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Positive solutions of the p-Laplacian with potential
terms on weighted Riemannian manifolds

with linear diameter growth

Atsushi Kasue

Abstract. In this paper, we consider the p-Laplacian with potential terms on a
connected, noncompact, complete weighted Riemannian manifold whose Ricci cur-
vature has quadratic decay, or a lower bound. We investigate the structure and the
behavior of positive solutions under the assumption that the metric spheres of the
Riemannian manifold have linear diameter growth.

1. Introduction

Consider a weighted Riemannian manifold .M; gM ; e�f dvM / of dimension m, where
.M; gM / is a Riemannian manifold of dimension m, f is a smooth function on M ,
and dvM is the volume element induced by the metric gM . In what follows, the meas-
ure e�f dvM is denoted by �f .

For a vector field X 2 L1loc.�; TM/ on a domain �, the divergence divfX of X
relative to the measure �f is defined weakly byZ

 divfX d�f D �
Z
gM .X;r / d�f

for all  2 C10 .�/. We simply write divX if the weight function f is constant. Then
divfX D divX � gM .X;rf /.

Fix p 2 .1;C1/. The p-Laplacian �f Ip acts on L1;ploc .M/ by

�f Ipu D divf .jrujp�2ru/

in the weak sense, that is,Z
 �f Ipud�f D �

Z
gM .jruj

p�2
ru;r / d�f

for all  2 C10 .M/.
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Fix a domain��M and a real-valued functionW 2L1loc.�/. The p-Laplace equation
in � with potential W is the equation of the form

Q0pIW .u/ D ��f IpuCW juj
p�2u D 0 in �:

This is the Euler–Lagrange equation associated with the functional

QpIW .u/ D
1

p

Z
�

.jrujp CW jujp/ d�f :

A generalized Allegretto–Piepenbrink theorem says thatQpIW .u/� 0 for all u 2L1;ploc .�/

if and only if Q0p;W .v/ D 0 admits a positive solution v 2 L1;ploc .�/ \ C
1;˛
loc .�/ (see Pin-

chover and Psaradakis [24] and references therein). In this paper, we are interested in the
structure and the behavior of positive solutions in M . There have been extensive stud-
ies on this subject over the recent decades; see for example [1, 10, 11, 14, 20, 23–26] and
references therein.

We let B.x; t/ (respectively, S.x; t/) be the open metric ball around a point x with
radius t (respectively, the metric sphere centered at x of radius t ). Fix o 2M as a reference
point and let r be the distance to o. Given � 2 .0; 1/ and t 2 .0;C1/, we denote by
dis.� It/ the (extended) distance induced on M nB.o; .1 � �/t/, and by diam.� It/.S.o; t//

the diameter of S.o; t/ inM nB.o; .1� �/t/ relative to the (extended) distance. We define

ı.� I1/.M/ D lim sup
t!1

1

t
diam.� It/.S.o; t// 2 Œ0;C1�:

Obviously, ı.� I1/.M/ � ı.�
0I1/.M/ if 0 < � 0 � � < 1. We note that M has only one

end, that is, for sufficiently large compact sets K �M , the difference M nK has exactly
one unbounded connected component if ı.� I1/.M/ < C1. Correspondingly to the case
where � D 1 in the definition of ı.� I1/.M/, we let

ı.1/.M/ D lim sup
t!1

1

t
diam.S.o; t// 2 Œ0; 2�;

where the diameter of the sphere S.o; t/ is measured in M . It is obvious that ı.1/.M/ �

ı.� I1/.M/, and we note that if ı.1/.M/<2, then ı.� I1/.M/Dı.1/.M/ for 1
2
ı.1/.M/<

� < 1 (see Proposition 4.3 (ii)).
In order to state the main results of this paper, we need some terminology; see Li

and Tam [18], Grigor’yan and Saloff-Coste [13]. Fix a constant CA > 1. We say that
a metric space .M; disM / has relatively connected annuli with respect to o, or satisfies
condition (RCA), if for any t � C 2A and all x; y 2 S.o; t/, there exists a continuous
path 
 W Œ0; L�! M with 
.0/ D x, 
.L/ D y whose image is contained in B.o; CAt / n
B.o; C�1A t / (see [13], Definition 5.1). We observe that condition (RCA) holds for some
CA > 1 if ı.� I1/.M/ < C1 for some � 2 .0; 1/. We say that a weighted manifold
.M; gM ; �f / satisfies the volume comparison condition (VC) if there exists a positive
constant CV such that, for all t > 0 and all x 2 S.o; t/, we have that �f .B.o; t// �
CV�f .B.x; t=2// (see [18] and [13], Definition 4.3).
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Theorem 1.1. Let .M;gM ;�f / be a connected, noncompact, complete weighted Rieman-
nian manifold of dimension m. Suppose that the Ricci curvature RicM of M satisfies

(1.1) inf
M
.1C r/2 RicM > �1;

the weight function f satisfies

(1.2) sup
M

.1C r/ jrf j < C1;

and further,
ı.� I1/.M/ < C1

for some � 2 .0; 1/. Given p 2 .1;1/, let W be a bounded function on M such that

sup
M

.1C r/p jW j < C1;

and assume that QpIW � 0. Then the following assertions hold.

(i) (Annulus Harnack inequality) There is a constant CH > 0 such that for any t > 0
and for any positive solution u 2L1;ploc .M/\C

1;˛
loc .M/ to the equationQ0pIW .u/D 0

in M ,
sup
S.o;t/

u � CH inf
S.o;t/

u:

(ii) In the case where p D 2, a positive solution to Q02IW .u/ D 0 in M is unique up to
multiple constants.

(iii) Let u2L1;ploc .M/\C
1;˛
loc .M/ be a positive solution toQ0pIW .u/D 0 inM . If W � 0

and u is unbounded, then limx2M!1 u.x/ D C1; if W � 0 and infM u D 0, then
limx2M!1 u.x/ D 0.

(iv) Let �.r/ be a nonnegative C 1 function on Œ0;1/ such that �0.r/� 0, supt�0 �.t/t
p

< C1 and Z 1
1

.t�.t//1=.p�1/ dt D1:

Let u 2 L1;ploc .M/ \ C
1;˛
loc .M/ be a positive solution to the equation Q0pIW .u/ D 0

in M . If

�.r.x// � W.x/ �
ƒ

.1C r.x//p

for some positive constant ƒ and all x 2M (respectively,

�
ƒ

.1C r.x//p
� W.x/ � ��.r.x//

for some positive constantƒ and all x 2M/, then limx2M!1u.x/DC1 (respect-
ively, limx2M!1 u.x/ D 0/.

In the case where p D 2, we have the following.
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Theorem 1.2. Let .M;gM ;�f / be a connected, noncompact, complete weighted Rieman-
nian manifold of dimension m satisfying (1.1) and (1.2). Suppose that (RCA) and (VC)
are satisfied, and that the following growth condition holds for some ˇ > 2:

(1.3) Cˇ

� t
s

�ˇ
�
�f .B.o; t//

�f .B.o; s//

for 1 � s � t , where Cˇ is a positive constant less than 1. Let W be a bounded function
on M satisfying

jW.x/j �  .r.x//

for all x 2 M , where  .r/ is a nonnegative C 1 function on Œ0;1/ such that  0.t/ � 0
and Z 1

0

t .t/ dt < C1:

Then the following assertions hold.

(i) There exists a unique solution v 2 C 1;˛loc .M/ of the Poisson equation �f I2v D W

in M which tends to zero at infinity.

(ii) Assume that there is a positive solution u 2 L1;2loc .M/ \ C
1;˛
loc .M/ of Q02IW .u/ D 0

in M .

(ii-a) If Q02IW is subcritical, that is, if it admits a (positive minimal) Green function,
then u.x/ converges to a positive constant a as x 2M !1, and one has

u.x/ D a �

Z
M

G.x; y/W.y/u.y/ d�f .y/; x 2M;

where G.x; y/ denotes the Green function of the Laplacian �f I2.

(ii-b) If Q02IW is critical, that is, if it does not admit the Green function, then u.x/
converges to zero as x 2M !1, and one has

u.x/ D �

Z
M

G.x; y/W.y/u.y/ d�f .y/; x 2M:

Now we consider a family F of balls in M . We say that F satisfies the volume doub-
ling property (VD) with a constant CD > 1 if, for any ball B.x; t/ 2 F ,

�f .B.x; t// � CD �f .B.x; t=2//:

If all balls in M satisfy (VD), then we say that .M; gM ; �f / satisfies (VD). It is shown
that ı.� I1/.M/ <C1 for some � 2 .0; 1/ if .M;gM ; �f / satisfies (RCA) and (VD) (see
Proposition 4.3 (i)).

We say that F satisfies the Poincaré inequality .PI.p// .1� p <C1/with a constant
CP > 0 if, for any B.x; t/ 2 F and every u 2 C 1.B.x; t//,Z

B.x;t=2/

ju � uB.x;t=2/j
p d�f � CP t

p

Z
B.x;t/

jrujp d�f ;
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where
uB.x;t=2/ D

1

�f .B.x; t=2//

Z
B.x;t=2/

ud�f :

If all balls in M satisfy (PI(p), then we say that .M; gM ; �f / satisfies .PI.p//.
In this paper, we call a ball B.x; t/ remote to a fixed point o if t � 1

4
r.x/ (see [13],

Section 4). Then under conditions (1.1) and (1.2), a family of balls remote to o satis-
fies (VD) and (PI(p)) for a fixed p 2 Œ1;C1/ (see Proposition 2.17). In fact, keeping
the assumption that ı.� I1/.M/ < C1 for some � 2 .0; 1/, if we replace (1.1) and (1.2)
with (VD) and (PI(p)) (respectively, (VD) and (PI(2)) for all remote balls, then we obtain
Theorem 1.1(i), (iii) (respectively, Theorem 1.1(ii) and Theorem 1.2); however, we do not
know if the assertion (iv) of Theorem 1.1 must hold.

When .M; gM ; �f / satisfies (VD) and (PI(2)), and further the growth condition (1.3)
with ˇ > 2, a result of Ancona (see [2], Proposition 3.1), proves thatZ

M

C1ju.x/j
2

1C r.x/2
d�f .x/ �

Z
M

jruj2 d�f

for some positive constant C1 and all u 2 C10 .M/. This is a Hardy type inequality onM ,
and we can apply Theorem 1.1(iv) (pD 2) to a positive solution to the equation��f I2u�
C1
1Cr2

u D 0 in M .
Let W be the bounded potential on M considered in Theorem 1.2. In order to prove

the assertion (ii-a), we use another result by Ancona (see Theorem 3.3 in [2]), proving that
the Green function GW .x; y/ of Q02IW satisfies

C�12

Z 1
disM .x;y/

t dt

�f .B.x; t//
� GW .x; y/ � C2

Z 1
disM .x;y/

t dt

�f .B.x; t//

for some C2 � 1 and for all x; y 2 M . Moreover, in view of Theorem 10.5 in [11] by
Grigor’yan, and its proof, we see that in (ii-a), the heat kernel pWt of the operator Q02IW
satisfies the two-sided Gaussian estimate (or the Li–Yau estimate) as follows:

C�13

�f .B.x;
p
t //

e�C4 disM .x;y/2=t � pWt .x; y/ �
C3

�f .B.x;
p
t //

e�C5 disM .x;y/2=t

for all x;y2M and t >0, whereC3,C4 andC5 are positive constants (see Remark 4.6(ii)).
A weighted Riemannian manifold .M; gM ; �f / is called p-parabolic if every posit-

ive, continuous p-supersolution onM , that is, a positive continuous function v 2L1;ploc .M/

satisfying �f Ipv � 0 weakly on M , is constant, and p-nonparabolic otherwise. In The-
orem 1.2, the weighted manifold M is 2-nonparabolic, since (1.3) (ˇ > 2) is assumed
(see [7], [8], Theorem 1.5), and it will be conjectured that if ˇ > p and the function  is
a nonnegative C 1 function such that  0.t/ � 0 and

R C1
0

.t .t//1=.p�1/dt < C1, then
any positive solution u to the equation ��f Ipu C W jujp�2u D 0 in M converges to
a positive constant at infinity if jW j �  .r/ on M (see [25] and references therein for
related problems). We remark that if .M; gM ; �f / is p-parabolic, then for any nonneg-
ative W 2 L1loc.M/ which does not vanish identically, a positive solution v to equation
��f Ipv CW jvj

p�2v D 0 in M is unbounded, because supM v � v is p-superharmonic
if supM v < C1.
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Now we need some terminology to state the next result. For n 2 .�1;C1�, the
n-dimensional Bakry–Émery Ricci curvature is defined by

Ricnf D RicM CDdf �
df ˝ df

n �m

if n 2 .�1;C1/ n ¹mº, and

Ric1f D RicM CDdf

if n D C1. We assume that n D m if and only if f is constant. We note that in Theor-
ems 1.1 and 1.2, we can replace conditions (1.1) and (1.2) with the following one:

inf
M
.1C r/2 Ricnf > �1

for some n > m (see Remark 2.14 and Corollary 2.18). Now we state:

Theorem 1.3. Let .M;gM ;�f / be a connected, noncompact, complete weighted Rieman-
nian manifold of dimension m. Suppose that for some n 2 Œm;C1/ and � � 0,

(1.4) Ricnf � �.n � 1/� on M .

(i) Let u 2 L1;ploc .M/ \ C
1;˛
loc .M/ be a positive solution to the equation ��f;pu C

ƒjujp�2u D 0 in M , where ƒ is a positive constant. Then one has

(1.5) Z.p; n; �;ƒ/ � sup
M

jr loguj � Y.p; n; �;ƒ/:

Here Z.p; n; �;ƒ/ is the unique positive root of the equation

.p � 1/Zp C .n � 1/
p
� Zp�1 D ƒ;

and Y.p; n; �;ƒ/ is the unique positive root of the equation

.p � 1/Y p � .n � 1/
p
� Y p�1 D ƒ:

(ii) Given p > 1 and ƒ > 0, suppose that

(1.6) ı.1/.M/ <
Z.p; n; �;ƒ/

Y.p; n; �;ƒ/
.� 1/:

Then every positive solution u to the equation ��f;puCƒjujp�2u D 0 in M is an
exhaustion function and satisfies

u.x/ � u.o/ eCr.x/CC
0

; x 2M;

where C D 1
2
.Z.p; n; �; ƒ/ � ı.1/.M/Y.p; n; �; ƒ// and C 0 is a constant inde-

pendent of u.

We note that if � D 0, then Z.p; n; 0; ƒ/ D Y.p; n; 0; ƒ/ D .ƒ=.p � 1//1=p , the
equalities hold in (1.5), and C D 1

2
.ƒ=.p � 1//1=p.1 � ı.1/.M// (see Example 4.7 for

a simple example of Riemannian manifolds satisfying ı.1/.M/ < 1).
In the case p D 2, applying Theorem 2.6 of Ancona [2] to Theorem 1.3, we have:

Corollary 1.4. Let .M; gM ; �f / be as in Theorem 1.3 and assume (1.4). Let ƒ be a
positive constant and let W be a locally bounded function on M satisfying

inf
®
Q2IW .v/ j v 2 C

1
0 .M/;

R
M
v2d�f D 1

¯
> 0:
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Suppose that there exists a nonnegative, nonincreasing function ‰.t/ on Œ0;C1/ withR1
0
‰.t/dt < C1 such that

jW.x/ �ƒj � ‰.r.x//; x 2M:

Then the following assertions hold:
(i) A positive solution u to the equation Q02;W .u/ D 0 in M satisfies

u.x/ � u.y/ eY.2;n;�;ƒ/ disM .x;y/CC 00

for all x; y 2M , where C 00 is a positive constant independent of u.

(ii) If (1.6) with p D 2 holds, then a positive solution u of the equation Q02IW .u/ D 0
in M satisfies

u.x/ � u.o/ eCr.x/CC
0

; x 2M;

where C D 1
2
.Z.2; n; �;ƒ/ � ı.1/.M/Y.2; n; �;ƒ// as in Theorem 1.3, and C 0 is

a constant independent of u.

We remark that in the case where p D 2 and f D 0, (1.5) is proved by Borbély [4]
in a different way from ours. To get the upper bound in (1.5), we refer to the method in
Sung and Wang [32], Dung and Dat [9], where positive eigenfunctions with eigenvalue �
.� 0/, that is, solutions to the equation�f;puC �jujp�2u D 0 inM , are studied, and the
gradient estimate from above by the constant Y.p;n;�;��/ is proved. For the lower bound
in (1.5), we employ the Laplacian comparison theorem derived from the assumption on a
lower bound for the tensor Ricnf .

The outline of the paper is as follows. In Section 2, we recall first a comparison
principle for the operators Q0pIW under consideration and then we show some Lapla-
cian comparison results to derive volume doubling properties (VD) and scaled Poincaré
inequalities (PI(p)) on metric balls. In Section 3, we derive Harnack inequalities for pos-
itive solutions to the equation Q0pIW .u/ D 0 with bounded potentials W . Based on the
Harnack inequalities, we completes the proof of Theorem 1.1. Section 4 is devoted to
proving Theorem 1.2 and furthermore discussing some results, remarks and examples
concerning Theorems 1.1, 1.2 and 1.3; for example, we prove that .M; gM ; �f / fulfills
(RCA) and (VC) if ı.1/.M/ < 1 and some volume growth conditions are satisfied (see
Proposition 4.3(iii)). In Section 5, we study positive solutions to the equationQ0pIƒ.u/D 0
inM , where � is a positive constant, and Theorem 1.3, Corollary 1.4 and a related rigidity
result are verified.

2. Laplacian comparison results

Let .M; gM ; �f / be a connected, complete weighted Riemannian manifold of dimen-
sion m. In this section, we first mention a comparison principle for operators Q0pIW on a
domain of M to employ sub/supersolution techniques in our situation. We refer to Pin-
chover and Psaradakis [24]. Secondly, we discuss some Laplacian comparison results to
derive volume doubling properties and scaled Poincaré inequalities on metric balls.

We begin with the following.
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Theorem 2.1 ([24]). Let � be a bounded Lipschitz domain in M . Given a function W 2
L1.�/, suppose that inf

u2W
1:p
0 .�/

QpIW .u/=kuk
p

Lp.�/
> 0, that is, that the principal

eigenvalue of the operatorQ0pIW is positive. Let f;�; 2 L1;p.�/\C.�/, where f � 0
a.e. in � and f > 0 on @�, and8̂<̂

:
Q0p;W . / � 0 � Q

0
pIW .�/ in � in the weak sense,

 � f � � on @�,
0 � � in �:

Then there exists a unique nonnegative solution v 2 W 1;p.�/ \ C.�/ of´
Q0pIW .v/ D 0 in �,
v D f on @�

such that  � v � � in �.

Proof. See Proposition 5.2 and Theorem 5.3 in [24].

To prove Theorem 1.1, we need the following.

Lemma 2.2. Let u be a positive solution to the equation ��f IpuCW jujp�2u D 0 in a
domain includingM nB.o; T / for some T � 0. For t � T , denotem.t/D infS.o;t/ u and
M.t/ D supS.o;t/ u.

(i) Suppose that W � 0. Then M.t/ is monotone for large t and converges to a number
M 2 Œ0;C1� as t !C1.

(ii) Suppose that W � 0. Then m.t/ is monotone for large t and converges to a number
m 2 Œ0;C1� as t !C1.

Proof. For t1; t2 2 .T;C1/ with t1 < t2, we write A.t1; t2/ for B.o; t2/ n B.o; t1/. Sup-
pose first that W � 0. We compare u with a constant function v D max¹M.t1/;M.t2/º,
and we have Q0pIW .v/ D Wv

p�1 � 0 D Q0pIW .u/ in A.t1; t2/. For a connected compon-
ent� of A.t1; t2/, we have v � u on @�, so that v � u in� by Theorem 2.1. Thus v � u
in A.t1; t2/. This shows that M.t/ � max¹M.t1/;M.t2/º for t 2 Œt1; t2�. Then it is easy
to see that M.t/ is monotone for large t , and converges to a number M 2 Œ0;C1� as
t !C1. Similarly we can prove thatm.t/ � min¹m.t1/;m.t2/º for t 2 Œt1; t2� ifW � 0,
which shows that m.t/ is also monotone for large t and hence converges to a number
m 2 Œ0;C1� as t !C1. This completes the proof of Lemma 2.2.

Now we show some Laplacian comparison results on .M; gM ; �f /. Take a point
x 2M and express the volume density in the geodesic polar coordinates centered at x as

dvgj expx.r�/ D I.x; r; �/ dr dv�

for r > 0 and � 2 SxM D ¹� 2 TxM j j�j D 1º, where dv� is the Riemannian volume
element of the unit sphere SxM . When we put

�x.�/ D sup ¹t > 0 j disM .x; expx t�/ D tº 2 .0;C1�
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for � 2 SxM , I.x; t; �/ is a positive smooth function on .0; �x.�// satisfying I.x;0; �/D 0
and limt!0 I.x; t; �/=t

m�1 D 1. We denote by rx the distance function to x. Then at
y D expx.t�/ .0 < t < �x.�//, we have

�rx .y/ D
I 0.x; t; �/

I.x; t; �/
and �f rx .y/ D

I 0
f
.x; t; �/

If .x; t; �/
;

where�f D��rf .D�f I2/, and If .x; t; �/D e�f .t;�/I.x; t; �/ is the f -volume dens-
ity in the geodesic polar coordinates .t; �/.

We assume that there is a positive smooth function � on .0; R/ .0 < R � C1/ such
that m � 1 � lim supt!0 t�

0.t/=�.t/ < C1 and

(2.1)
I 0
f
.x; t; �/

If .x; t; �/
�
�0.t/

�.t/

for t 2 .0; �x.�/ ^R/.

Lemma 2.3. Fix a point x 2 M and let �.t/ be as above. Then for a smooth function
�W Œ0; R/! R with �0 > 0, one has

�f Ip�.rx/ �
�
.�0/p�1/0 C

�0

�
.�0/p�1

�
.rx/

in the weak sense on B.x; R/; more precisely, for any nonnegative smooth function �
on B.x;R/ with compact support, one hasZ
B.x;R/

jr�.rx/j
p�2g.r�;r�.rx//d�f �

Z
B.x;R/

��
�
..�0/p�1/0C

�0

�
.�0/p�1

�
.rx/d�f :

Proof. See, e.g., Proposition 3.7 in [28].

A Laplacian comparison result is stated in the following lemma.

Lemma 2.4. Fix a point x 2M , and let k.t/ and h.t/ be continuous functions on Œ0; R/
such that

RicM � .m � 1/k.rx/; jrf j � h.rx/

on B.x;R/. Let J.t/ be a unique solution of the equation J 00 C kJ D 0 in Œ0;R/, subject
to the initial conditions J.0/ D 0 and J 0.0/ D 1, and suppose that J > 0 on .0;R/. Then

�.t/ D J.t/m�1 exp
Z t

0

h.s/ ds

satisfies (2.1).

We remark that J.t/ � t for all t � 0 if R D C1 and k is nonpositive on Œ0;C1/.
Let � be a nonnegative constant. In what follows, we write

s�.t/ D

´
1

2
p
�
.e
p
�t � e�

p
�t / if � > 0;

t if � D 0.

We also let c�.t/ D s0�.t/.
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Lemma 2.5. Let �.t/, k.t/, h.t/ and R be as in Lemma 2.4.

(i) Suppose that k.t/ D �� and h.t/ D ˛, where � and ˛ are nonnegative constants.
Then �.t/ D s�.t/m�1e˛t satisfies (2.1) with R D C1.

(ii) Suppose that R D C1 and k is nonpositive on Œ0;C1/, and moreover that k.t/ D
��t�2 and h.t/ D ˛t�1 for all t � T , where � � 0, ˛ � 0, and T > 0 are some
constants. Let ˇ.m; �; ˛/ D ˛ C .m � 1/.1C

p
1C 4� /=2. Then one has

�.t/ D tˇ.m;�;˛/
�
C C C 0t�

p
1C4�

�m�1
for all t � T , where C > 0 and C 0 are constants.

Proof. (i) The first assertion is obvious.
(ii) The solution J of the equation J 00 C k.t/J D 0 in Œ0;C1/ is expressed as

J.t/ D C1 t
.1C
p
1C4� /=2

C C2 t
.1�
p
1C4� /=2

for all t � T , where C1 > 0 and C2 are some constants; moreover, we have

exp
Z t

0

h.s/ ds D C3 t
˛

for all t � T and some constant C3 > 0. These prove the assertion.

Now we fix a point o ofM and write simply r for roD disM .o;�/. LetW be a function
in L1loc.M/.

We assume first that W � 0 everywhere, and that there is a nonnegative continuous
function W�.t/ on Œ0;1/ such that

0 � W�.r/ � W on M .

Lemma 2.6. Let � andW�.t/ be as above. Suppose that for some constants a and b, with
0 � a < b, W�.t/ D 0 for t 2 Œ0; a� and W�.t/ > 0 for t 2 .a; b/. Then there exists a
function � 2 C 1Œa;C1/ \ C 2.a;C1/ such that

(i) �.a/ D 1; �0.a/ D 0;
(ii) �.t/ > 1; �0.t/ > 0 for t > a;
(iii) it satisfies

(2.2)
�
�.t/�0.t/p�1

�0
D W�.t/ �.t/ �.t/

p�1 on .a;C1/.

Proof. Let �".t/ D �.t C "/ for " 2 .0; 1�. Then we can deduce from the existence and
uniqueness theorems for ordinary differential equations that there are an interval Œa; R"/
and a unique positive solution �" 2 C 1Œa; R"/ \ C 2.a;R"/ to the equation�

�".t/ j�
0
".t/j

p�2 �0".t/
�0
D W�.t/ �".t/ �".t/

p�1;

subject to the initial conditions �".a/ D 1 and �0".a/ D ". In fact, we have

�0".t/ D
�
"p�1

�".a/

�".t/
C

1

�".t/

Z t

a

W�.s/ �".s/ �".s/
p�1 ds

�1=.p�1/
> 0;
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so that 1 � �";ı.s/ � �";ı.t/ for a � s � t < R". We put here

ˆ".t/ D
�
"p�1

�".a/

�".t/
C

1

�".t/

Z t

a

W�.s/ �".s/ ds
�1=.p�1/

; t 2 Œa;C1/:

Then we get
ˆ".t/ � �

0
".t/ � ˆ".t/ �".t/

for t 2 .a;R"/. These show that

1C

Z t

a

ˆ".s/ ds � �".t/ � exp
Z t

a

ˆ".s/ ds;

ˆ".t/ � �0".t/ � ˆ".t/ exp
Z t

a

ˆ".s/ ds

for t 2 Œa; R"/. Now we put

��.t/ D
�
"p�1 max

0�ı�1

�ı.a/

�ı.t/
C max
0�ı�1

1

�ı.t/

Z t

a

W�.s/ �ı.s/ ds
�1=.p�1/

;

��.t/ D
�

min
0�ı�1

1

�ı.t/

Z t

a

W�.s/ �ı.s/ ds
�1=.p�1/

;

for t 2 Œa;C1/. Then ��.t/ and ��.t/ are continuous functions on Œa;C1/ satisfying
��.a/ D 0, ��.t/ > 0 for t > a, and

��.t/ � ˆ".t/ � �
�.t/

for all " 2 .0; 1� and for all t 2 Œa;C1/. Then we obtain

1C

Z t

a

��.s/ ds � �".t/ � exp
Z t

a

��.s/ ds;

��.t/ � �
0
".t/ � �

�.t/ exp
Z t

a

��.s/ ds;

for all " 2 .0; 1� and for all t 2 Œa; R"/. These estimates show that Œa;C1/ is the right
maximal interval of existence for the solutions �", and that the above estimates hold for all
t 2 Œa;C1/. Furthermore, as " goes to zero, �" converges to a function � 2 C 1Œa;C1/\
C 2.a;C1/, which is a solution to (2.2) subject to the initial conditions �.a/ D 1 and
�0.a/ D 0.

We remark that if W�.0/ > 0, then the same conclusions as in the above lemma with
a D 0 hold. In what follows, we assume that the function � is defined on Œ0;C1/ by
setting �.t/ D 1 on Œ0; a� if a > 0.

Proposition 2.7. Let W and �.t/ be as above.

(i) Let u 2 L1;ploc .M/ \ C.M/ satisfy ��f Ipu C W jujp�2u � 0 on M in the weak
sense. If u.x0/ > 0 for some x0 2M , then

max
S.o;t/

u �
u.x0/

�.r.x0//
�.t/

for all t � r.x0/.
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(ii) Let u 2 L1;ploc .M/ \ C.M/ satisfy ��f Ipu C W jujp�2u � 0 on M in the weak
sense. If u.x0/ < 0 for some x0 2M , then

min
S.o;t/

u �
u.x0/

�.r.x0//
�.t/

for all t � r.x0/.

Proof. By Lemma 2.3, we have

�f Ip�.r/ � W�.r/ �.r/
p�1
� W�.r/p�1

in the weak sense on M . Suppose that u.x0/ > 0 for some x0 2M and that

max
S.o;t/

u <
u.x0/

�.r.x0//
�.t/

for some t > r.x0/. We take " > 0 in such a way that maxS.o;t/ u < .1 � "/
u.xo/
�.r.x0//

�.t/.

Then it follows from Theorem 2.1 that u � .1 � "/ u.x0/
�.r.x0//

�.r/ in B.o; t/; in particular,
we have u.x0/ � .1 � "/u.x0/, so that u.x0/ � 0. But this contradicts the assumption.
Thus (i) is proved. Applying the same arguments as above to �u, we can show the second
assertion (ii).

Corollary 2.8. Let W and �.t/ be as above. Let u 2 L1;ploc .M/ \ C
1;˛
loc .M/ be a solution

to the equation ��f IpuCW jujp�2u D 0 on M . We have that

(i) u is positive everywhere on M if lim infy2M!1 u.y/=�.r.y// � 0 and u.x/ > 0
for some x 2M ,

(ii) u vanishes identically if limy2M!1 ju.y/j=�.r.y// D 0.

Lemma 2.9. Let k.t/, h.t/, �.t/, and R be as in Lemma 2.4. Assume that R D C1 and
that k is nonpositive on Œ0;C1/, and moreover that k.t/ D ��t�2 and h.t/ D ˛t�1 for
all t � T , where � � 0, ˛ � 0 and T > 0 are some constants.

(i) Suppose thatW�.t/ is nonincreasing in ŒT;C1/ and
R1
0
.W�.s/s/

1=.p�1/dsDC1.
Then �.t/ tends to infinity as t !1.

(ii) Suppose that W�.t/ D �t�p for all t � T , where � is some positive constant. Let

.p;m; �; ˛; �/ be the positive solution of the equation

x jxjp�2 .x.p � 1/C ˇ.m; �; ˛/C 1 � p/ D �:

Then � satisfies
�.t/ � C.1C t /
.p;m;�;˛;�/

for some positive constant C and all t � 0.

Proof. (i) Since �.t/ is nondecreasing and W�.t/ is nonincreasing in ŒT;1/, we have

�.t/.�0.t//p�1 D �.T /.�0.T //p�1 C

Z t

T

W�.s/�.s/�.s/
p�1 ds

� �.T /p�1W�.t/

Z t

T

�.s/ ds;
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so that we get

�0.t/ � �.T /W�.t/
1=.p�1/

� 1

�.t/

Z t

T

�.s/ ds
�1=.p�1/

for all t � T . Since we have by Lemma 2.5 (ii), C�14 tˇ � �.t/ � C4t
ˇ for some constant

C4 > 1, where ˇ D ˇ.m; �; ˛/ in Lemma 2.5, we see that

1

�.t/

Z t

T

�.s/ ds �
2ˇC1 � 1

2ˇC1.ˇ C 1/C 24
t

for all t � 2T , so that we obtain

�0.t/ �
� 2ˇC1 � 1

2ˇC1.ˇ C 1/C 24

�1=.p�1/
�.T /.W�.t/ t/

1=.p�1/

for all t � 2T . This shows that

�.t/ � �.2T /C
� 2ˇC1 � 1

2ˇC1.ˇ C 1/C 24

�1=.p�1/
�.T /

Z t

2T

.W�.s/s/
1=.p�1/ ds

for all t � 2T . Thus (i) is proved.
(ii) Let �.t/ D C5 t
.p;m;�;˛;�/, where C5 is a positive constant chosen later. Then �

satisfies the same equation (2.2) as � in ŒT;C1/. This shows that �.t/ � �.t/ for t � T
if we choose C5 in such a way that �.T / � �.T / and �0.T / � � 0.T /.

Now we consider a function W in L1loc.M/ such that W � 0 everywhere on M . We
assume that there is a nonnegative continuous function W�.t/ on Œ0;1/ such that

W � �W�.r/ � 0 on M .

Lemma 2.10. Let � and W� be as above. Suppose that for some constants a and b, with
0 � a < b, W�.t/ D 0 for t 2 Œ0; a� and W�.t/ > 0 for t 2 .a; b/. Then there exist an
interval Œa; R/ with a < R � C1 and a function ! 2 C 1Œa; R/ \ C 2.a;R/ such that

(i) !.a/ D 1; !0.a/ D 0;
(ii) 0 < !.t/ < 1; !0.t/ < 0 for t 2 .a;R/;
(iii) it satisfies

(2.3)
�
�.t/.�!0.t//p�1

�0
D W�.t/ �.t/ !.t/

p�1 on .a;R/;

(iv) Œa; R/ is the right maximal interval of existence for the positive solution !, and
limt!R !.t/ D 0 if R < C1.

Proof. As in the proof of Lemma 2.6, we let �".t/ D �.t C "/ for " 2 .0; 1�. Then there
are an interval Œa; R"/ and a unique positive solution !" 2 C 1Œa; R"/ \ C 2.a;R"/ to

(2.4)
�
�".t/ j!

0
".t/j

p�2!0".t/
�0
D �W�.t/�".t/!".t/

p�1
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subject to the initial conditions !".a/D 1, !0".a/D�"; moreover, Œa;R"/ is the right max-
imal interval of existence for the positive solution !", and in the case where R" < C1,
limt!R !".t/ D 0. We note here that equation (2.4) is also expressed as follows:

(2.5) !00" .t/ D �
�0".t/!

0
".t/

.p � 1/�".t/
�

W�.t/!".t/
p�1

.p � 1/.�!0".t//
p�2
�

Then we have

�!0".t/ D
�
"p�1

�".a/

�".t/
C

1

�".t/

Z t

a

W�.s/�".s/!".s/
p�1 ds

�1=.p�1/
> 0

so long as!".t/ exists and keeps to be positive. Thus this holds on Œa;R"/, and in particular
we have 1 � !";ı.s/ � !";ı.t/ for a � s � t < R". Using these inequalities, we see that

ˆ".t/!".t/ � �!
0
".t/ � ˆ".t/

for t 2 .a;R"/, where as in the proof of Lemma 2.6, we let

ˆ".t/ D
�
"p�1

�".a/

�".t/
C

1

�".t/

Z t

a

W�.s/�".s/ ds
�1=.p�1/

:

Using the last inequality, we obtain

!".t/ � 1 �

Z t

a

ˆ".s/ ds;

from which it follows that

(2.6) ˆ".t/
�
1 �

Z t

a

ˆ".s/ ds
�
� �!0".t/:

Here, in view of (2.5), we notice that

!00" .t/ � �!
0
".t/

�0.t/

.p � 1/�.t/
;

and hence we have

�!0".t/ � �!
0
".s/

��".s/
�".t/

�1=.p�1/
; a � s � t < R":

This together with (2.6) shows that

�!0";ı.t/ �
��".s/
�".t/

�1=.p�1/
ˆ".s/

�
1 �

Z s

a

ˆ".u/ du
�
; a � s � t < R":

Now, as in the proof of Lemma 2.6, we have continuous functions ��.t/, ��.t/ on Œa;C1/
satisfying ��.a/D 0, ��.t/ > 0 for t > a, and ��.t/ �ˆ".t/ � ��.t/ for all " 2 .0; 1� and
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for all t 2 Œa;C1/. Here we fix a number b > a in such a way that
R b
a
��.s/ds < 1, and

then define a positive continuous function ��.t/ by putting ��.t/ D 1 for a � t � b and

��.t/ D min
0�ı�1

��ı.b/
�ı.t/

�1=.p�1/
for t � b. Then we obtain

��.t/ ��.t ^ b/
�
1 �

Z t^b

a

��.s/ ds
�
� �!0".t/ � �

�.t/I

1 �

Z t

a

��.s/ ds � !".t/ � 1

for all " 2 .0; 1� and for all t 2 Œa; R"/. We remark that t < R" if
R t
a
��.s/ds < 1. These

estimates show that there are an interval Œa; R/ and a positive function ! 2 C 1Œa; R/ \
C 2.a;R/ which is a unique solution to equation (2.3), subject to the conditions !.a/ D 1
and !0.a/ D 0, such that Œa; R/ is the maximal interval of existence for !, and as " goes
to zero, !" converges to !.

We remark that if W�.0/ > 0, then the same conclusions as in the above lemma with
a D 0 hold. In what follows, we assume that the function ! is defined on Œ0;R/ by setting
!.t/ D 1 on Œ0; a� if a > 0.

Proposition 2.11. Let W and !.t/ be as above. Let v 2 L1;ploc .B.o;R// \ C.B.o;R// be
a positive function satisfying

(2.7) ��f Ipv CW jvj
p�2v � 0

on B.o;R/ in the weak sense. Then

(2.8) !.t/ �
1

v.o/
min
S.o;t/

v

for t 2 Œ0;R/. In particular, if RDC1, that is, if (2.7) is satisfied onM , then (2.8) holds
for all t � 0.

Proof. We observe that !.r/ satisfies

�f Ip!.r/ � �W�.r/!.r/
p�1
� W!.r/p�1

in B.o; R/. Then we can deduce (2.8) from the same argument as in Proposition 2.7,
together with Theorem 2.1.

Lemma 2.12. Let k.t/, h.t/, �.t/ and R be as in Lemma 2.4. Assume that QpIW � 0,
RDC1, and k is nonpositive on Œ0;C1/, and moreover that k.t/D��t�2 and h.t/D
˛t�1 for all t � T , where � � 0, ˛ � 0, T > 0 are some constants.

(i) Suppose that W�.t/ is nonincreasing in ŒT;C1/ and
R C1
0

.W�.t/t/
1=.p�1/dt D

C1. Then !.t/ tends to zero as t !C1.
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(ii) Suppose that p D 2 and W�.t/ D �t�2 for all t � T , where � is a positive constant
less than .ˇ � 1/2=4 with ˇ D ˇ.m; �; ˛/ in Lemma 2.5. Then !.t/ satisfies

!.t/ � C .1C t /��

for some positive constant C and all t � 0, where

� D min
°1
2
..ˇ � 1/ �

p
.ˇ � 1/2 � 4� /; 2

p
1C 4� C

�

ˇ � 1

±
:

Proof. (i) Let t � 2T . Since !.t/ and W�.t/ are nonincreasing, we have by (2.3),

1 � !.t/ D 1 � !.T /C

Z t

T

� 1

�.s/

Z s

0

W�.x/�.x/!.x/
p�1 dx

�1=.p�1/
ds

�

Z t

T

� 1

�.s/

Z s

T

W�.x/�.x/!.x/
p�1 dx

�1=.p�1/
ds

� !.t/

Z t

T

�W�.s/
�.s/

Z s

T

�.x/ dx
�1=.p�1/

ds:

We recall that
1

�.s/

Z s

T

�.x/ dx � C6 s

for some constant C6 > 0 and all s � 2T (see the proof of Lemma 2.9). Therefore we have

1 � !.t/ � !.t/ C6

Z t

2T

.W�.s/s/
1=.p�1/ ds;

and hence we obtain

!.t/ �
1

1C C6
R t
2T
.W�.s/s/1=.p�1/ ds

�

Thus w.t/ tends to zero if
R C1
0

.W�.t/ t/
1=.p�1/dt D C1.

(ii) Let t � 2T . Then we have

�.t/!0.t/ D �.T /!0.T / �

Z t

T

�

s2
�.s/!.s/ ds < �!.t/

Z t

T

��.s/

s2
ds

and hence we get
!0.t/

!.t/
� �

�

�.t/

Z t

T

�.s/

s2
ds:

In view of Lemma 2.5(ii), we see that

�
�

�.t/

Z t

T

�.s/

s2
ds D �

�

ˇ � 1

1

t
CO.t�

p
1C4� /;

so that

(2.9)
!0.t/

!.t/
� �

�

ˇ � 1

1

t
CO.t�

p
1C4� /:
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Note here that ˇ > 1. These show that

(2.10) !.t/ � C7 t
��=.ˇ�1/

for all t � 2T and some constant C7 > 0. Then it follows from (2.9) and (2.10) that

(2.11) !0.t/ � �
�

ˇ � 1
C7 t

��=.ˇ�1/�1.1C o.1//:

We now continue the argument to improve the decay order. Let

E.t/ D
�0.t/

�.t/
�
ˇ

t

�
D .m � 1/

J 0.t/

J.t/
C h.t/ �

ˇ

t

�
;

ı˙ D
1

2

�
� .ˇ � 1/˙

p
.ˇ � 1/2 � 4�

�
;

F .t/ D atıC C b tı� ;

G.t/ D tıC
Z t

T

s1�ˇ�2ıC
� Z s

T

xˇCıC�1.�E.x/!0.x// dx
�
ds:

Here, a and b are constants chosen in such a way that F.T /D !.T / and F 0.T /D !0.T /.
Then F and G respectively satisfy

F 00.t/C
ˇ

t
F 0.t/C

�

t2
F.t/ D 0; F.T / D !.T /; F 0.T / D !0.T /I

G00.t/C
ˇ

t
G0.t/C

�

t2
G.t/ D �E.t/!0.t/; G.T / D G0.T / D 0:

Therefore the uniqueness theorem for ordinary differential equations implies

!.t/ D F.t/CG.t/; t � T:

Since J.t/D c t .1C
p
1C4� /=2C d t .1�

p
1C4� /=2 for t � T and some constants c > 0 and d ,

we have
E.t/ D O.t�2

p
1C4��1 /

and in view of (2.9), (2.10) and (2.11), we deduce that

G.t/ D O.t�2
p
1C4���=.ˇ�1//:

In this way, we obtain
!.t/ � C8 t

�� ; t � T

for some constant C8 > 0. This completes the proof of Lemma 2.12.

We have started our arguments from Lemma 2.4. Here we mention the following.

Lemma 2.13. Let n 2 .m;C1/ and fix a point x 2M . Let k.t/ be a continuous function
on Œ0; R/ .R 2 .0;C1�/ such that

Ricnf � .n � 1/k.rx/
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on B.x;R/. Let J.t/ be a unique solution of the equation J 00 C kJ D 0 in Œ0;R/, subject
to the initial conditions J.0/ D 0 and J 0.0/ D 1, and suppose that J > 0 on .0;R/. Then

�.t/ D J.t/n�1

satisfies (2.1).

Proof. See [16] for the case where n is an integer greater than m, and [27] for n 2
.m;C1/.

Remark 2.14. By starting with this lemma, instead of Lemma 2.4, we have Lemmas 2.5,
2.9, and 2.12, where ˛ and m are respectively replaced with 0 and n; furthermore, Theor-
ems 1.1 and 1.2, and Proposition 3.7 stated at the end of Section 3, hold if we replace (1.1)
and (1.2) with the condition infM .1C r/2 Ricnf > �1.

Now we are concerned with the volume growth and scale-invariant Poincaré inequal-
ities on the weighted Riemannian manifold .M;gM ;�f /. By virtue of Subsection 5.6.3 in
Saloff-Coste [31], we have the following.

Lemma 2.15. Fix p 2 Œ1;C1/,R> 0 and a point y 2M . Suppose that there is a positive
nondecreasing C 1 function �.t/ on .0; R/ satisfying (2.1) for all x 2 B.y; R/ and t 2
.0; �x.�/ ^ 2R/, and furthermore that there is a constant F.R/ such that

(2.12) �.t/ � F.R/�.t=2/

for all 0 < t < 2R: Then the following volume doubling property (VD) and scale-invariant
Poincaré inequalities (PI(p)), respectively, hold:

(i) for any ball B.x; 2t/ � B.y;R/,

�f .B.x; t// � 4F.R/�f .B.x; t=2//I

(ii) for every ball B.x; 2t/ � B.y;R/ and any u 2 L1;ploc .B.x; 2t//,Z
B.x;t=2/

ju � uB.x;t=2/j
p d�f � 4F.R/t

p

Z
B.x;t/

jrujp d�f ;

where
uB.x;t=2/ D

1

�f .B.x; t=2//

Z
B.x;t=2/

ud�f :

Proof. Since �If .x; t; �/
�.t/

�0
D
If .x; t; �/

�.t/

�I 0
f
.x; t; �/

If .x; t; �/
�
�0.t/

�.t/

�
� 0;

we have
If .x; s; �/

�.s/
�
If .x; t; �/

�.t/
; 0 < s � t < �x.�/ ^ 2R:



Positive solutions of the p-Laplacian with potential terms 2251

Moreover, since�R t
0
If .x; r; �/drR t
0
�.r/dr

�0
D

�.t/�R t
0
�.r/dr

�2 Z t

0

�If .x; t; �/
�.t/

�
If .x; s; �/

�.s/

�
�.s/ ds � 0

for 0 < t < �x.�/ ^ 2R, we getR s^�.�/
0

If .x; r; �/drR s^�.�/
0

�.r/dr
�

R t^�.�/
0

If .x; r; �/drR t^�.�/
0

�.r/dr
; 0 < s � t < 2R:

Noting that R s^�.�/
0

�.r/drR t^�.�/
0

�.r/dr
�

R s
0
�.r/drR t

0
�.r/dr

;

we obtain R s^�.�/
0

If .x; r; �/drR s
0
�.r/dr

�

R t^�.�/
0

If .x; r; �/drR t
0
�.r/dr

�

This shows that

(2.13)
�f .B.x; s//R s
0
�.r/dr

�
�f .B.x; t/R t
0
�.r/dr

; 0 < s < t � 2R:

Finally, if �.t=2/ � �.t/=F.R/, then

(2.14)
�f .B.x; s//

�f .B.x; t//
�

1

2F.R/
; 0 <

t

2
� s � t < 2R;

and

(2.15)
If .x; s; �/

If .x; t; �/
�

1

F.R/
; 0 <

t

2
� s � t � �x.�/ ^ 2R:

Obviously, (2.14) shows the volume doubling property (VD) in (i). Moreover, in view
of the proof of Theorem 5.6.5 in [31], (2.15) yields the inequalities (PI(p)) in (ii). This
completes the proof of Lemma 2.15.

Similarly, we have the following.

Lemma 2.16. Fix p 2 Œ1;1/, R > 0 and a point y 2M . Suppose that

sup
B.y;R/

f � inf
B.y;R/

f � b

for some positive constant b, and that there is a positive nondecreasing C 1 function ��.t/
on .0; R/ satisfying m � 1 � lim supt!0 t�

0
�.t/=��.t/ < C1,

(2.16)
I 0.x; t; �/

I.x; t; �/
�
�0�.t/

��.t/

for all x 2 B.y;R/ and t 2 .0; �x.�/ ^ 2R/, and furthermore

(2.17) ��.t/ � F.R/��.t=2/; 0 < t � 2R;

for some F.R/.
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Then the following volume doubling property (VD) and scale-invariant Poincaré in-
equalities (PI(p)), respectively, hold:
(i) for any ball B.x; 2t/ � B.y;R/,

�f .B.x; t// � 4F.R/ e
b�f .B.x; t=2//I

(ii) for every ball B.x; 2t/ � B.y;R/ and any u 2 L1;ploc .B.x; 2t//,Z
B.x;t=2/

ju � uB.x;t=2/j
p d�f � 4F.R/e

btp
Z
B.x;t/

jrujp d�f :

Making use of Lemmas 2.15 and 2.16, we extend the Bishop–Gromov volume doub-
ling property and (a weak form of) a theorem due to Buser [5] to weighted Riemannian
manifolds in the following result.

Proposition 2.17. Let .M; gM ; �f / be a connected, noncompact, complete weighted
Riemannian manifold of dimension m. Fix p 2 Œ1;C1/, R > 0, and a point y 2M .

(i) Suppose that the Ricci curvature RicM is bounded from below by �.m � 1/� on
B.y; R/, and that supB.y;R/ f � infB.y;R/ f � b, where � and b are nonnegat-
ive constants. Then (VD) and (PI(p)) (as in Lemma 2.16) hold with a constant
eC.m/.1CbC

p
�R/, where C.m/ is a constant depending only on m.

(ii) Suppose that the Bakry-Émery Ricci curvature Ricnf with n > m is bounded from
below by �.n � 1/� on B.y; R/, where � is a nonnegative constant. Then (VD)
and (PI(p)) (as in Lemma 2.15) hold with a constant eC.n/.1C

p
�R/, where C.n/ is a

positive constant depending only on n.

(iii) Suppose that the Bakry–Émery Ricci curvature Ric1f is bounded from below by
�.m � 1/� on B.y; R/ and that supB.y;R/ f � infB.y;R/ f � b, where � and b
are nonnegative constants. Then (VD) and (PI(p)) (as in Lemma 2.15) hold with a
constant eC.m/.1Cb/.1C

p
�R/.

Proof. For the assertion (i), we let ��.t/ D s�.t/
m�1. Then by the assumption, we see

that �� satisfies (2.16) and we can take F.R/ D 2mC1e.m�1/
p
�R which satisfies (2.17).

Hence (i) follows from Lemma 2.16.
For the assertion (ii), we let �.t/ D s�.t/n�1. Then by the assumption on the tensor

Ricnf , � satisfies (2.1) (see Lemma 2.12), and we can take F.R/D 2nC1 e.n�1/
p
�R, which

satisfies (2.12). Hence (ii) follows from Lemma 2.15.
We consider assertion (iii). It is shown by Wei and Wylie [35] that

I 0
f
.x; t; �/

If .x; t; �/
� .m� 1/

p
� coth.

p
�t/C

2�

sinh2.
p
kt/

Z t

0

.f .s; �/�f .t; �//cosh.2
p
�s/ds:

Since supB.y;R/ f � infB.y;R/ f � b, we obtain

I 0
f
.x; t; �/

If .x; t; �/
� .m � 1/

p
� coth.

p
�t/C

2�b

sinh2.
p
kt/

Z t

0

cosh.2
p
�s/ ds

� .m � 1C 2b/
p
� coth.

p
�t/:
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Hence letting �.t/D s�.t/m�1C2b , we have (2.1) and take F.R/D 2mC2be.m�1C2b/
p
�R,

which satisfies (2.12). In this way, (iii) follows from Lemma 2.15.

Corollary 2.18. Let .M; gM ; �f /be as above. A family of balls remote to a fixed point o
satisfies (VD) and .PI.p// under one of the following conditions:

(i) RicM � �
.m�1/�

.1Cr/2
and jrf j � ˛

1Cr
on M for some constants � � 0 and ˛ � 0;

(ii) Ricnf � �
.n�1/�

.1Cr/2
.n > m/ on M for some constant � � 0;

(iii) Ric1f � �
.m�1/�

.1Cr/2
on M and

sup
°

sup
B.o;2kC2/nB.o;2k/

f � inf
B.o;2kC2/nB.o;2k/

f
ˇ̌
k D 1; 2; : : :

±
� b < C1

for some constants � � 0 and b � 0.

Proposition 2.19. Let .M; gM ; �f / be a connected, noncompact, complete weighted
Riemannian manifold of dimension m and assume that (VC) holds.

(i) Suppose that RicM � �
.m�1/�

.1Cr/2
and jrf j � ˛

1Cr
on M for some constants � � 0

and ˛ � 0. Then one has

�f .B.o; t// � C.1C t /
mC˛

for some constant C > 0 and all t > 0.

(ii) Suppose that Ricnf � �
.n�1/�

.1Cr/2
.n > m/ onM for some constant � � 0. Then one has

�f .B.o; t// � C
0.1C t /n

for some constant C 0 > 0 and all t > 0.

(iii) Suppose that for some constants � � 0 and b � 0, Ric1f � �
.m�1/�

.1Cr/2
on M and

sup¹supB.o;2kC2/nB.o;2k/ f � infB.o;2kC2/nB.o;2k/ f j k D 1; 2; : : :º � b <C1. Then
one has

�f .B.o; t// � C
00.1C t /mC4b

for some constant C 00 > 0 and all t > 0.

Proof. Since (VC) is assumed, we have for x 2 S.o; t/,

�f .B.o; t// � CV�f .B.x; t=2//;

so it is enough to show that �f .B.x; t=2// � C.1C t /mC˛ , �f .B.x; t=2// � C 0.1C t /n,
and �f .B.x; t=2// � C 00.1 C t /mC4b , respectively, under the assumptions in (i), (ii)
and (iii).

We consider assertion (i). It follows from the assumption on f that jf .x/ � f .o/j �
˛
R r.x/
0

.1C s/�1ds D log.1C r.x//˛ for x 2M . Hence we get

e�f � ejf .o/j .1C r/˛ on M .
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Now we fix a point x 2 S.o; t/. Since RicM � ��.1C t=2/�2 � �4�t�2 on B.x; t=2/,
we have by (2.13) (after letting s go to 0 and letting !m stand for the volume of the unit
sphere of Euclidean space Rm),

�f .B.x; t=2//� sup
B.x;t=2/

e�f��0.B.x; t=2//� e
jf .o/j.1C2t/˛!m

Z t=2

0

.s2
p
�=t .�//

m�1d�

� ejf .o/j.1C 2t/˛ !m .s2
p
�=t .t=2//

m�1

Z t=2

0

d� � ejf .o/jC.m; �/.1C t /mC˛;

where C.m; �/ is a positive constant depending only on m and �.
For the remaining assertions, the same arguments as above are valid, and we omit the

proofs of (ii) and (iii).

Remark 2.20 ([13], subsection 2.2; [12], (15.68)). For any subset U of M and R > 0,
we consider a family of balls F D ¹B.x; t/jx 2 U; t � Rº. Assume that the family F

satisfies (VD) with constant CD . Set 
 D log2 CD . Then, for all 0 < s < t � R, we have

�f .B.x; t//

�f .B.x; s//
� CD

� t
s

�

:

For any B.x; t/ 2 F with t < R=2, assume that S.x; 3t=4/\ U 6D ;. Let y be a point of
S.x; 3t=4/ \ U . Then we obtain

�f .B.x; t// � �f .B.x; t=2//C �f .B.y; t=4//

� �f .B.x; t=2//C C
�3
D �f .B.y; 2t// � �f .B.x; t=2/.1C C

�3
D /:

We say that a family F of balls in M as above satisfies the reverse volume doubling
property (RVD) with a constant CRD > 1 if, for any ball B.x; t/ 2 F with t < R,

�f .B.x; t// � CRD �f .B.x; t=2//:

Then, for all 0 < s < t � R=2,

�f .B.x; t//

�f .B.x; s//
� CRD

� t
s

�ˇ
;

where ˇ D log2 CRD.

Now we let ƒ be a positive constant and consider the equation Q0pIƒ.u/ D 0 in M .
We denote by �p;ƒ the solution of (2.2) with �.t/ D s�.t/n�1 and W� D ƒ subject to the
initial conditions �p;ƒ.0/D 1 and �0p;ƒ.0/D 0. Sinceƒ> 0, it is easy to see that �0p;ƒ > 0
on .0;C1/, so �p;ƒ.t/ > 1. Moreover, it follows from Lemma 2.3 that �p;ƒ.r/ satisfies
��p;f �p;ƒ.r/Cƒ�p;ƒ.r/

p�1 � 0 on M in the weak sense.
To prove Theorem 1.3(i), we need the following.

Lemma 2.21. Let Z.p; n; �;ƒ/ be the unique positive root of the equation .p � 1/Zp C
.n � 1/

p
�Zp�1 D ƒ. Then one has

lim
t!1

1

t
log �p;ƒ.t/ D Z.p; n; �;ƒ/:
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Proof. For a positive constant a, let �a.t/ D c�.t/a .t 2 Œ0;1//. Then �a satisfies

.�0a.t/
p�1/0 C .m � 1/

c�.�/

s�.�/
�0a.t/

p�1
� �.a; t/�a.t/

p�1;

where we put

�.a; t/ D ap�1 �p�1
�
.a � 1/.p � 1/�

� s�.t/
c�.t/

�p
C .nC p � 2/

� s�.t/
c�.t/

�p�2�
:

We observe that

lim
t!1

�.a; t/ D .p � 1/.
p
�a/p C .n � 1/

p
� .
p
� a/p�1;

so that for a D ��1=2Z.p; n; �;ƒ/,

lim
t!1

�.��1=2Z.p; n; �;ƒ/; t/ D ƒ:

Let a be less than ��1=2Z.p; n; �;ƒ/. Then there exists a positive number � such that
�.a; t/ < ƒ for all t � � . We take a positive number b in such a way that b�a.�/ < �p;ƒ.�/
and b�0a.�/ < �

0
p;ƒ.�/. Then it holds that b�0a.t/ < �

0
p;ƒ.t/ for all t � � . In fact, we suppose

contrarily that for some t� > � , b�0a.t/ < �
0
p;ƒ.t/ for all t 2 Œ�; t�/ and b�0a.t�/D �

0
p;ƒ.t�/.

Since b�a.s/ < �p;ƒ.s/ for s 2 Œ�; t��, we obtain

s�.t�/
n�1�0p;ƒ.t�/

p�1
D s�.�/

n�1�0p;ƒ.�/
p�1
C

Z t�

�

ƒs�.s/
n�1�0p;ƒ.s/

p�1 ds

> s�.�/
n�1bp�1�0a.�/

p�1
C

Z t�

�

�.a; s/s�.s/
n�1bp�1�0a.s/

p�1ds

� bp�1 s�.�/
n�1�0a.�/

p�1
C bp�1

Z t�

�

.s�.s/
n�1�0a.s/

p�1/0 ds

D bp�1 s�.t�/
n�1�0a.t�/

p�1
D s�.t�/

n�1�0p;ƒ.t�/
p�1:

This is absurd. Thus we see that b�0a.t/ < �
0
p;ƒ.t/ for all t � � , and hence b�a.t/ < �p;ƒ.t/

for all t � � . This shows that

p
�a D lim

t!1

1

t
log b�a.t/ � lim inf

t!1

1

t
log �p;ƒ.t/:

This holds for any a < ��1=2Z.p; n; �;ƒ/. Thus we get

Z.p; n; �;ƒ/ � lim inf
t!1

1

t
log �p;ƒ.t/:

Similarly, we can deduce that

lim sup
t!1

1

t
log �p;ƒ.t/ � Z.p; n; �;ƒ/:

In this way, we obtain limt!1
1
t

log�p;ƒ.t/D Z.p;n; �;ƒ/. This completes the proof of
Lemma 2.21.
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3. Harnack inequalities and proof of Theorem 1.1

Let .M; gM ; �f / be a connected, noncompact, complete weighted Riemannian manifold
of dimension m. Let � be an open subset of M . In this section, we assume the volume
doubling property (VD) and the family of (weak) scaled Poincaré inequalities .PI.p//
.p 2 .1;C1// as follows:

(i) there exists a positive constant CD such that, for any ball B.x; 2t/ � �,

�f .B.x; t// � CD �f .B.x; t=2//I

(ii) there exists a positive constant CP such that for every ball B.x; 2t/ � � and any
u 2 L

1;p
loc .B.x; 2t//,Z

B.x;t=2/

ju � uB.x;t=2/j
p d�f � CP t

p

Z
B.x;t/

jrujp d�f ;

where
uB.x;t=2/ D

1

�f .B.x; t=2//

Z
B.x;t=2/

ud�f :

Then it is known that the family (SI(p)) of Sobolev inequalities holds in such a way
that for some constants k > 1 and CS > 0, and for every ball B.x; 2t/ � � and any
v 2 L

1;p
0 .B.x; t//,� Z

B.x;t/

jvjpk d�f

�1=k
�

CS t
p

�f .B.x; t//p=�

Z
B.x;t/

jrvjp C t�p jvjp d�f ;

where we can take k D �=.� � p/ with � D max¹p C 1; log2 CDº, and CS depends only
on CD and CP (See [7], Lemma 4.3; [29], [30], [31] and references therein.)

A Harnack inequality for positive p-harmonic functions is obtained in Coulhon, Holo-
painen and Saloff-Coste [7] by running the Moser iteration as in [30] under the assumption
that volume doubling property and suitable Poincaré inequalities hold. In fact, the result
is established in a natural framework including the usual p-Laplacians. Along the line
of [7], we extends the Harnack inequality for positive solutions of equation ��f Ipu C
W jujp�2u D 0, where W is a locally bounded potential function. We refer also to [26].

The main result of this section is the following.

Theorem 3.1. Let .M;gM ;�f / be a noncompact, connected, complete weighted Rieman-
nian manifold of dimensionm. The volume doubling property (VD) and the family (PI(p))
of Poincaré inequalities with constants CD and CP respectively are satisfied in an open
subset �. Then for any nonnegative function u2L1;ploc .B.x; 2t//, B.x;2t/��, satisfying

�� jujp�2u � �f Ipu � ƒ juj
p�2u

in the weak sense on B.x; 2t/, where � and ƒ are positive constants, one has

sup
B.x;t/

u � C inf
B.x;t/

u:

Here C is a positive constant depending only on CD , CP , p, tp�, and tpƒ.
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We start with:

Theorem 3.2. Assume .SI.p// is satisfied on� and let B.x;2t/��. Let 0 < � < � 0 � 1
and 0<˛ <C1. For a nonnegative function u inL1;ploc .B.x;2t// satisfying��jujp�2u�
�f Ipu in the weak sense on B.x; 2t/, where � is a positive constant, one has

sup
B.x;�t/

u � CCS
�=p
� 1

�f .B.x; t//

Z
B.x;� 0t/

u˛d�
�1=˛

;

where C is a positive constant depending only on p, k, � , � 0, ˛ and tp�.

Proof. For the case where � D 0, the theorem is shown in [7], Theorems 4.4 and 4.5, and
we can adapt the proof for our case.

Now we are concerned with a positive function u2W 1;p
loc .B.x;2t// satisfying�f;pu�

�jujp�2u, where � is a positive constant. We begin with:

Lemma 3.3. Suppose that .SI.p// is satisfied and B.x; 2t/��. Let 0 < � < � 0 � 1, 0 <
s0 < k�1s < s < k.p � 1/, and 0 < q <C1. For a positive function u in L1;ploc .B.x; 2t//

satisfying �f;pu � ƒjujp�2u in the weak sense, one has� 1

�f .B.x; t//

Z
B.x;�t/

usd�
�1=s

�
�
CCS

�2=p2.� 0 � �/��
2=p
�1=s0�1=s� 1

�f .B.x; t//

Z
B.x;� 0t/

us
0

d�
�1=s0

and
sup

B.x;�t/

u�q � CC
�=p
S .� 0 � �/�1=�

1

�f .B.x; t//

Z
B.x;� 0t//

u�qd�;

where C is a positive constant depending only on p, � and tpƒ.

Proof. For the case whereƒD 0, the theorem is shown in [7], Theorems 4.6. 4.7, and we
can adapt the proof for our case. See also [26], Chapter 7.

Now by referring to the proof of Theorem 3.1 in [7], we prove the following.

Lemma 3.4. Suppose that .PI.p// is satisfied on � and let B.x; 2t/ � �. Let 0 < ı < 1
and let u be a positive function in L1;ploc .B.x; 2t// satisfying �f;pu � ƒjujp�2u in the
weak sense. ThenZ

B.x;ıt/

jr logujp d�f �
2p.1C tpƒ/

.p � 1/.1 � ı/ptp
�f .B.x; t//:

Proof. In this proof, we write B , B.s/ .0 < s < t/ and V.s/ respectively for B.x; t/,
B.x; s/ and �f .B.x; s//. For any function w 2 L1;ploc .B/, w � " > 0, we have

��f Ip logw C
�f Ipw

wp�1
D .p � 1/jr logwjp
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in the weak sense, that is, for any nonnegative function 2L1;p0 .B/with compact support
in B , we haveZ

g.r ;r logw/jr logwjp�2 d�f �
Z
g.rw;r

�  

wp�1

�
/jrwjp�2 d�f

D .p � 1/

Z
 jr logwjp d�f :

This shows that logu satisfies

.p � 1/

Z
 jr logujp d�f �ƒ

Z
 d�f �

Z
hr ;r loguijr logujp�2 d�f

for any nonnegative  2 L1;p0 .B/. Taking

 .y/ D

8̂<̂
:
1 if y 2 B.s/;
1 � 1

"
.disM .x; y/ � 1/ if y 2 B.s C "/ n B.s/;

0 otherwise;

yields

.p � 1/

Z
B.s/

jr logujp d�f �
1

"

Z
B.sC"/nB.s/

jr logujp�1 d�f C �
Z
B.tC"/

d�f :

Since

1

"

Z
B.sC"/nB.t/

jr logujp�1 d�f

�

�V.s C "/ � V.t/
"

�1=p�1
"

Z
B.sC"/nB.s/

jr logujp d�f
�1=p0

;

where p0 D p
p�1

, we get

.p � 1/

Z
B.s/

jr logujp d�f

�

�V.s C "/ � V.s/
"

�1=p�1
"

Z
B.sC"/nB.s/

jr logujp d�f
�p0
CƒV.s C "/:

Thus putting H.s/ D .p � 1/
R
B.s/
jr logujp d�f and letting " tend to 0 yield

H.s/ �
�H 0.s/
p � 1

�1=p0
V 0.s/1=p CƒV.s/;

and hence

1

V 0.s/1=p
�

1

.p � 1/1=p
0

� H 0.s/
H.s/p

0

�1=p0
C
ƒV.s/

H.s/

1

V 0.s/1=p
�
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Suppose that 2ƒV.t/ D H.s0/ for some s0 2 .0; t/. Since

ƒV.s/

H.s/
�
ƒV.t/

H.s0/
D
1

2
;

we have
1

2p
0

1

V 0.s/p=p
0
�

1

p � 1

H 0.s/

H.s/p
0 ; s0 � s � t:

Integrating both sides from s0 to s for s0 � s0 < s � t , we obtain

(3.1)
1

2p
0

Z s

s0

d�

V 0.�/p
0=p
�

1

H.s0/p
0=p
�

1

H.s/p
0=p
�

The left-hand side can be bounded from below by ..s � s0/p=.V .s/ � V.s0///1=.p�1/,
because

.s � s0/p D
� Z s

s0
d�
�p
�

� Z s

s0
V 0.�/ d�

Z t

s0

1

V 0.�/p
0=p

d�
�p=p0

D .V .s/ � V.s0//
� Z s

s0

d�

V 0.�/p
0=p

�p=p0
:

Hence, by (3.1), we have

1

2p
0

� .s � s0/p

V.s/ � V.s0/

�1=.p�1/
�

1

H.s0/p
0=p
�

1

H.s/p
0=p
�

1

H.s/p
0=p

and thus

H.s0/ � 2p
V.s/ � V.s0/

.s � s0/p
; s0 � s

0 < s � t:

This shows that if ıt � s0, then

H.ıt/ � 2p
V.t/ � V.ıt/

tp.1 � ı/p
� 2p

V.t/

tp.1 � ı/p
;

and if ıt < s0, then
H.ıt/ � H.s0/ D 2ƒV.t/:

In this way, we obtain

H.ıt/ � 2p
� 1

tp.1 � ı/p
Cƒ

�
V.t/ <

2p.1C tpƒ/

.1 � ı/ptp
V.t/:

If H.s/ < 2ƒV.t/ for any s 2 .0; t/, then we have

H.ıt/ < 2ƒV.t/ <
2p.1C tpƒ/

.1 � ı/ptp
V.t/:

This completes the proof of Lemma 3.4.

In order to arrive at Theorem 3.1, we need an abstract lemma due to Bombieri and
Giusti [3], which simplifies considerably Moser’s original proof of the Harnack inequality.
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Consider a collection of measurable subsets U� , 0 < � � 1, of a fixed measure space
endowed with a measure �, such that U� � U� 0 if � � � 0. In our application, U� will be
B.x; � t/ for some fixed metric ball B.x; t/ �M .

Lemma 3.5 ([3]; [31], Subsection 2.2.3). Fix 0 < ı < 1. Let 
 and C be positive constants
and let 0 < ˛0 �C1. Let g be a positive measurable function on U1 D U which satisfies� Z

U�

g˛0 d�
�1=˛0

�
�
� 0 � �/�
�.U /�1

�1=˛�1=˛0� Z
U� 0

g˛ d�
�1=˛

for all �; � 0; ˛ such that 0 < ı � � < � 0 � 1 and 0 < ˛ � min¹1; ˛o=2º. Assume further
that g satisfies

�.logg > t/ � �.U / t�1

for all t > 0. Then � Z
Uı

g˛0 d�
�1=˛0

� A�.U /1=˛0 ;

where A depends only on ı, 
 , C and a lower bound on ˛0.

Theorem 3.6. Assume the volume doubling property (VD) and the family of Poincaré
inequalities .PI.p// with constants CD and CP .p 2 .1;C1//, respectively, are satisfied
in an open subset �. Let � D max¹p C 1; log2 CDº, 0 < s < �.p � 1/=.� � p/, and
0 < ı < 1. Then a positive function u 2 L1;ploc .B.x; 2t//; B.x; 2t/ � �, satisfying

�f;pu � ƒu
p�1

in B.x; 2t/ fulfills � 1

�f .B.x; ıt//

Z
B.x;ıt/

us d�f

�1=s
� C inf

Bx.ıt/
u:

Here C is a positive constant depending only on ı, p, CD , CP , and tpƒ.

Proof. Let

c D
1

�f .B.x; ıt//

Z
B.x;ıt/

logud�:

In view of Lemma 3.3, we can apply Lemma 3.5 to e�cu and ecu�1. First it follows
from .PI.p// and Lemma 3.4 thatZ

B.x;ıt/

j logu � cj d� � �f .B.x; ıt//1�1=p
� Z

B.x;ıt/

j logu � cjp d�
�1=p

� C1�f .B.x; ı�//;

where we put C1 D 2.1 C tp�/1=p.p � 1/�1=p.1 � ı/�1CP . This shows that for any
� > 0,

��.¹x 2 ıB j log e�cu � �º/ �
Z
ıB

j logu � cj d� � C1 �f .B.x; ıt//:

Similarly, we have

��.¹x 2 ıB j log ecu�1 � �º/ � C1 �f .B.x; ıt//:
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Then it follows from Lemma 3.5 that� Z
B.ıt/

us d�
�1=s
� A�f .B.x; ıt//

1=s ec ; 0 < s <
�.p � 1/

� � p

and also
ec sup

ıB

u�1 � A:

These show the required inequality.

It is clear that Theorem 3.1 is derived from Theorems 3.2 and 3.6.

Proof of Theorem 1.1. (i) By the assumptions, we assume that for some positive con-
stants �, ˛ and ˛0,

RicM � ��.m � 1/.1C r/�2; jrf j � ˛.1C r/�1 and jW j � ˛0.1C r/�p

on M . Let b D supt>0 t
�1diam.� I1/.S.o; t// and it is assumed that b is finite. We fix

a positive integer k in such a way that � � 2k�2.1 � �/. For any x; y 2 S.o; t/, let

xy W Œ0; L�! M n B.o; .1 � �/t/ .L D dis.� It//.x; y// be a curve parametrized by arc-
length joining x D 
xy.0/ to y D 
xy.L/. We choose a nonnegative integer j in such a
way that

�j

2kC1
�
L

t
<
�.j C 1/

2kC1
�

Note that j � 2kC1��1b, since L � t b. Let xi D 
xy.2
�k�1�ti/ .i D 0; 1; : : : ; j /

and xjC1 D y. Note also that B.xi ; 2�k�t/ .i D 0; : : : ; j / are all remote balls, and on
M n B.o; .1 � .1 C 2�k/�/t/ which includes

SjC1
iD0 B.xi ; 2

�k�t/, we have the Ricci
curvature bounded from below by �.m� 1/�.1C .1� .1C 2�k/�/t/�2, jrf j bounded
from above by ˛.1C .1� .1C 2�k/�/t/�1 and jW j bounded from above by ˛0.1C .1�
.1C 2�k/�/t/�p . Since 2�k�t < 1C .1 � .1C 2�k/�/t , it follows from Theorem 3.1
that u.xi /� C2u.xiC1/ .i D 0; : : : ; j /, and hence we have u.x/� C2jC1u.y/, where C2
is a positive constant independent of u and t . This completes the proof of assertion (i).

(ii) Based on the annulus Harnack inequalities in the first assertion and using the same
arguments as in Theorem 7.1 in [23], we can verify the second one. We omit the details of
the proof.

(iii) Let M.t/ D supS.o;t/ u and m.t/ D infS.o;t/ u. If W � 0 and u is unbounded,
then Lemma 2.2 shows that M.t/ diverges to infinity as t !1. By the annulus Harnack
inequality,M.t/ � CHm.t/ for all t � 0. This implies that u.x/!C1 as x 2M !1.
WhenW � 0 and infM uD 0, we see from Lemma 2.2 thatm.t/ tends to zero as t !1.
Thus the annulus Harnack inequality shows that u.x/ goes to zero as x 2M !1.

(iv) Let �.t/ be the solution of equation (2.2) with W�.t/ D �.t/. Then by Proposi-
tion 2.7(i), we have supS.o;t/ u � u.o/�.t/, and by Lemma 2.9(i), limt!1 �.t/ D C1,
so that supM u D C1. This proves that limx2M!1 u.x/ D C1.

Now let !.t/ be the solution of (2.3) with W�.t/ D �.t/. Then by Proposition 2.11
and Lemma 2.12(i), we have !.t/� u.o/�1 infS.o;t/ u and limt!1w.t/D 0. These show
that infM u D 0, and hence limx2M!1 u.x/ D 0.
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Before ending this section, we have by Lemma 2.9(ii) and Lemma 2.12(ii), the fol-
lowing.

Proposition 3.7. Let .M; gM ; �f / be a connected, noncompact, and complete weighted
Riemannian manifold of dimension m satisfying (1.1), (1.2) and ı.� I1/.M/ < C1 for
some � 2 .0; 1/. Given a bounded function W on M , assume that QpIW � 0. Let u 2
L
1;p
loc .M/ \ C

1;˛
loc .M/ be a positive solution to the equation Q0pIW .u/ D 0 in M .

(i) Suppose that
�

.1C r/p
� W �

ƒ

.1C r/p

for some positive constants �, ƒ with � < ƒ. Then one has

u � C.1C r/
.p;m;�;˛;�/ in M ,

where C is a positive constant and 
.p;m; �; ˛; �/ is the positive solution of

xjxjp�2.x.p � 1/C ˇ.m; �; ˛/C 1 � p/ D �

with ˇ.m; �; ˛/ D ˛ C .m � 1/.1C
p
1C 4�/=2.

(ii) Suppose that p D 2 and

�
ƒ

.1C r/2
� W � �

�

.1C r/2

for some positive constants �, ƒ with � < ƒ. Then one has

u �
C 0

.1C r/�.m;�;˛;�/
in M ,

where C 0 is a positive constant and

�.m; �; ˛; �/ D min
®
1
2
..ˇ � 1/ �

p
.ˇ � 1/2 � 4� /; 2

p
1C 4� C �

ˇ�1

¯
:

with ˇ D ˇ.m; �; ˛/.

4. Proof of Theorem 1.2

Under the conditions (1.1), (1.2), (VC) and (RCA), we can conclude from Theorem 5.2,
Corollary 5.4 and Theorem 2.7 in [13] that .M; gM ; �f / satisfies (VD) with a constant
CD > 1 and (PI(2)), or equivalently, that the following two-sided estimate for the heat
kernel p.t; x; y/ of the Laplacian �f I2 holds:

(4.1)

C0

V.x;
p
t /

exp
�
� C 00

disM .x; y/2

t

�
� p.t; x; y/

�
C 00

V.x;
p
t /

exp
�
� C0

disM .x; y/2

t

�
for all x; y 2M , t > 0 and some C 00 > C0 > 0, where we put V.x; t/ D �f .B.x; t//.
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Moreover, in view of (1.3) .ˇ > 2/, the Green function

G.x; y/ D

Z 1
0

p.t; x; y/ dt

exists and satisfies

(4.2) C�11

Z 1
disM .x;y/

t

V .x; t/
dt � G.x; y/ � C1

Z 1
disM .x;y/

t

V .x; t/
dt

for all x; y 2M and some C1 > 1.
Let  be a positive nonincreasing C 1 function on Œ0;1/ such that

(4.3)
Z 1
0

t .t/ dt < C1:

We first observe that for 0 � a < b < C1,

(4.4)

Z
¹a�r�bº

 .r/ d�f

� C�1ˇ  .a/ aˇ V.o; b/ b�ˇ C ˇC�1ˇ V.o; b/ b�ˇ
Z b

a

 .r/rˇ�1 dr:

In fact, using the growth condition (1.3), we haveZ
¹a�r�bº

 .r/ d�f D

Z b

a

 .r/V 0.o; r/ dr

D  .b/V .o; b/ �  .a/V .o; a/ �

Z b

a

 0.r/V .o; r/ dr

�  .b/V .o; b/C C�1ˇ V.o; b/ b�ˇ
Z b

a

� 0.r/rˇ dr

�  .b/V .o; b/C C�1ˇ V.o; b/ b�ˇ
�
 .a/aˇ �  .b/bˇ C ˇ

Z b

a

 .r/rˇ�1 dr
�

� C�1ˇ  .a/ aˇ V.o; b/ b�ˇ C ˇC�1ˇ V.o; b/ b�ˇ
Z b

a

 .r/rˇ�1 dr:

Thus we obtain (4.4).
Now for a nonnegative number k, we let

Gk.x/ D

Z
MnB.o;k/

G.x; z/ .r.z// d�f .z/; x 2M:

Then we have:

Lemma 4.1. The following assertions hold:
(i) limx2M!1G0.x/ D 0,

(ii) limk!1 supx2M Gk.x/ D 0:
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Proof. To estimate Gk.x/, we put

GkI1.x/ D

Z
¹k�r.z/�2r.x/Id.x;z/�r.x/=2º

G.x; z/ .r.z// d�f .z/;

GkI2.x/ D

Z
¹r.z/�kId.x;z/�r.x/=2º

G.x; z/ .r.z// d�f .z/;

GkI3.z/ D

Z
¹r.z/�2r.x/º

G.x; z/ .r.z// d�f .z/:

In view of (4.2) and the volume doubling property (VD) with a constant CD > 1 (see
Remark 2.20), we see that

G.x; z/ � C1

Z 1
r.x/=2

t dt

V .x; t/
D C1

Z 1
r.x/=2

V.o; t/

V .x; t/

tdt

V .o; t/

� C1

Z 1
r.x/=2

V.o; t/

V .x; t C r.x//

V .x; t C r.x//

V .x; t/

t dt

V .o; t/

� C1CD

� t C r.x/
t

�
 Z 1
r.x/=2

t dt

V .o; t/
� 3
C1CD

Z 1
r.x/

t dt

V .o; t/

if d.x; z/ � r.x/=2. Putting C2 D 3
C1CD , we have

GkI1.x/ � C2

Z 1
r.x/=2

t dt

V .o; t/

Z
¹k�r.z/�2r.x/Id.x;z/�r.x/=2º

 .r.z// d�f .z/:

Since we assume the volume growth (1.3), we getZ 1
r.x/=2

t dt

V .o; t/
� 2ˇ

C�1
ˇ

V.o; r.x/=2/

Z 1
r.x/=2

t
�r.x/
t

�ˇ
dt D

C�1
ˇ
r.x/2

22.ˇ � 2/V .o; r.x/=2/
;

and we have by (4.4),Z
¹k�r.z/�2r.x/Id.x;z/�r.x/=2º

 .r.z// d�f .z/

�
C�1
ˇ
 .k/kˇ V.o; 2r.x//

2ˇ r.x/ˇ
C
ˇC�1

ˇ
V.o; 2r.x//

2ˇ r.x/ˇ

Z 2r.x/

k

 .r/rˇ�1 dr

�
C�1
ˇ
 .k/kˇ V.o; 2r.x//

2ˇ r.x/ˇ
C
ˇ

2ˇ
C�1ˇ V.o; 2r.x//

Z 2

k=r.x/

 .r.x/t/ tˇ�1 dt:

In this way, we obtain

GkI1.x/ � C3
 .k/kˇ

r.x/ˇ�2
C C3 r.x/

2

Z 2

0

 .r.x/t/ tˇ�1 dt;

where we put C3 D C1C 2DC
�2
ˇ
16
 ˇ.ˇ � 2/�1.
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For GkI2.x/, we have

GkI2.x/ �  ..r.x/=2/ _ k/

Z
¹d.x;z/�r.x/=2º

G.x; z/ d�f .z/

� C1 ..r.x/=2/ _ k/

Z r.x/=2

0

Z 1
r

t dt

V .x; t/
V 0.x; r/ dr

D C1 ..r.x/=2/ _ k/
� Z 1

r.x/=2

t dt

V .x; t/
V .x; r.x/=2/C

Z r.x/=2

0

r dr
�

� C1 ..r.x/=2/_k/
� Z 3r.x/

r.x/=2

tV .x; r.x/=2/

V .x; t/
dt C

Z 1
3r.x/

t V .x; r.x/=2/

V .x; t/
dtCr.x/2

�
� C1 ..r.x/=2/ _ k/

�
6r.x/2 C

Z 1
3r.x/

t V .o; 3r.x/=2/

V .o; t � r.x//
dt
�

� C1 ..r.x/=2/ _ k/
�
6r.x/2 C Cˇ

Z 1
3r.x/

t
�3r.x/=2
t � r.x/

�ˇ
dt
�

� 6C1

�
1C

Cˇ

ˇ � 2

�
 ..r.x/=2/ _ k/r.x/2:

Finally, we consider GkI3.x/. Since we have for t � 2r.x/,

V.x; t/ � V.o; t � r.x// � CD

� t � r.x/
t

�

V.o; t/ �

CD

2

V.o; t/;

we get

GkI3.x/ � C1

Z
¹r.z/�2r.x/º

Z 1
d.x;z/

t dt

V .x; t/
 .r/ d�f .z/

� C1

Z
¹r.z/�2r.x/º

Z 1
r.z/�r.x/

t dt

V .x; t/
 .r/ d�f .z/

� C1CD

Z 1
r.x/

�
t

V .o; t/

Z
¹2r.x/�r.z/�tCr.x/º

 .r/ d�f .z/

�
dt:

Since we have by (4.4),Z
¹2r.x/�r�tCr.x/º

 .r/ d�f

� C�1ˇ
V.o; t C r.x//

.t C r.x//ˇ

�
 .2r.x//.2r.x//ˇ C ˇ

Z tCr.x/

2r.x/

 .r/r��1 dr
�

and
V.o; t C r.x//

V .o; t/
� CD

� t C r.x/
t

�

� CD 2


 ;
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putting C4 D 2
ˇC1C 2DC
�1
ˇ

, we get

GkI3.x/ � C4

Z 1
r.x/

t

.t C r.x//ˇ

�
 .2r.x//.2r.x//ˇ C

Z tCr.x/

2r.x/

 .r/rˇ�1
�
dt

� C4 .2r.x//.2r.x//
ˇ

Z 1
r.x/

t dt

.t C r.x//ˇ

C C4

Z 1
r.x/

t

.t C r.x//ˇ

Z tCr.x/

2r.x/

 .r/rˇ�1 dr dt

� C4.ˇ�2/
�1 .2r.x//.2r.x//2CC4

Z 1
2r.x/

 .r/rˇ�1
Z 1
r�r.x/

t dt

.tCr.x//ˇ
dr

� C4 .ˇ � 2/
�1 .2r.x//.2r.x//2 C C4

Z 1
2r.x/

 .r/r dr:

In this way, we obtain

Gk.x/ � C5

� .k/kˇ
r.x/ˇ�2

C

Z 2

0

 .r.x/t/.r.x/t/2 tˇ�3 dt C  ..r.x/=2/ _ k/ r.x/2

C  .2r.x//.2r.x//2 C

Z 1
r.x/

t  .t/ dt
�

for some positive constant C5 and for all k � 0 and x 2 M . This shows the assertions in
the lemma. The proof of Lemma 4.1 is completed.

Now we will finish the proof of Theorem 1.2.
(i) It follows from Lemma 4.1(i) that v.x/ D �

R
M
G.x; y/W.y/d�f .y/ is a unique

solution of equation �f I2v D W in M which tends to zero at infinity.
(ii-a) By the assumption that

R1
0
t .t/dt converges, we are able to apply a res-

ult by Ancona (see Theorem 3.3 in [2]) to assert that the Green functions GW .x; y/ DR1
0
pWt .x; y/dt of Q02IW and G.x; y/ are equivalent in the sense that

C�16 G.x; y/ � GW .x; y/ � C6G.x; y/; x; y 2M

for some C6 � 1, which implies that

C�26
G.x; y/

G.o; y/
�
GW .x; y/

GW .o; y/
� C 26

G.x; y/

G.o; y/
; x; y 2M:

Since

lim
y2M!1

G.x; y/

G.o; y/
D 1 and lim

y2M!1

GW .x; y/

GW .o; y/
D
u.x/

u.o/

by Theorem 1.1(ii), we get

C�26 u.o/ � u.x/ � C 26 u.o/; x 2M:

Then Lemma 4.1(i) shows that Ov.x/ D
R
M
G.x; y/W.y/u.y/d�f .y/ converges for all

x 2 M , and Ov.x/ tends to zero as x 2 M !1. Thus uC Ov is harmonic and bounded
in M , so that it must be a constant, say a. In this way, we conclude that u.x/ D a �R
M
G.x; y/W.y/u.y/ d�f .y/ for all x 2M .
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(ii-b) We assume here that Q02IW is critical, that is, Q02IW does not admit the Green
function. Then following a result due to Pinchiover (Theorem 4.2 in [21]), we are able to
take a function V of class C 0;˛.M/ with compact support in such a way that Q02IVCW is
subcritical and

u.x/ D

Z
M

GVCW .x; y/V .y/u.y/ d�f .y/; x 2M:

Since jV CW j � C7 .r/ for some constant C7 > 0,GVCW is equivalent toG and hence
it turns out that u.x/ tends to zero as x 2M !1. This shows that uC Ov is a harmonic
function on M tending to zero at infinity. Thus we conclude that u C Ov D 0, namely,
u.x/ D �

R
M
G.x; y/W.y/u.y/ d�f .y/:

Now we end this section with some results, remarks, and examples related to Theor-
ems 1.1, 1.2 and 1.3. We begin with the following.

Proposition 4.2 ([13]). Let .M;gM ;�f / be a connected, noncompact, complete weighted
Riemannian manifold. Condition (VD) for remote balls relative to a fixed point is satisfied,
and (VC) holds true if and only if (VD) for all balls is satisfied.

Proof. See Lemma 4.4 and Proposition 4.7 in [13].

Proposition 4.3. Let .M; gM ; �f / be a connected, noncompact and complete weighted
Riemannian manifold.

(i) Suppose that (RCA) holds true and (VD) for all balls is satisfied. Then ı.� I 1/.M/<

C1 for some � 2 .0; 1/.

(ii) Suppose that ı.1/.M/ < 2. Then ı.� I1/.M/D ı.1/.M/ for all � 2 .1
2
ı.1/.M/;1/.

(iii) Let o be a point of M . Suppose that there are constants ˇ, 
 , Cˇ , C
 such that
0 < ˇ � 
 , Cˇ � 1 � C
 , and

(4.5) Cˇ

� t
s

�ˇ
�
�f .B.o; t//

�f .B.o; s//
� C


� t
s

�

for all 1 � s � t , and suppose that ı.1/.M/ < 1. Then .M;gM ;�f / satisfies (RCA)
and (VC).

Proof. (i) Let CA be a constant greater than 1 in condition (RCA). We take constants � ,
ı 2 .0; 1/ in such a way that 0 < ı < 4�1C�1A , and 1� � < C�1A � 2ı. By (RCA), for any
two points on S.o; t/, there is a path connecting these points in B.o; CAt / n B.o; C�1A t /.
Set A�.t/ to be the union of B.o; CAt / n B.o; t/ and the ıt -neighborhoods of all such
paths. This construction ensures that A�.t/ is a connected set which contains S.o; t/ and
is included in M n B.o; .1 � �/t/ (see [13], Subsection 5.1). We consider a maximal set
¹xi ji D 1; 2; : : : ; N º of points in A�.t/ at distance at least ıt from each other (i.e., an
ıt -net in A�.t/). Then ¹B.xi ; ıt=2/ j i D 1; : : : ; N º is a set of pairwise disjoint balls and
the union of ¹B.xi ; ıt/ j i D 1; : : : ; N º covers A�.t/. Associated with the covering is a
graph consisting of the set of vertices V and the set of edges E by setting

V D ¹xi j i D 1; 2; : : : ; N º and E D ¹.xi ; xj / 2 V � V j disM .xi ; xj / < 2ıtº
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(see [13], Subsection 3.1). Since A�.t/ is connected, it follows that the associated graph
.V ;E/ is connected. Moreover, in view of (VD) and (VC), we see that the cardinality N
of V is bounded from above by a constant N � which is independent of t . In fact, since

.C�1A � ı/t < r.xi / < .CA C ı/t;

we have

�f .B.o; .C
�1
A � ı/t// � �f .B.o; r.xi /// � CV �f .B.xi ; r.xi /=2/

� CV �f .B.xi ; .CA C ı/t=2// � CV CD

�CA C ı
ı

�

�f .B.xi ; ıt=2//;

and hence

N �f .B.o; .C
�1
A � ı/t// � CV CD

�CA C ı
ı

�
 NX
iD1

�f .B.xi ; ıt=2//

D CV CD

�CA C ı
ı

�

�f

� N[
iD1

B.xi ; ıt=2/
�

� CV CD

�CA C ı
ı

�

�f .B.o; .CA C ı/t//

� CV C
2
D

�CA C ı
ı

�
� CA C ı
C�1A � ı

�

�f .B.o; .C

�1
A � ı/t/:

In this way, we obtain

N � CV C
2
D

�CA C ı
ı

�
� CA C ı
C�1A � ı

�

DW N �:

Then for any pair of points of A�.t/, there is a path in M n B.o; .1 � �/t/ joining these
points whose length is at most 2ı.N � C 2/t . This shows that the diameter of A�.r/ in
M n B.o; .1 � �/t/ is bounded from above by 2ı.N � C 2/t . In this way, we can deduce
that

ı.� I1/.M/ D lim sup
t!1

1

t
diam.� I1/.S.o; t// � 2ı.N � C 2/:

(ii) We take positive numbers ", t" so that ı.1/.M/C " < 2� and t�1diam.S.o; t// <
ı.1/.M/ C " for all t � t". For x; y 2 S.o; t/ .t � t"/, let 
xy W Œ0; L� ! M .L WD

disM .x; y// be a distance minimizing curve joining x D 
xy.0/ to y D 
xy.L/. Since
t�1disM .x; y/ < ı.1/.M/C " < 2� , we see that 
xy is included in M n B.o; .1� �/t/.
This implies that t�1dis.� It/.x; y/ D t�1L < ı.1/.M/C ", and hence

1

t
diam.� It/.S.o; t// < ı.1/.M/C "

so that we have
ı.� I1/.M/ � ı.1/.M/C ":

Letting "! 0, we obtain

ı.� I1/.M/ � ı.1/.M/ < 2�:
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Since ı.1/.M/ � ı.� I1/.M/, we thus have

ı.� I1/.M/ D ı.1/.M/ < 2�

for � 2 .1
2
ı.1/.M/; 1/.

(iii) We first fix a constant b > 2 large enough so that Cˇ bˇ > 2. Take a number
� 2 .ı.1/.M/; 1/. Then there exists t� > 0 such that t�1diam.S.o; t// � � for all t � t� .
Let t 2 Œbt� ;C1/ and a 2 Œb�1; 1�. For any x 2 S.o; t/ and y 2 S.o; at/, we take a point
z 2 S.o; at/ in such a way that disM .x; z/ D .1 � a/t . Then we get

disM .x; y/ � disM .x; z/C disM .z; y/ � .1 � a/t C �at � .1 � .1 � �/b�1/ t:

This shows that S.o; at/ � B.x; .1 � .1 � �/b�1/t/, and hence

B.o; t/ n B.o; b�1t / D
[

b�1�a<1

S.o; at/ � B.x; .1 � .1 � �/b�1/ t/:

Therefore using (4.5), we have

�f .B.x; .1 � .1 � �/b
�1/ t/ � �f .B.o; t// � �f .B.o; b

�1 t //

� .Cˇ b
ˇ
� 1/�f .B.o; b

�1 t // � �f .B.o; b
�1 t /

for all t � bt� . Since 1=2 > 1 � .1 � �/b�1, we have �f .B.x; t=2// > �f .B.x; .1 �

.1 � �/b�1/ t/, and by (4.5), we get �f .B.o; b�1t // � C�1
 b
 �f .B.o; t//. These prove
that

�f .B.x; t=2// � C
�1

 b
 �f .B.o; t//:

In this way, we see that (VC) holds.

Corollary 4.4. Let .M; gM ; �f / be as above. Assume that (VD) and (PI(2)) for remote
balls to a fixed point hold true. Then .M; gM ; �f / satisfies (RCA), (VD) and (PI(2))
if (4.5) is satisfied and ı.1/.M/ < 1,

Proof. By Proposition 4.3 (iii), we see that (RCA) and (VC) hold, so that the corollary
follows from Theorem 5.2 in [13].

Fix p 2 .1;C1/. A function u 2 L1;ploc .M/ \ C
1;˛
loc .M/ satisfying �f Ipu D 0 in M

is said to be p-harmonic. Now as an application of the annulus Harnack inequality in
Theorem 1.1(i) to p-harmonic functions, we prove the following.

Theorem 4.5. Let .M;gM ; �f / be a connected, noncompact, complete weighted Reman-
nian manifold. Assume that (VD) and (PI(p)) hold for all remote balls with respect to a
reference point o 2M , and ı.� I1/.M/ is finite for some � 2 .0; 1/.

(i) A positive p-harmonic function on M is constant.

(ii) There is a positive number � such that if a p-harmonic function h on M satisfies

jh.x/j � C.1C r.x//�= log.1Cı.1/.M//

for some positive constants C and all x 2 M , then h is constant. In particular, if
ı.1/.M/ D 0, then any p-harmonic function h on M with polynomial growth is
constant.
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Proof. (i) This is a consequence from the annulus Harnack inequality and the maximum
principle for p-harmonic functions.

(ii) For a nonconstant p-harmonic function h onM , letm.t/D infS.o;t/ h andM.t/D
supS.o;t/ h, and let v.t/ D M.t/ � m.t/. Let ı be a positive number. Then h � m..1C
ı C 3ı.1/.M/=4/t/ is p-harmonic and positive on B.o; .1 C ı C 3ı.1/.M/=4/t/, and
moreover for sufficiently large t � t0, we can apply the argument in the proof of The-
orem 1.1(i) to the function h �m..1C ı C 3ı.1/.M/=4/t/ by noting that the curve 
xy
there stays in B.o; .1C ı=2C 3ı.1/.M/=4/t/ n B.o; .1 � �/t/, and obtain

h.x/ �m..1C ı C 3ı.1/.M/=4/t/ � CH
�
h.y/ �m..1C ı C 3ı.1/.M/=4/t/

�
for all x; y 2 S.o; t/ and all t � t0, where CH is a constant independent of h and t . This
shows that

(4.6) M.t/�m..1C ıC 3ı.1/.M/=4/t/� CH
�
m.t/�m..1C ıC 3ı.1/.M/=4/t/

�
:

Since M.1C ı C 3ı.1/.M/=4/t/ � h is also p-harmonic and positive on B.o; .1C ı C
3ı.1/.M/=4/t/, we get

(4.7) M..1C ıC 3ı.1/.M/=4/t/�m.t/�CH
�
M..1C ıC 3ı.1/.M/=4/t/�M.t/

�
:

Then it follows from (4.6) and (4.7) that

v..1C ı C 3ı.1/.M/=4/t/C v.t/ � CH
�
v..1C ı C 3ı.1/.M/=4/t/ � v.t/

�
;

and hence
CH C 1

CH � 1
v.t/ � v..1C ı C 3ı.1/.M/=4/t/

for all t � t0. Thus letting D D CHC1
CH�1

, we have

Dqv.t/ � v..1C ı C 3ı.1/.M/=4/qt /

for all t � t0 and positive integers q. This shows that

logD.log t � log t0/
log.1C ı C 3ı.1/.M/=4/

� log v.t/ � log v.t0/C logD

� sup
B.o;t/

log 2 jhj � log v.t0/C logD:

Suppose that ı.1/.M/ > 0 and jhj � C8.1C r/�= log.1Cı.1/.M//. Then we have

logD
log.1C ı C 3ı.1/.M/=4/

.log t � log t0/ �
�

log.1C ı.1/.M//
log.1C t /C C9

for all t � t0 and some positive constant C9. Now taking ı < ı.1/.M/=4, we see that h
must be constant if � � logD.



Positive solutions of the p-Laplacian with potential terms 2271

Suppose that ı.1/.M/ D 0 and jhj � C10.1C r/� for some positive constants C10
and �. Then we have

logD
log.1C ı/

.log t � log t0/ � � log.1C t /C C11

for all t � t0 and some positive constant C11. Taking ı so small that logD > � log.1C ı/,
we conclude that h must be constant.

Remark 4.6. (i) In the case where p D 2, Theorem 4.5 generalizes some result in [15],
and moreover the last statement in Theorem 4.5(ii) is extended by Carron [6]. But it is not
clear whether such an extension in [6] is possible for the case where p is different from 2.

(ii) In Theorem 1.2, the potentialW under consideration satisfies the following condi-
tions:

sup
x2M

Z
M

G.x; y/WC.y/ d�f .y/ < C1I

lim
k!1

sup
x2M

Z
MnB.o;k/

G.x; y/W�.y/ d�f .y/ < 1;

as shown in Lemma 4.1. According to Theorem 4.1 in Devyver [8], these are sufficient
conditions for the heat kernel ofQ02IW to satisfy the Li–Yau estimate, under the conditions
that .M; gM ; �f / satisfies [VD] and [PI(2)], and further W is subcritical.

Nonnegative Schrödinger operators, and their heat semigroups, have been studied
intensively by many authors (see, e.g., [11, 14] and references therein).

(iii) In Theorem 1.2, the Ricci curvature of the Riemannian manifold M possesses a
lower bound as in (1.1), and a Hardy type inequality holds onM as mentioned in the intro-
duction. Then a recent result due to Munteanu, Sung and Wang (see Theorem 1.5 in [19]),
is also applicable to deduce existence and sharp estimates for solutions to the Poisson
equation on M as in the first assertion of Theorem 1.2 with f D 0. The method in [19]
is different from ours and more effective in dealing with a wider class of Riemannian
manifolds.

Example 4.7. Let g be a Riemannian metric on Rm such that g can be represented in the
polar coordinates .r; �/ in Rm as follows: g D dr2 C �.r/2d�2, where �.r/ is a positive
smooth function on .0;C1/ such that �.0/ D 0 and �0.0/ D 1. We assume that �.r/ D
Crd for r � 1, where C is a positive constant and d is a constant less than or equal to 1.
Then in this model spaceM D .Rm; g/, ı.� I1/.M/ <C1 for any � 2 .0;1/, ı.1/.M/D

ı.� I1/.M/D 0 if d < 1, and ı.1/.M/D
p
2.1 � cos.min¹�;C�º/ if d D 1; in particular

ı.1/.M/ < 2 for C < 1 and ı.1/.M/ < 1 for C < 1=3. The Riemannian volume element
ofM is given by dvM D �.r/m�1drdv� , where dv� is the Riemannian volume element of
the unit sphere Sm�1.1/ of dimension m� 1. Given 
 2 R, let f .x/ D � log.1C r2/
=2

and define a new measure by �f D .1 C r2/
=2dvM . Obviously .M; gM ; �f / satisfies
conditions (1.1) and (1.2).

(i) The following conditions are mutually equivalent:
(a-1) 
 C .m � 1/d C 1 > 0,
(a-2) (VC) holds,
(a-3) M satisfies (VD) and (PI(2)).
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(ii) The following are mutually equivalent (see [7], Proposition 3.4):
(b-1) 
 C .m � 1/d C 1 > p,
(b-2) The growth conditions (1.3) holds and the power ˇ > p,
(b-3) .M; gM ; �f / is p-nonparabolic.

(iii) (See Example 9.1 in [23]) Let u.x/ D 2C sin.log
p
1C r.x/2/ and define W D

�f I2u=u. Clearly, 1 � u.x/ � 3, jW.x/j � C=.1C r.x/2/, and u is the unique (up to a
constant multiple) positive solution of the equation Q02IW v D 0 in M . But limx!1 u.x/

does not exist.
(iv) (See Example 9.2 in [23]) Let d D 1 and # WSm�1.1/! Œ�1; 1� a nonconstant

smooth function. For x 2 M with r.x/ � 1, let u.x/ D 2 C #.x=r.x//, and extend
the function u as a smooth positive function on M . Let W D �f I2u=u. Then jW j �
C=.1 C r.x/2/ and u.x/ is a bounded positive function which is bounded away from
zero. Moreover, u.x/ is the unique (up to a constant multiple) positive solution of the
equation Q02IW v D 0 in M . But limx!1 u.x/ does not exist.

Example 4.8. Li and Tam [18] shows that property (VC) is satisfied in the following two
classes of connected, complete, noncompact Riemannian manifolds.

(i) .M; gM / has asymptotically nonnegative sectional curvature, that is, there exists a
point o 2M and a continuous nonincreasing function kW .0;C1/! .0;C1/ satisfyingR1
0
s k.s/ds <1 such that the sectional curvature Sect.x/ of M at a point x is greater

than or equal to �k.disM .o; x//.
(ii)M has nonnegative Ricci curvature outside a compact set and the first Betti number

is finite.
We notice that M has asymptotically nonnegative sectional curvature if, for some

C > 0 and " > 0, Sect.x/ � �CdisM .o; x/�2�"; on the other hand, we have Sect.x/ �
�CdisM .o;x/�2 for someC >0 ifM has asymptotically nonnegative sectional curvature.

5. Proof of Theorem 1.3

We first demonstrate that estimate (1.5) in Theorem 1.3 is optimal.

Example 5.1. Let .L;gL; e��dvL/ be a connected, complete weighted Riemannian man-
ifold of dimension m � 1, and let M D R � L with a warped product metric

gM D dt
2
C e2

p
�tgL;

where � is a nonnegative constant. Suppose that for some n�m, Ricn�1� � 0 onL. Define
a weight function onM by f .t;x/D .n�m/

p
� t C �.x/. Then it can be directly verified

that Ricnf � �.n � 1/� gM . We let Ou.t; x/ D eat for a positive constant a, and we put
ƒ D .p � 1/ap C .n � 1/

p
� ap�1. Then Ou satisfies

�f Ip Ou D ƒ Ou
p�1 and jr log Ouj D a D Z.p; n; �;ƒ/

on M . Now take a number b > .n � 1/=.p � 1/ in such a way that .p � 1/bp � .n � 1/
p
� bp�1 D ƒ, and let Lu.t; x/ D e�bt . Then Lu satisfies

�f Ip Lu D ƒ Lu
p�1 and jr log Luj D b D Y.p; n; �;ƒ/ on M .
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In fact, we have a rigidity result as follows:

Theorem 5.2. Let .M;gM ; �f / be a connected, noncompact complete weighted Rieman-
nian manifold of dimension m such that Ricnf � �.n � 1/� gM for some constants � � 0
and n � m. Let u be a positive solution to the equation ��f IpuCƒjujp�2u D 0 in M ,
whereƒ is a positive constant. Suppose that there is a point y 2M such that jr logu.y/j
D supM jr log uj D Y.p; n; �; ƒ/ or jr log u.y/j D supM jr log uj D Z.p; n; �; ƒ/.
Then M is isometric to a warped product R �

e
p
�t L as in Example 5.1; in the case

where jr logu.y/j D supM jr loguj D Y.p; n; �;ƒ/, u.t; x/ D e�Y.p;n;�;ƒ/t , f .t; x/ D
.n �m/

p
� t C �.x/ for some � 2 C1.L/ satisfying Ricn�1� � 0 on L, and in the case

where jr logu.y/j D supM jr loguj D Z.p; n; �;ƒ/, u.t; x/ D eZ.p;n;�;ƒ/t , f .t; x/ D
�.n �m/

p
�t C �.x/ for some � 2 C1.L/ satisfying Ricn�1� � 0 on L.

Theorem 5.2 will be verified at the end of the present section. We remark that in the
case where p D 2 and f D 0, Theorem 5.2 is proved by Borbély [4] in a different way
from ours.

Now we need some preliminary results to prove the upper estimate in (1.5) of The-
orem 1.3.

Consider a positive solution u to the equation ��p;f uCƒ jujp�2uD 0 in the metric
ball B.o; R/ of radius R around a fixed point o of M . In what follows, we write simply
B.R/ and V.R/ respectively for B.o;R/ and �f .B.o;R//. We set

v D �.p � 1/ logu; h D jrvj2 and K D ¹x 2 B.R/ j h.x/ D 0º:

We note that u is smooth on B.R/ nK. We consider the following linear operator Lf on
B.R/ nK:

Lf  D e
f div

�
e�f hp=2�1A.r /

�
� p hp=2�1hrv;r i;

where
A D idC .p � 2/

rv ˝rv

jrvj2
�

Then we have

Lf h D 2h
p=2�1

�
jDdvj2 C RicM .rv;rv/CDdf .rv;rv/

�
(5.1)

C

�p
2
� 1

�
hp=2�2 jrhj2

(see Lemma 2.1 in [9], Lemma 2.1 in [17]). We also observe that v satisfies

�f Ipv D jrvj
p
�ƒ.p � 1/p�1;

which is rewritten as follows:

(5.2) �v � hrf;rvi C
�p
2
� 1

�
h�1hrh;rvi � hCƒ.p � 1/p�1h1�p=2 D 0:

Let ¹e1; : : : ; emº be a local orthonormal frame of TM with e1 D rv=jrvj in an open
set � of B.R/ nK, and let ¹e�1 ; : : : ; e

�
mº be the dual frame. We write

Dd v D

mX
i;jD1

vij e
�
i ˝ e

�
j :
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Then the following identities hold:

v11 D
1

2
h�1hrv;rhi;(5.3)

mX
iD1

v1i
2
D
1

4
h�1 jrhj2;(5.4)

mX
iD2

vi i D h �ƒ.p � 1/
p�1h1�p=2 � .p � 1/v11 C hrf;rvi (by (5.2)).(5.5)

Then using the inequality

.aC b/2 �
a2

1C ı
�
b2

ı
; ı D

n �m

m � 1
;

we can derive from (5.5) that

1

m � 1

� mX
iD2

vi i

�2
�

1

n � 1
.h �ƒ.p � 1/p�1h1�p=2 � .p � 1/v11/

2(5.6)

�
1

n �m
hrf;rvi2;

where the equality holds if and only if

(5.7) .n �m/.h �ƒ.p � 1/p�1h1�p=2 � .p � 1/v11/ D �.n � 1/hrf;rvi:

We note that

(5.8) .h �ƒ.p � 1/p�1h1�p=2 � .p � 1/v11/
2

� .h �ƒ.p � 1/p�1h1�p=2/2 � 2.p � 1/.h �ƒ.p � 1/p�1h1�p=2/v11;

where the equality holds if and only if

(5.9) v11 D 0:

Furthermore, we observe that

(5.10)
mX

i;jD2

v2ij �
1

m � 1

� mX
iD2

vi i

�2
;

where the equality holds at a point x 2 � if and only if for some �.x/ 2 R,

(5.11)
mX

i;jD2

vij .x/ e
�
i ˝ e

�
j D �.x/

mX
iD2

e�i ˝ e
�
i :
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Then we obtain

jDd vj2 �

mX
iD1

v21i C

mX
i;jD2

v2ij

�
1

4
h�1 jrhj2 C

1

m � 1

� mX
iD2

vi i

�2
.by (5.4), (5.10)/

�
1

4
h�1jrhj2 C

1

n � 1
.h �ƒ.p � 1/p�1h1�p=2 � .p � 1/v11/

2

�
1

n �m
hrf;rvi2 (by (5.6))

�
1

4
h�1jrhj2 C

1

n � 1
.h �ƒ.p � 1/p�1h1�p=2/2 �

p � 1

n � 1
hrv;rhi

C
ƒ.p � 1/p�1

n � 1
h�1jrvjp�2hrv;rhi �

hrv;rhi2

n �m
.by (5.8), (5.3)/:(5.12)

By (5.12) and the assumption that Ricnf � �.n � 1/� g, we get

Lf h D 2h
p=2�1.jDd vj2 C RicM .rv;rv//C

p � 2

2
hp=2�2 jrhj2

D 2hp=2�1.jDd vj2 C Ricnf .rv;rv//C
2

n �m
hp=2�1 hrv;rf i2

C
p � 2

2
hp=2�2 jrhj2

� 2hp=2�1
�1
2
h�1jrhj2 C

1

n � 1
.h �ƒ.p � 1/p�1jrvj2�p/2 �

p � 1

n � 1
hrv;rhi

C
ƒ.p � 1/p

n � 1
h�1 jrvj2�phrv;rhi � .n � 1/�jrvj2

�
C
p � 2

2
hp=2�2 jrhj2

D
2

n � 1
hp=2�1

�
.h �ƒ.p � 1/p�1h1�p=2 /2 � ..n � 1/

p
� h1=2 /2

�
�
2.p � 1/

n � 1
hp=2�1hrv;rhi C

p

2
hp=2�2 jrhj2 C

2ƒ.p � 1/p

n � 1
h�1hrv;rhi:

Thus we have the following.

Lemma 5.3. One has

Lf h �
2

n � 1
hp=2�1

�
.h �ƒ.p � 1/p�1h1�p=2/2 � ..n � 1/

p
� h1=2 /2

�
�
2.p � 1/

n � 1
hp=2�1hrv;rhi C

p

2
hp=2�2jrhj2 C

2ƒ.p � 1/p

n � 1
h�1hrv;rhi

in B.R/ nK, where the equality holds if and only if there hold (5.7), (5.9), (5.11) and

(5.13) Ricnf .rv;rv/ D �.n � 1/� jrvj
2:

Lemma 5.4. Let u be a positive solution of the equation ��f;puCƒjujp�2uD 0 inM .
Then jr loguj is bounded.
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Proof. Since�
h �ƒ.p � 1/p�1h1�p=2

�2
�
�
.n � 1/

p
� h1=2

�2
> h2 � 2ƒ.p � 1/p�1h2�p=2 � .n � 1/2 � h;

it follows from Lemma 5.3 that

Lf h � �2.n � 1/� h
p=2
C

2

n � 1
hp=2C1 �

4ƒ.p � 1/p�1

n � 1
hC

p � 1

2
hp=2�2 jrhj2

�
2.p � 1/

n � 1
hp=2�1hrh;rvi C

2�.p � 1/p

n � 1
h�1hrh;rvi

in B.R/ nK.
Then for a nonnegative function  with compact support in B.R/ nK, we haveZ
B.R/

hhp=2�1rhC .p � 2/hp=2�2hrv;rhirv;r i d�f

C p

Z
B.R/

hp=2�1hrh;rvi d�f C
2

n � 1

Z
B.R/

hp=2C1 d�f

� 2.n � 1/�

Z
B.R/

hp=2 d�f C
2.p � 1/

n � 1

Z
B.R/

hp=2�1hrh;rvi d�f(5.14)

�
2ƒ.p � 1/p

n � 1

Z
B.R/

h�1hrh;rvi d�f C
4ƒ.p � 1/p�1

n � 1

Z
B.R/

h d�f

(see (2.4) in [9]).
For constants " > 0 and b > 2, we choose

 D hb" �
2;

where h" D .h� "/C, � 2 C10 .B.R// is nonnegative and less than or equal to 1, and b is
to be determined later. Then a direct calculation shows that

r D bhb�1" �2rhC 2hb"�r�:

Insert this identity into (5.14), we obtain

(5.15) b

Z
B.R/

�
hp=2�1hb�1" jrhj2 C .p � 2/hp=2�2hb�1" hrv;rhi2

�
�2 d�f

C 2

Z
B.R/

hp=2�1hb"�hrh;r�i d�f C p

Z
B.R/

hp=2�1hb"�
2
hrh;rvid�f

C 2.p � 2/

Z
B.R/

hp=2�2hb"�hrh;rvihrv;r�i d�f

C
2

n � 1

Z
B.R/

hp=2C1hb"�
2 d�f

� 2.n � 1/�

Z
B.R/

hp=2hb"�
2 d�f C

2.p � 1/

n � 1

Z
B.R/

hp=2�1hrh;rvihb"�
2 d�f

�
2ƒ.p � 1/p

n � 1

Z
B.R/

hrh;rvih�1hb"�
2 d�f C

4ƒ.p � 1/p�1

n � 1

Z
B.R/

hhb"�
2 d�f :
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Since we have

hp=2�1hb�1" jrhj2 C .p � 2/hp=2�2 hb�1" hrv;rhi2 � a0h
p=2�1hb�1" jrhj2;

where a0D 1 if p � 2 and a0D .p � 1/ if p 2 .1;2/, by replacing the integrand of the first
term of the left side in (5.15) with the right side of the just above inequality and passing "
to 0, we obtain

a0b

Z
B.R/

hp=2Cb�2 jrhj2�2 d�f

C 2

Z
B.R/

hp=2Cb�1 hrh;r�i� d�f

C 2.p � 2/

Z
B.R/

hp=2Cb�2hrv;rhihrv;r�i� d�f

C p

Z
B.R/

hp=2Cb�1hrv;rhi�2 d�f C
2

n � 1

Z
B.R/

hp=2CbC1�2 d�f

� 2.n � 1/�

Z
B.R/

hp=2Cb �2 d�f(5.16)

C
2.p � 1/

n � 1

Z
B.R/

hp=2Cb�1hrh;rvi2�2 d�f

�
2ƒ.p � 1/p

n � 1

Z
B.R/

hb�1 hrh;rvi�2 d�f

C
4ƒ.p � 1/p�1

n � 1

Z
B.R/

hbC1�2 d�f

(see (2.5) in [9], (2.5) in [34]). Using (5.16), we see that

a0b

Z
B.R/

hp=2Cb�2 jrhj2�2 d�f C
2

n � 1

Z
B.R/

hp=2CbC1�2 d�f(5.17)

� 2.n � 1/�

Z
B.R/

hp=2Cb �2 d�f C
4ƒ.p � 1/p�1

n � 1

Z
B.R/

hbC1�2 d�f

C I1 C I2 C I3

(see (2.6) in [34]), where we put

I1 D
p.nC 1/ � 2

n � 1

Z
B.R/

hp=2Cb�1=2 jrhj�2 d�f ;

I2 D
2ƒ.p � 1/p

n � 1

Z
B.R/

hb�1=2 jrhj�2 d�f ;

I3 D 2.1C jp � 2j/

Z
B.R/

hp=2Cb�1jrhj jr�j� d�f :
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Now applying Young’s inequality to I1, I2, and I3 respectively, we obtain

jI1j D 2

Z
B.R/

p
a0b

2
hp=2Cb�2/=2 jrhj� �

p.nC 1/ � 2
p
a0b.n � 1/

h.p=2CbC1/=2� d�f

�
a0b

4

Z
B.R/

hp=2Cb�2 jr hj2�2 d�f C
.p.nC 1/ � 2/2

a0b.n � 1/2

Z
B.R/

hp=2CbC1�2 d�f ;

jI2j D 2

Z
B.R/

p
a0b

2
h.p=2Cb�2/=2 jrhj� �

2jƒj.p � 1/p
p
a0b.n � 1/

h.b�p=2C1/=2� d�f

�
a0b

4

Z
B.R/

hp=2Cb�2 jrhj2�2 d�f C
4ƒ2.p � 1/2p

a0b.n � 1/2

Z
B.R/

hb�p=2C1�2 d�f ;

jI3j D 2

Z
B.R/

p
a0b

2
h.p=2Cb�2/=2 jrhj� �

2.1C jp � 2j/
p
a0b

h.p=2Cb/=2jr�j d�f

�
a0b

4

Z
B.R/

hp=2Cb�2 jrhj2�2 d�f C
4.1C jp � 2j/2

a0b

Z
B.R/

hp=2Cb jr �j2 d�f :

In what follows, b is chosen in such a way that

(5.18)
.p.nC 1/ � 2/2

a0b
<

1

n � 1
;

and ai (i D 1; 2; 3; : : :) stand for positive constants depending only on n and p.
Now it follows from (5.17) and (5.18) that

b

Z
B.R/

hp=2Cb�2 jrhj2�2 d�f C
1

n � 1

Z
B.R/

hp=2CbC1�2 d�f(5.19)

� a1 �

Z
B.R/

hp=2Cb �2 d�f C
a2

b

Z
B.R/

hp=2Cb jr�j2 d�f

C
a3ƒ

2

b

Z
B.R/

hb�p=2C1�2 d�f C a4

Z
B.R/

ƒhbC1�2 d�f :

Using

jr.hp=4Cb=2�/j2 �
.p=2C b/2

2
hp=2Cb�2 jrhj2�2 C 2hp=2Cb jr�j2;

we have by (5.19),Z
B.R/

jr.hp=4Cb=2�/j2 d�f C a4b

Z
B.R/

hp=2CbC1�2 d�f(5.20)

� a5b�

Z
B.R/

hp=2Cb �2 d�f C a6

Z
B.R/

hp=2Cb jr�j2 d�f

C a7ƒ
2

Z
B.R/

hb�p=2C1�2 d�f C a8bƒ

Z
B.R/

hbC1�2 d�f :
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We recall here the following Sobolev embedding theorem of Saloff-Coste [29, 30]:� Z
B.R/

j�j2n=.n�2/ d�f

�.n�2/=n
� eC.n/.1C

p
�R/V.R/�2=n

Z
B.R/

.R2jr�j2 C �2/ d�f

for any � 2 C10 .B.R//, where C.n/ is some positive constant depending only on n,
and V.R/ stands for �f .B.R//.

Now letting � D hp=4Cb=2�, we have

(5.21)
� Z

B.R/

h
.p=2Cb/n
n�2 �

2n
n�2 d�f

�.n�2/=n
� eC.n/.1C

p
�R/ V.R/�2=n

�
R2
Z
B.R/

jr.hp=4Cb=2�/j2 d�fC

Z
B.R/

hp=2Cb�2 d�f

�
(see (2.9) in [9]). Let b0 D a9 C

p
�R, where we assume that b0 satisfies (5.18). We put

I4 D a4 e
C.n/b0 bR2V.R/�2=n

Z
B.R/

hp=2CbC1�2 d�f ;

I5 D a5 � e
C.n/b0 bR2V.R/�2=n

Z
B.R/

hp=2Cb �2 d�f ;

I6 D a6 e
C.n/b0R2V.R/�2=n

Z
B.R/

hp=2Cb jr�j2 d�f ;

I7 D a7ƒ
2 eC.n/b0R2V.R/�2=n

Z
B.R/

hb�p=2C1�2 d�f ;

I8 D a8ƒe
C.n/b0 bR2V.R/�2=n

Z
B.R/

hbC1�2 d�f ;

I9 D e
C.n/b0 V.R/�2=n

Z
B.R/

hp=2Cb �2 d�f :

Then (5.20) and (5.21) combined give

(5.22)
� Z

B.R/

h
.p=2Cb/n
n�2 �

2n
n�2 d�f

�.n�2/=n
C I4

� eC.n/b0 V.R/�2=nR2
� Z

B.R/

jr.hp=4Cb=2�/j2 d�f C a4b

Z
B.R/

hp=2CbC1�2 d�f

�
C eC.n/b0 V.R/�2=n

Z
B.R/

hp=2Cb �2 d�f

� eC.n/b0 V.R/�2=nR2
�
a5b�

Z
B.R/

hp=2Cb �2 d�f C a6

Z
B.R/

hp=2Cb jr�j2 d�f

C a7ƒ
2

Z
B.R/

hb�p=2C1�2 d�f C a8bƒ

Z
B.R/

hbC1�2 d�f

�
C eC.n/b0 V.R/�2=n

Z
B.R/

hp=2Cb �2 d�f

� I5 C I6 C I7 C I8 C I9

(see (2.10) in [9]).
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Now we let D D ¹x 2 B.R/ j h.x/ � 10�a5=a4º. Since

a5 � e
C.n/b0 bR2V.R/�2=n

Z
D

hp=2Cb �2 d�f �
1

10
I4;

we obtain

I5 <
1

10
I4 C a5 � e

C.n/b0 bR2V.R/�2=n
Z
B.R/nD

hp=2Cb �2 d�f

<
1

10
I4 C a5 � e

C.n/b0 bR2
�10a5 �

a4

�p=2Cb
V.R/1�2=n

<
1

10
I4 C a10

p=2Cb eC.n/b0 �p=2CbC1bR2V.R/1�2=n:(5.23)

Similarly, we get

I7 <
1

10
I4 C a7ƒ

2
�10a7ƒ2

a4

�.b�p=2C1/=p
eC.n/b0R2V.R/1�2=n(5.24)

<
1

10
I4 C a

p=2Cb
10 eC.n/b0ƒ2b=pC2=pC1R2V.R/1�2=n;

I8 <
1

10
I4 C a8ƒ

�10a5ƒ
a4

�2.bC1/=p
eC.n/b0 bR2V.R/1�2=n(5.25)

<
1

10
I4 C a

p=2Cb
10 eC.n/b0ƒ2b=pC2=pC1bR2V.R/1�2=n;

I9 <
1

10
I4 C

� 10

a4bR2

�p=2Cb
eC.n/b0 V.R/1�2=n(5.26)

<
1

10
I4 C a

p=2Cb
10

� 1

bR2

�p=2Cb
:

So far as I6 is concerned, we let �1 2 C10 .B.R// satisfy 0 � �1 � 1 in B.R/, �1 D 1
in B.3R=4/, jr�1j � 10=R, and choose � D �p=2CbC11 . Then we have

R2jr�j2 � 102.p=2C b C 1/2�
p=2Cb
p=2CbC1 :

Employing the Hölder and the Young inequalities, we then obtain

R2
Z
B.R/

hp=2Cbjr�j2 d�f

� 102.p=2C b C 1/2
Z
B.R/

hp=2Cb�
pC2b

p=2CbC1 d�f

� 102.p=2C b C 1/2V.R//
1

p=2CbC1

� Z
B.R/

hp=2CbC1�2 d�f

� p=2Cb
p=2CbC1

�
a4bR

2

2a6

Z
B.R/

hp=2CbC1�2 d�f

C a10.p=2C b/
p=2Cb.p=2C b C 1/p=2CbC1

� 2a6

a4bR2

�p=2Cb
V.R/;
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so that we get

(5.27) I6 �
1

2
I4

C a10 e
C.n/b0 .p=2C b/p=2Cb.p=2C b C 1/p=2CbC1

� 2a6

a4bR2

�p=2Cb
V.R/1�2=n

<
1

2
I4 C a

p=2Cb
11 eC.n/b0

� 1

bR2

�p=2Cb
.p=2C b/p=2Cb .p=2C b C 1/p=2CbC1:

Thus it follows from (5.22) through (5.27) that

(5.28)
� Z

B.3R=4/

h
.p=2Cb/n
n�2 d�f

� n�2
n.p=2Cb/

� a11 e
C.n/b0=.p=2Cb/V.R/.n�2/=n.p=2Cb/

�
�p=2CbC1bR2 Cƒ2b=pC2=pC1.1C b/R2

C

� 1

bR2

�p=2Cb
C

� 1

bR2

�p=2Cb
.p=2C b/p=2Cb.p=2C bC 1/p=2CbC1

�1=.p=2Cb/
:

Now we writeG.R;b/ for the right-hand side of (5.28). We fix r > 1 and takeR > 2r .
Then� Z

B.r/

h
.p=2Cb/n
n�2 d�f

� n�2
n.p=2Cb/

�

� Z
B.3R=4/

h
.p=2Cb/n
n�2 d�f

� n�2
n.p=2Cb/

� G.R; b/:

We let b D a9 CR keep to satisfy (5.18), and observe that V.R/ � a12 e.n�1/R. Then we
see that G.R; b/ is bounded as R!1. Therefore we have

sup
B.r/

h D lim
R!1

� Z
B.r/

h
.p=2Cb/n
n�2 d�f

� n�2
n.p=2Cb/

� sup
R�2

G.R; b/ < C1:

Finally, letting r !1, we conclude that h is bounded in M .

Lemma 5.5. Suppose there is a point y 2M such that

h.y/ D sup
M

h D .p � 1/2 Y.p; n; �; �/2

or
h.y/ D sup

M

h D .p � 1/2Z.p; n; �;ƒ/2:

Then h is constant on M .

Proof. Let .x1; : : : ; xm/ be local coordinates on a neighborhood � of y in M n K. We
write

gM D

mX
i;jD1

gij dx
i
˝ dxj
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and let G D det.gij /. We define functions A, B1 and B2 on � �R �Rm respectively by

A.x; s; �/ D e�f .x/
p
G.x/ h.x/p=2�1.� C .p � 2/ h.x/�2hrv.x/; �irv.x//;

B1.x; s; �/ D �
2

n � 1
ef .x/

p
G.x/ h.x/1�p=2

C .sp=2 C .n � 1/
p
� s.p�1/=2 � .p � 1/p�1ƒ/

� .sp=2 � .n � 1/
p
� s.p�1/=2 � .p � 1/p�1ƒ/;

B2.x; s; �/ D e
f .x/

p
G.x/

�2.p � 1/
n � 1

h.x/p=2�1hrv.x/; �i

�
2ƒ.p � 1/p

.n � 1/
h.x/�1hrv.x/; �i �

.p � 1/

2
h.x/p=2�1hrv.x/; �i

� ph.x/p=2�1hrh.x/; �i
�
:

Then Lemma 5.3 shows that

div.A.x; h;rh//C B1.x; h;rh/C B2.x; h;rh/ � 0

on �. Moreover, the constant functions

c1 D .p � 1/
2 Y.p; n; �;ƒ/2 and c2 D .p � 1/

2Z.p; n; �;ƒ/2

satisfy

div.A.x; ci ;rci // D 0;
B1.x; ci ;rci / D 0;

B2.x; ci ;rci / D 0 .i D 1; 2/:

Therefore, letting w D c1 � h in case h.y/ D supM h D .p � 1/2Y.p; n; �;ƒ/2, or w D
c2 � h in case h.y/D supM hD .p � 1/2Z.p;n;�;ƒ/2, we see thatw satisfiesw.y/D 0,
w � 0 in M and

(5.29) divA.x;w;rw/C B1.x; ci � w;r.ci � w//C B2.x; ci � w;r.ci � w//
D divA.x; h;rh/ � B1.x; h;rh/ � B2.x; h;rh/ � 0:

Then we can apply the weak Harnack inequality for supersolutions due to Trudinger [33]
to get Z

B.y;t/

w dx � C inf
B.y;t/

w

for a sufficiently small number t , where C is a positive constant. This shows that w � 0
in B.y; t/ and hence in B.R/, since w.y/ D 0 (see [26], Theorem 2.5.1). Since M is
connected, we can conclude that w D 0 everywhere in M . This proves Lemma 5.5.

Lemma 5.6. One has

hrf;rvi D �.n �m/.p � 1/
p
� Y.p; n; �;ƒ/;(5.30)

Ddv D .p � 1/
p
� Y.p; n; �;ƒ/

�
gM �

1

h
dv ˝ dv

�
;(5.31)
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if h � .p � 1/2Y.p; n; �;ƒ/2, and

hrf;rvi D .n �m/.p � 1/
p
� Z.p; n; �;ƒ/;(5.32)

Ddv D �.p � 1/
p
� Z.p; n; �;ƒ/.gM �

1

h
dv ˝ dv/;(5.33)

if h � .p � 1/2Z.p; n; �;ƒ/2.

Proof. We consider the case where h� .p � 1/2Y.p;n; �;ƒ/2. We note first that v11 D 0
by (5.3), and hence it follows from (5.7) that

hrf;rvi D �.n �m/.p � 1/
p
� Y.p; n; �;ƒ/:

Since �v D .m � 1/� in (5.11), making use of (5.5), we get

Ddv D .p � 1/
p
� Y.p; n; �;ƒ/ � .gM � h

�1dv ˝ dv/:

Similarly, we see that

hrf;rvi D .n �m/.p � 1/
p
� Z.p; n; �;ƒ/

and
Ddv D �.p � 1/

p
� Z.p; n; �;ƒ/.gM � h

�1dv ˝ dv/

if h � .p � 1/2Z.p; n; �;ƒ/2.

Proof of Theorem 1.3. Let u be a positive solution of ��pIf u C ƒjujp�2u D 0 in M .
So far, as the upper estimate of jr log uj is concerned, since supM jr log uj < C1 by
Lemma 5.3, we are able to apply the same arguments as in [32] and [9] to prove that
jr loguj � Y.p; n; �;ƒ/.

Suppose now that supM jr loguj � .1 � "/Z.p; n; �;ƒ/ for some " 2 .0; 1/. Then it
follows that

j logu.x/ � logu.y/j � .1 � "/Z.p; n; �;ƒ/ disM .x; y/

for all x; y 2 M . On the other hand, in view of Lemma 2.21, we can take a large r" so
that log�p;ƒ.r/ � .1� "=2/Z.p; n; �;ƒ/ r for all r � r", and by Proposition 2.7, we find
points xr of S.o; r/ such that

logu.xr / � logu.o/C log!p;n;ƒ.r/ � logu.o/C .1 � "=2/Z.p; n; �;ƒ/r

for all r � r". But this is absurd, because we have

logu.xr / � logu.o/C .1 � "/Z.p; n; �;ƒ/r:

Thus we have proved thatZ.p;n; �;ƒ/ � supM jr loguj. This completes the proof of the
first assertion of Theorem 1.3.

Now we prove the second one. We first observe from (1.6) that

logu.x/ � logu.y/ � Y.p; n; �;ƒ/ disM .x; y/

for all x; y 2M .



A. Kasue 2284

Now we take positive numbers " and r" in such a way that

"
� 1

Y.p; n; �;ƒ/
C 1

�
�
1

2

�Z.p; n; �;ƒ/
Y.p; n; �;ƒ/

� ı1.M/
�
;

log �p;�.r/
r

� Z.p; n; �;ƒ/ � ";

diam.S.o; r//
r

� ı1.M/C "

for all r � r". For such r , we let xr be a point of S.o; r/ such that u.xr / D maxS.o;r/ u.
Then for any x 2 S.o; r/, we have

logu.x/ � logu.xr / � Y.p; n; �;ƒ/ disM .x; xr /
� logu.o/C log �p;ƒ.r/ � Y.p; n; �;ƒ/ diam.S.o; r//

D logu.o/C r
� log �p;ƒ.r/

r
� Y.p; n; �;ƒ/

diam.S.o; r/
r

�
� logu.o/C r Y.p; n; �;ƒ/

�Z.p; n; �;ƒ/
Y.p; n; �;ƒ/

� ı1.M/ �
"

Y.p; n; �;ƒ/
� "

�
� logu.o/C

1

2
.Z.p; n; �;ƒ/ � ı1.M/ Y.p; n; �;ƒ// r:

Applying the Harnack inequality to u in B.o; 2r"/, we have

logu.x/ � logu.o/ � C1

for some positive constant C1 and all x 2 B.o; r"/. These show that

logu.x/ � logu.o/C
1

2
.Z.p; n; �;ƒ/ � ı1.M/Y.p; n; �;ƒ// disM .o; x/ � C2

for some positive constantC2 and all x 2M . This completes the proof of Theorem 1.3.

Proof of Corollary 1.4. Let Gƒ.x; y/ and GW .x; y/ be respectively the Green functions
of Q02;ƒ and Q02;W . Then by the assumptions, we can apply Theorem 2.6 of Ancona [2]
to show that there is a constant C3 > 1 such that

C3
�1Gƒ.x; y/ � GW .x; y/ � C3G

ƒ.x; y/; x; y 2M:

Let

Kƒ.x; y/ D
Gƒ.x; y/

Gƒ.o; y/
and KW .x; y/ D

GW .x; y/

GW .o; y/
�

Let � be a point of the Martin boundary @M of the operatorQ02;W and ¹ykº a sequence of
points of M which converges to � . By taking a subsequence if necessary, denoted by the
same letters, ¹ykº, we may assume that Kƒ.x; yk/ converges, as k !1, to a function
u�.x/ on M which is a positive solution of Q02;ƒ.u/ D 0. Then we have

C�23 u�.x/ � K
W .x; �/ � C3

2 u�.x/
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for all x 2M . Since we have, by (1.6),

u�.x/ � u�.y/ e
Y.2;n;�;ƒ/disM .x;y/

for all y 2M , we get

KW .x; �/ .� u�.y/ C
2
3 e

Y.2;n;�;ƒ/disM .x;y// � KW .y; �/ C 43 e
Y.2;n;�;ƒ/ disM .x;y/

for � 2 @M. Integrating both sides with respect to a Radon measure � on the Martin
boundary @M with

R
@M

d�.�/ D 1, we obtainZ
@M

KW .x; �/ d�.�/ �

Z
@M

KW .y; �/ d�.�/ C3
4 eY.2;n;�;ƒ/ disM .x;y/:

Since a positive solution u of Q02;W .u/ D 0 is represented by

u.x/ D u.o/

Z
@M

KW .x; �/ d�.�/; x 2M

for some Radon measure � as above on the Martin boundary, we have

u.x/ � u.y/C3
4 eY.2;n;�;ƒ/disM .x;y/

for all x; y 2M .
Now we assume (1.6) (p D 2). Then it follows from the second assertion of The-

orem 1.3 that
eCr.x/�C

0

� u�.x/ � C3
2KW .x; �/

for all x 2M , and hence we get

eCr.x/�C
0

� C3
2

Z
@M

KW .x; �/ d�.�/ D C3
2 u.x/

for all x 2M . This completes the proof of Corollary 1.4.

Proof of Theorem 5.2. Suppose that there exists a point y of M such that h.y/ D supM h

D .p � 1/2Y.p; n; �; ƒ/2. Then it follows from Lemma 5.4 that h is constant and equal
to .p � 1/2Y.p; n; �;ƒ/2. Let

B D
v

jrvj
D

v

.p � 1/Y.p; n; �;ƒ/
�

Then we can deduce from (5.4) and (5.30) that B is a smooth function on M satisfying
jrBj D 1 and

(5.34) DdB D
p
�.g � dB ˝ dB/:

Put L D B�1.0/ and let ¹�tº be the complete flow generated by the gradient rB of B .
We observe that �t induces a diffeomorphism between L and B�1.t/ by sending z 2 L
to �t .z/ 2 B�1.t/. Then it follows from (5.34) that

(5.35) jd�t .v/j D e
p
�t
jvj
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for all t > 0 and v 2 TzL. We define a diffeomorphism ‚WR � L!M by

‚.t; z/ D �t .z/:

Then (5.35) implies that
‚�gM D dt

2
C e2

p
�t gL:

Therefore, .M; gM / is the warped product of R and L with the warping function e
p
�t .

This shows, in particular, that RicM .rB;rB/ D �.m � 1/�. Since Ricnf .rB;rB/ D
�.n� 1/� by (5.13) and hrf;rBi2 D .n�m/2� by (5.30), we getDdf .rB;rˇ/D 0,
which implies that d2

dt2
f .�t .z// D 0 for all t 2 R and z 2 L. Thus we have

f .t; z/ D hrf;rBi t C �.z/ D �.n �m/
p
� t C �.z/;

where we set �.z/D f .0; z/. The .n� 1/-dimensional Bakry–Émery Ricci tensor Ricn�1L

of the weighted Riemannian manifold .L; gL; e��dvL/ with weight e�� satisfies

Ricn�1L D RicnM C .2n � 3mC 1/ � e
2
p
�t gL � �3.n �m/� e

2
p
�t gL

on T.t;z/.¹tº � L/, where TzL is identified with T.t;z/.¹tº � L/. Thus letting t ! �1,
we get Ricn�1L � 0 on L.

When there exists a point o ofM such that h.o/D supM hD .p � 1/2Z.p;n; �;ƒ/2,
we let

B D �
v

jrvj
D �

v

.p � 1/Z.p; n; �;ƒ/
�

Then we use (5.32) and (5.33), and repeat the same argument as above to get the conclu-
sion. This completes the proof of Theorem 5.2.
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