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Paraproducts, Bloom BMO and sparse BMO functions

Irina Holmes Fay and Valentia Fragkiadaki

Abstract. We address L? () — L? (L) bounds for paraproducts in the Bloom set-
ting. We introduce certain “sparse BMO” functions associated with sparse collections
with no infinitely increasing chains, and use these to express sparse operators as sums
of paraproducts and martingale transforms — essentially, as Haar multipliers — as well
as to obtain an equivalence of norms between sparse operators #4g and compositions
of paraproducts TT} IT,,.

1. Introduction

In 1985, Steven Bloom proved [3] that the commutator [b, H|f =b-Hf — H(b - f),
where H is the Hilbert transform, is bounded L?(u) — L? (1), where w and A are two A,
weights (1 < p < 00), if and only if b is in a weighted BMO space determined by the two
weights 1 and A, namely 5 € BMO(v), where v := u'/PA=1/? and

o).

Ib(x) — (b)ol dx.
v(0) Jo ¢
In [8], this result was extended to commutators [b, T'] in R” with Calderén—Zygmund
operators 7. Soon after, [12] gave a different proof which yielded a quantitative result for
the upper bound:

A1) B T): LP () > L2 S [bllsmow (14, (AL, )™ P~

The proof in [8] took the route of Hytdnen’s representation theorem (the R”, Calderén—
Zygmund operator generalization of Petermichl’s result [15] on the Hilbert transform),
and relied heavily on paraproduct decompositions. The proof in [12] used sparse opera-
tors and Lerner’s median inequalities to obtain directly a sparse domination result for the
commutator [b, T itself, avoiding paraproducts altogether.

This paper addresses L?(u) — LP(A) bounds for the paraproducts. Based on the
one-weight situation, we suspect that these bounds should be smaller than the ones for
commutators: in the one-weight case,

”b”BMO(v) .= Ssup
0

1, H) : L7 w) — L2 )| 5 bl wl3 74/~
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and
”Hb : Lp(w) — Lp(w)” < ”b”BMO [w]j;ix(l,l/(l’—l))’

are both known to be sharp —see [4, 14] and the references therein — (throughout this paper,
A < B is used to mean A < C(n)B, with a constant depending on the dimension and
maybe other quantities such as p or Carleson constants A of sparse collections, but in any
case not depending on any A, characteristics of the weights involved). In the two-weight
Bloom situation, we show in Theorem 4.3 that

1Ty LP () = L2 S [bllswow) (1)) 7 ™" A,

We do not know if this bound is sharp, and this is subject to future investigations, but the
bound is smaller than the one in (1.1). In fact, it is strictly smaller with the exception of
p = 2, when both bounds are [1t]4, [A]4,. We can however show that our bound is sharp
in one particular instance, namely when & = w and A = w™! for some A, weight w. We
show this in Section 4.1 via an appeal to the one-weight linear A, bound for the dyadic
square function.

Obviously, this bound does not recover the one-weight situation: letting u = A = w
for some w € A,, and v = 1, our bound would give

ITTp : L2(w) — L2(w)] < Ibllsmo [w]?,

when we know that the optimal bound is linear in the A, characteristic — this was shown
in [1] using Bellman function techniques. If the optimal Bloom paraproduct bound is to
recover this one-weight situation, we suspect it would need a dependency on [v]4, —as it
would need to somehow account for the case 4 = A, orv = 1.

The proof of the Bloom paraproduct bound above relies on dominating the paraprod-
uct by a “Bloom sparse operator” sy f 1= > 5cs(v)o(f)olo, where § is a sparse
collection, and proving that A satisfies the bound [/L]ZJ (p—1) [A]4, above. We do this in
Theorem 3.9. The domination of the paraproduct is treated in Section 4.

Before all this, however, we consider in Section 3 a special type of sparse collections,
TP (R™), which are sparse collections with no “infinitely increasing chains” (a terminol-

ogy borrowed from [9]). We see that any such collection can be associated with a BMO
function
bs = Z ﬂQ,

which satisfies ||bs||lsmo < A, where A is the Carleson constant of § (we show this in
Appendix A). Once we have a BMO function, we can immediately talk about paraproducts
with symbol bg. In fact, we see in Section 3.3 that these functions allow us to express any
sparse operator Ag, S € YL (R"), as a sum of paraproducts and a martingale transform:

Asf = Hbéf+HZSf+T,éf,

where T is a martingale transform:

1
Tes = Y (ws)s(fhy)hy, where (ts)y := 7 Y, HI=A VJed.
JeD 1e8,1CT
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As discussed in Section 3.3, this gives us an upper bound for norms of sparse operators in
terms of norms of paraproducts and martingale transforms, and in fact, the equivalence

ITIp |l 2e (w)— L2 (w)

sup [[As|lLrw)—>Lrw) Zn,p, A SUP ,
SerD beBMOPL I ”BMO’D
T3 |7 (w)—> L7 (w)
+ sup + su
beBMOP ||b”BMO‘fO el 17 lloo

ITellzr ) —>Lr @)

The process used to obtain the BMO function bg associated with § also works with
weights, and obtaining a function in weighted BMO spaces associated with § € T2 (R"):
if w € Ap, the function

Qes
is in BMO® (w), with
”bZS’U”BMOuD(w) = 2[U)]A‘,,Ap-

Repeating the process above, we try to express +g as a sum of the paraproducts associated
with %’ and a martingale transform, but we discover instead the operator

§f = (wo(flelo.

Qes

and its decomposition as
A [ =Ty f + Wy f + Tep f,

detailed in Proposition 3.4.

While it would be interesting if the paraproducts and the martingale transform could
somehow be “separated” above, giving an independent proof that these operators have
the same dependency on [w]4, by showing each is equivalent to norms of Ag, we are
able to show that norms of sparse operators are equivalent to certain compositions of
paraproducts. In Section 3.4, we see that

Ag ~ IT1Z T1

* ~
s bs’

where Zg is another BMO function we can easily associate with § (omitting signatures,

see Remark 2.1):
bs =Y VI0|ho.

Qes

This provides the following upper bound:

[As : LP(w) - LP(w)]| _ TGy : LP (w) — LP(w)]|

SeTP (R") A " 4,beBMOD lallgmo® 161gpo®
Ay=A
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For the other direction, we show in Appendix B —using a bilinear form argument — that
for all Bloom weights i, A, v, BMO functions a € BMO‘D, b € BMO? (v),and A > 1,

T, - LP () — LP (D) ]|

A \3
< C)lallpyoo IBllpvony  sup (=) 4% : L7 () = L7 ).
$eYP (R") -

Note that taking i = A = w above, for some w € A,, we have the one-weight result
* .TD P < max(1,1/(p—1))
Ty 2 LP (w) — LP(w)|| < llallgmo® [10]lpmo® W]y, :

Moreover, we obtain the equivalence of norms

IT*T, : LP(w) — L?(w)
sup  |lAs : LP(w) > LP(w)|| ~A,pn sup I b ” .
SeTD (R a,beBMO? (R") l@llpyo2 1B lpmo»

Section 4 gives a proof of a pointwise domination of paraproducts by sparse operators.
It relies on first proving certain local pointwise domination results, which are then applied
to BMO g (w) functions with finite Haar expansion, and extending to the general case. So
this argument works whenever I1; acts between L? spaces where the Haar system is an
unconditional basis — Lebesgue measure or A, weights. The argument also works with the
weighted BMO norm,

1
1Bl = SUP / b — (b)oldx.
BMO®L (w) 0cD w(0) 0 (&)

defined in terms of an L!(dx) quantity —the Haar system is not unconditional in L' (dx),
but we can choose an ordering of the Haar system that ensures convergence in L!(dx).
The choice to work with b rather than with compactly supported f is motivated by
the desire to obtain domination by sparse operators with no infinitely increasing chains.
Specifically, we work with restricted paraproducts:

Mp0,f(x) = Y (b.ho) (floho(x). YQo€ D,
0€Qo

and construct a sparse collection § (Qo) C D (Qo) which “ends” at Qo, and such that A f
pointwise dominates ITj o, f on Qg. Since the Haar expansion of b effectively dictates
the Haar expansion of ITj (as well as ITy and TI'p), this will lead from finite Haar expan-
sion b’s to collections in Yg (R”).

2. Setup and notations

2.1. Dyadic grids
By a dyadic grid D on R” we mean a collection of cubes QO C R” that satisfies
* every Q € D has side length 2% for some k € Z: £(Q) = 2;
« for a fixed ko € Z, the collection {Q € D : £(Q) = 2k0} forms a partition on R”;
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e forevery P, Q € D, the intersection P N Q is one of { P, @, @}. In other words, two
dyadic cubes intersect each other if and only if one contains the other.

For example, the standard dyadic grid on R” is:
Do := 2750, )" +m): k € Z,m e Z"}.

We assume such a collection D is fixed throughout the paper. For every Q € D and
positive integer k > 1, we let Q) denote the kth dyadic ancestor of Q in D, i.e., the
unique R € O such that R O Q and £(R) = 2K£(Q). Given Q¢ € D, we let D(Qy)
denote the collection of dyadic subcubes of Qy:

D(Qo) :={Q € D: Q C Qo}.

2.2. Haar functions

Given a dyadic grid O on R, we associate to each I € D the cancellative Haar func-
tion hy := h? = ﬁ(ﬂh — 17_), where I and I_ are the right and left halves of /,

respectively. The non-cancellative Haar function is 4! := —L_1;. The cancellative Haar

VT
functions {h;}7cp form an orthonormal basis for L?(RR, dx), and an unconditional basis
for LP(R), 1 < p < oo. Throughout this paper, we let (-, -) denote inner product in
L?(dx), so we write for example

= (fihr)hp.

1€D

where (f,hy) = [ fhydx is the Haar coefficient of f corresponding to /.
In R”, we have 2" — 1 cancellative Haar functions and one non-cancellative: for every

dyadic cube Q = I1 X I x --- x I, where every I}, € D is a dyadic interval with common
length | I | = £(Q), we let

n
200 = A (e = [ A G,
k=1

where g € {0, 1} for all k, and ¢ = (eq, ..., &) is known as the signature of hEQ. The
function th is cancellative except in one case, when ¢ = 1. As in R, the cancellative
Haar functions form an orthonormal basis for LZ(R”, dx), and an unconditional basis for
LP(R",dx),1 < p < o0.

Remark 2.1. We often write

f=Y (fho hg

0eD

to mean

=Y (fhy)hy,
Q€D,
e#£1
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omitting the signatures, and understanding that 4o always refers to a cancellative Haar
function. There is really only one instance for us where the signatures matter, and that is
in the definition of the paraproduct I'p in R”, n > 1.

Note that whenever P & Q for some dyadic cubes P and Q, the Haar function /¢
will be constant on P. We denote this constant by

hg(P) := the constant value s takeson P & Q.

It is easy to show that

(flo= Y (fhr)hr(Q). VO €D,

R20
where throughout the paper

1
(Fo -—@/Qfdx

denotes average over O, and sums such as Y p - or g, are understood to be over
dyadic cubes.

2.3. A, weights

A weight is a locally integrable, a.e. positive function w(x) on R”. Any such weight
immediately gives a measure on R” via dw := w(x)dx and

/fdw ::/f(x)w(x)dx

yields the obvious L?-spaces associated with the measure w, which we denote by L? (w):

1120 = / 1P w(x) dox.

Given 1 < p < oo, wesay w € A if
[w]a, = sup (w)o (w’)pQ_1 < 00,
Q

where the supremum is over cubes Q C R”, p’ denotes the Holder conjugate of p, that is,
1/p + 1/p’ = 1, and the conjugate weight w’ is given by

w = wl™P = PP = V=D
In fact, w € A, if and only if the conjugate weight w’ is in A/, with
1/(p—1
[wa, =[] ?".

We restrict our attention to dyadic A, weights, denoted AP and defined in the same way
except the supremum is only over dyadic cubes Q € D. Sometimes we use the standard
LP-duality (L?(w))* = L? (w) with inner product (-, )4y, and other times we think of
(L?(w))* ~ L? (w') with regular Lebesgue inner product (-, -). We refer the reader to
Chapter 9 of [7] for a thorough treatment of A4, weights.
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2.4. Paraproducts and BMO
We say b € BMO(R") if

1
b llsMo@n) = Sup —— / 1b(x) — (b)o| dx < oo
o 101 Jo

where the supremum is over cubes Q C R”. Given a weight w on R”, we say that b is in
the weighted BMO space BMO(w), b € BMO(w), if

1
Q)/Q|b(x)—(b)Q|dx<oo.

b = su
[ ||BMO(w) QP w(

We similarly restrict our attention to dyadic BMO spaces, BMO® and BMO® (w) for
the weighted version, both defined in the same way except the supremum is over dyadic
cubes Q € D.

In R, we have two paraproducts:

Mo () = 3 (o) (F)rhr () and T £(e) = 3 (b (o)~

IeD 1D 7]

They have the property that
bf =Ty f + T f + Iyb,

and their boundedness is usually characterized by some BMO-type norm of the symbol b.
In R”, we have three paraproducts:

My f(x) = Y (b.ho) (f)oho(x).

Q€D
1
M £ = 3 (b.ho) (f,ho) féf) ,
QeD
1
[y f(x):= (b, h%) (f,hh) —— K&,
Q§@s,n§;8#n ¢ ¢ VIO ©

The paraproducts IT, and ITy are adjoints in L2(R"), and Ty, is self-adjoint. Again, keep
in mind that signatures are omitted in the definitions of I, and IT, since all Haar functions
involved have the same signature. As for I'y, signatures are included because they differ
—see [8] for details. Generally, in the L7 -situation, we still have

(My £ 8) = (£ T} 2),

so if we think of ITp: L? () — LP(A) for two A, weights p and A, then its adjoint
is ITy: L? (M) — L? (i) —where we are thinking of Banach space duality in terms of
(L?(n))* ~ L? (i) and (L?(X))* ~ L? (1'), both with regular Lebesgue inner prod-
uct (-, -).



I. Holmes Fay and V. Fragkiadaki 2086

3. Sparse BMO functions

3.1. Sparse families

Let 0 < 7 < 1. A collection § C D is said to be n-sparse if for every Q € § there is a
measurable subset Eg C Q such that the sets { Eg } pes are pairwise disjoint, and satisfy
|[Eg| > n|Q]forall Q €.

Let A > 1. A family § C D is said to be A-Carleson if

Y. IPI=AIQl, VQeD.

PeS,PCQ

It is easy to see that it suffices to impose this condition only on Q € §. It is also easy
to see that any n-sparse collection is 1/n-Carleson. Far less obvious is the remarkable
property that any A-Carleson collection is 1/A-sparse, which is proved in the now classic
work [11].

A special type of sparse collection which appears most frequently in practice is defined
in terms of so-called ““S -children.” Suppose a family § C O has the property that

> |Pl<elQl. VQES.
Pechs(Q)

where a € (0, 1) and chg(Q), the S-children of Q, is the collection of maximal P € §
such that P & Q. Then § is (1 — «)-sparse: let

Eg:=0\ |J P
Pechs (0)

which are clearly pairwise disjoint, and satisfy |Eg| > (1 — )| Q|. A collection that is
sparse with respect to the Lebesgue measure is also sparse with respect to any A, mea-
sure w. Recall that (see [7], Proposition 9.1.5) an equivalent definition for [w]4,, is

(0] sup sup (111

4, = —=

" gen rerriow) EQ(S17)
[QN{]f|=0}/=0

where

w “— 1
Epf = —w(Q) /Qfdw.

Taking f = 14 above, for some measurable subset A of a fixed dyadic cube Q, we get

('ﬂ)pg[w] v yic.0eo.

A b
10| " w(Q)
So, say § is n-sparse with pairwise disjoint { Eg }pes subsets Eg C Q and |[Eg| > n|Q|.
Then \Eol (Eo)
p w
7= (T2 = (wly, = 2,
10| w(Q)
and

G.1) w(©Q) = — [l w(Eo), YO &S5.
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3.2. Sparse BMO functions

We borrow the following terminology from [9]: we say a collection S C & has an infinitely
increasing chain if there exist { Qk }xen, Ok € S, such that Qx & Qg4q, forall k € N.
The following lemma is also found in [9].

Lemma 3.1. [fa collection § C D has no infinitely increasing chains, then every Q € §
is contained in a maximal Q* € 8, in the sense that there exists no R € § such that R2 Q.
Any two maximal elements P* and Q* of S are disjoint.

This type of collections will be important for us, so we let
TP (®R")
denote the set of all sparse collections in O which have no infinitely increasing chains.

Lemma 3.2. Let § € YL (R") be a sparse collection with no infinitely increasing chains.
Then the set of points contained in infinitely many elements of S has measure 0.

Proof. Let §* denote the collection of maximal elements of §. Since § € YL (R"), every
Q € S is contained in a unique Q* € §*. Any x which belongs to infinitely may elements
of § must then belong to an infinitely decreasing chain

X€CO0rS-S0,C0,=0"

terminating at some maximal Q* € $*. Fix any such chain and let A be the set of points
contained in all Q, thatis, A = ﬂ}:o:l Q- Then for any k € N,

k
kl4] < Y101 < AlQ*|,

i=1

where A is the Carleson constant of §. So |A]| < %A| Q*|forall k € N, and then |A| = 0.
Alternatively, since {Qy} is a decreasing nest of sets, we have |A| = limg_ o |Qk|,
and limg_, oo | Q| = O because the series

o0
Yo=Y 10l =A|0%
k=1 Qes,QCQO*

converges. ]

The lemma above ensures that the following definition is sound: with every sparse
collection § € YL (R") with no infinitely increasing chains we associate the function

bs := Z lo.

By Lemma 3.2 we know that bg is almost everywhere finite: if x is contained in infinitely
many elements of §, then bg(x) = oo, but this can only happen on a set of measure zero.



I. Holmes Fay and V. Fragkiadaki 2088

Note also that bg is locally integrable: for some Qg € D,

1
bsloo =50 ( X l0l+ 3 10)

0€es,0CQp 0€S$,0200
1
= a0 > 101+ #{Q€S5:02 00} < 0.
o ges,0coo

<00 because ST L

<A

Then, for some Q¢ € D,

(bs —(bs)oo) Loy = ), lo+#{Q €S:0 2 Qo}lg,

0€8,0C00
1
—|QQ°| Y 101-#{0 €S : 02 00,
o ges,0c,
1
= > ﬂg—|QQ°| > 0l
0eS$,0CQo o ges,0c,
In fact, we can reduce this further to
1
(3.2) (bs — (bs)oo) Toy = ﬂQ—|QQ°| 3> ol
0€5,050, o 0es,0c00

which is clear if Q¢ ¢ S, and if Q¢ € §, then 1g, — ‘]IQLQ"llQ(ﬂ cancel. A simple estimate
then shows that

1 1
10u1 ] Vs = {bs)ooldx < 152 > 10I=2A, VQoe D,
01/ Qo o1 9es,0c00

so bs € BMO? (R™). However, a more careful estimate is possible. We prove' the follow-
ing in Appendix A.

Theorem 3.3. Let § € Y2 (R") be a sparse collection with no infinitely increasing chains
and Carleson constant A. Then the function by = des 1o isin BMO?® (R"), with

This process works to yield a weighted BMO function as well: with any § € T2 (R”)
and w € A;? we associate the function

bfgu = Z(w)Q ]1Q.

Q€S

'We include this proof simply because we found it interesting, and we hope the process of breaking down
the integrals outlined in this proof can be adapted to the weighted situation in a future work.
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As before, S € T2 (R™) ensures that bsw is a.e. finite, locally integrable, and

1
Tg,(b¥ — (b¥)o) = Y. <w>QﬂQ—|Q‘~’°| Y w(@). VYQoeD.
0€5,050, o pes,0c0,

By (3.1),

1
- Z w(Q) < [wla, AP(w)g,,
190l 4es B0,

which then easily gives

1

— by — (bg dx <2[w]s, AP,
0o o, ¥ = Boldx = 2(uls,

SO
by € BMO®(w). with [|b¥ |pyo® () < 2[wla, A”.

In fact, appealing to A, instead, we can eliminate the power of A and simply obtain

”b:?U”BMofD(w) S [w]AooA =< [w]Ap A.

3.3. Sparse operators as sums of paraproducts and martingale transforms

For ease of notation, we work in R below, but the obvious analog for R” follows easily in
the same way. Consider

AY [ =D (w)ir ()il

Ies$

where § € T?(R) and w is an A;? weight on R, 1 < p < oo. A particularly interest-
ing instance of AY occurs when w = v € Aao, where v 1= pu'/PA~1/P for two weights
n, A€ A;? . We treat this operator in more detail in Section 3.5.

Using the bg’ function associated with § and w, we write

(3.3) AY f =AY f—bg - f+bg - f =AY f—by -f+(Hb§f+HZ?f+Hfb§”).
Now recall that

(b§)s =@+ D (w)y, Vo€,

JeS§, Iy
where 1
(), = > w(), YJedD,
| |163,1§J

a quantity always bounded if w € A;? :

(tg)s =< [wla, AP (w),.
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So
by (x) = Y (fihy) (b )shy(x)

JeD

=Y |+ Y k]
JeD KeS,KDJ

= > @) (Lhhs )+ 3 (LY wk).
JeD JeD Ke$S,KDJ

=Ty /()

The second term can be further explored as

YL o( Y k)

JeD KeS,KDJ
= >k (X L) = D )k (F) = ()6 1k ()
Ke$ JCK Ke$§
= f(x)- D> (wk Le(x) = Y (wk (f)k Ik (x) = f(x) - bY (x) — AY f(x).
Kes$ Kes$

Returning to (3.3),
AY S = AGS —bg -+ My [+ Ty f) + Tep f + f b — A f.
so we have the following.

Proposition 3.4. Any weighted sparse operator AY, where w € A;(D is a weight on R and
S € TP (R) is a sparse collection with no infinitely increasing chains, may be expressed as

3.4 ?f = Hbgf + HZ:gvf + T,:gvf,

where the first two terms are the paraproducts with symbol by, the sparse BMO? (w)
Sfunction associated with § and w, and the third term is

Tew f(x) == Y (&) s (fhs) hy(x),
JeD

1
where (7)== i Z w(l) < [w]g, AP (w)s, VJ e D.
1€$S,1CJ

Remark 3.5. In case w = 1, we obtain the unweighted situation

where T is a martingale transform:

1
Teg = Y (zs)s (fihy)hy. where (ts); = Y, HI=A VIed
JeD 1e$,1CT
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Remark 3.6. In fact, (3.4) expresses sparse operators as Haar multipliers: recall that a
Haar multiplier is an operator of the form

Tof(x) =Y ¢s(x)(fhy)hy(x).

JeD

where {¢(x)}sep is a sequence of functions indexed by D. It is known (see [2]) that

(M +T13) f = > (b= (b)) (fhy) hy.
JeD
So, from (3.4),
Sr@) =Y [0F)— (b)) 1) + @) ) (fhy) hy(x).

7ed 67 ()

Look more closely now at (3.5): Ag = I, + H;S + T, . This gives an upper bound
for ||As 1 LP(w) — LP(w)] in terms of the norms of paraproducts and the martingale
transform (when usually it is the norms of sparse operators that are used as upper bounds):

s fllLea) < 1Mag fllLrw) + 1T fllLea) + 1 Tes £ Lo qw)-

Divide above by A sy := A, the Carleson constant of §, and recall that ||bs||z\;00 < A,
as well as ||Ts]oo < A:

[As fllLra _ I Tpg f e w) N Ty f e qw) N 1T fllLrw)

A - A A A
_ Mg fllzraw Ty fllerw) 1 Tes £llLow)
”bS ”BMO'@ ||b8 ”BMou‘D ||TS ”oo

from which we can deduce that, for all A > 1,

l[As : LP(w) — LPw)| _ [MTp @ LP(w) — LP(w)|
$eYP(R) A " peBMO® ||b||BMo®
A(s)=A ”b”BMOJ) 0
[T : LP(w) — LP(w)] T : LP(w) - LP(w)|
+ sup + .
beBMOP ”b”BMoi’ Tel™® Illoo
161l 5pp00 0 Izlloo7#0

Given the well-known domination results [10] for the martingale transform and paraprod-
ucts, we obtain

ITTp : LP (w) — LP(w)]|

sup ||As : LP(w) — LP(w)|| ~a,p  sup

$eTP (R) beBMOL 12]lgpo®
Aisy=A 18]l o> 0
[T, : LP(w) — LP(w)] | Ty : LP(w) — L?(w)||
+ sup + .
beBMOP ||b”BMOJD Tel® 17 lloo

”b”BMO@ #0 Izllo7#0
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Remark 3.7. It would be interesting if the martingale and the paraproducts could be
“separated” somehow, and to obtain independently that the paraproducts and the martin-
gale transform have the same dependency on [w]4, by showing they are both equivalent
to ||As ||. However, we can show that the norms of 4 are equivalent to norms of certain
compositions of paraproducts. We do this next.

3.4. Sparse operators and compositions of paraproducts

Consider the composition

1
M,/ = Y (a.hg)(b.ho)(f)o |—QQ|-
QeD

We show in Appendix B, using a bilinear form argument, that:

Theorem 3.8. There is a dimensional constant C(n) such that, for all Bloom weights
onR" u, A€ A, (1 < p<o0),v:=puPr71/?P BMO functions a € BMO® (R") and
b € BMO®? (v), and A > 1,

ITZTT, + LP(n) — LP (D) ||

A \3
< Clallpo 1Blanon ey swp (=) 145 2 L2Go) = LP@)]l.
SeTL (R") -

Some immediate observations about this result:

¢ From Theorem 3.9,

-1
T L2 () = LP W) S llaligpo® 15llsvo0 ) (147" M4, -

14
* Take 4 = A = w, for some w € A,. Then v = 1 and we obtain in the one-weight
situation:
I3 L2 (w) — L2 )] 5 lallgyoo [1Bl1gyon Dol 771,

* Itis easy to see that I1}I1; = HZ I1,, so the same result holds for HZ I1,, with b €
BMO?® (v) and ¢ € BMO?®.

Let S € TP (R"). We associated with § the BMO function bs = > oes lo- There is
another, even more obvious BMO function we can associate with §:

bs =Y VIOlhg= Y V]0lh%.

Qes Q€S e#1
For any Q¢ € D,

- . 1 1
bs — (b 2dx = —— =@2"-1) —
lbs — (bs)g,|” dx 0ol > 101 =( )|Q0| > 10|

Qol Joy 0C0¢,0€S$ 0CQo,0€8
e#1

IA

2" — 1A,

”53 ”BMO‘D =V (2n — 1)/\

SO
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Moreover,
* T Q Q
M Tz /=) (bs hp)*(f o o) = = 10I(f oo =@ =1 Y (elo,
QeD Qes Qes
e#£1 e#£1
so we may express the sparse operator #Ag as
As = 1 nx H
§ T o1 hs
Then
Iobs fllray _ 1 155 Sleee WG TG fllra
A ] A -
18512,
Ty f Il L2 (w)
" apvenmo® lallgyo2 1P llpyoo ,
which means that forall A > 1,
sup [As : LP(w) - LP(w)]| _ TGy : LP (w) — LP(w)]|
SeTP (R") A  4,beBMOP lallgmo® 161mo®
A=A

Combined with Theorem 3.8, we have

TG Mg : LP(w) — LP(w)]||

sup  [[As 1 LP(w) — LP(w)|| =a,pn sup b
SeTD (R") a,beBMO®D (R") lallgmo® 18]l gvo®
A=A

3.5. The Bloom sparse operator A

§f =) (Molflel

Qes

Consider

for a sparse collection § C D(R"), where u,A € A, (1 < p <oo)andv := w'/PA=1P gre
Bloom weights. In looking to bound this operator L? (i) — L? (1), the first obvious route
is to appeal to the known one-weight bounds for the usual, unweighted sparse operator

Asf = (folo.

Qes

We want something like || A f|Lrn) < C| fllLr(u)» and we use duality to express

A fllLry = sup  [(Agf )]
geL? (V)
gl pr sy =<1
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So we look for a bound of the type |(A f, &) < C|lfllLrulIgllLy 1) We proceed as
follows:

(A3 £.91 =] Do (Nel@elel = Y (/Do llghev(Q)

Qes Qes
ff(Z<|f|>Q<|g|>Q lo)dv S/(Aslfl)(d’oslgl)ﬂl/"l_l/”dx
Qes

= llAsfLrgo llAs gl Le o)
< [l As: L2 ()= L2 ()| - | As : L7 W)= L2 W) - LS e go gl Lo g

This yields the same dependency on the A, characteristics of © and A as obtained
in [12] for commutators:

[Ag : LP (1) = LP (D) < ([ila, [)L]Ap)max(l,l/(p—l))

We give another proof, inspired by the beautiful proof in [5] of the A, conjecture for usual
unweighted sparse operators, which yields a smaller bound.

Theorem 3.9. Let § C D be a sparse collection of dyadic cubes, let |, A € A;;D, for

1 < p < o0, be two Ap weights on R", and let v := /LI/P/X_I/P. Then the Bloom sparse
operator

5= (o(fele

Qes
is bounded LP () — LP () with

(3.6) IAS = LP () — LP Q)| < A”FP72(p')? (W, [Ma,
= APFP72(pp') [l 7V [Alay
where A is the Carleson constant of §S.

Proof. In looking for a bound of the type

A4S fllLeay < Clf llLrgo.

we consider instead ¢ := fu': then ||¢ ||z (u) = || f Il - SO We look instead for a bound
of the type

lAS (frOlray < ClLf llzrgey-
Using the standard L?(A)-L?’ (1) duality with the inner product (-, )43, we write

lAs (fu)llLey = sup (A3 (f1), g1,
gELP (M), lIgll pr ) <1

meaning we finally look for a bound of the type

(A (f1). g = ClLf ey Ig1lLr )
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As in [5], we make use of the weighted dyadic maximal function:

M2 f(x) = s E%|f1o(x).

and the following property of being L4 (u)-bounded with a constant independent of u.

Theorem 3.10 (See, for example, [9] for a proof.). For any locally finite Borel measure u
on R"™ and any q € (1, 00),

37 M2+ L) > L) < 4"
We bound
(AF (g = | Y- o (e (er)el 0l = Y (1£1W)e (lglhe el Ql.
Qes Qes

We express the averages involving f and g as weighted averages:
S e llgiM e (el = D" EHIFD (K)o Edlgh (Ve (e lQl.
Qes Qes
Apply the fact that
(Vo < (wg” (M)g”

(an easy consequence of Holder’s inequality), and the fact that for any A4, weight w, we
have

[w])?” = sup w)y? (w)y?

to go further:

Qes
< [y Y7 Y G Elgh (g (A g” 0]
Qes
LT P ST @1 (Bleh /(217 ()7
Qes
<l (@7 ) (X Ela” 1)
Qes Qes

Applying (3.1), we get that

W(Q) < [Wlay AP 1 (Eg) = [ul} ' AP 1 (Eg)

and
A(Q) < [Ma, AP A(E9),
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so we may later use disjointness of the sets { Ep }pes in the integrals below:

(Y (&) fl)pu’(Q))l/p SN eI Y (1 £1) 1 (Eo)) "

Qes$ QeS

A (Y [ @17’} < g a0 (3 / w2 pra)’”
Qes v @

Qes

’_ ’ 1/p r_ ’
< [V AP ( /R MRy a) T = WS TN F e

/_ / ’ / 1/P
< WA | g (Y (Ele)” 4(0))

Qes
1/p" A p/p’ P 4 1/p’ p/p o 73 \?
<A (EplgD” A(Eg)) ~ < M7 A (MA &) dA
p
Qes Qei)
< P AP UIMP el gy < L7 AP pligl o -

’

Putting these estimates together,

|(AS(f). gD < 12 DL (L2 AP P D Loy RLEZ AP gl Lo
= (57 \a, A 125212 ol | F Loy 18l o
= (114, Ma, APT2 72 pp! || f ooy 181 Lr oy

which proves Theorem 3.9. u

4. Paraproducts and Bloom BMO

We show the following pointwise domination result, inspired by ideas in [10] on pointwise
domination of the martingale transform. We begin with a paraproduct restricted to a certain
dyadic cube:

M,/ = Y (b.ho)(f)oho.
0CQo

so everything is the same except we only look inside D (Q).

Theorem 4.1. There is a dimensional constant C(n) such that the following holds. For
every A > 1, weight w on R", b € BMO® (w), fixed dyadic cube Q¢ € D and f €
LY(Qy), there is a A-Carleson sparse collection $(Qo) C D(Qyo) (depending on b, w, f)
such that

A
Vre 0o, Mg, /0] = C) (127) Iblayion ) Alion /1)

The same holds for the other paraproducts T1;, and T'.

Assuming this, return to the Bloom situation for a moment. We have:
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Corollary 4.2. Given Bloom weights (1, A € A;,@, v =puYPAYP forall b e BMO?P (v),

2
Ty = L2 1) = L2 < € blliongy sup (=) 145 : L7 () = L2 @)
SeT

A—-1

The same holds for the other paraproducts HZ and T'p.

The key here is that the weights are A, weights, and the Haar functions are an uncon-
ditional basis for L?(w) if and only if w € A, —see [16] for a first proof of this fact,
or the helpful discussions on this in [13]. With this in hand, we note that letting the size
of Q¢ in I1p, o, go to infinity will sweep all the Haar functions in the “quadrant” of R” in
which Qy lives (since we are in the dyadic situation, there are 2" “quadrants” of R” which
are non-overlapping — think of the four quadrants when visualizing R? with the standard
dyadic grid centered at 0.) So a choice of 2" cubes, one for each quadrant, and adding up
the limits yields the result.

In light of the bound for AY in Theorem 3.9, pick some value for A, say A = 2. Then
we have the following.

Theorem 4.3. Given Bloom weights i, A € AP, v = p"/PA=Y? forall b € BMO® (v),

1Ty LP () = L2 < C, p) 16 a0y 1147~ (AL, -
The same holds for the other paraproducts 1y and Tp.
Remark 4.4. The result actually follows immediately for IT}, since
1Ty« L2 () — L2 = [T L7 Q) — L7 ()|
and
v = ()L’)I/P/(;L’)_I/P/ — ()L—p’/p)l/p’(M—p’/p)—l/p’ =,

Remark 4.5. As discussed in the introduction, we do not know if this bound is sharp, but
we can show that one particular instance of this inequality is sharp, namely when yu = w
and A = w™! for some Aéo weight w, in which case the “intermediary”” Bloom weight is
alsov = w:

(4.1) I, : L2(w) — L2w ™) < 1bllmoqw)» [w13,-

Remark 4.6. In terms of necessity, it was shown in [8] that boundedness of ITp: L? (1)
— LP(}) does imply that b € BMO® (v). An interesting question is: does this also imply
that u, A € A,? These questions were partly answered for commutators in [8], but since
paraproducts are “less singular” than commutators, it is possible one can go beyond the
assumption p, A € A,.

4.1. Proof that the quadratic bound [w][z12 in (4.1) is sharp (via the one-weight
linear A, bound for the dyadic square function)

The starting point is a simple observation: given a weight w on R”, the weight itself
belongs to BMO(w), with

lwllsmow) =< 2.
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To see this, if Q is a cube,

1
@/Q w(x) — (w)ol dx < (—Q)(w(Q) +w(Q) =2.

So we may look at the paraproducts with symbol w: in R, these are

Mof =Y () (b and T f = 3 (k) () 2

1€D I1eD |I|
If w € AP, these are bounded:
1Ty : L2 (w) — L2 (w™ | = T, : L2 (w) — L2 (w ™ DI S [[wllgyon ) [WIE, = 2 [w]G,-
Recall the decomposition
Sw=T1, f+ 10 f + rw,

and note that the map f + fw is an isometry L?(w) — L?(w™!). So

Mew =Y "(fhr)(w)rhy

1D
is bounded L?(w) — L?(w™):
I w21y < (14 2[1My : L2 (w) = L2 ™Y ) [/ 2 w)-

Consider the dyadic square function

So f = (Z(f hi)? |1|) ,
and look at its L2 (w)-norm:

1S9 f W2y = D (Fh> ) = (£ 32 (fho) (w) hi)

I1€eD 1€D
= (f Hyw) < [MwllL2q-1) 1/ 22qw)-

SO
1S9 f 720y < (14 21Ty« L2(w) = L2 ™)) [1£1720)-
Since
.72 20,,,—1
w2 UMy L2w) — L2@ )|
2 ||w||BMo(w)

(we will show this in a moment) and
1 1

< -
2 7 Jlwlismow)
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we have further that

”S:Df ”1242(11))

2 Iy : L2 (w) = L2~ ]| Iy @ L*(w) — L2 (w™ ||
<1/ 122 (2 +4 ).
lwlBmow) lwlBmow)
which yields
1S9 f Il L2qw) < \/g(llnw (L (w) — Lz(w_l)ll)l/2
||f||L2(w) ”w”BMO(w)
M, : L? L*(w™Y)|\1/2
BV ST DS SUSITING
beBMO® (w) 151l BMOw)

Finally, the fact that

(”Hb L (w) — Lz(w‘l)ll)

1
>~ [ISp : L*(w) — L*(w)|* ~ [w]j,
161l BMO(w) 6

sup
beBMO® (w)

shows that any smaller bound in (4.1) would imply a bound for ||Sgp : L?(w) — L?(w)]|
smaller than [w]4,, which is well known to be false.
Going back to (4.2), it is easy to show that

lo(b—(b)o) =1o(Il1p —M}1p). VQ € D.

Then
1 *
w(Q)/'b x_@/QH_[bﬂQ—Hb]lQﬁlx
Y2 o) \ ST
: w(Q) / Moo dw™) w(0)2 + (/Q M5 1l dw™) " w(0)?]
= WZ |, : L2 (w) — L*(w™ Y| 1ollL2w).

which gives us
151l syo® wy < 201Tp  L2(w) — L2 ™). Vb € BMO® (w).
Now we proceed with the proof of Theorem 4.1, focusing on [T, with the other para-

products following similarly.

4.2. Maximal truncation of paraproducts
Let b € BMOg(R"). Define the maximal truncation of the paraproduct ITj:
>
Ty f(x) := sup \ 3 (b ho) (fo ho()].
PeD ooP

We will need the following result, which may be found in Lemma 2.10 of [13].
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Proposition 4.7. Suppose T: L>(R") — L?(R") is a bounded linear or sublinear oper-
ator. If T satisfies
supp(Tho) C O, YO € D,

then T is of weak (1, 1) type, with

1
{x ATf O] > ajf = G B [If 1
where Cy, is a dimensional constant and B := ||T |2 2.

>
Now we prove some properties of 1.

Proposition 4.8. The maximal truncation defined above satisfies the following.

>
(i) IIp dominates I1:

>
ITI, f(x)] < I, f(x), VxeR"
>
(ii) Ty is dominated by ML T1:
= D
O, f(x) < MT(Ip f)(x), VxeR™
>
(iii) ITp is strong (2,2):
>
[T f ll2—2 < 1Pllgpo2 | f ll22-

>
(iv) Tl is weak (1,1):

n > Cn
[r € R T, £(0) > all = 2 lbllgyon 1/ 1.
Proof. (i) Let x € R". Then

My f(x) = Y (b, ho)(floho(x) =) (b, ho) (f)oy hoy (),

0edD keZ

where for every k € Z, Qy is the unique cube in £ with side length 2% that contains x.
Fixm € Z:

| S tho)(Neche, | =| 3 B.ho) (o ho)] < Ty f0).
k>m 020m

Taking m — —oo finishes the proof.
(ii) Let P € O and define

Fp(x):= ) (bho)(f)oho(x).

Q2P



Paraproducts, Bloom BMO and sparse BMO functions 2101

If x € P, then |Fp(x)| = |{ITp f)p|1p(x), so

|Fp(x)| < (I f1)p Lp(x) < MPTL, f(x). e
If x ¢ P, then there is a unique k > 0 such that o
x e T\ p@),
Py
So, there is a unique
(k+1) (k)
Po e (P™" )y, Po# P, = P

such that x € Py. Then

Fp(x) = (b.hpasn) (f)pasn hpasn () + Y (b.ho)(f)o ho(P®TD)
N’
Q2PpEry =ho(Po)

=[ X 6.h0) (Nroho(P)]iry() = (T f)ry 1ry (1),

02P
so once again | Fp (x)| < M®LTI, f(x). This therefore holds for all x € R” and all P € D,
which proves (ii).

(iii) This follows immediately from (ii) and the well-known bound for IT; in the
unweighted case:

>
T f 2 < IMPT fllz2 S T f 2 < 16 lgpoo |1 £ 112

>
(iv) Once we verity supp(I1pfig) C Q forall Q € O, we use (iii) and Proposition 4.7
to conclude (iv):

>
Myho() = sup | D (b.hr) (ho)rha()| = swp | 3 (b.hr) ho(R) hr(x)],
PeD pop PSO RopRSO

which is clearly 0 if x ¢ Q. u

4.3. Proof of Theorem 4.1

1. The BMO decomposition.

We make use of the following modification to the Calder6n—Zygmund decomposition
used in [6] to essentially reduce a weighted BMO function to a regular BMO function.
Given a weight w on R”, a function b € BMO® (w), a fixed dyadic cube Q¢ € D, and
& € (0, 1), let the collection

& := {maximal subcubes R C Qg such that (w)r > %(w)QO},

and put

E::UR.

Reé&
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This is the collection from the usual CZ-decomposition of w, restricted to Q¢, so we have
£
[El = IRl <5100l
Reé&
Now consider the function
a(x):= Y (b.hg)ho(x).
0CQ0,0¢E
We claim that a is in unweighted BMO, with

4
(4.3) lallgpoo = " (W), 151l gpo® ()-
To see this, we look at the term
Lo(x)(a(x) = (a)o) = ) (a,hp)hp
PCO

for O € D. Since a is supported in Qp, we only need to look at cubes Q € D which
intersect Qy.

Case 1. Q C Q.

If O C E, the term is 0. So suppose Q ¢ E, and write

D (@ hp)hp =Y (b,hp)hp =) (bhp)hp— Y (bhp)hp

PcQ PcQ PcoQ PcQ
PZE PCE
=Y (bhp)hp— Y Y (b.hp)hp
PCQ Re&,RCQ PCR
=lo(b—(h)o)— > 1r(b—(b)r).
Re&,RCQ
Then
ol
L a)—ta) |dxs—f b -Bloldr+ — 3 | 16~ (b)el dx
101Jo 0] 191 elTco /R
1
< (wle Bllsmosw +15:( Y w) Blmosw
Re&,RCQO

4
< 2{w)g IblleMo 5 w) = z (w) g, 1D1IBMO 5 (w)

where we used that & is a disjoint collection, and that (w)p < %(w)Q0 since Q ¢ E.
Case?2. Q 2 Q.

Similarly,
D (a.hp)hp = Y (b.hp)hp =1g,(b—(b)g,) — Y _ 1r(b—
PCQ PCQo Re€&

PZE
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SO
1 1 1
_ — dx < — b(x)—(b d — b(x)—(b)r|d
|Q|/Q|a<x) (a)ol x_|Q|[QO| (- (b) gyl HlQ'I;/R' () (b) &l dx
1
< 00l 1B lmop 0 + = 3 (R [B o
0] 0l &

4
< 2{(w) g, IbllBMO 5 (w) = z (W) g, 18 llBMO 4 (w)-

Remark 4.9. This BMO decomposition is similar to that of [6], where the auxiliary BMO
function was defined as

a'(x) := Loy (x) b(x) = Y (b(x) = (b)R) IR (%),
Re&

the classical format of the “good function” in the Calderén—Zygmund decomposition. This
function is also in unweighted BMO, and has the structure

, | b(x), ifxeQo\E,
“(x)_{w)R, ifxeR,ORES.

In relation to our function a, note that

a'(x) = 1oy (x) (b) g, + a(x).

The main advantage in working with a here instead is that {a) o, = 0, and the paraprod-
uct I1, f has a simple structure:

M.f = ) (b,ho){f)oho.

0CQ
O¢E

The main advantage of a’ was that

VO eD(Qo). Q¢ E. (d')o=(b)o and (da'.hg)= (b.ho),

so whenever dealing with a cube Q ¢ E, we can replace any average or Haar coeffi-
cient of b —the function in weighted BMO — with the average or Haar coefficient of a’
—the function in unweighted BMO. With our function a, the Haar coefficient property is
preserved and it is all we need here:

VO € D(Qo), QZ E, (a)o =(b)o—(b)o, and (a,hg) = (b.ho).

This has many advantages, since any usage of inequalities involving a or @’ will not add
any extra A, characteristics. For instance, we can use the well-known bound for Haar
coefficients of BMO functions (resulting from applying the John—Nirenberg theorem to
replace the L! norm in the BMO definition with the L? norm):

[(a.ho)| < V2 llallgmoo-

>
It also allows us to use the results on I, f from the previous section.
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IL. Use the properties of the maximal truncation of unweighted BMO paraproducts.

We claim that there exists a constant Cyp, depending on the dimension n and on &, such
that the set:

Fi={xe€Q: FIaf(X) > Collallgyon {1/} U{x€Qo: ME f(x) > Coll f1) oo}

satisfies e
|F| < 3 [Qol.

where M é@o denotes the dyadic maximal function restricted to Qy, i.e.,

M2 f(x) = sup {|f])olo(x).
QCQop

Let then the collection
F := {maximal subcubes of Q¢ contained in F},

and note that F = UQG? 0, a disjoint union.
First use the well-known weak (1, 1) inequality for the dyadic maximal function:

Ci(n)
[x € R - MPp(x) > o} < —Z gl

appliedto ¢ = f1p,. Forall x € Qo, Mi)(fﬂQO)(x) = Mg]f(x), o)

C
[{x € Qo ME f(x) > Coll f oo}l < C—; Q0.

>
Since a € BMO®, we can apply the weak (1, 1) inequality for I, according to Propo-
sition 4.8 (iv):

Ca(n)

o

>
{x e R" : Map(x) > a}| <

||CZ||BM0:D ”90”1’

and let again ¢ = f1¢,. By the definition of a, in this case, I1, f sums only over Q C Qo,
>
so regardless of x we have I1,¢ = T1,(f). The same holds for I1,:

>
Map() = sup | Y @ho)lp)oho)|=swp | D (bho)lp)oho()].
Pedoop PZ00 0op.0c00.0¢F

SO

lx € Qo Ta f(x) > Collallgyon (/D oo}l
= ltx € Qo : Tla(f100)(x) > Colallgon (| /1) 00l
x € R : My(F10)(x) > Colallgpon (£ 0o}

C2 C2
< lalgo | /1ol = — 1Qol.
Collallguon (1 /gy ' BMO® 1 2C Il = ¢

IA
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Then, as we wished,

Cl + C,
|F| = ———10Q0l < IQoI
if we choose Cy large enough:
C
= SO
e

Join the collections & and ¥ into
= {maximal subcubes of Q¢ contained in £ U F'},

which then satisfies
(4.4) ) U R‘ < ¢]Qol.
Re§

Note that while it is not true that § is the union on & and %, it is true that G = E U F,

where G = Jgeg O-
We show that:

(4.5) 1o, (x) [Tp,0, f(X)] < 2Co llallgyoo (1) 0o oo () + Y, 1r(x) [Ty & f(x)].
Reg

Since ||al|gpo0 < E( )00 10| gpo® () this yields

C
10y () [T,00 /(O] £ = () 04 1B llsyi02 {1/ 1120 Lo () + Y LR () [Tl o f ()]
Reg

Once we have this, we recurse on the terms of the second sum, and repeat the argument:
for each R € §, construct a disjoint collection { R’} C R satisfying | U R’| < ¢|R]| and

C
12 TR f ()] £ = (W) [Bllprio0 wy (1 DRIRG) + D [Ty S ().
R/

So we construct the collection §(Qg) recursively, starting with Qg as its first element,
its S-children are &, and so on. We have

C
Loy ()[04 /()] £ = Ibllanoncy Y. (W)o(IfDoto).
0eS$(Qo)

=‘A’§}(Qo)|f‘(x)

Recall that Cy ~ C(n)/e, thus
c (n)

|p,0,f(x)| < ||b||BMo@(w)<A’ (Q0)|f|(x)

The collection §(Qy) satisfies the §-children definition of sparse collections:

> |Pl<elQ]. YO €S8(Qo).

Pechs (Q)
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s0 $(Qo) is ﬁ-Carleson. Then, choosing ¢ = (A — 1)/ A, we have the desired sparse
collection with Carleson constant A such that

A
|Mp,00/ ()] < C(n)(m)zubnwoso(w) L on | F1(2)-

III. Proof of (4.5).
We start by noting that

M0, /(x) = Y (b.hp)(f)p hp(x)
PCQp
= Y G (Nehe()+ Y Y (b he)(f)phe(x),
PCQo,PZE Re& PCR

g f(x) My, R f(x)
so we may decompose I1j g, f as
Loy (x) Tp,00 f(X) = Ta f(X) + Y Ty g f(x).
Reé&

Now, we have to account for the relationship to the collection ¥ and its union F'. For the
different cases below, it may be helpful to consult Figure | to visualize the position of x.

Casel: x ¢ F.

> >
In this case, I, f(x) < Colla|gymoo (| f|) 0o> and since I1, dominates 1,

My f(0)] < Ta f(2) < Collallgyon {1/ o,
so we have, for x &€ F,
M504 f (] = Colallpyon {1V ou + | 3 Mar /().
Reé&

—Case la. If x € E, there is a unique Ry € & such that x € Ry. But then Ry € §: say
Ry € §; since Ry C E, it must have been absorbed by a larger R 2 Ry, R € . Then
Ry C R C F, which contradicts x ¢ F. So then

Y My g f(x) = My gy f(X).

Re&

andforx € E\ F,

IHp,0, f(X)] = Collallgyoo (I f ) 0o + [Tp,ry f(X)].  Ro €9,

which gives (4.5) in this case.
—Case 1b. If x & E, then the second part of the sum is 0 and we are done, having
simply |Hb,Qof(x)| = C()”a”BMOD('fDQO'
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Case 1a

Case 1b

Case 2a

Figure 1. Orange cubes: &; blue cubes: ¥ .

Case2:x € F.
Then there is a unique P € ¥ such that x € P. Look first at the term I, f(x) =
> 0co,@ ho)(f)ohg(x). Since x € P, this can be expressed as

M, f(x) = Y (a,ho)(f)oho(x)+ Y (a,ho){f)oho(x),

QDﬁ QCP

where P denotes the dyadic parent of P. All sums here are understood to be over dyadic
cubes contained in Qy, since all Haar coefficients of a are 0 elsewhere. We split the first
term into two:

| Y @ho)(Noho)| = | Y- @ho)(foho@)|+I@.hp)(f)hs)l.

ooP o2P =:B

=:A(x)
The term A is constant on P, so if A(x) > Collallgpmoo (1. /1) ,» then

A() > Collallgyon (| f1)o, forally € P.

> N .
This would force I, f(y) > Collalgpmoo (| f1) g, for all y € P, so P C F —but this
contradicts maximality of P in ¥ . Therefore,

A<Cy ”a”BMo«fD (171 @o-

Let us now look at the term B. If P C E, then B = 0. Otherwise, since [(a.hg)| <

VIQllallgyoo-

~ 1
B < 1P lallpyon (1) 5

— = ||a||BMOi)(|f|>ﬁv
[P
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but (| f1) p < Co(| f1) o —otherwise, ME) f(y) > Co(|f |}, forall y € P, which would
force P C F, again contradicting maximality of P in ¥ .
So
| " @ho) (e ho)| £ Collalon {1/ w
ODP
giving us that
1,0, f(X)] < Collallgyoo {1/ 1) oo + 1C.

where the term C is defined as

Ci= > (b.hg)(floho(x)+ Y Tyrf(x).

QCP,O¢E Re&

We claim that
C =TIlp R, f(x),
where Ry is the unique element of § such that x € Ry:

Case2a.If PN E =@, then Ry = P and C = I1p p f(x) = [p g, f(x) (the first
term is I p and the second term is 0).

Case2b.If P N E # 0:

— Case 2b.i. If P contains some elements of &, then again Ry = P and we can “fill
in the blanks” in the first term with the ITp g’s from the second term:

c=[ X GhaNoho@+ Y Mprf@]+ Y Mhr/)

QCP,Q¢E Re&,RCP Re&,R¢ P

=0
= Hb,Pf(x) = Hb,Rof(x)'

—Case 2b.ii. If P C Sy for some Sy € &, then Ry = Sg and the first term in C is 0
(because P C E), and the second term is ) pce p g f(x) = M 5, f(x) = Tp g, f ().
This concludes the proof. ]

Remark 4.10. One can also use Theorem 4.1 to obtain a full R” domination, losing the
requirement for no infinitely increasing chains. Say f is such that supp(f) C Qg for
some Q¢ € D (or, for general compactly supported functions, supp( f) is contained in at
most 2" disjoint Qr € D). Then

1
My f(xX) = Tp,0,f(X) + (Y (b.ho) = ho(x) f
<Q,D‘Qo 1 )/QO

Note that, as an application of the modified CZ-decomposition used in Part I of the proof
above, one can obtain

(6. h0)] 5 VIl (W) Ibllgyoo ) YO € D.b € BMO® (w).
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To see this, let O € D and apply the decomposition to b over Q (so here Q plays the role
of Qy):

& := {maximal subcubes R C Qy such that (w)g > 2(w)g}; E := URE& R,

> (b.hp)hp € BMO?  with [allgyen < 4(w)o [1bllmo® w)-
PCQ;PZE

Since Q itself is not selected for &, Q ¢ E, so (a,hg) = (b, ho). Finally,
(b, ho)| = |(a,ho)| = V1@l llalgmoo = VI2|4(w) o 1Dllgymo® (1)-

Returning to 1, f, suppose first that x € Qg. Then there is a unique k > 1 such that

k k—
xe 0¥\ 0¥ an

a

mLrw=( Y o hQ) 5 et / I
0> (k)

Then, for x & Qy,

Mfl= Y lholl \/@(/ /1)

0508
1
Y <w>Q||b||BMo@(w,@/ /1= bllgmorwy 2. (whollflo
) Qo )
020, 020,

If, on the other hand, x € Qy,

My f(x) = Mo, f)+ 3 (b, hg)|Q hQ(QO)/ .
0200
SO
I, /()] < 100 FO + Iblnon ey 3 (w)o (/o
0200

By Theorem 4.1, there is a A-Carleson sparse collection § (Qg) such that

A
b0, /()] = C) (= ) 16150 () A0y | S 100).

So form a sparse collection § as follows:
k
5= 50U U 0.
k=1

with Q(()k_l) being the only S-child of Q(()k) for all k > 1. It is easy to see that § is
(A + 1)-Carleson. Moreover, the associated sparse operator

s f = Ay S(Qo )f"‘ Z (w)o(flolg
0200



I. Holmes Fay and V. Fragkiadaki 2110

appears exactly in the previous inequalities, which can be expressed as:

x & Qo [ f()] S 1bllgyo® ) As 1/10x):

A \2

x€ 00t M f)] S C0) (=) 1m0 A 1F10).

So indeed
[T f (O] S 1bllgyo® wy A5 /1), ¥x € R”,
for all compactly supported f.
Remark 4.11. If welet /' = 1in I1; g, f, we have
Mp,0,1(x) = Y (b,hg)ho(x) = (b(x) = (b)g,) gy ().
9CQo

So, applying Theorem 4.1 to the function f = 1 essentially gives us that local mean oscil-
lations of functions in BMO® (w) can be dominated by one of the sparse BMO functions
in Section 3.2:

Corollary 4.12. There is a dimensional constant C(n) such that, for all A > 1, weights
w on R, b € BMO? (w) and Qo € D, there is a A-Carleson sparse collection §$(Qo) C
D(Qy) such that

A
60 = o) 1oy = Co) () Iblpyony 32 W)o lo()
0eS(Qo)

>

A

2
= € (7=7) 1bllanio® ) b¥ion (-

>

A. Proof of Theorem 3.3

Recall that we are given S € T (R”) and the associated function
bg = Z ]IQ,
Qes

and we wish to show that
||bS||B1\/[oD <A,

where A is the Carleson constant of §.
Proof. Let Q¢ € D be fixed. We wish to estimate

1

—— | b= (b)o,ldx,
100l Jo, Qo

and recall that

(bs — (bs)o) Moy = D lo—(ts)0ylo,
0€5.0500
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where
1

(ts)p = i > I0I=A. VPeD.
Q€es,QCP

In fact,
if Pes, then(ts)p < A —1.

With Q¢ € D fixed, here we are only looking at
$(Qo):={0Q €5:0 C Qo}.

‘We define the collections as sets:
Sy := chs(Qy) (the S-children of Qp), and S; := U 01
01€8,

$2:={Q2 €chs(Q1): Q1 € 81}, and Sz:= | 02

so S, are the “S-grandchildren” of Qy, the second generation of S-cubes in Q. Generally,
Sk :={Qk €chs(Qx—1) : Qk—1 € Sx—1} and Sp:= | ) O«
Qr €Sk
Note that:
* Each Sy is a disjoint union of Qy € Sy, as each Sy, is a pairwise disjoint collection.

e The sets Sy satisfy Qg D S;1 DS D ---

¢ Moreover,
oo
[Nse| =0,
k=1

since (g, Sk is exactly the set of all x contained in infinitely many elements of
S$(Qg). We can also see this directly, as

o0
> ISkl < AlQol.
k=1

and the series converges.

For ease of notation, denote for now

1
0:= (15)00 = 157 > Jol=A.

o ges,0c0,
‘We have:
1 1
100l |bs—(bs)Qo|dx=@/ ‘ Z JlQ(x)—Q)dx
o1/ Qo 01700 " pes, QCQO
- 16| lo(x)—6|dx
100l Joo\s, |Qo| sl ©

QGS 0500
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Since S is a disjoint union of QO € §j,

ﬁ,/sl‘ Z HQ(X)—Q‘dx

QES 0500
“tgr 2 ol X tew—tfar
01€8; 0€$,0C0,

= — lo(x)+1—0|dx
|Q0| Qél /Ql ‘ Q€3§CQ1 ¢ ‘

:ﬁ[ 3 (/Q1\52|1_9|dx+ Z / 3 ]1Q(x)+1—9‘dx)]

01€$; Qes
Q2§Q1 0C0>
1
_@“ o1 > |Q1\Sz|+ Z/ > 1) +2- Q‘dx
01€8, Q €S, QQCGS
—_— 5
[S1\82|
So
1 Qo \ S1] 1S1\ Sz
— |bs — (bs)p,|dx =0 —— + |1 — | ————
100l Jos o Q0 Q0]
|Q|Z/ > lo(x) +2-6|dx.
0 0,es, Qes
0SS0

We can apply the same reasoning to each Q, € $5:

J

3 I +2- 9( dx
Qes
0S0>

=/ 2-6ldx+ ¥ / |3 to) +3-6]ax,
02\53

Q3ES3 s QGS

03302 0G0s
and we can conclude inductively
(A.1) / — (bs)o,| dx
100l o
S S\ S S2\ S
_glQ\SIl L ISAS ISAS

[Qol |Qol [Qol
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Suppose for a moment that 6 < 1. Then (A.1) becomes

Qo \ S1] [S1\ S2| [S2\ S|
= 1-0) —=— 2@y = "2 4 ...
0o T g T T T
=—|Qlo|(9|Qo\sl|+(1—e)|sl|—(l—9)|sz|+(2—9>|s2|

—2=0)IS3| + (B —-0)[S3] —-)
1
= @(
Remark A.1. Thoroughly, we have above a sequence of partial sums
ag = c|S1\ S2| + (¢ + D[S2\ S3[ + -+ + (¢ + bk = 1) [Sic \ Sg41]
=c|Si|—c[S2| + (¢ + D[S2] — (¢ + D [S3]
+-F+(+k=D|Sk|—(c+k—1)Sk+1]
= c|Si[+|S2[ + |S5[ + - + [Sk| = (¢ + k = D) [ Sk,

0100\ Sil + (1 —0)[Si| + [S2] + [S3] +--+).

where ¢ = (1 — 6) > 0. We know that
« the series > p.; |Sk| converges, by the Carleson property;
* the “remainder” (¢ + k — 1)|Sg+1] — 0 as k — oo, because the series > po; k| Sk|

also converges:

o0
D KISkl = [S1]+2[S2| + 3|S3| 4 -
k=1

= |S1] + |82 + 83+ ... (= AlS1))
+ 82| + [S3] + -+ (= AlS2))
+[83] + [Sq| +--- (= AlS3))
+ e

< A(S1| + |S2] +--+) < A?|Sy].

So
o0
kgrgoak=c|Sl|+;|Sk|—kgrgo<c+k—1>|sk+l|
=0
and
1 1
—— | |bs = (bs)ooldx = ——(01Q0 \ S1| + (1 — 0)[S1] + |S2| + |S3] +---)
[Qol Jo, |Qol
holds.
Now,
S+ 1Ssl+= > (X 101) = =1 Y 10l = (A -DIsi]
01€8; 0€es§,020 Q1€81

<(A—-1)|Q1] because Q€8
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So
1

100l [Qol

0100\ S| + (A —0)|S1]) < |1—0|(A|Qo\sl|+A|sl|)

0 lbs — (bs) ool dx < L(9|Qo\Sll + (1 =0)[S1] + (A = D[Si])

1

" 10l
A

10l

Generally, if n < 6 < (n + 1) for some n € N, the right-hand side of (A.1) becomes

(100 \ S1] +81]) =

ﬁ[9|Qo\sl|+(e—1>|sl\sz|+ (O = m)ISn \ Sy

(1 1= 0)1Sn1\ Spal + 00 +2=0)[Swi2 \ Sl + ]

(n+1-0) [Sus1|+|Sny2| + [Snys| + -+

=(A=1D)[Sp41l

[9|Q0\Sl|+(9—1)|51\52|+ (O =) Sy \Sur1|+H(A+n—0)Su11]

=

i—‘(g

=

[A1Qo\ Sil+ AISi\ Sa| 4+ -+ AlSy \ Susi| + AlSnt1l]

Q

ol

>

=

(|Q0\51|+|51\52|+ 180\ Sng1l 4 [Snt1l) = L]

S

B. Proof of Theorem 3.8

Say we have a € BMO?® (R"), b € BMO® (w), where w is a weight on R”, and a fixed
Qo € D. We look at

1
iy, f = Y. (a.ho)(b.ho)(f)o |—Q|
0CQp

and the inner product
(3T, f.8) = Y (a.ho)(b.ho)(f)o(g)o
0CQo

Within Qg, we form the local CZ-decompositions of f* and g, and the BMO decomposi-
tion of b:

&1 :={maximal subcubes R € D(Qy) such that (|f|)R> (IfNoot, Ei:= UReis
&, :={maximal subcubes R € D(Qy) such that (|g|}r>= (|g|)QO} E3 :=Jgeg, R
&3 :={maximal subcubes R € D(Qy) such that (w)g > E< Yoo} E3:=Jpeg, R
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Based on &3, we define

bi=1g,b— > (b—(h)R)Ir= Y (b.ho)ho.
Reé&; 0CQo
O¢E;

which satisfies b € BMO® (R"), with

R e

”b”BMos’D =< <w>Q0 ”b”BMo«D(w)-

Moreover, (b, hg) = (l;, hg) forall O C Qp, QO ¢ E3. Each collection &; satisfies
e
> IR = 5100l
Re&;
Finally, let
E:=FE UE,UE; and & := {maximal subcubes R € D(Qy) suchthat R C E}.

Then

Y IRl < ¢]Qol.

Re&
Now look at (IT} I1, g, f, g) and split the sum as

(B.1) (T3 5,0, /. 8)I
< > la.ho)l 1(b.ho) (I fNollghe + > (i, f. 9.
QQ%Z%O Reé&

For every O C Qg, O ¢ E, we have
3 3 ~
= “llghoy and (b.ho) = (B.ho).

(Ifhe =< (fNao. (lghe =

SO:

Y l@ho)lld.ho)l{Ifolgheo

0CQo
O¢E
9 ~
=S {/Neollghe, Y- l@.ho)llb.ho)l
0CQ0,0¢E
9 1/2 ~ 1/2
=5 Nosllghes (X @)™ (3 IEho)F)
0COQo 0CQo
<Cm)V1Q0l llall yy,00 <CVIQol bl 00

<C) & )0y V100! 15ly00 )
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where C(n) is the dimensional constant arising from using the John—Nirenberg theorem.
Finally, we have

> @ ho)l1(. ho)l{| f e (gl o

0CQo
O¢E

C
< S alagiom 1 lonionay {1/ s {12l 00 ()0l Qol.

Now we recurse on the ) _ g terms in (B.1) and form §(Q¢) by adding Q first, & are
the §-children of Qg, and so on. The collection §(Q) satisfies the §-children definition
of sparseness, with

Y. IRl <elQ| forall Q € S(Qo),

Rechg (Q)
S0 it is ﬁ-Carleson. So, if we choose ¢ = (A — 1)/ A, we have
| 3 @ho) o) (Mo ele]
0CQo

A
< o) (57) Tallyion lavorwy 3 (whollfle lghelQl-
0€5(Qo)

=(A% g/ 118D

‘We summarize this below:

Proposition B.1. There is a dimensional constant C(n) such that, for alla € BMO®, b €
BMO? (w), where w is a weight on R", fixed Qo € D and A > 1, there is a A-Carleson
sparse collection $(Qo) C D(Qo) such that

| Y @ho)bho) (£ lele]
0CQo

A 3
<€) (5=7)  Iallomo® 1B llayio® ) (Ao L1 lgD:

Say now we have Bloom weights i, A € 4, (1 < p < 00), v 1= u'/PA=1/P on R”
and a € BMO®?, b € BMO? (v). Suppose further that a has finite Haar expansion. Then
there are at most 2" disjoint dyadic cubes Qy € D, 1 < k < 2", such that

a=>" Y (a.hg)hg,
k QCQk

and then
(3T, f.g) = Y (M3Tp0, f.8).
k
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Given A > 1, by Proposition B.1, there is for each k a A-Carleson sparse collection
S(Qr) C D(Qy) such that

A 3
(M0, £:8)] = €0 (5=7) Nallanio® 1Blanon ) (AS (o1 f1- 18D
Then

(10, £.9)] = €00 (577) Nallanio® 1500 ) (45171 leD:

where

s =Js(@0
k

is a A-Carleson sparse collection in T2 (R”").
Take now f € L?(u) and g € L? (1'). By a simple application of Holder’s inequality,

[(As1f 1 1gDI = lAs : L2 () = LPM) S e 181 -
Then
[T« LP () — LP(A)||

A 3
< Clallpon I6lavon ey sup (=) 145 : L2 () = L2 ()]
SeTP®m) -
A=A

holds for all @ with finite Haar expansion, and therefore for all a. This ends the proof of
Theorem 3.8.
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