
the same way. Consider

Aw
� f WD

X
I2�

hwiI hf iI 1I ;

where � 2 ‡D.R/ and w is an AD
p weight on R, 1 < p < 1. A particularly interest-

ing instance of Aw
�

occurs when w D � 2 AD
2 , where � WD �1=p��1=p for two weights

�; � 2 AD
p . We treat this operator in more detail in Section 3.5.

Using the bw
�

function associated with � and w, we write

(3.3) Aw
� f D Aw

� f � b
w
� � f Cb

w
� � f D Aw

� f � b
w
� � f C.…bw

�
f C…�bw

�
f C…f b

w
� /:

Now recall that

hbw� iJ0 D .�
w
� /J0 C

X
J2�;J�J0

hwiJ ; 8J0 2 D ;

where
.�w� /J WD

1

jJ j

X
I2�;I¨J

w.I /; 8J 2 D ;

a quantity always bounded if w 2 AD
p :

.�w� /J � Œw�Apƒ
p
hwiJ :
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So

…f b
w
� .x/ D

X
J2D

.f; hJ /hb
w
� iJ hJ .x/

D

X
J2D

.f; hJ /
h
.�w� /J C

X
K2�;K�J

hwiK

i
hJ .x/

D

X
J2D

.�w� /J .f; hJ /hJ .x/„ ƒ‚ …
DWT�w

�
f .x/

C

X
J2D

.f; hJ /hJ .x/
� X
K2�;K�J

hwiK

�
:

The second term can be further explored asX
J2D

.f; hJ / hJ .x/
� X
K2�;K�J

hwiK

�
D

X
K2�

hwiK

� X
J�K

.f; hJ / hJ .x/
�
D

X
K2�

hwiK .f .x/ � hf iK/ 1K.x/

D f .x/ �
X
K2�

hwiK 1K.x/ �
X
K2�

hwiK hf iK 1K.x/ D f .x/ � b
w
� .x/ �Aw

� f .x/:

Returning to (3.3),

Aw
� f D Aw

� f � b
w
� � f C .…bw

�
f C…�bw

�
f /C T�w

�
f C f � bw� �Aw

� f;

so we have the following.

Proposition 3.4. Any weighted sparse operator Aw
�

, where w 2 AD
p is a weight on R and

� 2‡D.R/ is a sparse collection with no infinitely increasing chains, may be expressed as

(3.4) Aw
� f D …bw

�
f C…�bw

�
f C T�w

�
f;

where the first two terms are the paraproducts with symbol bw
�

, the sparse BMOD.w/

function associated with � and w, and the third term is

T�w
�
f .x/ WD

X
J2D

.�w� /J .f; hJ / hJ .x/;

where .�w� /J WD
1

jJ j

X
I2�;I¨J

w.I / � Œw�Apƒ
p
hwiJ ; 8J 2 D :

Remark 3.5. In case w � 1, we obtain the unweighted situation

(3.5) A�f D …b�
f C…�b�

f C T��f;

where T�� is a martingale transform:

T�� D
X
J2D

.�� /J .f; hJ / hJ ; where .�� /J WD
1

jJ j

X
I2�;I¨J

jI j � ƒ; 8J 2 D :
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Remark 3.6. In fact, (3.4) expresses sparse operators as Haar multipliers: recall that a
Haar multiplier is an operator of the form

T�f .x/ WD
X
J2D

�J .x/.f; hJ / hJ .x/;

where ¹�J .x/ºJ2D is a sequence of functions indexed by D . It is known (see [2]) that

.…b C…
�
b/f D

X
J2D

.b � hbiJ /.f; hJ / hJ :

So, from (3.4),

Aw
� f .x/ D

X
J2D

�
.bw� .x/ � hb

w
� iJ / 1J .x/C .�

w
� /J„ ƒ‚ …

�J .x/

�
.f; hJ / hJ .x/:

Look more closely now at (3.5): A� D…b�
C…�

b�
C T�� . This gives an upper bound

for kA� W L
p.w/! Lp.w/k in terms of the norms of paraproducts and the martingale

transform (when usually it is the norms of sparse operators that are used as upper bounds):

kA�f kLp.w/ � k…b�
f kLp.w/ C k…

�
b�
f kLp.w/ C kT��f kLp.w/:

Divide above by ƒ.�/ WD ƒ, the Carleson constant of � , and recall that kb�kBMOD � ƒ,
as well as k��k1 � ƒ:

kA�f kLp.w/

ƒ
�
k…b�

f kLp.w/

ƒ
C
k…�

b�
f kLp.w/

ƒ
C
kT��f kLp.w/

ƒ

�
k…b�

f kLp.w/

kb�kBMOD

C
k…�

b�
f kLp.w/

kb�kBMOD

C
kT��f kLp.w/

k��k1
;

from which we can deduce that, for all ƒ > 1,

sup
�2‡D .R/
ƒ.�/Dƒ

kA� W L
p.w/! Lp.w/k

ƒ
� sup

b2BMOD

kbkBMOD¤0

k…b W L
p.w/! Lp.w/k

kbkBMOD

C sup
b2BMOD

kbkBMOD¤0

k…�
b
W Lp.w/! Lp.w/k

kbkBMOD

C sup
�2`1

k�k1¤0

kT� W L
p.w/! Lp.w/k

k�k1
�

Given the well-known domination results [10] for the martingale transform and paraprod-
ucts, we obtain

sup
�2‡D .R/
ƒ.�/Dƒ

kA� W L
p.w/! Lp.w/k 'ƒ;p sup

b2BMOD

kbkBMOD¤0

k…b W L
p.w/! Lp.w/k

kbkBMOD

C sup
b2BMOD

kbkBMOD¤0

k…�
b
W Lp.w/! Lp.w/k

kbkBMOD

C sup
�2`1

k�k1¤0

kT� W L
p.w/! Lp.w/k

k�k1
�
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Remark 3.7. It would be interesting if the martingale and the paraproducts could be
“separated” somehow, and to obtain independently that the paraproducts and the martin-
gale transform have the same dependency on Œw�Ap by showing they are both equivalent
to kA�k. However, we can show that the norms of A� are equivalent to norms of certain
compositions of paraproducts. We do this next.

3.4. Sparse operators and compositions of paraproducts

Consider the composition

…�a…bf D
X
Q2D

.a; hQ/.b; hQ/hf iQ
1Q
jQj
�

We show in Appendix B, using a bilinear form argument, that:

Theorem 3.8. There is a dimensional constant C.n/ such that, for all Bloom weights
on Rn �; � 2 Ap .1 < p <1/, � WD �1=p��1=p , BMO functions a 2 BMOD.Rn/ and
b 2 BMOD.�/, and ƒ > 1,

k…�a…b W L
p.�/! Lp.�/k

� C.n/kakBMOD kbkBMOD .�/ sup
�2‡D .Rn/
ƒ.�/Dƒ

� ƒ

ƒ � 1

�3
kA�

� W L
p.�/! Lp.�/k:

Some immediate observations about this result:
• From Theorem 3.9,

k…�a…b W L
p.�/! Lp.�/k . kakBMOD kbkBMOD .�/ Œ��

1=.p�1/
Ap

Œ��Ap :

• Take � D � D w, for some w 2 Ap . Then � D 1 and we obtain in the one-weight
situation:

k…�a…b W L
p.w/! Lp.w/k . kakBMOD kbkBMOD Œw�

max.1;1=.p�1//
Ap

:

• It is easy to see that …�a…b D …
�
b
…a, so the same result holds for …�

b
…a, with b 2

BMOD.�/ and a 2 BMOD .

Let � 2 ‡D.Rn/. We associated with � the BMO function b� D
P
Q2� 1Q. There is

another, even more obvious BMO function we can associate with � :
zb� WD

X
Q2�

p
jQj hQ D

X
Q2�; "¤1

p
jQj h"Q:

For any Q0 2 D ,

1

jQ0j

Z
Q0

jzb� � h
zb� iQ0 j

2 dx D
1

jQ0j

X
Q�Q0;Q2�

"¤1

jQj D .2n � 1/
1

jQ0j

X
Q�Q0;Q2�

jQj

� .2n � 1/ƒ;

so
kzb�kBMOD �

p
.2n � 1/ƒ:
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Moreover,

…�
zb�
…zb�

f D
X
Q2D
"¤1

.zb� ; h
"
Q/
2
hf iQ

1Q
jQj
D

X
Q2�
"¤1

jQj hf iQ
1Q
jQj
D .2n � 1/

X
Q2�

hf iQ 1Q;

so we may express the sparse operator A� as

A� D
1

2n � 1
…�
zb�
…zb�

:

Then

kA�f kLp.w/

ƒ
D

1

2n � 1

k…�
zb�

…zb�
f kLp.w/

ƒ
�

k…�
zb�

…zb�
f kLp.w/

kzb�k
2

BMOD

� sup
a;b2BMOD

k…�a…bf kLp.w/

kakBMODkbkBMOD

;

which means that for all ƒ > 1,

sup
�2‡D .Rn/
ƒ.�/Dƒ

kA� W L
p.w/! Lp.w/k

ƒ
� sup
a;b2BMOD

k…�a…b W L
p.w/! Lp.w/k

kakBMOD kbkBMOD

�

Combined with Theorem 3.8, we have

sup
�2‡D .Rn/
ƒ.�/Dƒ

kA� W L
p.w/! Lp.w/k 'ƒ;p;n sup

a;b2BMOD .Rn/

k…�a…b W L
p.w/! Lp.w/k

kakBMODkbkBMOD

�

3.5. The Bloom sparse operator A�
�

Consider
A�

�f D
X
Q2�

h�iQ hf iQ 1Q

for a sparse collection � �D.Rn/, where�;�2Ap (1<p <1) and � WD�1=p��1=p are
Bloom weights. In looking to bound this operatorLp.�/!Lp.�/, the first obvious route
is to appeal to the known one-weight bounds for the usual, unweighted sparse operator

A�f D
X
Q2�

hf iQ1Q:

We want something like kA�
�
f kLp.�/ � Ckf kLp.�/, and we use duality to express

kA�
�f kLp.�/ D sup

g2Lp
0
.�0/

kgk
Lp
0
.�0/
�1

j.A�
�f; g/j:
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So we look for a bound of the type j.A�
�
f; g/j � Ckf kLp.�/kgkLp0 .�0/. We proceed as

follows:

j.A�
�f; g/j D

ˇ̌̌ X
Q2�

h�iQ hf iQ hgiQ jQj
ˇ̌̌
�

X
Q2�

hjf jiQ hjgjiQ �.Q/

�

Z �X
Q2�

hjf jiQ hjgjiQ 1Q
�
d� �

Z
.A� jf j/.A� jgj/ �

1=p ��1=p dx

� kA� jf jkLp.�/ kA� jgjkLp0 .�0/

� kA� WL
p.�/!Lp.�/k � kA� WL

p0.�0/!Lp
0

.�0/k � kf kLp.�/kgkLp0 .�0/:

This yields the same dependency on the Ap characteristics of � and � as obtained
in [12] for commutators:

kA�
� W L

p.�/! Lp.�/k . .Œ��Ap Œ��Ap /
max.1;1=.p�1//

We give another proof, inspired by the beautiful proof in [5] of the A2 conjecture for usual
unweighted sparse operators, which yields a smaller bound.

Theorem 3.9. Let � � D be a sparse collection of dyadic cubes, let �; � 2 AD
p , for

1 < p <1, be two Ap weights on Rn, and let � WD �1=p ��1=p . Then the Bloom sparse
operator

A�
�f WD

X
Q2�

h�iQ hf iQ 1Q

is bounded Lp.�/! Lp.�/ with

kA�
� W L

p.�/! Lp.�/k � ƒp
0Cp�2.p0/2 Œ�0�Ap0 Œ��Ap(3.6)

D ƒp
0Cp�2.pp0/ Œ��

1=.p�1/
Ap

Œ��Ap ;

where ƒ is the Carleson constant of � .

Proof. In looking for a bound of the type

kA�
�f kLp.�/ � Ckf kLp.�/;

we consider instead ' WD f�0: then k'kLp.�/Dkf kLp.�0/, so we look instead for a bound
of the type

kA�
� .f�

0/kLp.�/ � Ckf kLp.�0/:

Using the standard Lp.�/-Lp
0

.�/ duality with the inner product .�; �/d�, we write

kA�
� .f�

0/kLp.�/ D sup
g2Lp

0
.�/;kgk

Lp
0
.�/
�1

j.A�
� .f�

0/; g�/j;

meaning we finally look for a bound of the type

j.A�
� .f�

0/; g�/j � Ckf kLp.�0/ kgkLp0 .�/:
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As in [5], we make use of the weighted dyadic maximal function:

MD
u f .x/ WD sup

Q2D

EuQjf j 1Q.x/;

and the following property of being Lq.u/-bounded with a constant independent of u.

Theorem 3.10 (See, for example, [9] for a proof.). For any locally finite Borel measure u
on Rn and any q 2 .1;1/,

(3.7) kMD
u W L

q.u/! Lq.u/k � q0:

We bound

j.A�
� .f�

0/; g�/j D
ˇ̌̌ X
Q2�

h�iQ hf�
0
iQ hg�iQ jQj

ˇ̌̌
�

X
Q2�

hjf j�0iQ hjgj�iQ h�iQ jQj:

We express the averages involving f and g as weighted averages:X
Q2�

hjf j�0iQ hjgj�iQ h�iQ jQj D
X
Q2�

.E�
0

Q jf j/h�
0
iQ .E

�
Qjgj/h�iQ h�iQ jQj:

Apply the fact that
h�iQ � h�i

1=p
Q h�0i

1=p0

Q

(an easy consequence of Hölder’s inequality), and the fact that for any Ap weight w, we
have

Œw�
1=p
Ap
D sup

Q

hwi
1=p
Q hw

0
i
1=p0

Q ;

to go further:

j.A�
� .f�

0/; g�/j �
X
Q2�

.E�
0

Q jf j/ .E
�
Qjgj/h�

0
iQ h�iQ h�i

1=p
Q h�

0
i
1=p0

Q jQj

� Œ��
1=p
Ap

Œ��
1=p
Ap

X
Q2�

.E�
0

Q jf j/ .E
�
Qjgj/h�

0
i
1=p
Q h�i

1=p0

Q jQj

D Œ��
1=p
Ap

Œ��
1=p
Ap

X
Q2�

.E�
0

Q jf j/ .E
�
Qjgj/�

0.Q/1=p �.Q/1=p
0

� Œ��
1=p
Ap

Œ��
1=p
Ap

�X
Q2�

.E�
0

Q jf j/
p�0.Q/

�1=p�X
Q2�

.E�Qjgj/
p0 �.Q/

�1=p0
:

Applying (3.1), we get that

�0.Q/ � Œ�0�Ap0 ƒ
p0�0.EQ/ D Œ��

p0�1
Ap

ƒp
0

�0.EQ/

and
�.Q/ � Œ��Apƒ

p �.EQ/;
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so we may later use disjointness of the sets ¹EQºQ2� in the integrals below:�X
Q2�

�
E�
0

Q jf j
�p
�0.Q/

�1=p
� Œ��

.p0�1/=p
Ap

ƒp
0=p
�X
Q2�

�
E�
0

Q jf j
�p
�0.EQ/

�1=p
D Œ��

p0�1
p

Ap
ƒp

0=p
�X
Q2�

Z
EQ

.E�
0

Q jf j/
pd�0

�1=p
� Œ��

p0�1
p

Ap
ƒp

0=p
�X
Q2�

Z
EQ

.MD
�0 f /

pd�0
�1=p

� Œ��
.p0�1/=p
Ap

ƒp
0=p
� Z

Rn

.MD
�0 f /

p d�0
�1=p

D Œ��
.p0�1/=p
Ap

ƒp
0=p
kMD

�0 f kLp.�0/

� Œ��
.p0�1/=p
Ap

ƒp
0=pp0 kf kLp.�0/

�X
Q2�

�
E�Qjgj

�p0
�.Q/

�1=p0
� Œ��

1=p0

Ap
ƒp=p

0
�X
Q2�

.E�Qjgj/
p0�.EQ/

�1=p0
� Œ��

1=p0

Ap
ƒp=p

0
� X
Q2D

Z
EQ

.MD
� g/

p0d�
�1=p0

� Œ��
1=p0

Ap
ƒp=p

0

kMD
� gkLp0 .�/ � Œ��

1=p0

Ap
ƒp=p

0

pkgkLp0 .�/:

Putting these estimates together,

j.A�
� .f�

0/; g�/j � Œ��
1=p
Ap

Œ��
1=p
Ap

Œ��
.p0�1/=p
Ap

ƒp
0=pp0 kf kLp.�0/ Œ��

1=p0

Ap
ƒp=p

0

pkgkLp0 .�/

D Œ��
p0=p
Ap

Œ��Apƒ
p0=pCp=p0pp0 kf kLp.�0/ kgkLp0 .�/

D Œ�0�Ap0 Œ��Apƒ
pCp0�2pp0 kf kLp.�0/ kgkLp0 .�/;

which proves Theorem 3.9.

4. Paraproducts and Bloom BMO

We show the following pointwise domination result, inspired by ideas in [10] on pointwise
domination of the martingale transform. We begin with a paraproduct restricted to a certain
dyadic cube:

…b;Q0f WD
X
Q�Q0

.b; hQ/hf iQ hQ;

so everything is the same except we only look inside D.Q0/.

Theorem 4.1. There is a dimensional constant C.n/ such that the following holds. For
every ƒ > 1, weight w on Rn, b 2 BMOD.w/, fixed dyadic cube Q0 2 D and f 2
L1.Q0/, there is aƒ-Carleson sparse collection �.Q0/�D.Q0/ (depending on b;w;f /
such that

8x 2 Q0; j…b;Q0f .x/j � C.n/
� ƒ

ƒ � 1

�2
kbkBMOD .w/ Aw

�.Q0/
jf j.x/:

The same holds for the other paraproducts …�
b

and �b .

Assuming this, return to the Bloom situation for a moment. We have:
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Corollary 4.2. Given Bloom weights �;� 2 AD
p , � D �1=p��1=p , for all b 2 BMOD.�/,

k…b W L
p.�/! Lp.�/k � C.n/kbkBMOD .�/ sup

�2‡D

ƒ.�/Dƒ

� ƒ

ƒ � 1

�2
kA�

� W L
p.�/! Lp.�/k:

The same holds for the other paraproducts …�
b

and �b .

The key here is that the weights are Ap weights, and the Haar functions are an uncon-
ditional basis for Lp.w/ if and only if w 2 Ap – see [16] for a first proof of this fact,
or the helpful discussions on this in [13]. With this in hand, we note that letting the size
ofQ0 in…b;Q0 go to infinity will sweep all the Haar functions in the “quadrant” of Rn in
whichQ0 lives (since we are in the dyadic situation, there are 2n “quadrants” of Rn which
are non-overlapping – think of the four quadrants when visualizing R2 with the standard
dyadic grid centered at 0.) So a choice of 2n cubes, one for each quadrant, and adding up
the limits yields the result.

In light of the bound for A�
�

in Theorem 3.9, pick some value for ƒ, say ƒ D 2. Then
we have the following.

Theorem 4.3. Given Bloom weights �;� 2 AD
p , � D �1=p��1=p , for all b 2 BMOD.�/,

k…b W L
p.�/! Lp.�/k � C.n; p/ kbkBMOD .�/ Œ��

1=.p�1/
Ap

Œ��Ap :

The same holds for the other paraproducts …�
b

and �b .

Remark 4.4. The result actually follows immediately for …�
b
, since

k…b W L
p.�/! Lp.�/k D k…�b W L

p0.�0/! Lp
0

.�0/k

and
�0 D .�0/1=p

0

.�0/�1=p
0

D .��p
0=p/1=p

0

.��p
0=p/�1=p

0

D �:

Remark 4.5. As discussed in the introduction, we do not know if this bound is sharp, but
we can show that one particular instance of this inequality is sharp, namely when � D w
and � D w�1 for some AD

2 weight w, in which case the “intermediary” Bloom weight is
also � D w:

(4.1) k…b W L
2.w/! L2.w�1/k . kbkBMO.w/D Œw�2A2 :

Remark 4.6. In terms of necessity, it was shown in [8] that boundedness of …b WL
p.�/

! Lp.�/ does imply that b 2 BMOD.�/. An interesting question is: does this also imply
that �; � 2 Ap? These questions were partly answered for commutators in [8], but since
paraproducts are “less singular” than commutators, it is possible one can go beyond the
assumption �; � 2 Ap .

4.1. Proof that the quadratic bound Œw�2
A2

in (4.1) is sharp (via the one-weight
linear A2 bound for the dyadic square function)

The starting point is a simple observation: given a weight w on Rn, the weight itself
belongs to BMO.w/, with

kwkBMO.w/ � 2:
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To see this, if Q is a cube,

1

w.Q/

Z
Q

jw.x/ � hwiQj dx �
1

w.Q/
.w.Q/C w.Q// D 2:

So we may look at the paraproducts with symbol w: in R, these are

…wf D
X
I2D

.w; hI /hf iI hI and …�wf D
X
I2D

.w; hI /.f; hI /
1I
jI j
�

If w 2 AD
2 , these are bounded:

k…w WL
2.w/!L2.w�1/kDk…�w WL

2.w/!L2.w�1/k.kwkBMOD .w/ Œw�
2
A2
D 2Œw�2A2 :

Recall the decomposition

f w D …wf C…
�
wf C…fw;

and note that the map f 7! f w is an isometry L2.w/! L2.w�1/. So

…fw D
X
I2D

.f; hI /hwiI hI

is bounded L2.w/! L2.w�1/:

k…fwkL2.w�1/ �
�
1C 2k…w W L

2.w/! L2.w�1/k
�
kf kL2.w/:

Consider the dyadic square function

SDf WD
�X

I

.f; hI /
2 1I
jI j

�1=2
;

and look at its L2.w/-norm:

kSDf k
2
L2.w/

D

X
I2D

.f; hI /
2
hwiI D

�
f;
X
I2D

.f; hI /hwiI hI

�
D .f;…fw/ � k…fwkL2.w�1/ kf kL2.w/;

so
kSDf k

2
L2.w/

�
�
1C 2k…w W L

2.w/! L2.w�1/k
�
kf k2

L2.w/
:

Since

(4.2)
1

2
�
k…w W L

2.w/! L2.w�1/k

kwkBMO.w/

(we will show this in a moment) and

1

2
�

1

kwkBMO.w/
;
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we have further that

kSDf k
2
L2.w/

� kf k2
L2.w/

�
2
k…w W L

2.w/! L2.w�1/k

kwkBMO.w/
C 4
k…w W L

2.w/! L2.w�1/k

kwkBMO.w/

�
;

which yields

kSDf kL2.w/

kf kL2.w/
�
p
6
�
k…w W L

2.w/! L2.w�1/k

kwkBMO.w/

�1=2
�
p
6 sup
b2BMOD .w/

�
k…b W L

2.w/! L2.w�1/k

kbkBMO.w/

�1=2
:

Finally, the fact that

sup
b2BMOD .w/

�
k…b W L

2.w/! L2.w�1/k

kbkBMO.w/

�
�
1

6
kSD W L

2.w/! L2.w/k2 ' Œw�2A2

shows that any smaller bound in (4.1) would imply a bound for kSD W L
2.w/! L2.w/k

smaller than Œw�A2 , which is well known to be false.
Going back to (4.2), it is easy to show that

1Q.b � hbiQ/ D 1Q.…b 1Q �…
�
b 1Q/; 8Q 2 D :

Then

1

w.Q/

Z
Q

jb � hbiQj dx D
1

w.Q/

Z
Q

j…b 1Q �…
�
b 1Qj dx

�
1

w.Q/

h� Z
Q

j…b 1Qj
2 dw�1

�1=2
w.Q/1=2 C

� Z
Q

j…�b 1Qj
2 dw�1

�1=2
w.Q/1=2

i
�

1

w.Q/1=2
2 k…b W L

2.w/! L2.w�1/k k1QkL2.w/;

which gives us

kbkBMOD .w/ � 2k…b W L
2.w/! L2.w�1/k; 8b 2 BMOD.w/:

Now we proceed with the proof of Theorem 4.1, focusing on …b , with the other para-
products following similarly.

4.2. Maximal truncation of paraproducts

Let b 2 BMOD.Rn/. Define the maximal truncation of the paraproduct …b:

B

…bf .x/ WD sup
P2D

ˇ̌̌ X
Q©P

.b; hQ/hf iQ hQ.x/
ˇ̌̌
:

We will need the following result, which may be found in Lemma 2.10 of [13].
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Proposition 4.7. Suppose T WL2.Rn/! L2.Rn/ is a bounded linear or sublinear oper-
ator. If T satisfies

supp.T hQ/ � Q; 8Q 2 D ;

then T is of weak .1; 1/ type, with

j¹x W jTf .x/j > ˛ºj � CnB
1

˛
kf k1;

where Cn is a dimensional constant and B WD kT kL2!L2 .

Now we prove some properties of
B

…b .

Proposition 4.8. The maximal truncation defined above satisfies the following.

(i)
B

…b dominates …b :

j…bf .x/j �
B

…bf .x/; 8x 2 Rn:

(ii)
B

…b is dominated by MD…b :

B

…bf .x/ �M
D.…bf /.x/; 8x 2 Rn:

(iii)
B

…b is strong .2; 2/:

k
B

…bf k2!2 . kbkBMOD kf kL2 :

(iv)
B

…b is weak .1; 1/:

j¹x 2 Rn W
B

…bf .x/ > ˛ºj �
Cn

˛
kbkBMOD kf k1:

Proof. (i) Let x 2 Rn. Then

…bf .x/ D
X
Q2D

.b; hQ/hf iQ hQ.x/ D
X
k2Z

.b; hQk /hf iQk hQk .x/;

where for every k 2 Z, Qk is the unique cube in D with side length 2k that contains x.
Fix m 2 Z:ˇ̌̌ X

k>m

.b; hQk /hf iQk hQk .x/
ˇ̌̌
D

ˇ̌̌ X
Q©Qm

.b; hQ/hf iQ hQ.x/
ˇ̌̌
�

B

…bf .x/:

Taking m! �1 finishes the proof.
(ii) Let P 2 D and define

FP .x/ WD
X
Q©P

.b; hQ/hf iQhQ.x/:
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If x 2 P , then jFP .x/j D jh…bf iP j1P .x/; so

jFP .x/j � hj…bf jiP 1P .x/ �M
D…bf .x/:

If x … P , then there is a unique k � 0 such that

x 2 P .kC1/ n P .k/:

So, there is a unique

P0 2 .P
.kC1//.1/; P0 ¤ P

.k/;

such that x 2 P0. Then

!

"#

"
"(%)

"(%'()

FP .x/ D .b; hP .kC1//hf iP .kC1/ hP .kC1/.x/C
X

Q©P .kC1/

.b; hQ/hf iQ hQ.P
.kC1//„ ƒ‚ …

DhQ.P0/

D

h X
Q©P0

.b; hQ/hf iQ hQ.P0/
i
1P0.x/ D h…bf iP0 1P0.x/;

so once again jFP .x/j �MD…bf .x/. This therefore holds for all x 2Rn and all P 2D ,
which proves (ii).

(iii) This follows immediately from (ii) and the well-known bound for …b in the
unweighted case:

k
B

…bf kL2 � kM
D…bf kL2 . k…bf kL2 . kbkBMODkf kL2 :

(iv) Once we verify supp.
B

…bhQ/ �Q for allQ 2D , we use (iii) and Proposition 4.7
to conclude (iv):

B

…bhQ.x/ D sup
P2D

ˇ̌̌ X
R©P

.b; hR/hhQiR hR.x/
ˇ̌̌
D sup
P¨Q

ˇ̌̌ X
R©P;R¨Q

.b; hR/ hQ.R/ hR.x/
ˇ̌̌
;

which is clearly 0 if x … Q.

4.3. Proof of Theorem 4.1

I. The BMO decomposition.
We make use of the following modification to the Calderón–Zygmund decomposition

used in [6] to essentially reduce a weighted BMO function to a regular BMO function.
Given a weight w on Rn, a function b 2 BMOD.w/, a fixed dyadic cube Q0 2 D , and
" 2 .0; 1/, let the collection

E WD ¹maximal subcubes R � Q0 such that hwiR > 2
"
hwiQ0º;

and put
E WD

[
R2E

R:
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This is the collection from the usual CZ-decomposition of w, restricted toQ0, so we have

jEj D
X
R2E

jRj <
"

2
jQ0j:

Now consider the function

a.x/ WD
X

Q�Q0;Q 6�E

.b; hQ/ hQ.x/:

We claim that a is in unweighted BMO, with

(4.3) kakBMOD �
4

"
hwiQ0 kbkBMOD .w/:

To see this, we look at the term

1Q.x/.a.x/ � haiQ/ D
X
P�Q

.a; hP / hP

for Q 2 D . Since a is supported in Q0, we only need to look at cubes Q 2 D which
intersect Q0.

Case 1. Q � Q0.
If Q � E, the term is 0. So suppose Q 6� E, and writeX

P�Q

.a; hP / hP D
X
P�Q
P 6�E

.b; hP / hP D
X
P�Q

.b; hP / hP �
X
P�Q
P�E

.b; hP / hP

D

X
P�Q

.b; hP / hP �
X

R2E;R�Q

X
P�R

.b; hP / hP

D 1Q.b � hbiQ/ �
X

R2E;R�Q

1R .b � hbiR/:

Then

1

jQj

Z
Q

ja.x/�haiQj dx �
1

jQj

Z
Q

jb.x/�hbiQj dxC
1

jQj

X
R2E;R�Q

Z
R

jb.x/�hbiRj dx

� hwiQ kbkBMOD .w/ C
1

jQj

� X
R2E;R�Q

w.R/
�
kbkBMOD .w/

� 2hwiQ kbkBMOD .w/ �
4

"
hwiQ0 kbkBMOD .w/;

where we used that E is a disjoint collection, and that hwiQ � 2
"
hwiQ0 since Q 6� E.

Case 2. Q © Q0.
Similarly,X
P�Q

.a; hP / hP D
X
P�Q0
P 6�E

.b; hP / hP D 1Q0 .b � hbiQ0/ �
X
R2E

1R .b � hbiR/;
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so

1

jQj

Z
Q

ja.x/�haiQj dx �
1

jQj

Z
Q0

jb.x/�hbiQ0 j dxC
1

jQj

X
R2E

Z
R

jb.x/�hbiRj dx

�
jQ0j

jQj
hwiQ0 kbkBMOD .w/ C

1

jQj

X
R2E

w.R/ kbkBMOD .w/

� 2hwiQ0 kbkBMOD .w/ �
4

"
hwiQ0 kbkBMOD .w/:

Remark 4.9. This BMO decomposition is similar to that of [6], where the auxiliary BMO
function was defined as

a0.x/ WD 1Q0.x/ b.x/ �
X
R2E

.b.x/ � hbiR/1R.x/;

the classical format of the “good function” in the Calderón–Zygmund decomposition. This
function is also in unweighted BMO, and has the structure

a0.x/ D

²
b.x/; if x 2 Q0 nE;
hbiR; if x 2 R;R 2 E:

In relation to our function a, note that

a0.x/ D 1Q0.x/hbiQ0 C a.x/:

The main advantage in working with a here instead is that haiQ0 D 0, and the paraprod-
uct …af has a simple structure:

…af D
X
Q�Q0
Q 6�E

.b; hQ/hf iQ hQ:

The main advantage of a0 was that

8Q 2 D.Q0/; Q 6� E; ha
0
iQ D hbiQ and .a0; hQ/ D .b; hQ/;

so whenever dealing with a cube Q 6� E, we can replace any average or Haar coeffi-
cient of b – the function in weighted BMO – with the average or Haar coefficient of a0

– the function in unweighted BMO. With our function a, the Haar coefficient property is
preserved and it is all we need here:

8Q 2 D.Q0/; Q 6� E; haiQ D hbiQ � hbiQ0 and .a; hQ/ D .b; hQ/:

This has many advantages, since any usage of inequalities involving a or a0 will not add
any extra Ap characteristics. For instance, we can use the well-known bound for Haar
coefficients of BMO functions (resulting from applying the John–Nirenberg theorem to
replace the L1 norm in the BMO definition with the L2 norm):

j.a; hQ/j .
p
jQj kakBMOD :

It also allows us to use the results on
B

…af from the previous section.
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II. Use the properties of the maximal truncation of unweighted BMO paraproducts.
We claim that there exists a constant C0, depending on the dimension n and on ", such

that the set:

F WD
®
x2Q0 W

B

…af .x/ > C0kakBMOD hjf jiQ0
¯S®

x2Q0 WM
D
Q0
f .x/ > C0hjf jiQ0

¯
satisfies

jF j <
"

2
jQ0j;

where MD
Q0

denotes the dyadic maximal function restricted to Q0, i.e.,

MD
Q0
f .x/ D sup

Q�Q0

hjf jiQ 1Q.x/:

Let then the collection

F WD ¹maximal subcubes of Q0 contained in Fº;

and note that F D
S
Q2F Q, a disjoint union.

First use the well-known weak .1; 1/ inequality for the dyadic maximal function:

j¹x 2 Rn WMD'.x/ > ˛ºj �
C1.n/

˛
k'k1;

applied to ' D f 1Q0 . For all x 2 Q0, MD.f 1Q0/.x/ DM
D
Q0
f .x/, so

j¹x 2 Q0 WM
D
Q0
f .x/ > C0hjf jiQ0ºj �

C1

C0
jQ0j:

Since a 2 BMOD , we can apply the weak .1; 1/ inequality for
B

…a according to Propo-
sition 4.8(iv):

j¹x 2 Rn W
B

…a'.x/ > ˛ºj �
C2.n/

˛
kakBMOD k'k1;

and let again 'D f 1Q0 . By the definition of a, in this case,…af sums only overQ�Q0,

so regardless of x we have …a' D …a.f /. The same holds for
B

…a:

B

…a'.x/D sup
P2D

ˇ̌̌ X
Q©P

.a;hQ/h'iQhQ.x/
ˇ̌̌
D sup
P¨Q0

ˇ̌̌ X
Q©P;Q�Q0;Q 6�E

.b;hQ/h'iQhQ.x/
ˇ̌̌
;

so

j¹x 2 Q0 W
B

…af .x/ > C0 kakBMOD hjf jiQ0ºj

D j¹x 2 Q0 W
B

…a.f 1Q0/.x/ > C0 kakBMOD hjf jiQ0ºj

� j¹x 2 Rn W
B

…a.f 1Q0/.x/ > C0 kakBMOD hjf jiQ0ºj

�
C2

C0kakBMOD hjf jiQ0
kakBMOD kf 1Q0k1 D

C2

C0
jQ0j:
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Then, as we wished,

jF j �
C1 C C2

C0
jQ0j <

"

2
jQ0j

if we choose C0 large enough:

C0 D
C.n/

"
�

Join the collections E and F into

G WD ¹maximal subcubes of Q0 contained in E [ F º;

which then satisfies

(4.4)
ˇ̌̌ [
R2G

R
ˇ̌̌
< " jQ0j:

Note that while it is not true that G is the union on E and F , it is true that G D E [ F ,
where G D

S
Q2G Q.

We show that:

(4.5) 1Q0.x/ j…b;Q0f .x/j � 2C0 kakBMOD hjf jiQ0 1Q0.x/C
X
R2G

1R.x/ j…b;Rf .x/j:

Since kakBMOD �
4
"
hwiQ0kbkBMOD .w/, this yields

1Q0.x/ j…b;Q0f .x/j.
C0

"
hwiQ0 kbkBMOD .w/ hjf jiQ0 1Q0.x/C

X
R2G

1R.x/ j…b;Rf .x/j:

Once we have this, we recurse on the terms of the second sum, and repeat the argument:
for each R 2 G , construct a disjoint collection ¹R0º � R satisfying j [R0j < "jRj and

1R j…b;Rf .x/j .
C0

"
hwiR kbkBMOD .w/ hjf jiR1R.x/C

X
R0

j…b;R0f .x/j:

So we construct the collection �.Q0/ recursively, starting with Q0 as its first element,
its �-children are G , and so on. We have

1Q0.x/ j…b;Q0f .x/j .
C0

"
kbkBMOD .w/

X
Q2�.Q0/

hwiQ hjf jiQ 1Q.x/„ ƒ‚ …
DAw

�.Q0/
jf j.x/

:

Recall that C0 � C.n/=", thus

j…b;Q0f .x/j .
C.n/

"2
kbkBMOD .w/A

w
�.Q0/

jf j.x/:

The collection �.Q0/ satisfies the �-children definition of sparse collections:X
P2ch� .Q/

jP j < " jQj; 8Q 2 �.Q0/;
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so �.Q0/ is 1
1�"

-Carleson. Then, choosing " D .ƒ � 1/=ƒ, we have the desired sparse
collection with Carleson constant ƒ such that

j…b;Q0f .x/j � C.n/
� ƒ

ƒ � 1

�2
kbkBMOD .w/A

w
�.Q0/

jf j.x/:

III. Proof of (4.5).
We start by noting that

…b;Q0f .x/ D
X
P�Q0

.b; hP /hf iP hP .x/

D

X
P�Q0;P 6�E

.b; hP /hf iP hP .x/„ ƒ‚ …
…af .x/

C

X
R2E

X
P�R

.b; hP /hf iP hP .x/„ ƒ‚ …
…b;Rf .x/

;

so we may decompose …b;Q0f as

1Q0.x/…b;Q0f .x/ D …af .x/C
X
R2E

…b;Rf .x/:

Now, we have to account for the relationship to the collection F and its union F . For the
different cases below, it may be helpful to consult Figure 1 to visualize the position of x.

Case 1: x 62 F .

In this case,
B

…af .x/ � C0kakBMOD hjf jiQ0 , and since
B

…a dominates …a,

j…af .x/j �
B

…af .x/ � C0 kakBMOD hjf jiQ0 ;

so we have, for x 62 F ,

j…b;Q0f .x/j � C0 kakBMOD hjf jiQ0 C
ˇ̌̌ X
R2E

…b;Rf .x/
ˇ̌̌
:

– Case 1a. If x 2 E, there is a unique R0 2 E such that x 2 R0. But then R0 2 G : say
R0 62 G ; since R0 � E, it must have been absorbed by a larger R © R0, R 2 F . Then
R0 � R � F , which contradicts x 62 F . So thenX

R2E

…b;Rf .x/ D …b;R0f .x/;

and for x 2 E n F ,

j…b;Q0f .x/j � C0 kakBMOD hjf jiQ0 C j…b;R0f .x/j; R0 2 G ;

which gives (4.5) in this case.
– Case 1b. If x 62 E, then the second part of the sum is 0 and we are done, having

simply j…b;Q0f .x/j � C0kakBMOD hjf jiQ0 .
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Case 2b.i

Case 2b.ii Case 2a

Case 1a

Case 1b

Figure 1. Orange cubes: E; blue cubes: F .

Case 2: x 2 F .
Then there is a unique P 2 F such that x 2 P . Look first at the term …af .x/ DP
Q�Q0

.a; hQ/hf iQhQ.x/. Since x 2 P , this can be expressed as

…af .x/ D
X
Q� OP

.a; hQ/hf iQ hQ.x/C
X
Q�P

.a; hQ/hf iQ hQ.x/;

where OP denotes the dyadic parent of P . All sums here are understood to be over dyadic
cubes contained in Q0, since all Haar coefficients of a are 0 elsewhere. We split the first
term into two:ˇ̌̌ X

Q� OP

.a; hQ/hf iQ hQ.x/
ˇ̌̌
�

ˇ̌̌ X
Q© OP

.a; hQ/hf iQ hQ.x/
ˇ̌̌

„ ƒ‚ …
DWA.x/

Cj.a; h OP /hf i OP h OP .x/j„ ƒ‚ …
DWB

:

The term A is constant on OP , so if A.x/ > C0kakBMOD hjf jiQ0 , then

A.y/ > C0 kakBMOD hjf jiQ0 for all y 2 OP .

This would force
B

…af .y/ > C0kakBMOD hjf jiQ0 for all y 2 OP , so OP � F – but this
contradicts maximality of P in F . Therefore,

A � C0 kakBMOD hjf jiQ0 :

Let us now look at the term B . If OP � E, then B D 0. Otherwise, since j.a; hQ/j .p
jQj kakBMOD ,

B �

q
j OP j kakBMOD hjf ji OP

1q
j OP j

D kakBMOD hjf ji OP ;
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but hjf ji OP � C0hjf jiQ0 – otherwise,MD
Q0
f .y/ > C0hjf jiQ0 for all y 2 OP , which would

force OP � F , again contradicting maximality of P in F .
So ˇ̌̌ X

Q� OP

.a; hQ/hf iQ hQ.x/
ˇ̌̌

. C0 kakBMOD hjf jiQ0 ;

giving us that
j…b;Q0f .x/j . C0 kakBMOD hjf jiQ0 C jC j;

where the term C is defined as

C WD
X

Q�P;Q 6�E

.b; hQ/hf iQ hQ.x/C
X
R2E

…b;Rf .x/:

We claim that
C D …b;R0f .x/;

where R0 is the unique element of G such that x 2 R0:
Case 2a. If P \ E D ;, then R0 D P and C D …b;Pf .x/ D …b;R0f .x/ (the first

term is …b;P and the second term is 0).
Case 2b. If P \E ¤ ;:
– Case 2b.i. If P contains some elements of E , then again R0 D P and we can “fill

in the blanks” in the first term with the …b;R’s from the second term:

C D
h X
Q�P;Q 6�E

.b; hQ/hf iQ hQ.x/C
X

R2E;R�P

…b;Rf .x/
i
C

X
R2E;R 6�P

…b;Rf .x/„ ƒ‚ …
D0

D …b;Pf .x/ D …b;R0f .x/:

– Case 2b.ii. If P � S0 for some S0 2 E , then R0 D S0 and the first term in C is 0
(because P � E), and the second term is

P
R2E …b;Rf .x/D…b;S0f .x/D…b;R0f .x/.

This concludes the proof.

Remark 4.10. One can also use Theorem 4.1 to obtain a full Rn domination, losing the
requirement for no infinitely increasing chains. Say f is such that supp.f / � Q0 for
some Q0 2 D (or, for general compactly supported functions, supp.f / is contained in at
most 2n disjoint Qk 2 D). Then

…bf .x/ D …b;Q0f .x/C
� X
Q©Q0

.b; hQ/
1

jQj
hQ.x/

� Z
Q0

f:

Note that, as an application of the modified CZ-decomposition used in Part I of the proof
above, one can obtain

j.b; hQ/j .
p
jQj hwiQ kbkBMOD .w/; 8Q 2 D ; b 2 BMOD.w/:



Paraproducts, Bloom BMO and sparse BMO functions 2109

To see this, letQ 2D and apply the decomposition to b overQ (so hereQ plays the role
of Q0):

E WD ¹maximal subcubes R � Q0 such that hwiR > 2hwiQºI E WD
[

R2E
R;

a WD
X

P�QIP 6�E

.b; hP /hP 2 BMOD with kakBMOD � 4hwiQ kbkBMOD .w/:

Since Q itself is not selected for E , Q 6� E, so .a; hQ/ D .b; hQ/. Finally,

j.b; hQ/j D j.a; hQ/j .
p
jQj kakBMOD �

p
jQj 4hwiQ kbkBMOD .w/:

Returning to …bf , suppose first that x 62 Q0. Then there is a unique k � 1 such that
x 2 Q

.k/
0 nQ

.k�1/
0 , and

…bf .x/ D
� X
Q�Q

.k/
0

.b; hQ/
1

jQj
hQ.x/

� Z
Q0

f:

Then, for x 62 Q0,

j…bf .x/j �
X

Q�Q
.k/
0

j.b; hQ/j
1

jQj

1p
jQj

� Z
Q0

jf j
�

.
X

Q�Q
.k/
0

hwiQ kbkBMOD .w/

1

jQj

Z
Q0

jf j D kbkBMOD .w/

X
Q�Q

.k/
0

hwiQhjf jiQ:

If, on the other hand, x 2 Q0,

…bf .x/ D …b;Q0f .x/C
X
Q©Q0

.b; hQ/
1

jQj
hQ.Q0/

Z
Q0

f;

so
j…bf .x/j . j…b;Q0f .x/j C kbkBMOD .w/

X
Q©Q0

hwiQ hjf jiQ:

By Theorem 4.1, there is a ƒ-Carleson sparse collection �.Q0/ such that

j…b;Q0f .x/j � C.n/
� ƒ

ƒ � 1

�2
kbkBMOD .w/ Aw

�.Q0/
jf j.x/:

So form a sparse collection � as follows:

� WD �.Q0/
S 1[

kD1

Q
.k/
0 ;

with Q.k�1/
0 being the only �-child of Q.k/

0 for all k � 1. It is easy to see that � is
.ƒC 1/-Carleson. Moreover, the associated sparse operator

Aw
� f D Aw

�.Q0/
f C

X
Q©Q0

hwiQ hf iQ 1Q



I. Holmes Fay and V. Fragkiadaki 2110

appears exactly in the previous inequalities, which can be expressed as:

x 62 Q0 W j…bf .x/j . kbkBMOD .w/ Aw
� jf j.x/I

x 2 Q0 W j…bf .x/j . C.n/
� ƒ

ƒ � 1

�2
kbkBMOD .w/ Aw

� jf j.x/:

So indeed
j…bf .x/j . kbkBMOD .w/ Aw

� jf j.x/; 8x 2 Rn;

for all compactly supported f .

Remark 4.11. If we let f � 1 in …b;Q0f , we have

…b;Q01.x/ D
X
Q�Q0

.b; hQ/ hQ.x/ D .b.x/ � hbiQ0/1Q0.x/:

So, applying Theorem 4.1 to the function f � 1 essentially gives us that local mean oscil-
lations of functions in BMOD.w/ can be dominated by one of the sparse BMO functions
in Section 3.2:

Corollary 4.12. There is a dimensional constant C.n/ such that, for all ƒ > 1, weights
w on Rn, b 2 BMOD.w/ andQ0 2D , there is aƒ-Carleson sparse collection �.Q0/ �

D.Q0/ such that

j.b.x/ � hbiQ0/1Q0.x/j � C.n/
� ƒ

ƒ � 1

�2
kbkBMOD .w/

X
Q2�.Q0/

hwiQ 1Q.x/

D C.n/
� ƒ

ƒ � 1

�2
kbkBMOD .w/ b

w
�.Q0/

.x/:

A. Proof of Theorem 3.3

Recall that we are given � 2 ‡D.Rn/ and the associated function

b� WD

X
Q2�

1Q;

and we wish to show that
kb�kBMOD � ƒ;

where ƒ is the Carleson constant of � .

Proof. Let Q0 2 D be fixed. We wish to estimate

1

jQ0j

Z
Q0

jb � hbiQ0 j dx;

and recall that
.b� � hb� iQ0/1Q0 D

X
Q2�;Q¨Q0

1Q � .�� /Q01Q0 ;
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where
.�� /P WD

1

jP j

X
Q2�;Q¨P

jQj � ƒ; 8P 2 D :

In fact,
if P 2 � ; then .�� /P � ƒ � 1:

With Q0 2 D fixed, here we are only looking at

�.Q0/ WD ¹Q 2 � W Q � Q0º:

We define the collections as sets:

�1 WD ch� .Q0/ (the �-children of Q0); and S1 WD
[
Q12�1

Q1I

�2 WD ¹Q2 2 ch� .Q1/ W Q1 2 �1º; and S2 WD
[
Q22�2

Q2;

so �2 are the “�-grandchildren” ofQ0, the second generation of �-cubes inQ0. Generally,

�k WD ¹Qk 2 ch� .Qk�1/ W Qk�1 2 �k�1º and Sk WD
[

Qk2�k

Qk :

Note that:
• Each Sk is a disjoint union of Qk 2 �k , as each �k is a pairwise disjoint collection.
• The sets Sk satisfy Q0 � S1 � S2 � � � �
• Moreover, ˇ̌̌ 1\

kD1

Sk

ˇ̌̌
D 0;

since
T1
kD1 Sk is exactly the set of all x contained in infinitely many elements of

�.Q0/. We can also see this directly, as
1X
kD1

jSkj � ƒjQ0j;

and the series converges.
For ease of notation, denote for now

� WD .�� /Q0 D
1

jQ0j

X
Q2�;Q¨Q0

jQj � ƒ:

We have:

1

jQ0j

Z
Q0

jb� � hb� iQ0 j dx D
1

jQ0j

Z
Q0

ˇ̌̌ X
Q2�;Q¨Q0

1Q.x/ � �
ˇ̌̌
dx

D
1

jQ0j

Z
Q0nS1

j� j dx C
1

jQ0j

Z
S1

ˇ̌̌ X
Q2�;Q¨Q0

1Q.x/ � �
ˇ̌̌
dx:
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Since S1 is a disjoint union of Q1 2 �1,

1

jQ0j

Z
S1

ˇ̌̌ X
Q2�;Q¨Q0

1Q.x/ � �
ˇ̌̌
dx

D
1

jQ0j

X
Q12�1

Z
Q1

ˇ̌̌ X
Q2�;Q�Q1

1Q.x/ � �
ˇ̌̌
dx

D
1

jQ0j

X
Q12�1

Z
Q1

ˇ̌̌ X
Q2�;Q¨Q1

1Q.x/C 1 � �
ˇ̌̌
dx

D
1

jQ0j

h X
Q12�1

� Z
Q1nS2

j1 � � j dx C
X
Q22�2
Q2¨Q1

Z
Q2

ˇ̌̌ X
Q2�
Q�Q2

1Q.x/C 1 � �
ˇ̌̌
dx
�i

D
1

jQ0j
j1 � � j

X
Q12�1

jQ1 n S2j„ ƒ‚ …
jS1nS2j

C
1

jQ0j

X
Q22�2

Z
Q2

ˇ̌̌ X
Q2�
Q¨Q2

1Q.x/C 2 � �
ˇ̌̌
dx:

So

1

jQ0j

Z
Q0

jb� � hb� iQ0 j dx D �
jQ0 n S1j

jQ0j
C j1 � � j

jS1 n S2j

jQ0j

C
1

jQ0j

X
Q22�2

Z
Q2

ˇ̌̌ X
Q2�
Q¨Q2

1Q.x/C 2 � �
ˇ̌̌
dx:

We can apply the same reasoning to each Q2 2 �2:Z
Q2

ˇ̌̌ X
Q2�
Q¨Q2

1Q.x/C 2 � �
ˇ̌̌
dx

D

Z
Q2nS3

j2 � � j dx C
X
Q32�3
Q3¨Q2

Z
Q3

ˇ̌̌ X
Q2�
Q¨Q3

1Q.x/C 3 � �
ˇ̌̌
dx;

and we can conclude inductively

1

jQ0j

Z
Q0

jb� � hb� iQ0 j dx(A.1)

D �
jQ0 n S1j

jQ0j
C j1 � � j

jS1 n S2j

jQ0j
C j2 � � j

jS2 n S3j

jQ0j
C � � �
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Suppose for a moment that � � 1. Then (A.1) becomes

�
jQ0 n S1j

jQ0j
C .1 � �/

jS1 n S2j

jQ0j
C .2 � �/

jS2 n S3j

jQ0j
C � � �

D
1

jQ0j

�
� jQ0 n S1j C .1 � �/ jS1j � .1 � �/ jS2j C .2 � �/ jS2j

� .2 � �/ jS3j C .3 � �/ jS3j � � � �
�

D
1

jQ0j

�
� jQ0 n S1j C .1 � �/ jS1j C jS2j C jS3j C � � �

�
:

Remark A.1. Thoroughly, we have above a sequence of partial sums

ak D c jS1 n S2j C .c C 1/ jS2 n S3j C � � � C .c C k � 1/ jSk n SkC1j

D c jS1j � c jS2j C .c C 1/ jS2j � .c C 1/ jS3j

C � � � C .c C k � 1/ jSkj � .c C k � 1/ jSkC1j

D c jS1j C jS2j C jS3j C � � � C jSkj � .c C k � 1/ jSkC1j;

where c D .1 � �/ � 0. We know that
• the series

P1
kD1 jSkj converges, by the Carleson property;

• the “remainder” .c C k � 1/jSkC1j ! 0 as k !1, because the series
P1
kD1 kjSkj

also converges:
1X
kD1

k jSkj D jS1j C 2 jS2j C 3jS3j C � � �

D jS1j C jS2j C jS3j C : : : .� ƒjS1j/

C jS2j C jS3j C � � � .� ƒjS2j/

C jS3j C jS4j C � � � .� ƒjS3j/

C � � �

� ƒ.jS1j C jS2j C � � � / � ƒ
2
jS1j:

So

lim
k!1

ak D c jS1j C

1X
kD2

jSkj � lim
k!1

.c C k � 1/ jSkC1j„ ƒ‚ …
D0

and
1

jQ0j

Z
Q0

jb� � hb� iQ0 j dx D
1

jQ0j

�
� jQ0 n S1j C .1 � �/ jS1j C jS2j C jS3j C � � �

�
holds.

Now,

jS2j C jS3j C � � � D
X
Q12�1

� X
Q2�;Q¨Q1

jQj
�

„ ƒ‚ …
�.ƒ�1/jQ1j becauseQ12�

� .ƒ � 1/
X
Q12�1

jQ1j D .ƒ � 1/jS1j:
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So

1

jQ0j

Z
Q0

jb� � hb� iQ0 j dx �
1

jQ0j

�
� jQ0 n S1j C .1 � �/ jS1j C .ƒ � 1/ jS1j

�
D

1

jQ0j

�
� jQ0 n S1j C .ƒ � �/ jS1j

�
�

1

jQ0j

�
ƒ jQ0 n S1j Cƒ jS1j

�
D

ƒ

jQ0j

�
jQ0 n S1j C jS1j

�
D ƒ:

Generally, if n < � � .nC 1/ for some n 2 N, the right-hand side of (A.1) becomes

1

jQ0j

h
� jQ0 n S1j C .� � 1/ jS1 n S2j C � � � C .� � n/ jSn n SnC1j

C .nC 1 � �/ jSnC1 n SnC2j C .nC 2 � �/ jSnC2 n SnC3j C � � �„ ƒ‚ …
.nC1��/ jSnC1jCjSnC2j C jSnC3j C � � �„ ƒ‚ …

�.ƒ�1/ jSnC1 j

i

�
1

jQ0j

�
� jQ0nS1jC.��1/jS1nS2jC � � � C.��n/jSnnSnC1jC.ƒCn��/jSnC1j

�
�

1

jQ0j

�
ƒ jQ0 n S1j Cƒ jS1 n S2j C � � � Cƒ jSn n SnC1j Cƒ jSnC1j

�
�

ƒ

jQ0j

�
jQ0 n S1j C jS1 n S2j C � � � C jSn n SnC1j C jSnC1j

�
D ƒ:

B. Proof of Theorem 3.8

Say we have a 2 BMOD.Rn/, b 2 BMOD.w/, where w is a weight on Rn, and a fixed
Q0 2 D . We look at

…�a…b;Q0f WD
X
Q�Q0

.a; hQ/.b; hQ/hf iQ
1Q
jQj

and the inner product

.…�a…b;Q0f; g/ D
X
Q�Q0

.a; hQ/.b; hQ/hf iQ hgiQ:

Within Q0, we form the local CZ-decompositions of f and g, and the BMO decomposi-
tion of b:

E1 WD¹maximal subcubes R 2 D.Q0/ such that hjf jiR> 3
"
hjf jiQ0º; E1 WD

S
R2E1

RI

E2 WD¹maximal subcubes R 2 D.Q0/ such that hjgjiR> 3
"
hjgjiQ0º; E2 WD

S
R2E2

RI

E3 WD¹maximal subcubes R 2 D.Q0/ such that hwiR> 3
"
hwiQ0º; E3 WD

S
R2E3

R:
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Based on E3, we define

zb WD 1Q0 b �
X
R2E3

.b � hbiR/1R D
X
Q�Q0
Q 6�E3

.b; hQ/ hQ;

which satisfies zb 2 BMOD.Rn/, with

kzbkBMOD �
6

"
hwiQ0 kbkBMOD .w/:

Moreover, .b; hQ/ D .zb; hQ/ for all Q � Q0, Q 6� E3. Each collection Ei satisfiesX
R2Ei

jRj �
"

3
jQ0j:

Finally, let

E WD E1 [E2 [E3 and E WD ¹maximal subcubes R 2 D.Q0/ such that R � Eº:

Then X
R2E

jRj � " jQ0j:

Now look at .…�a…b;Q0f; g/ and split the sum as

j.…�a…b;Q0f; g/j(B.1)

�

X
Q�Q0
Q 6�E

j.a; hQ/j j.b; hQ/j hjf jiQhjgjiQ C
X
R2E

j.…�a…b;Rf; g/j:

For every Q � Q0, Q 6� E, we have

hjf jiQ �
3

"
hjf jiQ0 ; hjgjiQ �

3

"
hjgjiQ0 ; and .b; hQ/ D .zb; hQ/;

so: X
Q�Q0
Q 6�E

j.a; hQ/j j.b; hQ/j hjf jiQ hjgjiQ

�
9

"2
hjf jiQ0 hjgjiQ0

X
Q�Q0;Q 6�E

j.a; hQ/j j.zb; hQ/j

�
9

"2
hjf jiQ0 hjgjiQ0

� X
Q�Q0

j.a; hQ/j
2
�1=2

„ ƒ‚ …
�C.n/

p
jQ0j kakBMOD

� X
Q�Q0

j.zb; hQ/j
2
�1=2

„ ƒ‚ …
�C.n/

p
jQ0j kzbkBMOD

�C.n/ 6" hwiQ0

p
jQ0j kbkBMOD .w/

;
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where C.n/ is the dimensional constant arising from using the John–Nirenberg theorem.
Finally, we haveX

Q�Q0
Q 6�E

j.a; hQ/j j.b; hQ/j hjf jiQ hjgjiQ

�
C.n/

"3
kakBMOD kbkBMOD .w/ hjf jiQ0 hjgjiQ0 hwiQ0 jQ0j:

Now we recurse on the
P
R2E terms in (B.1) and form �.Q0/ by addingQ0 first, E are

the �-children of Q0, and so on. The collection �.Q0/ satisfies the �-children definition
of sparseness, with X

R2ch� .Q/

jRj � " jQj for all Q 2 �.Q0/,

so it is 1
1�"

-Carleson. So, if we choose " D .ƒ � 1/=ƒ, we haveˇ̌̌ X
Q�Q0

.a; hQ/.b; hQ/hf iQ hgiQ

ˇ̌̌
� C.n/

� ƒ

ƒ � 1

�3
kakBMOD kbkBMOD .w/

X
Q2�.Q0/

hwiQ hjf jiQ hjgjiQjQj„ ƒ‚ …
D.Aw

�.Q0/
jf j;jgj/

:

We summarize this below:

Proposition B.1. There is a dimensional constant C.n/ such that, for all a 2 BMOD , b 2
BMOD.w/, where w is a weight on Rn, fixed Q0 2 D and ƒ > 1, there is a ƒ-Carleson
sparse collection �.Q0/ � D.Q0/ such thatˇ̌̌ X

Q�Q0

.a; hQ/.b; hQ/hf iQ hgiQ

ˇ̌̌
� C.n/

� ƒ

ƒ � 1

�3
kakBMOD kbkBMOD .w/ .A

w
�.Q0/

jf j; jgj/:

Say now we have Bloom weights �; � 2 Ap (1 < p <1), � WD �1=p��1=p on Rn

and a 2 BMOD , b 2 BMOD.�/. Suppose further that a has finite Haar expansion. Then
there are at most 2n disjoint dyadic cubes Qk 2 D , 1 � k � 2n, such that

a D
X
k

X
Q�Qk

.a; hQ/ hQ;

and then
.…�a…bf; g/ D

X
k

.…�a…b;Qkf; g/:
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Given ƒ > 1, by Proposition B.1, there is for each k a ƒ-Carleson sparse collection
�.Qk/ � D.Qk/ such thatˇ̌

.…�a…b;Qkf; g/
ˇ̌
� C.n/

� ƒ

ƒ � 1

�3
kakBMOD kbkBMOD .�/ .A

�
�.Qk/

jf j; jgj/:

Then ˇ̌
.…�a…bf; g/

ˇ̌
� C.n/

� ƒ

ƒ � 1

�3
kakBMOD kbkBMOD .�/ .A

�
� jf j; jgj/;

where
� WD

[
k

�.Qk/

is a ƒ-Carleson sparse collection in ‡D.Rn/.
Take now f 2Lp.�/ and g 2Lp

0

.�0/. By a simple application of Hölder’s inequality,

j.A�
� jf j; jgj/j � kA

�
� W L

p.�/! Lp.�/k kf kLp.�/ kgkLp0 .�0/:

Then

k…�a…b W L
p.�/! Lp.�/k

� C.n/kakBMOD kbkBMOD .�/ sup
�2‡D .Rn/
ƒ.�/Dƒ

� ƒ

ƒ � 1

�3
kA�

� W L
p.�/! Lp.�/k

holds for all a with finite Haar expansion, and therefore for all a. This ends the proof of
Theorem 3.8.

Acknowledgments. I. Fay Holmes deeply thanks Cristina Pereyra for several conver-
sations about this work, and for her general support. Both authors are grateful to the
two anonymous referees for an extremely careful read of our work which led to a much
improved write-up.

Funding. I. Fay Holmes is supported by Simons Foundation Collaboration Grants for
Mathematicians, Award no. 853930.

References

[1] Beznosova, O. V.: Linear bound for the dyadic paraproduct on weighted Lebesgue space
L2.w/. J. Funct. Anal. 255 (2008), no. 4, 994–1007.

[2] Blasco, O.: Dyadic BMO, paraproducts and Haar multipliers. In Interpolation theory and
applications, pp. 11–18. Contemp. Math. 445, Amer. Math. Soc., Providence, RI, 2007.

[3] Bloom, S.: A commutator theorem and weighted BMO. Trans. Amer. Math. Soc. 292 (1985),
no. 1, 103–122.

https://doi.org/10.1016/j.jfa.2008.04.025
https://doi.org/10.1016/j.jfa.2008.04.025
https://doi.org/10.1090/conm/445/08590
https://doi.org/10.2307/2000172


I. Holmes Fay and V. Fragkiadaki 2118

[4] Chung, D.: Sharp estimates for the commutators of the Hilbert, Riesz transforms and the
Beurling–Ahlfors operator on weighted Lebesgue spaces. Indiana Univ. Math. J. 60 (2011),
no. 5, 1543–1588.

[5] Cruz-Uribe, D., Martell, J. M. and Pérez, C.: Sharp weighted estimates for classical operators.
Adv. Math. 229 (2012), no. 1, 408–441.

[6] Duong, X. T., Holmes, I., Li, J., Wick, B. D. and Yang, D.: Two weight commutators in the
Dirichlet and Neumann Laplacian settings. J. Funct. Anal. 276 (2019), no. 4, 1007–1060.

[7] Grafakos, L.: Classical and modern Fourier analysis. Pearson Education, Upper Saddle River,
NJ, 2004.

[8] Holmes, I., Lacey, M. T. and Wick, B. D.: Commutators in the two-weight setting. Math. Ann.
367 (2017), no. 1-2, 51–80.

[9] Hytönen, T.: Dyadic analysis and weights. Lecture notes from a course at University of
Helsinki, Spring 2014. http://wiki.helsinki.fi/download/attachments/130069291/dyadic.pdf.

[10] Lacey, M. T.: An elementary proof of theA2 bound. Israel J. Math. 217 (2017), no. 1, 181–195.

[11] Lerner, A. K. and Nazarov, F.: Intuitive dyadic calculus: the basics. Expo. Math. 37 (2019),
no. 3, 225–265.

[12] Lerner, A. K., Ombrosi, S. and Rivera-Ríos, I. P.: On pointwise and weighted estimates for
commutators of Calderón–Zygmund operators. Adv. Math. 319 (2017), 153–181.

[13] Pereyra, M. C.: Lecture notes on dyadic harmonic analysis. In Second summer school in anal-
ysis and mathematical physics (Cuernavaca, 2000), pp. 1–60. Contemp. Math. 289, Amer.
Math. Soc., Providence, RI, 2001.

[14] Pereyra, M. C.: Dyadic harmonic analysis and weighted inequalities: the sparse revolution.
In New trends in applied harmonic analysis, Vol. 2. Harmonic analysis, geometric measure
theory, and applications, pp. 159–239. Appl. Numer. Harmon. Anal., Birkhäuser/Springer,
Cham, 2019.

[15] Petermichl, S.: Dyadic shifts and a logarithmic estimate for Hankel operators with matrix
symbol. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 6, 455–460.

[16] Treil, S. and Volberg, A.: Wavelets and the angle between past and future. J. Funct. Anal. 143
(1997), no. 2, 269–308.

Received March 14, 2022; revised September 2, 2022. Published online November 25, 2022.

Irina Holmes Fay
Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA;
irinaholmes@tamu.edu

Valentia Fragkiadaki
Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA;
valeria96@tamu.edu

https://doi.org/10.1512/iumj.2011.60.4453
https://doi.org/10.1512/iumj.2011.60.4453
https://doi.org/10.1016/j.aim.2011.08.013
https://doi.org/10.1016/j.jfa.2018.12.003
https://doi.org/10.1016/j.jfa.2018.12.003
https://doi.org/10.1007/s00208-016-1378-1
http://wiki.helsinki.fi/download/attachments/130069291/dyadic.pdf
https://doi.org/10.1007/s11856-017-1442-x
https://doi.org/10.1016/j.exmath.2018.01.001
https://doi.org/10.1016/j.aim.2017.08.022
https://doi.org/10.1016/j.aim.2017.08.022
https://doi.org/10.1090/conm/289/04874
https://doi.org/10.1007/978-3-030-32353-0_7
https://doi.org/10.1016/S0764-4442(00)00162-2
https://doi.org/10.1016/S0764-4442(00)00162-2
https://doi.org/10.1006/jfan.1996.2986
mailto:irinaholmes@tamu.edu
mailto:valeria96@tamu.edu

	1. Introduction
	2. Setup and notations
	3. Sparse BMO functions
	4. Paraproducts and Bloom BMO
	A. Proof of Theorem 3.3
	B. Proof of Theorem 3.8
	References

