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Positive solutions of the p-Laplacian with potential
terms on weighted Riemannian manifolds
with linear diameter growth

Atsushi Kasue

Abstract. In this paper, we consider the p-Laplacian with potential terms on a
connected, noncompact, complete weighted Riemannian manifold whose Ricci cur-
vature has quadratic decay, or a lower bound. We investigate the structure and the
behavior of positive solutions under the assumption that the metric spheres of the
Riemannian manifold have linear diameter growth.

1. Introduction

Consider a weighted Riemannian manifold (M, gy, e/ dvyy) of dimension m, where
(M, gpr) is a Riemannian manifold of dimension m, f is a smooth function on M,
and dvyy is the volume element induced by the metric gas. In what follows, the meas-
ure e~/ dvyy is denoted by -

For a vector field X € L1IOC(Q» TM) on a domain €2, the divergence div/ X of X

relative to the measure jiz is defined weakly by

[ v av X dwy == [ e Ve dns

for all ¥ € Cg°(S2). We simply write divX if the weight function f is constant. Then
div/ X = divX — gy (X, V f).
Fix p € (1, +00). The p-Laplacian Ay, , acts on Ll’p(M) by

loc
Ag.pu = div/ (|Vu|P~2 Vu)
in the weak sense, that is,

[ 8spudns == [ euvur2vu 99y duy

forall v € C5°(M).
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[e.]

Fix a domain £2 C M and a real-valued function W € L°

in 2 with potential W is the equation of the form

(£2). The p-Laplace equation

Qo (W) = —Ag,pu + Wul?2u=0 inQ.

This is the Euler—Lagrange equation associated with the functional
1 p p
Opw (u) = > Q(IWI + Wlul?) duy.

A generalized Allegretto—Piepenbrink theorem says that Q. (1) > Oforallu € L L.p (2)

loc
if and only if Q;,W(v) = 0 admits a positive solution v € Lllo’cp ()N Ckl);“ (2) (see Pin-
chover and Psaradakis [24] and references therein). In this paper, we are interested in the
structure and the behavior of positive solutions in M. There have been extensive stud-
ies on this subject over the recent decades; see for example [1, 10, 11, 14,20,23-26] and
references therein.

We let B(x,t) (respectively, S(x,t)) be the open metric ball around a point x with
radius ¢ (respectively, the metric sphere centered at x of radius 7). Fix o € M as areference
point and let r be the distance to 0. Given o € (0, 1) and ¢ € (0, +00), we denote by
dis‘*") the (extended) distance induced on M \ B(o, (1 — o)1), and by diam'®:") (S (o, 1))
the diameter of S(o0,¢) in M \ B(o, (1 —0)t) relative to the (extended) distance. We define

. 1 .
§(@:%) (M) = lim sup - diam @ (S(0, 1)) € [0, + ).

—>00

Obviously, §@) (M) < §@5°) (M) if 0 < 6/ < o < 1. We note that M has only one
end, that is, for sufficiently large compact sets K C M, the difference M \ K has exactly
one unbounded connected component if §(73°) (M) < +oc. Correspondingly to the case
where o = 1 in the definition of §(3%) (M), we let

1
§©) (M) = limsup — diam(S(0,1)) € [0,2],

t—>00

where the diameter of the sphere S(o, t) is measured in M. It is obvious that §(>) (M) <
§@:%) (M), and we note that if §(°) (M) <2, then §(%:°°) (M) =§©) (M) for %5("0) (M) <
o < 1 (see Proposition 4.3 (ii)).

In order to state the main results of this paper, we need some terminology; see Li
and Tam [18], Grigor’yan and Saloff-Coste [13]. Fix a constant C4 > 1. We say that
a metric space (M, disys) has relatively connected annuli with respect to o, or satisfies
condition (RCA), if for any 7 > C} and all x, y € S(o, 1), there exists a continuous
path y: [0, L] - M with y(0) = x, y(L) = y whose image is contained in B(o, C4t) \
B(o, CA_lt) (see [13], Definition 5.1). We observe that condition (RCA) holds for some
Cy > 1 if @) (M) < 400 for some o € (0, 1). We say that a weighted manifold
(M, gm, puy) satisfies the volume comparison condition (VC) if there exists a positive
constant Cy such that, for all # > 0 and all x € S(o, ), we have that s (B(o,1)) <
Cyur(B(x,t/2)) (see [18] and [13], Definition 4.3).
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Theorem 1.1. Let (M, gum ., j1y) be a connected, noncompact, complete weighted Rieman-
nian manifold of dimension m. Suppose that the Ricci curvature Ricys of M satisfies

(1.1 i]‘r}f(l + r)? Ricy > —o0,

the weight function f satisfies

(1.2) sup (1 +7)|Vf] < +oo,
M

and further,
8N (M) < +o0

for some o € (0, 1). Given p € (1,00), let W be a bounded function on M such that

sup (1 +r)? |W| < 400,
M

and assume that Qp.w > 0. Then the following assertions hold.

(1) (Annulus Harnack inequality) There is a constant Cg > 0 such that for any t > 0
and for any positive solution u € Lllo’cp (M)n Cl(l,’ca (M) to the equation Q;;W(u) =0
inM,

sup u < Cg inf u.
S(o.,t) S(o,t)

(ii) In the case where p = 2, a positive solution to Q).,,(u) = 0 in M is unique up to
multiple constants.

(iii) Letu € Lllo’f (M)n Cl(l);a (M) be a positive solution to Q;;W(u) =0inM.IfW >0
and u is unbounded, then limyepyr— oo (X)) = +00; if W <0 and infpr u = 0, then
limyep o0 u(x) = 0.

(iv) Let ¢(r) be a nonnegative C' function on [0, 00) such that ¢'(r) <0, sup,so ¢ () 1?
< 400 and

/oo(z¢(z))1/<1’—1> dt = oo.
1

Letu € Lllo’cp (M)n Clé;“ (M) be a positive solution to the equation Q;.W(u) =0
in M. If

A
Pp(r(x) =Wx) =< m

for some positive constant A and all x € M (respectively,

—m < W(x) < —¢(r(x))

for some positive constant A and all x € M), then limyepr— o0 U(X) = +00 (respect-
ively, limyep—o0 u(x) = 0).

In the case where p = 2, we have the following.
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Theorem 1.2. Let (M, gum ., j1y) be a connected, noncompact, complete weighted Rieman-
nian manifold of dimension m satisfying (1.1) and (1.2). Suppose that (RCA) and (VC)
are satisfied, and that the following growth condition holds for some B > 2:

(1.3) C (5)/3 _ s (B(o,1))

s/ 7 pr(B(0.9)

for 1 < s <t, where Cg is a positive constant less than 1. Let W be a bounded function
on M satisfying

IW(x)| < ¢ (r(x))
for all x € M, where Y (r) is a nonnegative C function on [0, 00) such that ¥'(t) < 0
and

o0
/ ty(t)dt < +oo0.
0
Then the following assertions hold.

(i) There exists a unique solution v € C LMY of the Poisson equation A L =W
q loc q f;

in M which tends to zero at infinity.

(ii) Assume that there is a positive solution u € Llloc2 (M)nN Ckl);a (M) of Q/2W(”) =0
inM.

(ii-a) If Q,2;W is subcritical, that is, if it admits a (positive minimal) Green function,
then u(x) converges to a positive constant a as x € M — oo, and one has

u(x) = a— [M G ) WO u(y) duy (v).  x € M,

where G(x, y) denotes the Green function of the Laplacian Ay .,.

(ii-b) If Q). is critical, that is, if it does not admit the Green function, then u(x)
converges to zero as x € M — oo, and one has

u(x) = — /M G y) W) u(y) dus (3). x € M.

Now we consider a family ¥ of balls in M. We say that ¥ satisfies the volume doub-
ling property (VD) with a constant Cp > 1 if, for any ball B(x,t) € ¥,

ﬂf(B(X,f)) = CD /Lf(B(X,l/z))

If all balls in M satistfy (VD), then we say that (M, gu, ir) satisfies (VD). It is shown
that §(°3°°) (M) < +o0 for some o € (0, 1) if (M, gu. i r) satisfies (RCA) and (VD) (see
Proposition 4.3 (i)).

We say that F satisfies the Poincaré inequality (PI(p)) (1 < p < 400) with a constant
Cp > 0if, for any B(x,t) € ¥ and every u € C'(B(x,1)),

[ hunanl? duy < Corr [Vl dyy.
B(x,t/2) B(x,t)
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where
1

pr(B(x,1/2)) JB(x.1/2)
If all balls in M satisfy (PI(p), then we say that (M, gar, ur) satisfies (PI(p)).

In this paper, we call a ball B(x, t) remote to a fixed point o if t < lr(x) (see [13],
Section 4). Then under conditions (1.1) and (1.2), a family of balls remote to o satis-
fies (VD) and (PI(p)) for a fixed p € [1, +00) (see Proposition 2.17). In fact, keeping
the assumption that §(73°°) (M) < +oo for some o € (0, 1), if we replace (1.1) and (1.2)
with (VD) and (PI(p)) (respectively, (VD) and (PI(2)) for all remote balls, then we obtain
Theorem 1.1 (i), (iii) (respectively, Theorem 1.1 (ii) and Theorem 1.2); however, we do not
know if the assertion (iv) of Theorem 1.1 must hold.

When (M, gu, i) satisfies (VD) and (PI(2)), and further the growth condition (1.3)
with 8 > 2, a result of Ancona (see [2], Proposition 3.1), proves that

C1|”()C)|2 2
/Mmdﬂf(x)S/MW’” djiy

UB(x,t/2) = uduy.

for some positive constant C; and all u € C5°(M ). This is a Hardy type inequality on M,
and we can apply Theorem 1.1 (iv) (p = 2) to a positive solution to the equation —A r.,u —
Slu=0in M.

Let W be the bounded potential on M considered in Theorem 1.2. In order to prove
the assertion (ii-a), we use another result by Ancona (see Theorem 3.3 in [2]), proving that

the Green function G" (x, y) of Q). satisfies

*° tdt o tdt
CZ_I/ —SGW(x,y)SCZ/ _
disps (x,y) /Lf(B(X, t)) disps (x,y) /‘Lf(B(x’ t))

for some C, > 1 and for all x, y € M. Moreover, in view of Theorem 10.5 in [11] by
Grigor’yan, and its proof, we see that in (ii-a), the heat kernel p}’V of the operator Q7.
satisfies the two-sided Gaussian estimate (or the Li—Yau estimate) as follows:

—1
C3 e*C4disM(x,y)2/t < ptW(x’y) < & efcsdisM(x,y)z/t

wr(B(x, /1)) 1y (B(x, /1))

forall x,y € M andt > 0, where C3, C4 and C5 are positive constants (see Remark 4.6 (ii)).
A weighted Riemannian manifold (M, gu, jir) is called p-parabolic if every posit-

ive, continuous p-supersolution on M, that is, a positive continuous function v € L llgcp (M)
satisfying Ar.,v < 0 weakly on M, is constant, and p-nonparabolic otherwise. In The-
orem 1.2, the weighted manifold M is 2-nonparabolic, since (1.3) (8 > 2) is assumed
(see [7], [8], Theorem 1.5), and it will be conjectured that if 8 > p and the function ¥ is
a nonnegative C'! function such that ¥’(t) < 0 and f0+°°(tl/f(t))1/(1’_1)dt < 400, then
any positive solution u to the equation —Ar,,u + W|u|?~?u = 0 in M converges to
a positive constant at infinity if |[W| < ¥ (r) on M (see [25] and references therein for
related problems). We remark that if (M, gar, jir) is p-parabolic, then for any nonneg-
ative W € L (M) which does not vanish identically, a positive solution v to equation
—Af.pv + Wv|P72v = 0in M is unbounded, because sup,, v — v is p-superharmonic
if supy, v < +o00.
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Now we need some terminology to state the next result. For n € (—oo, +0¢], the
n-dimensional Bakry—Emery Ricci curvature is defined by

d d
Ric! = Ricy + Ddf — LY
n—m
ifn € (—oo, +00) \ {m}, and
Ric?® = Ricy + Ddf
if n = 400. We assume that n = m if and only if f is constant. We note that in Theor-
ems 1.1 and 1.2, we can replace conditions (1.1) and (1.2) with the following one:
inf(1 2Ric” > —
11‘1} 1+7r) icy 00
for some n > m (see Remark 2.14 and Corollary 2.18). Now we state:

Theorem 1.3. Let (M, gum, j1) be a connected, noncompact, complete weighted Rieman-
nian manifold of dimension m. Suppose that for some n € [m, +00) and k > 0,

(1.4) Ricy > —(n — Dk on M.

(1) Let u € Ll’p(M) N Clz);a(M) be a positive solution to the equation —Ay pu +

loc
Alu|P~2u = 0in M, where A is a positive constant. Then one has

(1.5) Z(p,n,k,\) <sup|Vlogu| <Y(p,n,k,A).
M

Here Z(p,n,k, \) is the unique positive root of the equation
(p—1)Z” +(n— 1)k 27" = A,
and Y (p,n,k, N) is the unique positive root of the equation
(p—DY? —(n—1DJcYP L = A.
(i1) Given p > 1 and A > 0, suppose that
Z(p,n,k, A
(1.6) 5@ (M) < % (<1).

Then every positive solution u to the equation — Az pu + AluP~2u = 0in M is an
exhaustion function and satisfies

u(x) > u(0) €Oy e M,
where C = %(Z(p, n,k,A) —8C)(M)Y(p,n,k,N)) and C’ is a constant inde-
pendent of u.

We note that if k = 0, then Z(p,n,0,A) = Y(p,n,0,A) = (A/(p — 1))"/P, the
equalities hold in (1.5), and C = %(A/(p — 1)YP(1 =50 (M)) (see Example 4.7 for
a simple example of Riemannian manifolds satisfying §© (M) < 1).

In the case p = 2, applying Theorem 2.6 of Ancona [2] to Theorem 1.3, we have:

Corollary 1.4. Let (M, gp, jif) be as in Theorem 1.3 and assume (1.4). Let A be a
positive constant and let W be a locally bounded function on M satisfying

inf {Qa,w (v) | v € CO(M), [3, v2duy =1} > 0.
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Suppose that there exists a nonnegative, nonincreasing function V(t) on [0, +00) with
JoS W(r)dt < +o00 such that

[W(x)— Al <¥(r(x)), xeM.

Then the following assertions hold:

i) A positive solution u to the equation Q’, u) = 0in M satisfies
4 q 2,W

u(x) < u(y) e¥ @A) disy () +C"

forall x,y € M, where C" is a positive constant independent of u.
@i1) If (1.6) with p = 2 holds, then a positive solution u of the equation Q;;W(u) =0
in M satisfies
u(x) = u(0) e x e M,

where C = %(2(2, n,k,A) —8C)(M)Y(2,n,«,N)) as in Theorem 1.3, and C' is
a constant independent of u.

We remark that in the case where p = 2 and f = 0, (1.5) is proved by Borbély [4]
in a different way from ours. To get the upper bound in (1.5), we refer to the method in
Sung and Wang [32], Dung and Dat [9], where positive eigenfunctions with eigenvalue A
(= 0), that is, solutions to the equation Ay, ,u + Au|?~2u = 0in M, are studied, and the
gradient estimate from above by the constant Y (p,n,«,—A) is proved. For the lower bound
in (1.5), we employ the Laplacian comparison theorem derived from the assumption on a
lower bound for the tensor Ricj’i.

The outline of the paper is as follows. In Section 2, we recall first a comparison
principle for the operators Q;;W under consideration and then we show some Lapla-
cian comparison results to derive volume doubling properties (VD) and scaled Poincaré
inequalities (PI(p)) on metric balls. In Section 3, we derive Harnack inequalities for pos-
itive solutions to the equation Q;;W(u) = 0 with bounded potentials ¥. Based on the
Harnack inequalities, we completes the proof of Theorem 1.1. Section 4 is devoted to
proving Theorem 1.2 and furthermore discussing some results, remarks and examples
concerning Theorems 1.1, 1.2 and 1.3; for example, we prove that (M, g, tr) fulfills
(RCA) and (VC) if § (M ) < 1 and some volume growth conditions are satisfied (see
Proposition 4.3 (iii)). In Section 5, we study positive solutions to the equation QI’]; A)=0
in M, where A is a positive constant, and Theorem 1.3, Corollary 1.4 and a related rigidity
result are verified.

2. Laplacian comparison results

Let (M, gy, i) be a connected, complete weighted Riemannian manifold of dimen-
sion m. In this section, we first mention a comparison principle for operators Q ;;W on a
domain of M to employ sub/supersolution techniques in our situation. We refer to Pin-
chover and Psaradakis [24]. Secondly, we discuss some Laplacian comparison results to
derive volume doubling properties and scaled Poincaré inequalities on metric balls.

We begin with the following.
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Theorem 2.1 ([24]). Let Q2 be a bounded Lipschitz domain in M. Given a function W €
L>®(Q), suppose that infueWOLp(Q) Q,,;W(u)/||u||€p(9) > 0, that is, tlft the principal
eigenvalue of the operator Q;.W is positive. Let f.¢, ¥ € LV"P(Q) N C(Q), where f >0
a.e.in Qand f > 0on 022, and

;,W(W) <0< Q;;W(qb) in Q in the weak sense,
Y<f=<¢ on 09,
0<¢ in Q.

Then there exists a unique nonnegative solution v e Wh?(Q) N C(Q) of

I'J;W(v) =0 in%,
v=f on 092

such that ¢ <v < ¢ in Q.
Proof. See Proposition 5.2 and Theorem 5.3 in [24]. ]

To prove Theorem 1.1, we need the following.

Lemma 2.2. Let u be a positive solution to the equation —Ag. ,u + W|u|P~2u = 0ina
domain including M \ B(o, T) for some T > 0. Fort > T, denote m(t) = infg(, ) u and
M(t) = supg, s u-
(1) Suppose that W > 0. Then M(t) is monotone for large t and converges to a number
M € [0,4+o00]ast — +o0.

(ii) Suppose that W < 0. Then m(t) is monotone for large t and converges to a number
m € [0, +o0] ast — 4o0.

Proof. Forty,t, € (T, +00) with t; < t, we write A(t1,12) for B(o,12) \ B(o,11). Sup-
pose first that W > 0. We compare u with a constant function v = max{M(t;), M(t;)},
and we have Q;;W(v) =WvP l>0= Q;;W(u) in A(ty, t). For a connected compon-
ent 2 of A(t1,1,), we have v > u on d€2, so that v > u in Q by Theorem 2.1. Thus v > u
in A(ty,t;). This shows that M(t) < max{M(t), M(t2)} for t € [t1, t2]. Then it is easy
to see that M(¢) is monotone for large ¢, and converges to a number M € [0, +00] as
t — +o0. Similarly we can prove that m(¢) > min{m(t1), m(ty)} fort € [t;,t,] if W <0,
which shows that m(t) is also monotone for large ¢ and hence converges to a number
m € [0, +o0] as t — +oo. This completes the proof of Lemma 2.2. ]

Now we show some Laplacian comparison results on (M, gar, pr). Take a point
x € M and express the volume density in the geodesic polar coordinates centered at x as

dVglexp, (re) = 1(x,1,8) dr dvg

forr >0and £ € S;M = {§ € T, M | |§| = 1}, where dvg is the Riemannian volume
element of the unit sphere Sy M. When we put

(&) = sup {t > 0| disps(x, exp, t§) =t} € (0, +0o0]
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for & € Sy M, I(x,t,£) is a positive smooth function on (0, 7, (§)) satisfying /(x,0,£) =0
and lim; o I(x.t,£)/t™"! = 1. We denote by ry the distance function to x. Then at
y =exp,(t§) (0 <t < 14(§)), we have

I'(x,t,§) I7(x,1,8)
I(x,1,§)
where Af = A=V f(= Ayr.),and Ir(x,t,§) = e~ [(x,1,£) is the f-volume dens-
ity in the geodesic polar coordinates (¢, £).

We assume that there is a positive smooth function y on (0, R) (0 < R < 400) such
thatm — 1 < limsup,_,o2x'(t)/ x(¢) < 400 and
VAR
Ip(x,1,8) = x(@@)

Ary (y) =

@2.1)

forz € (0,74(§) A R).

Lemma 2.3. Fix a point x € M and let x(t) be as above. Then for a smooth function
n:10, R) — R with ' > 0, one has

/ —1y/ X/ / -
M) = (6177 + 20077 ) )

in the weak sense on B(x, R); more precisely, for any nonnegative smooth function ¢
on B(x, R) with compact support, one has

[ vl e nedus = [ —p((r Ty + Lol e duy.
B(x,R) B X

(x,R)
Proof. See, e.g., Proposition 3.7 in [28]. ]
A Laplacian comparison result is stated in the following lemma.

Lemma 2.4. Fix a point x € M, and let k(t) and h(t) be continuous functions on [0, R)
such that
Ricpyr = (m — Dk(ry), |V f]| < h(ry)

on B(x, R). Let J(t) be a unique solution of the equation J"” + kJ = 0in [0, R), subject
to the initial conditions J(0) = 0 and J'(0) = 1, and suppose that J > 0 on (0, R). Then

x(t) = J()" Lexp /Ot h(s)ds

satisfies (2.1).

We remark that J(¢) > ¢ forall > 0 if R = 400 and k is nonpositive on [0, +00).
Let « be a nonnegative constant. In what follows, we write

ooty = | ZE @ eV k>0
t ifk =0.

We also let ¢ (1) = s..(2).
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Lemma 2.5. Let x(t), k(t), h(t) and R be as in Lemma 2.4.

(i) Suppose that k(t) = —« and h(t) = o, where k and o are nonnegative constants.
Then x(t) = s, (t)™ 1e® satisfies (2.1) with R = +oo.

(ii) Suppose that R = 400 and k is nonpositive on [0, +00), and moreover that k(t) =
—kt™2 and h(t) = at™! forallt > T, where k > 0, « > 0, and T > 0 are some
constants. Let f(m, «k,a) = a + (m — 1)(1 + «/1 + 4k ) /2. Then one has

x(t) = Bm.k.e) (C + C/I—M)m—l

forallt > T, where C > 0 and C' are constants.

Proof. (i) The first assertion is obvious.
(ii) The solution J of the equation J” + k(¢)J = 01in [0, +00) is expressed as

J(t) = €y (IO 4 ¢, A-VITaO/2

forallt > T, where C; > 0 and C, are some constants; moreover, we have

t
exp[ h(s)ds = C3t*
0

for all # > T and some constant C3 > 0. These prove the assertion. [

Now we fix a point 0 of M and write simply r for r, = disps (0, *). Let W be a function
in L (M).

loc
We assume first that W > 0 everywhere, and that there is a nonnegative continuous

function W, (¢) on [0, co) such that
0<W,(r)<W onM.

Lemma 2.6. Let y and W,.(t) be as above. Suppose that for some constants a and b, with
0<a<b Wi(t)=0fort €0,a] and W(t) > 0 for t € (a,b). Then there exists a
function n € C'[a, +00) N C?(a, +o0) such that

@) n(a) =1, n'(a) =0;
(i) n(t) > 1, n'(¢t) > 0 fort > a;
(iii) it satisfies
2.2) (X7 (P71 = Wult) x(O) n(®)P™" on (a. +00).

Proof. Let y.(t) = x(t + ¢) for ¢ € (0, 1]. Then we can deduce from the existence and
uniqueness theorems for ordinary differential equations that there are an interval [a, R;)
and a unique positive solution 7, € C'[a, R;) N C?(a, R;) to the equation

(@) e (O1P21L(1)) = Wa(t) xe(t) ne(6)P 7Y,

subject to the initial conditions 7, (a) = 1 and 5, (a) = . In fact, we have

n@ = (e L@ 1

t 1 1/(p—1)
Xe(t) Xg(l)/a Wi (s) xe(s) ne(s)? ds) >0,
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sothat 1 < 7y s(s) < nes(t) fora <s <t < R,. We put here

p—1 Xe(a) / Wi (s) )(s(S)dS) e ), t € [a, +00).

Xe(t) Xa(t)

Dy(t) = (g

Then we get
Do (1) < (1) = Pe(t) M6(1)
fort € (a, R;). These show that

IA

t t
1 +/ D (s)ds < ne(t) < exp/ D (s)ds,
a a

D.(1) < (1) < <I>g(t)exr>/t . (s)ds

fort € [a, R;). Now we put

’

* _ -1 xs(a)
p(0) = (& Olllgliil U may o [ o6

1/(p—1)
/ Wa(s) 15(5) ds)

) 1/(p—1)

px(1) = (

)

0=521 15(0)

for ¢t € [a, +00). Then p*(¢) and p.(t) are continuous functions on [a, +00) satisfying
px(a) =0, pi(t) > 0fort > a, and

px(t) < @c(t) < p*(2)
for all ¢ € (0, 1] and for all ¢ € [a, +00). Then we obtain
t t
1+ [ puords <no) <exp [ 751 ds
a a

t

o) <10 =p e [ 701 ds,

a
for all ¢ € (0, 1] and for all ¢ € [a, R,). These estimates show that [a, +00) is the right
maximal interval of existence for the solutions 7., and that the above estimates hold for all
t € [a, 4+00). Furthermore, as € goes to zero, 7, converges to a function n € C ![a, +00) N
C?(a, +o0), which is a solution to (2.2) subject to the initial conditions 7(a) = 1 and
n'(a) = 0. ]

We remark that if W, (0) > 0, then the same conclusions as in the above lemma with
a = 0 hold. In what follows, we assume that the function 7 is defined on [0, +00) by
setting n(t) = 1 on [0,a] ifa > 0.
Proposition 2.7. Let W and n(t) be as above.
(i) Letu € L]OC (M) N C(M) satisfy —Ag.,u + Wu|P~2u <0 on M in the weak
sense. If u(xo) > 0 for some xo € M, then
u(xo)
max u > ————1(t)
S0y~ 1(r(xo))

Sforallt > r(xgp).
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(ii) Let u € Lll(;cp(M) N C(M) satisfy —Ag.pu + Wu|P~2u > 0 on M in the weak
sense. If u(xg) < 0 for some xg € M, then

. u(x
nin u < % n()
forallt > r(xp).
Proof. By Lemma 2.3, we have
Ag;pn(r) = Wa(r) n(r)?~! < Wi(r)?™!

in the weak sense on M. Suppose that u(x¢) > 0 for some xo € M and that

u(xop)
S = oy "

for some ¢ > r(xg). We take & > 0 in such a way that maxg(, »u < (1 — s)%n(t).

Then it follows from Theorem 2.1 that u < (1 — 8)%7](7‘) in B(o, t); in particular,

we have u(xg) < (1 — &)u(xyp), so that u(x¢) < 0. But this contradicts the assumption.
Thus (i) is proved. Applying the same arguments as above to —u, we can show the second
assertion (ii). [

Corollary 2.8. Let W and n(t) be as above. Let u € Ll’p(M) neR (M) be a solution

loc loc

to the equation —Ay.pu + W u|P~2u = 0 on M. We have that

(i) u is positive everywhere on M if liminf,epr—o0 u(¥)/n(r(y)) = 0 and u(x) > 0
for some x € M,

(ii) u vanishes identically if limyep—oo [U(¥)]|/n(r(y)) = 0.
Lemma 2.9. Let k(t), h(t), x(t), and R be as in Lemma 2.4. Assume that R = 400 and

that k is nonpositive on [0, +00), and moreover that k(t) = —kt=2 and h(t) = at™! for
allt > T, wherexk > 0, ¢ > 0and T > 0 are some constants.

(i) Suppose that Wi (t) is nonincreasing in [T, +00) and [;° (Wx(s)s)V/?~Dds = +oc.
Then 1(t) tends to infinity as t — o0.

(ii) Suppose that Wy (t) = At™P for all t > T, where A is some positive constant. Let
y(p,m,k,a, L) be the positive solution of the equation

x|x|P2(x(p— 1)+ B(m.,k.a) +1— p) = A.

Then n satisfies
n(t) > C(1 + 1) @mKed)

for some positive constant C and all t > 0.

Proof. (i) Since 1(¢) is nondecreasing and W (¢) is nonincreasing in [T, 00), we have

xO@ @)~ = (T (T)?~ +/; Wi (s) x(s)n(s)?~" ds

%

D(TYP Wa (1) /T 2(s) ds.
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so that we get

1 ! /(p—1)
@) = 0T W) (o /T ryds)

for all t > T. Since we have by Lemma 2.5 (ii), C4_1tﬂ <y < C4tﬂ for some constant
C4 > 1, where B = B(m, k, ) in Lemma 2.5, we see that

1 [t 2841 _q
—_— sds > —————— ¢
70 10 = s ne?

for all t > 2T, so that we obtain

28+1 _ )1/(1771)

"B+l 2 L N2 1/(p—1)
2BHI(B 1+ 1)C2 n(T) (Wa(t) 1) /"7

n'(t) = (

for all #+ > 2T'. This shows that

28+1 )1/(p—1)

t
2B+1(B + 1)C2 n(T) /ZT(W* (5)5) /=D g
4

10 = n@7) + (

for all t > 2T . Thus (i) is proved.

(i) Let o(¢) = CstV(Pmkad) “where Cs is a positive constant chosen later. Then o
satisfies the same equation (2.2) as 7 in [T, 400). This shows that n(¢) > o(¢) fort > T
if we choose Cs in such a way that n(T) > o(T) and /(T) > o’(T). [

Now we consider a function W in L2 (M) such that W < 0 everywhere on M. We
assume that there is a nonnegative continuous function W, (¢) on [0, co) such that

W< —-W,(r) <0 onM.

Lemma 2.10. Let y and W, be as above. Suppose that for some constants a and b, with
0<a<b, We(t) =0 fort €[0,a] and Wi(t) > 0 for t € (a,b). Then there exist an
interval [a, R) witha < R < 400 and a function w € C'[a, R) N C?(a, R) such that

() w@) =1, o'(a) =0;
(i) 0 <w(@) <1, &'(t) <O0fort € (a, R);

(iii) it satisfies
2.3) (X(O) (=" (@))P7Y) = Wil0) x(1) 0(©)*™" on (a, R);

(iv) [a, R) is the right maximal interval of existence for the positive solution w, and
lim;go() =0if R < +oo.

Proof. As in the proof of Lemma 2.6, we let y.(t) = y(t + ¢) for ¢ € (0, 1]. Then there
are an interval [a, R,) and a unique positive solution w, € C'[a, R;) N C?(a, R,) to

2.4) (X)L OIP2Wl(1))" = —Wa(t) xe(t) s ()P
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subject to the initial conditions we(a) = 1, w}(a) = —¢; moreover, [a, R,) is the right max-
imal interval of existence for the positive solution w,, and in the case where R, < +o0,
lim;_ g we(t) = 0. We note here that equation (2.4) is also expressed as follows:

Xe (1) wg (1) Wi (1) we (1)P!

(2.5) OO == T 0 (= D (—wy0)P=2

Then we have

p—l XS(a) 1
PROREAG)

so long as w, (¢) exists and keeps to be positive. Thus this holds on [a, R;), and in particular
we have 1 > w,5(5) > we5(t) fora < s <t < R,. Using these inequalities, we see that

1/(p—1)
) >0

o)1) = (e f W) 1e(5) e (5)P di

(1) s (1) < —w, (1) < Pe(t)
fort € (a, R;), where as in the proof of Lemma 2.6, we let

p—1 Xe(a) l
PROREAG)

Using the last inequality, we obtain

)1/(P—1)

o() = (e / Was) 1e(s) ds

we(t) > 1— /t D (s)ds,

from which it follows that

t
(2.6) @s(t)<1 - / D, (s) ds) < —wl(1).
Here, in view of (2.5), we notice that
" / X/(t)
< —wl(t) —F———,
@0 = 7 G

and hence we have

)(e(s))l/(p—l)

—ei) 2 ~o{6) (27

This together with (2.6) shows that

_a’é,s(f) > (Xe(s))l/(p—l) q)s(s)(l - /S qu(u)du), a<s<t<R,.

Xs(t) a

Now, as in the proof of Lemma 2.6, we have continuous functions p* (), p«(¢) on [a, +00)
satisfying p«(a) = 0, p«(t) > 0 fort > a, and p«(t) < D, (¢) < p*(¢) forall € € (0, 1] and
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for all z € [a, +00). Here we fix a number b > ¢ in such a way that fab p*(s)ds < 1, and
then define a positive continuous function 0. () by putting 0« (¢) = 1 fora <t < b and

0 = i,

(b)\ 1/ (p=1)
(o)

for ¢t > b. Then we obtain
tAb
oo AD)(1= [ 50 ds) < i) < 70
a
t
1—/ p¥(s)ds < we(t) <1

for all ¢ € (0, 1] and for all ¢ € [a, R;). We remark that t < R, if fat p*(s)ds < 1. These
estimates show that there are an interval [, R) and a positive function w € C'[a, R) N
C?(a, R) which is a unique solution to equation (2.3), subject to the conditions w(a) = 1
and w’(a) = 0, such that [a, R) is the maximal interval of existence for w, and as & goes
to zero, w, converges to w. (]

We remark that if W, (0) > 0, then the same conclusions as in the above lemma with
a = 0 hold. In what follows, we assume that the function w is defined on [0, R) by setting
w()=1on[0,a]ifa > 0.

Proposition 2.11. Let W and w(t) be as above. Let v € Lllo’f (B(o, R)) N C(B(0, R)) be
a positive function satisfying

2.7) —Afpv+ WP 20 > 0

on B(o, R) in the weak sense. Then

1
2. ) > —— mi
8) o) Z Ty S

fort €0, R). In particular, if R = 400, that is, if (2.7) is satisfied on M, then (2.8) holds
forallt > 0.

Proof. We observe that w(r) satisfies
A po(r) = —Wi(r)o(r)?~! > Wo(r)?™!

in B(o, R). Then we can deduce (2.8) from the same argument as in Proposition 2.7,
together with Theorem 2.1. [ ]

Lemma 2.12. Let k(t), h(t), x(t) and R be as in Lemma 2.4. Assume that Qp.w > 0,
R = +00, and k is nonpositive on [0, +00), and moreover that k(t) = —«kt =2 and h(t) =
ott_lfor allt > T, wherexk > 0, ¢ > 0, T > 0 are some constants.
(i) Suppose that Wi (t) is nonincreasing in [T, +00) and f0+°°(W*(t)t)1/(1’_1)dt =
400. Then w(t) tends to zero as t — +00.
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(ii) Suppose that p = 2 and Wy (t) = At~2 forallt > T, where ) is a positive constant
less than (B — 1)?/4 with B = B(m, k., a) in Lemma 2.5. Then w(t) satisfies

wt)<C1+0)"*

for some positive constant C and all t > 0, where

¢ = min {38 = 1)~ VB~ 02— 40) 2T Hax + 57 .

Proof. (i) Lett > 2T. Since w(t) and W, (¢) are nonincreasing, we have by (2.3),

1/(p-1)
) s

l—w@®)=1—-o(T) + / / Wi (x) x(x) o(x)P " dx

x(s)
Z/ )((s)f Wi (x) x(x) 0 (x)P~ ldx) 1/(p—1 )ds

a)(t)/ W*() )((x)dx)l/(p Yis.

We recall that

1 S
E/T x(x)dx = Ces

for some constant Cg > 0 and all s > 2T (see the proof of Lemma 2.9). Therefore we have
t
1— () > w(t) Ce / (Wi (5)s)V/ @~ g,
2T

and hence we obtain
1
14 Co [ar (Wi(s) )1/ =D ds

o(t) <

Thus w(?) tends to zero if f0+°°(W*(t)t)1/(P_l)dt = +00
(i1) Lettz > 2T. Then we have

t A t k
1000 = 1D 1)~ [ 5 x5 <o) [ D a

and hence we get

o) = x@0) Jr
In view of Lemma 2.5 (ii), we see that

OO A [T,

by
S o,
so that
(2.9) ) A L oviFE
w(t) —11t
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Note here that 8 > 1. These show that
(2.10) w(t) < C7t~+B-D

for all + > 2T and some constant C7 > 0. Then it follows from (2.9) and (2.10) that
A
(2.11) W'(1) < “F-1 C7t7MB=D=1(1 4 0(1)).

We now continue the argument to improve the decay order. Let

r@& By J'(t) B

0 (== DTy Eho -7
se=3(~B-DxVE-D2-41)

F(t) = at® + bt*,

G(r) = 15+ " oapease ([T s _E "GN dx) ds.
(1) =1 /s (/Tx (—E(x) ' (x)) x) s

T

E(t) =

Here, a and b are constants chosen in such a way that F(T) = o(T) and F'(T) = o'(T).
Then F and G respectively satisfy

B

F'(t) + = F'(0) + %F(t) =0, F(T)=o(T), F(T)=ao(T):;

i
t
Therefore the uniqueness theorem for ordinary differential equations implies

G'(H)+=G'(t) + %G(z) =—-EMw'(t), G(T)=G(T)=0.
ot)=Ft)+G@t), t>T.

Since J(t) = ctAtVI+4)/2 o g (A=V1+46)/2 f5r ¢ > T and some constants ¢ > 0 and d,
we have

E(l) — O(I—Z«/1+4K—l )
and in view of (2.9), (2.10) and (2.11), we deduce that

G(t) — 0(1‘72«/ 1+4K7/1/(ﬁ71)).

In this way, we obtain
wit)<Cgt™%, t>T
for some constant Cg > 0. This completes the proof of Lemma 2.12. ]
We have started our arguments from Lemma 2.4. Here we mention the following.

Lemma 2.13. Letn € (m, +00) and fix a point x € M. Let k(t) be a continuous function
on [0, R) (R € (0, +00]) such that

Rict > (n — 1)k(rx)
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on B(x, R). Let J(t) be a unique solution of the equation J"” + kJ = 0in [0, R), subject
to the initial conditions J(0) = 0 and J'(0) = 1, and suppose that J > 0 on (0, R). Then

x@) =J@0)"!
satisfies (2.1).

Proof. See [16] for the case where n is an integer greater than m, and [27] for n €
(m, +00). m

Remark 2.14. By starting with this lemma, instead of Lemma 2.4, we have Lemmas 2.5,
2.9, and 2.12, where « and m are respectively replaced with 0 and n; furthermore, Theor-
ems 1.1 and 1.2, and Proposition 3.7 stated at the end of Section 3, hold if we replace (1.1)
and (1.2) with the condition infpr (1 + ) Ric} > —oc.

Now we are concerned with the volume growth and scale-invariant Poincaré inequal-
ities on the weighted Riemannian manifold (M, gy, j15). By virtue of Subsection 5.6.3 in
Saloff-Coste [31], we have the following.

Lemma 2.15. Fix p € [1,4+00), R > 0 and a point y € M. Suppose that there is a positive
nondecreasing C' function y(¢t) on (0, R) satisfying (2.1) for all x € B(y, R) and t €
(0, tx(§) A 2R), and furthermore that there is a constant F (R) such that

(2.12) x() < F(R) x(¢/2)

forall0 <t <2R. Then the following volume doubling property (VD) and scale-invariant
Poincaré inequalities (P1(p)), respectively, hold:

(i) for any ball B(x,2t) C B(y, R),
pr(B(x,1)) < 4F(R) jur (B(x,1/2));

(ii) for every ball B(x,2t) C B(y, R) and any u € Ll’p(B(x,Zt)),

loc

/ U — upgeasn)|? diy < 4F(R)I f IVul? s,
B(x,t/2) B(x,t)

where
1

_ udur.
1y (B, 1/2) Joeasny

UB(x,t/2) =

Proof. Since

<

— Y

(If(x,f»f))’ _ (9 (fﬂx,f’é) ~ m)
2(0) 1O Nty

we have

Ir(x,5,8) - Ir(x,t,§)

20) > <0 , O0<s<t<1(§) A2R.



Positive solutions of the p-Laplacian with potential terms 2251

Moreover, since

(fé Iy (x.r. é)dr)’ I (0 / <1f(x,t,s) (s ®)
Jo x(r)dr (L xrydr)> Jo N x® x(s)
for0 <t < 7,(§) A 2R, we get

[N I (x,r £ dr _ [N ® (e E)dr

)x(s)ds <0

, O0<s<t<2R.

fS/\r(S) )((r)dr - fZ/\r(S) )((r)dr
0 0
Noting that
fosm(g))((r)dr N f(f x(@)dr
S g rydr ~ fy x(rydr
we obtain

SO 1 edr [ 1 )dr
Joxdr 7 fyx(rydr

This shows that

1y (B(x,s)) _ pr(B(x.1)
Jo xydr =[5 x(rydr
Finally, if y(¢/2) > x(t)/ F(R), then

(2.13)

O0<s<t<2R.

wur(B(x,s)) 1 t
(2.14) 1 (BCx. 1)) > TFR) 0< 3 <s<t<2R,
and
Ir(x,s,8) 1 t
(2.15) 1o E) zF(R), 0<55s5t§rx($)/\2R-

Obviously, (2.14) shows the volume doubling property (VD) in (i). Moreover, in view
of the proof of Theorem 5.6.5 in [31], (2.15) yields the inequalities (PI(p)) in (ii). This
completes the proof of Lemma 2.15. ]

Similarly, we have the following.
Lemma 2.16. Fix p € [1,00), R > 0 and a point y € M. Suppose that

sup f— inf f <bh
B(y,R) B(y.R)

for some positive constant b, and that there is a positive nondecreasing C ! function y«(t)
on (0, R) satisfying m — 1 < limsup,_, oy, )/ x«(t) < +o00,

It _ A
I(x,1,8) = x«(1)
forall x € B(y, R) andt € (0, 75 (§) A 2R), and furthermore

(2.17) 1) < F(R)x«(1/2), 0<1t <2R,
for some F(R).

(2.16)
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Then the following volume doubling property (VD) and scale-invariant Poincaré in-
equalities (P1(p)), respectively, hold:

(i) for any ball B(x,2t) C B(y, R),
1y (B(x,1)) < 4F(R)e” s (B(x,1/2));

(ii) for every ball B(x,2t) C B(y, R) and any u € L ?(B(x,2t)),

loc

/ |u —up(x,e/2)|F dpy §4F(R)ebtp/ |Vul? duy.
B(x,t/2) B(x,t)

Making use of Lemmas 2.15 and 2.16, we extend the Bishop—Gromov volume doub-
ling property and (a weak form of) a theorem due to Buser [5] to weighted Riemannian
manifolds in the following result.

Proposition 2.17. Let (M, gu, |tf) be a connected, noncompact, complete weighted
Riemannian manifold of dimension m. Fix p € [1,400), R > 0, and a point y € M.

(1) Suppose that the Ricci curvature Ricpys is bounded from below by —(m — 1)k on
B(y, R), and that supg(, gy f —infp(y r) f < b, where k and b are nonnegat-
ive constants. Then (VD) and (PI(p)) (as in Lemma 2.16) hold with a constant
eCmU+b+kR) \yhere C(m) is a constant depending only on m.

(ii) Suppose that the Bakry-Emery Ricci curvature Ricj’.’r with n > m is bounded from
below by —(n — 1)k on B(y, R), where k is a nonnegative constant. Then (VD)
and (PI(p)) (as in Lemma 2.15) hold with a constant eCOUHVER) yohore Cn)isa
positive constant depending only on n.

(iii) Suppose that the Bakry—Emery Ricci curvature Ric;co is bounded from below by
—(m — Dk on B(y, R) and that supg, gy / —infgy,r) /' < b, where x and b

are nonnegative constants. Then (VD) and (P1(p)) (as in Lemma 2.15) hold with a
constant e€MU+D)A+ViR),

Proof. For the assertion (i), we let y«(t) = s,(¢)™!. Then by the assumption, we see
that y. satisfies (2.16) and we can take F(R) = 2™t 1em=DVKR which satisfies (2.17).
Hence (i) follows from Lemma 2.16.

For the assertion (ii), we let y(¢) = s,(¢)"~'. Then by the assumption on the tensor
Ricj’,, ¥ satisfies (2.1) (see Lemma 2.12), and we can take F(R) = 2" ! e=DVKR hich
satisfies (2.12). Hence (ii) follows from Lemma 2.15.

We consider assertion (iii). It is shown by Wei and Wylie [35] that

D) 1) oV + —2 / (F6.6)— £(0.6)) cosh2s) .
0

Ir(x,1,8) sinh? (vkt)
Since supp(y gy f/ —infp(y,R) f < b, we obtain
I r(x.1.6)

< (m — 1)k coth(/kt) + —————
) mh2
< (m — 1+ 2b)/k coth(v/kt).

If(x t§‘ (\/_ / cosh(2+/ks) ds
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Hence letting (1) = s,(1)" 172, we have (2.1) and take F(R) = 27120 o(m—1+2b) kR
which satisfies (2.12). In this way, (iii) follows from Lemma 2.15. ]

Corollary 2.18. Let (M, gum, iy )be as above. A family of balls remote to a fixed point o
satisfies (VD) and (P1(p)) under one of the following conditions:

(i) Ricy > —(("11_7_35 and |V f| < 1"‘? on M for some constants k > 0 and a > 0;

(ii) Ric} > w=DK (> m) on M for some constant k > 0;

T (+r)?
(iii) Ric%® > —((’;’;j)’f on M and
sup{ sup f - inf f|k=1,2,...}§b<+oo
B(0,2k+2)\ B(0,2k) B(0,2¥+2)\ B(0,2F)

for some constants k > 0 and b > 0.

Proposition 2.19. Let (M, gy, jtr) be a connected, noncompact, complete weighted
Riemannian manifold of dimension m and assume that (VC) holds.
(i) Suppose that Ricyy > —((';’_;35 and |V f| < 1% on M for some constants k > 0
and oo > 0. Then one has

pr(B(o,t)) < C(1 +1)"*e

for some constant C > 0 and all t > 0.

(i1) Suppose that Ric} > — (('iilr))f (n > m) on M for some constant k > 0. Then one has

ur(B(o, 1)) <C'(1 +1)"

for some constant C' > 0 and all t > 0.

(iii) Suppose that for some constants k > 0 and b > 0, Ricj‘?o > —((';'J_ri;f on M and
SUP{SUPg(p 2k+2)\ B(o,2¢) J — i 2kt2)\B(o,2k) f | kK =1,2,...} <b < +00. Then

one has
1y (B(o,1)) < C"(1 4 1)+

Sor some constant C" > 0 and all t > 0.

Proof. Since (VC) is assumed, we have for x € S(o,1),
pr(B(o,1)) = Cypy(B(x,1/2)),

s0 it is enough to show that us (B(x,1/2)) < C(14+1)"%%, us(B(x,1/2)) < C'(1+1)",
and pr(B(x,t/2)) < C"(1 + 1)"+4b  respectively, under the assumptions in (i), (ii)
and (iii).

We consider assertion (i). It follows from the assumption on f that | f(x) — f(0)| <
o for(x)(l +5)"'ds = log(1 + r(x))* for x € M. Hence we get

e/ <Ol + 1) onM.
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Now we fix a point x € S(o,t). Since Ricyy > —k (1 +1/2)"2 > —4kt~2 on B(x,1/2),
we have by (2.13) (after letting s go to O and letting w,, stand for the volume of the unit
sphere of Euclidean space R™),

t/2

ur(B(x.t/2)< sup e/ puo(B(x.1/2)< e/ OlU+20) 0 | (55 /()™ 'dT
B(x,t/2) 0

t/2
< O 420 0y, (Szﬁ/,(z/Z))’”_I/ dt < 7O Cm, k) (1 4 )™t
0

where C(m, k) is a positive constant depending only on 7 and k.
For the remaining assertions, the same arguments as above are valid, and we omit the
proofs of (ii) and (iii). ]

Remark 2.20 ([13], subsection 2.2; [12], (15.68)). For any subset U of M and R > O,
we consider a family of balls ¥ = {B(x,t)|x € U,t < R}. Assume that the family ¥
satisfies (VD) with constant Cp. Set y = log, Cp. Then, forall 0 < s < ¢ < R, we have
B(x,t t\”
pr(B(x,1)) <Cp (_) .
wr(B(x,s)) s
For any B(x,t) € ¥ witht < R/2, assume that S(x,37/4) N U # 0. Let y be a point of
S(x,3t/4) N U. Then we obtain
pr(B(x.1)) = pyr(B(x,1/2)) + pr(B(y,1/4))
>y (B(x.1/2)) + Cp® ur (B(3.20)) = pp(B(x.1/2) (1 + Cp).

We say that a family ¥ of balls in M as above satisfies the reverse volume doubling
property (RVD) with a constant Crp > 1 if, for any ball B(x,?) € ¥ witht < R,

1y (B(x,1)) = Crp iy (B(x,1/2).
Then, forall0 <s <t < R/2,
B(x,t t\B
BEED) - o (1)
pr(B(x,s))
where B = log, Crp.

Now we let A be a positive constant and consider the equation Q;, Alw) =0in M.

We denote by 7, A the solution of (2 2) with y(¢) = s ()" ' and Wy = A subject to the

initial conditions 1, 4 (0) = 1 and n A(0) =0.Since A > 0, itis easy to see that r) A>0

on (0, +00), so np A (t) > 1. Moreover it follows from Lemma 2.3 that , A (r) satlsﬁes
—Ap fp.a(r) + Anp a(r)P~! > 0 on M in the weak sense.

To prove Theorem 1.3 (i), we need the following.

Lemma 2.21. Let Z(p,n, k, A) be the unique positive root of the equation (p — 1) Z? +
(n—1)/kZP~! = A. Then one has

1
lim —lognpa(t) = Z(p,n,k, A).
t—o0
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Proof. For a positive constant a, let p, (1) = ¢, (¢)? (¢t € [0, 00)). Then p, satisfies

ce(p)

P, ()P < Aa. 1) pa(t)?~,
SK(:O)

(P71 + (m—1)

where we put

ey ) (20

‘We observe that
lim A(a.1) = (p = D(Vka)? + (n = 1) Vi (Vka)” ™",
—00
sothat fora = kY2 Z(p.n,k, A),
tlim AkV2Z(p.nk, N), 1) = A.
—>00
Let a be less than K_I/ZZ(p, n,k, A). Then there exists a positive number 7 such that
A(a,t) < A forall t > t. We take a positive number b in such a way that bp, () < 1p,A (1)
and bp (t) <), 5 (7). Thenitholds that b, (1) <, , (¢) forall > 7. In fact, we suppose

contrarily that for some # > 7, b, (t) < n;,A (t) forall ¢ € [t,14) and bp), (tx) = n;),A (4).
Since bpg(s) < np,a(s) for s € [z, 1], we obtain

tu
S ()", A ()P = 5 (0" ), A (0P +/ Asic(s)" ', A ()P  ds
t*
> s,c(t)”_lbp_lp:l(t)p_l—i—/ Aa, $)se(s)"bP 7 ol (s)P " ds
T .
> bP s ()" o ()P 4 b7 / (5¢ ()" o ()P71) ds
T

= b7 s (1) 0 (1) 7T = s (1) ), A ()P

This is absurd. Thus we see that bp), (t) < ’7;;,A (¢) forall > 7, and hence bp, (1) < np A ()
for all ¢+ > t. This shows that

.1 .1
Vka = Jlim - log bpa(t) < htn_l)érgf; log np.a (7).
This holds for any a < k~/2Z(p,n, k, A). Thus we get
1
Z(p,n,k,A) <liminf —log np A ().
t—oo
Similarly, we can deduce that
1
lim sup n lognp,a(t) < Z(p,n,k, A).
t—>00

In this way, we obtain lim;_, o % lognp.a(t) = Z(p,n,k, A). This completes the proof of
Lemma 2.21. u
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3. Harnack inequalities and proof of Theorem 1.1

Let (M, gm, 14f) be a connected, noncompact, complete weighted Riemannian manifold
of dimension m. Let €2 be an open subset of M. In this section, we assume the volume
doubling property (VD) and the family of (weak) scaled Poincaré inequalities (PI(p))
(p € (1, 400)) as follows:

(i) there exists a positive constant Cp such that, for any ball B(x, 2t) C €,

wr(B(x.1)) < Cp py(B(x,t/2));

(ii) there exists a positive constant Cp such that for every ball B(x,2¢) C Q2 and any
u € LUP(B(x,21)),

loc

/ [u —upex/2)|” dpy < Cp l”/ |Vul? duy,
B(x,t/2) B(x,t)

where
1

pr(B(x,1/2)) Jp(x/2)
Then it is known that the family (SI(p)) of Sobolev inequalities holds in such a way

that for some constants k > 1 and Cs > 0, and for every ball B(x,2t) C @ and any
ve Ly?(B(x,1)),

1/k Cet?
([ wikaus) ™ s —SC [ oy,
B(x.1) pr (B(x, 0))?/ Jp(x.n)

where we can take k = v/(v — p) with v = max{p + 1,log, Cp}, and Cs depends only
on Cp and Cp (See [7], Lemma 4.3; [29], [30], [31] and references therein.)

A Harnack inequality for positive p-harmonic functions is obtained in Coulhon, Holo-
painen and Saloff-Coste [7] by running the Moser iteration as in [30] under the assumption
that volume doubling property and suitable Poincaré inequalities hold. In fact, the result
is established in a natural framework including the usual p-Laplacians. Along the line
of [7], we extends the Harnack inequality for positive solutions of equation —Ay. ,u +
W |u|P~2u = 0, where W is a locally bounded potential function. We refer also to [26].

The main result of this section is the following.

UB(x,t/2) = udpy.

Theorem 3.1. Let (M, gum, |1y ) be a noncompact, connected, complete weighted Rieman-
nian manifold of dimension m. The volume doubling property (VD) and the family (P1(p))
of Poincaré inequalities with constants Cp and Cp respectively are satisfied in an open
subset 2. Then for any nonnegative function u € Ll’p(B(x, 2t)), B(x,2t) C K2, satisfying

loc
-2 -2
—AulP™u < Ap.pu < AulP""u
in the weak sense on B(x,2t), where A and A are positive constants, one has

sup u < C inf u.
B(x,t) B(x,t)

Here C is a positive constant depending only on Cp, Cp, p, tPA, and tP A.
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We start with:

Theorem 3.2. Assume (SI(p)) is satisfied on Q and let B(x,2t) C Q. Let0 <o <o’ <1
and 0 < a < 400. For a nonnegative function u in Lllo’cp(B(x, 2t)) satisfying —A|u|?~2u <
Ay, pu in the weak sense on B(x,2t), where A is a positive constant, one has

1 1/«
sup u < CCS”/I’< u“du) ,

B(x,01) wr(B(x,1)) JB(x,0mt)
where C is a positive constant depending only on p, k, o, 6, o and t? A.

Proof. For the case where A = 0, the theorem is shown in [7], Theorems 4.4 and 4.5, and
we can adapt the proof for our case. ]

Now we are concerned with a positive function u € Wléc’p (B(x,2t)) satisfying Az, ,u <
Alu|P~2u, where A is a positive constant. We begin with:

Lemma 3.3. Suppose that (SI(p)) is satisfied and B(x,2t) C Q. Let0 <o <0’ <1,0<
s'<k7ls <s <k(p—1),and 0 < q < +o0. For a positive function u in LIIO’CP(B(x, 2t))
satisfying Arpu < Alu |1’_2u in the weak sense, one has

1 1/s
- - udp
(/,Lf(B(X,[)) B(x,01) )

_ /s'—1/s 1 ’ 1/s'
= [cCs™ /7 (0" — o) P (— udp)
[ ] 15934 (B(x,1)) B(x,0't)
and :
- /Dy 1 —1/v —q
sup u4<CcCcyP —o)y VW —oouour— uldu,
B(x,01) § wr(B(x,1)) JB(x,00t))

where C is a positive constant depending only on p, v and t? A.

Proof. For the case where A = 0, the theorem is shown in [7], Theorems 4.6. 4.7, and we
can adapt the proof for our case. See also [26], Chapter 7. ]

Now by referring to the proof of Theorem 3.1 in [7], we prove the following.
Lemma 3.4. Suppose that (P1(p)) is satisfied on Q2 and let B(x,2t) C Q. Let0 < § < 1
and let u be a positive function in Lllo’cp (B(x,21)) satisfying Agpu < Alu|P~>u in the
weak sense. Then

27(1 + 1P A)
Viogul?dus < B(x,1)).
/B(m| gul” diy = sy (BxD)

Proof. In this proof, we write B, B(s) (0 < s < t) and V(s) respectively for B(x,t),
B(x,s) and ur(B(x,s)). For any function w € Ll’p(B), w > ¢ > 0, we have

loc

Ar.,w
~Asplogw + —LLE = (p—1)|Viogw|?

w
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in the weak sense, that is, for any nonnegative function yr € L(l)’p (B) with compact support
in B, we have

_ v _
[ evp.ViogwVioguwl? 2 dysy - [ g(Vw. V(L )Ivulr duy
— (-1 [VIViogul? duy.

This shows that log u satisfies
(=1 [ wIViogul” dus & [ wans < (V0. Viogu|Viogul? disy

for any nonnegative ¥ € Lg”(B). Taking

1 if y € B(s),
Y(y) = 1—+Wdisy(x,y)—1) ify € B(s +¢)\ B(s),
0 otherwise,

yields
1
(-1 [ Vioguldus <+ Viogul” s+ [ any.
B(s) € JB(s+¢)\B(s) B(t+¢)

Since

1
—[ |Viogu|?tdus
€ JB(s+¢)\B()

|4 —V()\Vr /1 1/p'
< (M) (_/ IV logul? du ) ’
f
& € JB(s+e)\B(s)

where p’ = %, we get

(=1 [ [Viogul? dus
B(s)

(V(s + &) — V(s))l/p (l

& &

<

p/
/ IV log u|? dw) FAV(s +¢).
B(s+¢)\B(s)

Thus putting H(s) = (p — 1) fB(S) |V logul|? dir and letting e tend to 0 yield

H = (N Ty 4 ave),
and hence
L 1 (H’(s))l/p’ AV() 1
VI($)VP = (p—1)V/P" \H(s)?' H(s) V'(s)'/?
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Suppose that 2AV(¢t) = H(so) for some so € (0, ). Since
AV (s) - AV() 1

H(s) — H(so) 2’

we have

1 1 1 H'(s)
v ;= 7, S0 =S8 =1I.
20" Vi(s)P/P" ~ p—1 H(s)?
Integrating both sides from s’ to s for so < s’ < s < t, we obtain

1 [f do 1 1
(3.1 5 Ty < e o
20" Jo V'(o)P'/P H(s)?'/p  H(s)P'/P

The left-hand side can be bounded from below by ((s — s')?/(V(s) — V(s')))/ P~

because
s P s 4 1 1270’4
_ 1A p /
(s—5)" = (/S dU) = (/S, V(o) do /S V'(o)P'/P dO)

$ do p/p
— _ A
= V=V [ Jros77)
Hence, by (3.1), we have
_ P -
L( (s —s) )1/(p 1)< 1 B 1 - 1
22°\V(s) = V(s') ~ H(s)P'/p H(s)P'/p — H(s)P'/P
and thus v Vs
H(S/)EZPM, so<s' <s<t.
(s— )7

This shows that if §¢ > sq, then

S VO -VE) L, V()
tP(1=8)2 —° tP(1—38)7’

H(St) <2

and if §¢ < s¢, then
H(8t) < H(so) =2AV(2).

In this way, we obtain

1 27(1 4+ 17A)
st A)V(@) < g O

If H(s) < 2AV(¢) for any s € (0,¢), then we have

22(1 +t7A)

H(S1) < 21’(

This completes the proof of Lemma 3.4. |

In order to arrive at Theorem 3.1, we need an abstract lemma due to Bombieri and
Giusti [3], which simplifies considerably Moser’s original proof of the Harnack inequality.
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Consider a collection of measurable subsets Uy, 0 < 0 < 1, of a fixed measure space
endowed with a measure p, such that U, C Uy if 0 < ¢’. In our application, Uy will be
B(x,ot) for some fixed metric ball B(x,?) C M.

Lemma 3.5 ([3]; [31], Subsection 2.2.3). Fix0 < § < 1. Let y and C be positive constants
and let 0 < g < +o00. Let g be a positive measurable function on Uy = U which satisfies

/ B /
(/ g% du)1 " < (0 — o)) WO(/U g® du)l ’

a

forallo,0’,a suchthat0 < § <o <o’ <1and0 < o < min{l, o,/2}. Assume further

that g satisfies

plogg > 1) < w(U) ™!

forallt > 0. Then
1/ap
(/ g% du) < ApU)Yeo,
Us
where A depends only on §, y, C and a lower bound on ay.

Theorem 3.6. Assume the volume doubling property (VD) and the family of Poincaré
inequalities (P1(p)) with constants Cp and Cp (p € (1, 400)), respectively, are satisfied
in an open subset Q. Let v = max{p + 1,log, Cp}, 0 < s <v(p —1)/(v — p), and
0 < 8§ < 1. Then a positive function u € Lllo’f(B(x,Zt)), B(x,2t) C Q, satisfying
Agpu < AuP!
in B(x,2t) fulfills
( : sapy) " < int

_ u'du ) < inf u.

1y (BGS0) Jpoesn B(60)
Here C is a positive constant depending only on 8, p, Cp, Cp, and t? A.

Proof. Let
1

c=———
wr(B(x,81)) Jpx,50)

In view of Lemma 3.3, we can apply Lemma 3.5 to e “u and e‘u~". First it follows
from (PI(p)) and Lemma 3.4 that

[ togu—cldu =y aesoy e [
B(x,5t) B

<C /,Lf(B(X, Sp))a

where we put C; = 2(1 + tP1)/?(p — 1)~'/2(1 — §)~'Cp. This shows that for any
T >0,

logu du.

1/p
[logu — c|? d,u)
(x,01)

Tu({x € 8B | loge ‘u > t}) < [ |[logu —cldu < Cy ur(B(x,8t)).
§B
Similarly, we have

tu({x € 8B | loge‘u™" > t}) < Cy pr(B(x,81)).
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Then it follows from Lemma 3.5 that

1/ -1
(/ u’ d,u) ’ < A/Lf(B(x,St))l/Sec, 0<s< vip =1
B(81) v—rp

and also
e“supu~! < A.
§B

These show the required inequality. ]
It is clear that Theorem 3.1 is derived from Theorems 3.2 and 3.6.

Proof of Theorem 1.1. (i) By the assumptions, we assume that for some positive con-
stants «, o and o/,

Ricyr = —k(m— DA +r) 2, |[Vf]|<a(l+r)"" and |W|<d'(1+r)"?

on M. Let b = sup,_q ¢~ 'diam®*(S(o0, 1)) and it is assumed that b is finite. We fix
a positive integer k in such a way that 0 < 2K72(1 — o). For any x, y € S(o, 1), let
Yay:[0, L] = M\ B(o, (1 — 0)t) (L = dis'”*?(x, y)) be a curve parametrized by arc-
length joining x = yx,(0) to y = yx,(L). We choose a nonnegative integer j in such a
way that

oj <L<o(j~|—1)‘
2k+1 = ¢ 2k+1

Note that j < 2k*1g=1h, since L <t b. Let x; = yxy (2% 1oti) (i =0,1,..., )
and x;4; = y. Note also that B(x;,27%6t) (i = 0,..., ) are all remote balls, and on
M \ B(o, (1 — (1 + 27%)o)t) which includes Uf:ol B(xi,27%ot), we have the Ricci
curvature bounded from below by —(m — 1)k (1 + (1 — (1 +27%)0)7)72, |V f| bounded
from above by a(1 + (1 — (1 +27%)o)7)~" and |W | bounded from above by &’(1 + (1 —
(1 +27%)0)t)"P. Since 27 %ot < 1+ (1 — (1 + 27%)0)t, it follows from Theorem 3.1
that u(x;) < Cou(xi41) (i =0,..., ), and hence we have u(x) < C,’ T'u(y), where C,
is a positive constant independent of u and ¢. This completes the proof of assertion (i).

(ii) Based on the annulus Harnack inequalities in the first assertion and using the same
arguments as in Theorem 7.1 in [23], we can verify the second one. We omit the details of
the proof.

(iii) Let M(7) = supg(, ) u and m(t) = infg(e u. If W > 0 and u is unbounded,
then Lemma 2.2 shows that M (¢) diverges to infinity as ¢ — oco. By the annulus Harnack
inequality, M (¢) < Cgm(t) for all ¢ > 0. This implies that u(x) — +ocoasx € M — oc.
When W < 0 and infp; u = 0, we see from Lemma 2.2 that m(¢) tends to zero as t — co.
Thus the annulus Harnack inequality shows that u(x) goes to zero as x € M — oo.

(iv) Let n(t) be the solution of equation (2.2) with W, (t) = ¢(¢). Then by Proposi-
tion 2.7(i), we have supg, ) u > u(0)n(t), and by Lemma 2.9 (i), lim;— oo 1(¢) = +00,
so that sup,, v = +o0. This proves that limyepr— o0 U(X) = +00.

Now let w(t) be the solution of (2.3) with W, (t) = ¢(¢). Then by Proposition 2.11
and Lemma 2.12 (i), we have (1) > u(0)~! infg(o,r) ¥ and lim; ., w(¢) = 0. These show
that infps u = 0, and hence limyeps o0 u(x) = 0. ]
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Before ending this section, we have by Lemma 2.9 (ii) and Lemma 2.12(ii), the fol-
lowing.

Proposition 3.7. Let (M, gy, [Lr) be a connected, noncompact, and complete weighted
Riemannian manifold of dimension m satisfying (1.1), (1.2) and 8@ (M) < +o0 for
some o € (0,1). Given a bounded function W on M, assume that Qp.w > 0. Let u €
Lllo’cp (M)n cre (M) be a positive solution to the equation Q;;W(u) =0in M.

loc

(i) Suppose that
A A

arnr =" =snr

for some positive constants A, A with A < A. Then one has
u > C(1 4 r)@meat) i
where C is a positive constant and y(p, m, k, o, A) is the positive solution of
X|xP2e(p = 1) + Bm,kc,0) + 1= p) = 4
with B(m,k,0) = a + (m — 1)(1 + /1 + 4k)/2.
(1) Suppose that p = 2 and

A W< A
A+r?2~ " = (1+r)2?
for some positive constants A, A with A < A. Then one has
C/
u < —(1 ) inM,

where C' is a positive constant and

Em.k o A) =min {3((B—1) = V(B — 1> —41).2vT + 4k + 52}
with B = B(m, k, ).

4. Proof of Theorem 1.2

Under the conditions (1.1), (1.2), (VC) and (RCA), we can conclude from Theorem 5.2,
Corollary 5.4 and Theorem 2.7 in [13] that (M, gu, i) satisfies (VD) with a constant
Cp > 1 and (PI(2)), or equivalently, that the following two-sided estimate for the heat
kernel p(t, x, y) of the Laplacian Ay., holds:

di L y)?
e isp (X, y) )

Co
mexp< ; <p.x,y)

@.1) /

disps (x, y)?
T (-6

forall x,y € M, t > 0and some C; > Co > 0, where we put V(x,t) = pur(B(x,1)).
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Moreover, in view of (1.3) (8 > 2), the Green function

Glx.y) = /0 plt.x.y)di

exists and satisfies

*© t

o0
4.2) C;I/ L <G(x,y) < CI/ dt
d;

ispr (x,¥) V(X,l) disps (x,y) V(X,l)

forall x,y € M and some C; > 1.
Let v be a positive nonincreasing C ! function on [0, co) such that

43) / T ) di < +oo.
0

We first observe that for 0 < a < b < +00,

/ () duy
{a<r<b}

4.4 .
= Cﬁ_ll/f(a)aﬁ V(o,b)b~P +ﬂCﬂ_1V(0,b)b—ﬂ/ vy A dr.

In fact, using the growth condition (1.3), we have
b
/ () dpy = / Y V' (0.r) dr
{a<r=<b} a
b
=y (b)V(o.b) — ¥ (a)V(o,a) —/ v’ (r)V(o.r)dr
b
<Y (b)V(o.b) + C5' V(o.b)b™P [ ' (r)rP dr
b

< VB V(.b) + C5 Vo) b (v@a” — v )b +p [ w)rar)

b
< C y(@)aP V(o.b)b™P + BCF V(0.b) P / s rhdr.

Thus we obtain (4.4).
Now for a nonnegative number k, we let

G = [ oy GEDVCEN ARG x M

Then we have:
Lemma 4.1. The following assertions hold:
(1) limyep o0 Go(x) =0,

(if) im0 SUP,eps G (x) = 0.
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Proof. To estimate G (x), we put

Gra(x) = / G(x.2) Y (r(2)) diy (2).
{k<r(z)<2r(x);d(x,z)>r(x)/2}

Gra(x) = / G(x. 2) Y(r(2)) dus (2).
{r(z)=k;d(x,z)<r(x)/2}

Gra(2) = [ G(x.2) ¥ (r(2)) dpuy (2).
{r(z)=2r(x)}

In view of (4.2) and the volume doubling property (VD) with a constant Cp > 1 (see
Remark 2.20), we see that

o f 00
G(x,z) < C1/ _tdr _ C1/ V(o.1) tdt
reo/2 Vo) rexy2 V(x,t) Vio.t)

<C > V(o.1) V(x,t +r(x)) tdt
a 1/roc)/z Vix,t +r(x)  Vx,t) V(o)

t © tdt ®  tdt
=ciop (L) | =vaio [
t rx)2 V(o,1) rx) V(0,1)

if d(x,z) > r(x)/2. Putting C; = 3YC;Cp, we have

*© tdt
Gt (x) < Gy / e Y (r@) dps (2).
r/2 V(0.1) Jikr)=2r(x)id(x,2)2r(0)/2)
Since we assume the volume growth (1.3), we get
© it cy! o0 B Cylr(x)?
reo/2 V(o,t) V(0,7(x)/2) Jrx)/2 t 22(B—=2)V(o,r(x)/2)

and we have by (4.4),

/ V() diy 2)
{k<r(z)<2r(x);d(x,z)>r(x)/2}

- Cily(k)kP V(o 2r(x))  BCZ'V(0,2r(x)) /2r(X)1/f(r)rﬂ_l o

- 28 r(x)B + 2B r(x)B
Cily(k)kPV(o.2r(x)) B 2
ﬂ . —1 /3—1
= 267 (x)P +o5Cp Vio2r(x) /k o YD

In this way, we obtain

¥ (k)k?
r(x)p—2

Gra(x) < G +Cr(x) /0 e,

where we put C3 = C; C}, Cﬁ_2167 B(B—2)"1.
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For Gg2(x), we have

Grp(x) = ¥ ((r(x)/2) v k) G(x,2)dpy(z)
{d(x,2)=r(x)/2}

r(x)/2 poo d
a0 [ 5

o d
= v vi( [ T VD ¢ [ rar)

3 1V (x, r(x)/2) /°° tV(x,r(x)/2)
- 7tz + - 7tz
3r(x) V(x,1)

V'(x,r)dr

r(x)/2

< Clw((r(X)/2)Vk)(/( 2 o Vix.1)

o0 V s
= (/2 v i) (6r()? + /3 - %’”)

st o [ () )

dt+r(x)2)

<6Ci (14 525 /2 v ey

Finally, we consider G.3(x). Since we have for ¢ > 2r(x),

t—r(x)
t

Vix,t) > V(o,t —r(x)) > CD( )yV(o,t) > g—f V(o,t),

we get

k; — 1
{J (Z)ZZJ (X)} d(x,z) l (-xvl)

<c [ /°° Ly dyg (2)
= r A
! (r@)=2r(x)} Jrz)=rx) V(x,1) =4

© t
<CiCp / ( V() dp (z)) dr.
' rx) \V(0,1) Jior)<rz)<i+r(x)} 4

Y(r)duys(z)

Since we have by (4.4),

/ V() dus
{2r(x)<r<t+r(x)}

c-1 V(o,t + r(x))

t+r(x)
B v—
< i ey ey g [y tar)

and

Vio,t + r(x)) <C (t + r(x)

Y
<Cp?2?,
V(o,t) ! ) =D



A. Kasue 2266

putting Cy = 2V/3C1C5Cﬂ_1, we get

o) t+r(x)
< - ﬂ ﬂ_l
Grsa(¥) = Cs /m oy (Ve ere’ + /W) v () di
s [~ tdt
=CCrmer [ s

00 ¢ t+r(x) P
+C4/ —/ Yv(r)r°  drdt
r(x) (t + V(X))’S 2r(x)
00

o : o [Tl
< Ci(B—2) "1y (2r(x)(2r(x))® +Cy o y(r)r /r vy (17 (x))P

< C(B=2)7 'y (@2r(x)2r(x)* + C4/2 ( )I/f(r)rdr-
In this way, we obtain

k) kP
Gk(x)scs("f())ﬁ 2 / VD) (D2 B3 di + ()2 v k) ()

+ Y @r(x) Qr(x) + f () di)

x

for some positive constant Cs and for all k > 0 and x € M. This shows the assertions in
the lemma. The proof of Lemma 4.1 is completed. ]

Now we will finish the proof of Theorem 1.2.

(i) It follows from Lemma 4.1 (i) that v(x) = — [, G(x, y)W(y)dus(y) is a unique
solution of equation Ar.,v = W in M which tends to zero at infinity.

(ii-a) By the assumption that fooo t(t)dt converges, we are able to apply a res-
ult by Ancona (see Theorem 3.3 in [2]) to assert that the Green functions G% (x, y) =
fooo p}’V(x, y)dt of Q/Z;W and G(x, y) are equivalent in the sense that

Cs'G(x,y) =GV (x,y) < CsG(x.y), x.yeM
for some Cg > 1, which implies that

LGy GV y) _ 2 G(R.y)
° G,y) = G%(0.y) T ° Glo.y)

X,y € M.

Since

im Glx.y) _ and lim G¥(x.y) _ U
yEM —00 G(O, y) yEM —00 GW(O, y) M(O)
by Theorem 1.1 (ii), we get

C:%u(o) <u(x) < C62u(0), x eM.

Then Lemma 4.1 (i) shows that 0(x) = [;, G(x, y) W(y)u(y)dus(y) converges for all
x € M, and 0(x) tends to zero as x € M — oo. Thus u + ¥ is harmonic and bounded
in M, so that it must be a constant, say a. In this way, we conclude that u(x) = a —

Jog G, MW u(y) dps(y) forall x € M.
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(ii-b) We assume here that Q2 . 18 critical, that is, Q2 w does not admit the Green
function. Then following a result due to Pinchiover (Theorem 4.2 in [21]), we are able to
take a function V of class C%%(M) with compact support in such a way that Q2;V w18
subcritical and

u(x) = /M GV (e ) V() dpg(y). x € M.

Since |V 4+ W| < C;y (r) for some constant C; > 0, GV+W is equivalent to G and hence
it turns out that u(x) tends to zero as x € M — oco. This shows that # + ¥ is a harmonic
function on M tending to zero at infinity. Thus we conclude that u + ¥ = 0, namely,

u(x) = — [, G, Y)WO)u(y) duy(y). "

Now we end this section with some results, remarks, and examples related to Theor-
ems 1.1, 1.2 and 1.3. We begin with the following.

Proposition 4.2 ([13]). Let (M, g, j1r) be a connected, noncompact, complete weighted
Riemannian manifold. Condition (VD) for remote balls relative to a fixed point is satisfied,
and (VC) holds true if and only if (VD) for all balls is satisfied.

Proof. See Lemma 4.4 and Proposition 4.7 in [13]. ]

Proposition 4.3. Let (M, gu, j15) be a connected, noncompact and complete weighted
Riemannian manifold.

(i) Suppose that (RCA) holds true and (VD) for all balls is satisfied. Then §@ %) (M) <
400 for some o € (0, 1).

(ii) Suppose that §°) (M) < 2. Then §°) (M) = 8§ (M) forall o € (%8("0) (M), 1).

(iii) Let o be a point of M. Suppose that there are constants B, y, Cg, C, such that
0<B=<y Cg=<1=<Cy and

_ (B0 _ 1y
4.5 Cal - == < (C,|(-

+3) ﬂ(s) = ur(Bo.s) = (s)

forall 1 <s <t, and suppose that §©) (M) < 1. Then (M, &M, [uy) satisfies (RCA)
and (VC).

Proof. (i) Let C4 be a constant greater than 1 in condition (RCA). We take constants o,
§€(0,1)insuchaway that0 <§ <47'C;',and 1 —o < C;' — 28. By (RCA), for any
two points on S(o, ), there is a path connecting these points in B(o, C4t) \ B(o, CA_lt).
Set A*(t) to be the union of B(o, Cat) \ B(0,t) and the §¢-neighborhoods of all such
paths. This construction ensures that A*(¢) is a connected set which contains S(o, t) and
is included in M \ B(o, (1 — 0)t) (see [13], Subsection 5.1). We consider a maximal set
{x;li = 1,2,..., N} of points in A*(¢) at distance at least §¢ from each other (i.e., an
8t-netin A*(z)). Then {B(x;,6t/2)|i = 1,..., N} is a set of pairwise disjoint balls and
the union of {B(x;,5t)|i = 1,..., N} covers A*(¢). Associated with the covering is a
graph consisting of the set of vertices V' and the set of edges E by setting

={x|i=12,...,N} and E ={(x;,x;) € V xV |disp(x;,xj) < 26t}
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(see [13], Subsection 3.1). Since A*(¢) is connected, it follows that the associated graph
(V, E) is connected. Moreover, in view of (VD) and (VC), we see that the cardinality N
of V is bounded from above by a constant N * which is independent of ¢. In fact, since

(Ci' =8t <r(x;) < (Cq+9d)t,
we have
pr (B(o, (Cyt = 8)1)) < juy(B(o.r(x:))) < Cy piy (B(xi. r(xi)/2)

< Cy iy (BGsi. (Ca + 8)1/2) = € Cp (AE2Y (B 81/,

and hence

Cq+68\7

N
> s (B(xi.81/2))

i=1

" (U B(x,,8t/2))

(~5)
% (~5)
(CA+5)Y
(=57)

N s (B(o.(C;' = 8)1)) < Cy Cp

o
+
(=)

I |
b

s (B(o. (Ca + 8)1))

Cq+56 Cq+36
) (o) wre. €t = o0,

<CyCp

)

In this way, we obtain

CA+8)7<CA+8)V

=:N*.
§ c;'-3

N <Cy c};(
Then for any pair of points of A*(¢), there is a path in M \ B(o, (1 — ¢)t) joining these
points whose length is at most 26(N* + 2)¢. This shows that the diameter of A*(r) in
M \ B(o, (1 —o)t) is bounded from above by 26(N* 4 2)¢. In this way, we can deduce
that

1
8@ (M) = lim sup — diam@°(S(0,1)) < 28(N* + 2).

t—00

(ii) We take positive numbers &, 7, so that §©°) (M) + ¢ < 20 and ¢ ~'diam(S (0, 1)) <
8@ (M) + & for all t > 1,. For x,y € S(0,1) (t > t,), let Yxy: [0, L] = M (L :=
disps (x, y)) be a distance minimizing curve joining x = yx,(0) to y = yxy(L). Since
t~disp(x, y) < 8 (M) + ¢ < 20, we see that Yxy isincluded in M \ B(o, (1 —0)1).
This implies that 7~ 1dis(®? (x, y) = 1~'L < §©°) (M) + ¢, and hence

1 .
- diam@?(S(0,1)) < 8 (M) + ¢

so that we have
8@ (M) < 5V (M) + .
Letting ¢ — 0, we obtain

8@ (M) < 8 (M) < 20.
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Since §(°) (M) < §(0300) (M), we thus have
8@ (M) = (M) < 20

foro € (%S(w)(M), 1).

(iii) We first fix a constant b > 2 large enough so that Cg b# > 2. Take a number
o € (8(°) (M), 1). Then there exists #; > 0 such that z~'diam(S (0, 7)) < o forall r > .
Lett € [bty, +o0) anda € [b~!, 1]. For any x € S(0,t) and y € S(o,at), we take a point
z € S(0,at) in such a way that disps (x, z) = (1 — a)t. Then we get

disps (x, y) < disp(x,2) +disp(z,y) < (1 —a)t +oat < (1— (1 —0)b Y1
This shows that S(0,at) C B(x,(1 — (1 —o)b~1)t), and hence

B(o,t)\ B(o,b™'t) = U S(o,at) C B(x,(1 —(1—0)b~YH1).

b~ l<a<l

Therefore using (4.5), we have

pwr(B(x, (1= —0)b™")t) > ur(B(o,1)) — iy (Blo,b™'1))
> (CpbP = 1) juy (Bo.b™" 1)) = iy (B(o.b™" 1)
for all ¢ > bit,. Since 1/2 > 1 — (1 —0)b™", we have us(B(x,1/2)) > ur(B(x, (1 —
(1 —0)b~1)1), and by (4.5), we get wr(B(o, b~1t)) > Cy_1 bY g (B(o,t)). These prove
that
1r(B(x,1/2)) = C;' bY g (Bo,1)).
In this way, we see that (VC) holds. ]

Corollary 4.4. Let (M, gp, jur) be as above. Assume that (VD) and (P1(2)) for remote
balls to a fixed point hold true. Then (M, gum, py) satisfies (RCA), (VD) and (P1(2))
if (4.5) is satisfied and §) (M) < 1,

Proof. By Proposition 4.3 (iii), we see that (RCA) and (VC) hold, so that the corollary
follows from Theorem 5.2 in [13]. [

Fix p € (1, +00). A function u € L7 (M) N CL* (M) satistying As.,u = 0in M
is said to be p-harmonic. Now as an application of the annulus Harnack inequality in

Theorem 1.1(i) to p-harmonic functions, we prove the following.

Theorem 4.5. Let (M, gu, j1y) be a connected, noncompact, complete weighted Reman-
nian manifold. Assume that (VD) and (PI(p)) hold for all remote balls with respect to a
reference point o € M, and 8@ (M) is finite for some o € (0, 1).

(1) A positive p-harmonic function on M is constant.

(i) There is a positive number p such that if a p-harmonic function h on M satisfies
Ih(x)] < C(1 + r(x))P! e +8 (1)

for some positive constants C and all x € M, then h is constant. In particular, if
8N (M) = 0, then any p-harmonic function h on M with polynomial growth is
constant.
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Proof. (i) This is a consequence from the annulus Harnack inequality and the maximum
principle for p-harmonic functions.

(ii) For a nonconstant p-harmonic function 2 on M, let m(t) = infg,,) h and M(¢t) =
SUPg(o,r) 1» and let v(z) = M(t) — m(z). Let § be a positive number. Then & — m((1 +
§ + 38©)(M)/4)t) is p-harmonic and positive on B(o, (1 + § 4+ 38 (M)/4)t), and
moreover for sufficiently large ¢ > #y, we can apply the argument in the proof of The-
orem 1.1 (i) to the function 1 — m((1 + § + 38 (M)/4)t) by noting that the curve yy,
there stays in B(o, (1 4+ 8/2 + 38 (M)/4)t) \ B(o, (1 — o)1), and obtain

h(x) —m((1 48 + 38V (M) /4)t) < C (h(y) — m((1 + § + 38 (M) /4)1))

for all x,y € S(o,t) and all t > ¢(, where Cg is a constant independent of / and ¢. This
shows that

4.6) M(t) —m((1 + 8+ 38 (M)/4)t) < Cyr (m(t) —m((1 + 8 + 38V (M) /4)1)).

Since M(1 4 8§ 4 36 (M)/4)t) — h is also p-harmonic and positive on B(o, (1 + & +
38 (M) /4)t), we get

@.7) M((1+8+38°(M)/4)1) —m(t) < Cr (M((1 + 8 + 38 (M) /4)t) — M(1)).
Then it follows from (4.6) and (4.7) that

v((1+ 8+ 380 (M) /4)1) + v(t) < Cr(v((1 + 8+ 38V (M) /4)1) —v(1)),
and hence

Cyg +1

G v(t) < v((1+ 8+ 38 (M)/4)1)

Cy+1

for all > ty. Thus letting D = 1> We have

Dv(r) < v((1 + 8 + 380V (M) /4)71)

for all ¢ > ty and positive integers ¢q. This shows that

log D(logt —logtp)
<logv(r) —logv(t) + log D
log(1 + § + 38©)(M)/4) — ogv(t) —logu(to) + log

< sup log2|h| —logv(ty) + log D.
B(o,t)

Suppose that §© (M) > 0 and |h| < Cs(1 + r)?/ 1€+ MN)) Then we have

log D
log(1 + § + 35()(M)/4)

0
logt —logty) < log(l+1t)+C
(logt —log 0)_log(1+8(°°)(M)) og(1+1) + Co

for all # > to and some positive constant Co. Now taking § < §(>)(M)/4, we see that i
must be constant if p < log D.
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Suppose that §©) (M) = 0 and |h| < Cio(1 + r)¥ for some positive constants Cyg
and v. Then we have

log D
—————(logt —logty) <vlog(l+1)+C
10g(1+8)(0g oglo) < vlog(l+1)+ Ciy
for all # > f¢ and some positive constant Cy;. Taking § so small that log D > vlog(1 + §),
we conclude that 2 must be constant. ]

Remark 4.6. (i) In the case where p = 2, Theorem 4.5 generalizes some result in [15],
and moreover the last statement in Theorem 4.5 (ii) is extended by Carron [6]. But it is not
clear whether such an extension in [6] is possible for the case where p is different from 2.

(ii) In Theorem 1.2, the potential W under consideration satisfies the following condi-
tions:

sup / G )W () iy (v) < +oc:
xXeEM JM

tim swp [ G W) diy () < 1.
k=00 xeM JM\B(o,k)
as shown in Lemma 4.1. According to Theorem 4.1 in Devyver [8], these are sufficient
conditions for the heat kernel of Q/Z;W to satisfy the Li—Yau estimate, under the conditions
that (M, gar, jur) satisfies [VD] and [PI(2)], and further W is subcritical.
Nonnegative Schrodinger operators, and their heat semigroups, have been studied
intensively by many authors (see, e.g., [11, 14] and references therein).

(ii1) In Theorem 1.2, the Ricci curvature of the Riemannian manifold M possesses a
lower bound as in (1.1), and a Hardy type inequality holds on M as mentioned in the intro-
duction. Then a recent result due to Munteanu, Sung and Wang (see Theorem 1.5 in [19]),
is also applicable to deduce existence and sharp estimates for solutions to the Poisson
equation on M as in the first assertion of Theorem 1.2 with f = 0. The method in [19]
is different from ours and more effective in dealing with a wider class of Riemannian
manifolds.

Example 4.7. Let g be a Riemannian metric on R” such that g can be represented in the
polar coordinates (7, ) in R™ as follows: g = dr? + p(r)>d6?, where p(r) is a positive
smooth function on (0, +00) such that p(0) = 0 and p’(0) = 1. We assume that p(r) =
Crd forr > 1, where C is a positive constant and d is a constant less than or equal to 1.
Then in this model space M = (R™, g), §(7°) (M) < +o0 forany o € (0, 1), (M) =
8@ (M) =0ifd < 1,and §©) (M) = /2(1 — cos(min{rr, C7}) if d = 1; in particular
8@ (M) <2for C < 1and (M) < 1 for C < 1/3. The Riemannian volume element
of M is given by dvys = p(r)™ 'drdvg, where dvy is the Riemannian volume element of
the unit sphere ™' (1) of dimension m — 1. Given y € R, let f(x) = —log(1 + r2)*/2
and define a new measure by 1y = (1 4 r2)?/2dvys. Obviously (M, gar, jir) satisfies
conditions (1.1) and (1.2).
(1) The following conditions are mutually equivalent:

(@) y+@m-1)d+1>0,

(a-2) (VCO) holds,

(a-3) M satisfies (VD) and (P1(2)).
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(ii) The following are mutually equivalent (see [7], Proposition 3.4):
b-)y+m—1d+1> p,
(b-2) The growth conditions (1.3) holds and the power 8 > p,
(b-3) (M, gm, pur) is p-nonparabolic.

(iii) (See Example 9.1 in [23]) Let u(x) = 2 + sin(log /1 + r(x)?) and define W =
Afpu/fu. Clearly, 1 < u(x) <3, |W(x)| < C/(1 + r(x)?), and u is the unique (up to a
constant multiple) positive solution of the equation Q /Z;Wv = 0in M. But limy_, o u(x)
does not exist.

(iv) (See Example 9.2 in [23]) Let d = 1 and ®: S™!(1) — [~1, 1] a nonconstant
smooth function. For x € M with r(x) > 1, let u(x) = 2 + #(x/r(x)), and extend
the function u as a smooth positive function on M. Let W = Ar.ou/u. Then |W| <
C/(1 + r(x)?) and u(x) is a bounded positive function which is bounded away from
zero. Moreover, u(x) is the unique (up to a constant multiple) positive solution of the
equation QIZ;WU = 0in M. But limy_,o u#(x) does not exist.

Example 4.8. Li and Tam [18] shows that property (VC) is satisfied in the following two
classes of connected, complete, noncompact Riemannian manifolds.

(1) (M, gpr) has asymptotically nonnegative sectional curvature, that is, there exists a
point o € M and a continuous nonincreasing function k: (0, +00) — (0, +o00) satisfying
fooo sk(s)ds < oo such that the sectional curvature Sect(x) of M at a point x is greater
than or equal to —k (disys (0, x)).

(i) M has nonnegative Ricci curvature outside a compact set and the first Betti number
is finite.

We notice that M has asymptotically nonnegative sectional curvature if, for some
C > 0and ¢ > 0, Sect(x) > —Cdisps (0, x)27%; on the other hand, we have Sect(x) >
—Cdisp (0, x)~2 for some C >0 if M has asymptotically nonnegative sectional curvature.

5. Proof of Theorem 1.3

We first demonstrate that estimate (1.5) in Theorem 1.3 is optimal.

Example 5.1. Let (L, g7,e "dvy) be a connected, complete weighted Riemannian man-
ifold of dimension m — 1, and let M = R x L with a warped product metric

gy =di* +e2V*ig,

where « is a nonnegative constant. Suppose that for some n > m, Ricg_1 > 0on L. Define
a weight function on M by f(t,x) = (n —m)+/k t + n(x). Then it can be directly verified
that Ric}’n > —(n— 1D gp. We let ii(t, x) = e for a positive constant a, and we put
A = (p—1)a? + (n — 1) /kaP~'. Then i satisfies

Arpli = AGP7" and |Vlegil| =a = Z(p,n,k,A)
on M. Now take a number b > (n — 1)/(p — 1) in such a way that (p — 1)b? — (n — 1)
VikbP~! = A, and let 2i(z, x) = e~?*. Then 1 satisfies

Agpti = AP~ and |Vlogi| =b =Y(p,n,k,A) onM.
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In fact, we have a rigidity result as follows:

Theorem 5.2. Let (M, gy, j1y) be a connected, noncompact complete weighted Rieman-
nian manifold of dimension m such that Ric} > —(n — 1)k gar for some constants k > 0
and n > m. Let u be a positive solution to the equation —Ay. ,u + A|u|1’_2u =0inM,
where A is a positive constant. Suppose that there is a point y € M such that |V logu(y)|
= supy, |Viogu| = Y(p,n,k, A) or |Vlogu(y)| = supy, |Vilogu| = Z(p,n,«, A).
Then M is isometric to a warped product R X,z L as in Example 5.1; in the case
where |V1ogu(y)| = supy, |Vlogu| =Y(p,n,x, A), u(t,x) = e Ymw Mt (1 ) =
(n —m)Jx t + n(x) for some n € C®(L) satisfying Ric;;_l > 0on L, and in the case
where |V1ogu(y)| = supy, |Vlogu| = Z(p,n,k, A), u(t,x) = eZm Mt f(1 x) =
—(n —m)J/xt + n(x) for some n € C*®(L) satisfying Ricg_1 >0on L.

Theorem 5.2 will be verified at the end of the present section. We remark that in the
case where p = 2 and f = 0, Theorem 5.2 is proved by Borbély [4] in a different way
from ours.

Now we need some preliminary results to prove the upper estimate in (1.5) of The-
orem 1.3.

Consider a positive solution  to the equation —A, su + A [u|?~?u = 0 in the metric
ball B(o, R) of radius R around a fixed point 0 of M. In what follows, we write simply
B(R) and V(R) respectively for B(o, R) and pr(B(o, R)). We set

v=—(p—1logu, h=|Vv*> and K = {x € B(R)|h(x) = 0).

We note that u is smooth on B(R) \ K. We consider the following linear operator £ on
B(R)\ K:

Lry = el div (e hP2TTA(VY)) — p kP2 (Vu, V),

where
Vv ® Vv

Then we have
(5.1) £rh = 2hP/2! (|de|2 + Ricy (Vv, Vv) + Ddf (Vo, Vv))
+ (& -1)nre2 v
(see Lemma 2.1 in [9], Lemma 2.1 in [17]). We also observe that v satisfies
Agipv = [Vol? = A(p — )P,

which is rewritten as follows:

(52)  Av— (VL V) + (g - 1) K=Y VR, Vo) —h + A(p — )P~1p1=P/2 = o,

Let {eq,...,en} be alocal orthonormal frame of TM with e; = Vv/|Vv| in an open
set Q of B(R) \ K, and let {e], ..., e,,} be the dual frame. We write

m
Ddv = E vije; ®e;.
ij=1
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Then the following identities hold:

(5.3) v = = h~ YV, Vi),

Bl— N —

m
54 Y v =7 VAP,
i=1

(55) D vii=h=Ap-D""RTP2 —(p—Dvi + (VL V) (by (5.2).
i=2

Then using the inequality

a? b? n—m
b 2 > - —, 8 = s
@+ =153 m— 1
we can derive from (5.5) that
1 “ 2 1 —171-p/2 2
(5.6) ﬁ(ZU”) = nj(h—A(P—l)p h =PI —(p = Do)
i=2
1
- (VS V)2,
n—m

where the equality holds if and only if
(5.7 (n=m)(h = A(p = DP" 1P — (p = Dvi) = =(n = (V£ Vo).

‘We note that

(5.8) (h—A(p—1P'h'"P/2 — (p = )vyy)?
> (h—A(p— 1P RPI22 2 (p— 1) (h— A(p — )P R P12y vy,

where the equality holds if and only if
(59) V11 = 0.

Furthermore, we observe that

(5.10) Yoz — (i)
ij=2

i=2
where the equality holds at a point x €  if and only if for some 7(x) € R,

m

(5.11) Yo vi)ef ®ef =1(x) ) ef ®ef.

i,j=2 i=2
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Then we obtain

|de|2>Zv1,+ Z V]
i,j=2

m

U102 1 )
Z v +m<2v”) (by (5.4), (5.10)

=3 .
=2

1 1
VAP 4 —— (= A(p = )P AP — (p = Doi)?
-

\Y

\Y

—(V/. Vv)?  (by (5.6))

n J—
z—h 1|Vh|2+—(h N (V ,Vh)
_ —l
(5.12) L AP =D =2 vy, vy — Vv, vhy* (by (5.8), (5.3)).
n—1 n—m

By (5.12) and the assumption that Ric} > —(m—1)k g, we get

£rh = 2hP271(|Dd v|? 4 Ricpr (Vv, Vv)) +2-= 2 ol 2|Vh|?
=21?/>7(|Dd v]* + Ric} (V. V) + —— hp/z YV, V f)?
+—2 2 /22 g2

> 2l’lp/2 1( 1|Vh|2 —+ _(h A(p _ 1)p 1|VU|2 p)2 (Vv Vh)

Alp =17
—1

= WP (= A(p = DT RITP)? — (0 = 1))
2A(p—1?
—

2 1
_2p=b 1 ) 42121057 iy + %hl’/H VA + 1
p— ~

_|_

WY Vo P(Vv, Vi) — (n — l)K|Vv|2) + ThP/H |Vh|?

h~Y(Vv, Vh).

Thus we have the following.

Lemma 5.3. One has
;f,fh > hp/2 1((h Alp — l)p—l hl—P/2)2 —((n— l)ﬁhl/z)z)
2 2A(p — 1)?
_ M/’lp/z_l(VU,Vh) + Ehp/2—2|Vh|2 + (P )
n—1 2 n—1

in B(R) \ K, where the equality holds if and only if there hold (5.7), (5.9), (5.11) and

h=Y(Vv, Vh)

(5.13) Rict(Vv, Vv) = —(n — 1)« [Vu|?.

Lemma 5.4. Let u be a positive solution of the equation —Ayr ,u + Alu |P2u=0in M.
Then |V logu| is bounded.
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Proof. Since
(h—A(p— )P RP2)2 — (= 1) i h'/?)?
>h2—2A(p — )P~ h>7P/2 _(n — 1)%kh,

it follows from Lemma 5.3 that

Lrh > —2(n— )kh?/? 4 2 ez AP = e hy L= a2 |Vh|?
- n—1 n—1 2
2(p—1 2A(p — 1P
_2p-D hPI2=1 (VR Vo) + 22(p— 1P h=Y(Vh, Vo)
n—1 n—1
in B(R) \ K.

Then for a nonnegative function ¥ with compact support in B(R) \ K, we have

[ (hP12"YNh 4 (p —2)h?/*72(Vo, Vi) Vv, V) djus
B(R)

n—1

20p—1
(5.14) <2(n— 1);</ WPy duy + 2p=b hPI2" Y b, Voyy duy
B(R) n—1 Jpw
4A(p — )P
[ w v + 2= [y
B(R) n—1 B(R)

—i—p/ hPI2" Y b, Voyy duy + [ hPI2 Ny dyy
B(R) B(R)

2A(p — 1)?
n—1

(see (2.4) in [9)).
For constants € > 0 and b > 2, we choose

v =htn?,

where h, = (h —&)*, n € C§°(B(R)) is nonnegative and less than or equal to 1, and b is
to be determined later. Then a direct calculation shows that

Vy = bhi’*1 n?Vh + ZhEnVn.

Insert this identity into (5.14), we obtain

(5.15) b / (h?/ RE VAP + (p = 2)hP 22 RV, VA)?) o dpsy
B(R)

+2/ hPI2 Ry (Vh, Vi) djuy +p/
B(R) B(R

+2(p—2) /B(R) h?/22 pby(Vh, Vo) (Vo, Vi) dus

hPI2 R 2 (Vh, Vu)duy
)

2 / hp/2+1h18;n2 dﬂf
n—1 B(R)
2(p —1
52(n—1)/</ hp/zhfnzd,uf +L) hp/2_1<Vh,VU)hfi72d,bLf
B(R) n—1 Jpw
2A(p—1)? 4A(p — )P

(Vh, Vo)h " hon? dus + —/ hhbn? dpy.
n—1 B(R) n—1 B(R)
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Since we have
RPI2ZZL D=1 VB2 4 (p — 2) hP/272 hE=Y (Yo, V) > ag kP27 2 V2,
whereag = 1if p>2andag = (p — 1) if p € (1,2), by replacing the integrand of the first

term of the left side in (5.15) with the right side of the just above inequality and passing ¢
to 0, we obtain

a()b hp/2+b_2|Vh|27]2d/,Lf
B(R)

+2/B(R)h”/2+b‘1 (Vh,Vn)nduys

+2(p-2) hP/20=2(Vy Vh)(Vv, Vi) ndus

B(R)
/ hp/2+b+l 772 d/»‘lff
B(R)

+ p/ hP/2H0=1 vy Vih)n? dus +
B(R) n—1

(5.16) 52(n—1)/</ hPI2To 2 dp
B(R)

2(p—1
222D [ ety v an,
n—1 B(R)
2A(p — 1)P
_ L/ pb—1 (Vh,Vv)n? duy
n—1 B(R)
4A(p — 1)P1

hb+1 772 d/vL
n—1 /B(R) 4

(see (2.5) in [9], (2.5) in [34]). Using (5.16), we see that

2
(5.17) aob/ hp/2+b_2|Vh|2n2 duy + —— hp/2+b+ln2 duy
B(R) n—1 B(R)

4A(p — 1P
<2(n- 1)K/ pol2t 2 g, o AP Z DT / W duy
B(R) n—1 B(R)
+L+L+13

(see (2.6) in [34]), where we put

1)—-2
h= POV [ et g
n—1 B(R)
2A(p — P _
I, = (p ) / hb 1/2|Vh|7]2d/»4f,
n—1 B(R)

=201+ 1p —2|>[ B2V [Vl dpsy.
B(R)
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Now applying Young’s inequality to Iy, I, and I3 respectively, we obtain

|| = 2/ Naob , prarb-2)2 \Vh|n - PUAD =2, patpiy2 ndus
B(R) 2 «/aob(n — 1)
aOb/ 24b-2 2 2 (p(n+1)—2)2 b4l 2
<222 w2 PP, 4 R [ g2 gy
=% IVh|"n™duys a0b =12 Jpy n°dps
| = 2/ Vaoh , pr2tb-2)2 Vh|n- 2|Al(p —D)? pO=PI2AD2 gy
B(R) 2 «/aob(n - 1)
aph _ 4AN%(p —1)?P _
< 207 hp/2+b 2 Vh 2 2d + hb p/2+1 2d ,
=7 o IVh|"n” duy b =17 Juce n-dps
|I3| — 2/ /\/aOb h(p/2+b_2)/2 |Vh|}’} . 2(1 + |p - 2|) h(p/2+b)/2|vn| dﬂ«f
B(R) 2 agb
b 4(1 —2)2
< aL hp/2+b_2|Vh|27]2 d,l,Lf + ( + |p |) / hP/2+b|Vn|2 d,LLf
4 Jpw aopb B(R)

In what follows, b is chosen in such a way that

(p(n + 1) —=2)? - 1

5.18
( ) aob n—1

3

anda; (i = 1,2,3,...) stand for positive constants depending only on # and p.
Now it follows from (5.17) and (5.18) that

1
(5.19) b/ hp/2+b—2|vh|2n2 dus + —— pP/2+b+1 n”? djis
B(R) n—1 B(R)

sa [ W a [ Wy
B(R) b B(R)

asA?
3b / Rb=PI2H1 2 gy +a4/ ARPHU 2 .
B(R) B(R)

Using
2
IV (hPI+HD12)12 < @ RPI2Hb=2 |G 2 2 4 2PI2HD | 2

we have by (5.19),

G2 [Py aih [ h R

B(R) B(R)
fasb’f/ hp/2+b772dl/«f +¢16/ hp/2+b|Vr]|2d;Lf
B(R) B(R)

+a7A2/ hb_p/2+17’]2 d/»Lf +agbA/ hb+1 T]2 d/’Lf
B(R) B(R)
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We recall here the following Sobolev embedding theorem of Saloff-Coste [29, 30]:
( f BP0 dpu )" < LCONVER Y ()2l / (R + ¢?) dpu
B(R) B(R)

for any ¢ € Cg°(B(R)), where C(n) is some positive constant depending only on #,
and V' (R) stands for s (B(R)).
Now letting ¢ = h?/4+b/2y we have

/24bn 2n (n—2)/n
(5.21) (/ B i duf)
B(R)
< eC(n)(l+ﬁR) V(R)—Z/n (RZ/ |V(hp/4+b/2n)|2 de+/ hp/2+b7]2 d“f)
B(R) B(R)

(see (2.9) in [9]). Let by = a9 + /K R, where we assume that by satisfies (5.18). We put

Iy = a4ec(")b°bR2 V(R)—2/n/ hp/2+b+l 7,]2 dﬂfs
B(R)

Is = aske€™bop R? V(R)_z/"/ dy,

hp/2+b n2
B(R)

16 — a6eC(")b° R2 V(R)*Z/n/ hP/2+b |VT}|2 de7
B(R)
I7 = as A2eC(n)bo R2 V(R)—Z/n[ hb—P/2+1 772 d,bLf,

B(R)

Iy = aSAeC(n)bobRZ V(R)—Z/n/ hb-‘rl 772 dﬂfv
B(R)

Iy = (CObo V(R)—Z/n/ P12 s
B(R)

Then (5.20) and (5.21) combined give

(p/2+b)n 2 (n—2)/n
(5.22) (/ B s duf) 1,
B(R)
< 2C ™ bo V(R)_Z/"Rz(/ |V(hp/4+b/2n)|2 djiy +a4b/ hp/2+b+1n2 d/,Lf)
B(R) B(R)

+ eC(n)bo V(R)—Z/n/ hp/2+b 7’]2 de
B(R)

< ¢Cmbo V(R)_z/" Rz(asbK/

hp/2+b7')2dﬂf+a6/ hp/2+b|Vn|2duf
B(R) B(R)

~|—a7A2/ hb—p/2+1n2 ds +a3bA/ hb+1n2 dﬂf)
B(R) B(R)

+ eC(n)bo V(R)_2/"/ hp/2+b nz dl/«f
B(R)

515+16+I7+18+19
(see (2.10) in [9]).
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Now we let D = {x € B(R) | h(x) > 10kas/a4}. Since
1
aSKeC(n)bObRZ V(R)—Z/n L hp/2+b 772 d/fo S E 14’

we obtain

1
Is < — I + askeC Wb p R2y(R)=2/" / WP/ 02 dy g
10 B(R)\D

1
< — Iy +aske€Mbop g2

10ask\p/2+b \—2/n
10 (—) V(R)

as

(523) < % 14 —+ alop/2+b eC(n)bo KP/2+b+1 sz V(R)I_Z/n_

Similarly, we get
1 10a; A2\ ®—p/2+1)/p
(5.24) I; < m I, + a7Az(“_7) (CObo g2y (Ry1=2/n
ag

1
< E I +a1p(§2+beC(n)bo A2b/17+2/17+1 R2 V(R)I*Z/”,

1 10as A\2(G+1)/p
(5.25) Is < — Iy +as A( as ) (CObop g2 y(R)L=2/n
10 as

1
< E 14 + a{?({Z-i-b eCbo A2b/p+2/p+1p p2 V(R)I—Z/n,
1 ( 10 )p/2+b

5.26 1 — 1 Ik
( ) o= 10 4+ a4bR2

1 1 \»p/2+b
p/2+b
< 1—0 Iy + ajo (W) .

So far as /¢ is concerned, we let n; € C§°(B(R)) satisfy 0 < n; < 1in B(R), n1 =1
in B(3R/4), [Vn1| < 10/R, and choose n = nf/2+b+l. Then we have

eCMbo V(R)I—Z/n

/2+b
R?|Vnl> < 10%(p/2 + b + 1)> pilesb+1,
Employing the Holder and the Young inequalities, we then obtain

R2 [B(R)hp/2+b|vn|2 duy

<10%(p/2+b+ 1)2/ hl’/2+bnp/’%ib+ldw
B(R)

IA

_p/2+b
10%(p/2 4+ b + 1)>V(R)) T (/B(R) /2t dﬂf) PI2tb+

2
< a4bR

hp/2+b+1;72 du
2a¢ /I;(R) !

Fano(p/2+ B (p/2 4+ b+ 1P VR).

2ag¢ )P/2+b
a4bR2
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so that we get

1
(5.27) Is < 51
2a¢ \P/2+b
a4bR2)

1 1 \p/2+b
<5l al[?+h ec(”)bo(m) (p)2 + b)P/>b (p)2 + b 4 1)PI2+b+1,

Thus it follows from (5.22) through (5.27) that

+ a1 €S (p/2+ b)Y (p/2 4 b+ 1PEFEL( V(R)! "

(p/2+b)n =)
5.28) ( / = dpy)
B(3R/4)

S allec(n)bo/(p/2+b)V(R)(n—z)/n(p/2+b)(Kp/2+b+le2 + A2b/p+2/p+1(1 +b)R2
1 \p/2+b 1 \p/2+b
— [ 24 pYPI2Hb (0 4 p 4 1)P/2HDhH]
) (o) b
Now we write G(R, b) for the right-hand side of (5.28). We fix r > 1 and take R > 2r.

Then
n—2 _n=2 _
(p/2+b)n 7 (p/2+b)n n
(/ PR d,uf) @B _ ([ 22 dlLf) GIEHD) G(R.b).
B(r) B(3R/4)

We let b = ag + R keep to satisfy (5.18), and observe that V(R) < aj, e® DR Then we
see that G(R, b) is bounded as R — oo. Therefore we have

) 1/(p/2+b)

n—2
(p/2-+b)n 7
suph = lim ( = d;q) (/240 < sup G(R,b) < +o0.
B(r) R=00 M JB(r) R>2

Finally, letting r — oo, we conclude that / is bounded in M. [

Lemma 5.5. Suppose there is a point y € M such that
h(y) =suph = (p = 1)?Y(p.n.,ic,1)?
M

or
h(y) =suph = (p—1)* Z(p.n,k, A).
M

Then h is constant on M.

Proof. Let (x!,...,x™) be local coordinates on a neighborhood € of y in M \ K. We
write

m
oM = Z 8ij dxi ®dxj
i,j=1



A. Kasue 2282

and let G = det(g;;). We define functions A4, By and B, on 2 x R x R™ respectively by
A(x.5.8) = e/ VGx) h(x)?P71(E + (p — 2) h(x) (Vo (x). £) V().
Bi(x.5.6) = — = /O /G ()P
+ 6?2 4 (1= D) Ve sPTVZ = (p = )PTIA)
(6P = = 1) Vs — (p = 1)P7IA),

Ba(r.s.8) = /OG0 (P2 hoy 2 (v, £)

=2 R ) (o). 6) - LoD a2 (o 6)
(n—1) 2

= ph(x)"> "N (Vh(x).£)).
Then Lemma 5.3 shows that
div(A(x,h, Vh)) + B1(x,h,Vh) 4+ By(x,h,Vh) >0
on 2. Moreover, the constant functions
ci=(p—-D?Y(p.n,k,AN)?> and c» = (p—1?>Z(p,n.k,A)?
satisfy

div(A(x,c;i, Vei)) =0,
By(x,¢;,Vei) =0,
Bz(x,ci,VC,‘) =0 (i = 1,2).

Therefore, letting w = ¢; — h in case h(y) = supy, h = (p — 1)2Y(p,n,k, A)?, orw =
¢ —hincase h(y) =supy h = (p — 1)2Z(p,n,k, A)?, we see that w satisfies w(y) =0,
w > 0in M and

(5.29) divA(x,w,Vw) + Bi(x,c; —w,V(c; —w)) + Ba(x,¢c; —w, V(c; —w))
= divA(x,h, Vh) — B1(x,h, Vh) — By(x,h, Vi) < 0.

Then we can apply the weak Harnack inequality for supersolutions due to Trudinger [33]

to get
/ wdx <C inf w
B(y.1) B(y.t)

for a sufficiently small number ¢, where C is a positive constant. This shows that w = 0
in B(y,t) and hence in B(R), since w(y) = 0 (see [26], Theorem 2.5.1). Since M is
connected, we can conclude that w = 0 everywhere in M. This proves Lemma 5.5. ]

Lemma 5.6. One has
(530) (va VU) = —(n—m)(p—l)\/EY(p,n,K, A),

1
(5.31) Ddv =(p—1)ﬁY(p,n,K,A)<gM—Zdv®dv),
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if h=(p—12%Y(p.n,k,N)? and
(532) (Vf,VU) =(n—m)(p—1)ﬁZ(p,n,K,A),

(5.33) Ddv =—(p—1)ﬁZ(p,n,K,A)(gM—%dv®dv),

ifh=(p—1%2Z(p.n,k, N>

Proof. We consider the case where & = (p — 1)?Y(p.n, k, A)?. We note first that v;; = 0
by (5.3), and hence it follows from (5.7) that

(VLVv) = —~(n—m)(p— D)k Y(p.n,k A).
Since Av = (m — 1)t in (5.11), making use of (5.5), we get
Ddv = (p—1)vkY(p.nk,A) x (gy —h™"dv ® dv).
Similarly, we see that
(VLVv) = (n—m)(p -1k Z(p.n.k, A)

and

Ddv=—(p—1)k Z(p,n,k, N)(gy —h™'dv ® dv)
ifh=(p—12%Z(p,n,«, N> n
Proof of Theorem 1.3. Let u be a positive solution of —A,. ru + Alu|?~?u = 0 in M.
So far, as the upper estimate of |V log u| is concerned, since sup,, |V logu| < +oo by
Lemma 5.3, we are able to apply the same arguments as in [32] and [9] to prove that
|Vlogu| < Y(p,n,k, ).

Suppose now that sup, |V1ogu| < (1 —¢)Z(p,n,k, A) for some ¢ € (0, 1). Then it

follows that

[logu(x) —logu(y)| = (1 —¢&) Z(p,n,k, A)disp(x, y)

for all x, y € M. On the other hand, in view of Lemma 2.21, we can take a large r, so
thatlognp a(r) > (1 —¢/2)Z(p,n,k, A) r forall r > r¢, and by Proposition 2.7, we find
points x, of S(o, r) such that

logu(x,;) > logu(o) + logwp n,a(r) >logu(o) + (1 —&/2) Z(p.n,k, A)r
for all » > r,. But this is absurd, because we have
logu(x,) <logu(o) + (1 —¢e)Z(p,n,k, N)r.

Thus we have proved that Z(p,n, k, A) < sup,, |V logu|. This completes the proof of the
first assertion of Theorem 1.3.
Now we prove the second one. We first observe from (1.6) that

logu(x) > logu(y) — Y(p,n,«, A)dispy (x, y)

forall x,y € M.
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Now we take positive numbers ¢ and r, in such a way that

1 1,7 A

8( n )5—( (p.n.k,A)

Y(p,n,k,N) 2\Y(p,n,k,N\)

log p,4(r)
r

—8ao(M) ).

> Z(p,n,k,\) —¢,
diam(S(o,r)) <S5 (M) + ¢
r i o0

for all r > r,. For such r, we let x,- be a point of S(o, r) such that u(x,) = maxg(, r) u.
Then for any x € S(o, r), we have

logu(x) > logu(x,) — Y(p,n,«, N)dispys (x, xr)
> logu(o) + logn, a(r) —Y(p,n,k, A)diam(S(o,r))

log pa(r)
r

Y(p.n, K, A) M)

= logu(o) + r(

Z(p,n,k,N) & )

> Y A oo M) = )
> logu(o) +rY(p.n,«, )(y(p,n,,(,/\) oo (M) Y(p.n,k,A) )

> logu(o) + % (Z(p,n,k, N) —bcc(M)Y(p,n,k,N))r.

Applying the Harnack inequality to u in B(o, 2r¢), we have
logu(x) > logu(o) — Cy

for some positive constant C; and all x € B(o, ). These show that
1
logu(x) > logu(o) + 3 (Z(p,n,k, A\) — 6cc(M) Y (p,n,k,N))dispy (0, x) — Cy

for some positive constant C, and all x € M . This completes the proof of Theorem 1.3. m

Proof of Corollary 1.4. Let G2 (x, y) and G% (x, y) be respectively the Green functions
of Q5 4 and Q) ;. Then by the assumptions, we can apply Theorem 2.6 of Ancona [2]
to show that there is a constant C3z > 1 such that

G316 M (x,y) <G (x,y) < C3G2(x,y), x,yeM.

Let
GA(x.y) G"(x,y)

G2 (o, y) GW(o0.y)

Let £ be a point of the Martin boundary d.M of the operator Q /2,W and {yx } a sequence of
points of M which converges to £. By taking a subsequence if necessary, denoted by the
same letters, {yx}, we may assume that K (x, yx) converges, as k — 00, to a function
ug(x) on M which is a positive solution of Q’2 A () = 0. Then we have

KA(x,y) = and KW(x,y) =

C32ug(x) < K (x.8) < C*ug(x)
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for all x € M. Since we have, by (1.6),

ug(x) < Mé(y)eY(Z,n,K,A)disM(x,y)

forall y € M, we get
KW(x, £) (< “S(J’) C32 eY(Z,ﬂ,K,A)diSM(x,y)) < KW(y, £) C34 Y @omsic,A) disy (x,7)

for £ € dM. Integrating both sides with respect to a Radon measure v on the Martin
boundary d.M with [, ,, dv(§) = 1, we obtain

| KV od© = [ KV 0.0 due ¢t T Cren s,
oM oM

Since a positive solution u of Q’, ;, (1) = 0 is represented by

u(x) = u(o) /M K% (x,6)dv(), xeM

for some Radon measure v as above on the Martin boundary, we have
u(x) < u(y) C34 Y @i, A) dispr (x,7)

forall x,y € M.
Now we assume (1.6) (p = 2). Then it follows from the second assertion of The-
orem 1.3 that
eCr(x)—C’ < Mi:(.x) < C32 KW()C,%-)

for all x € M, and hence we get
(CrO-C < / K (x,8) dv(§) = C3u(x)
OM

for all x € M. This completes the proof of Corollary 1.4. ]

Proof of Theorem 5.2. Suppose that there exists a point y of M such that 2(y) = sup,, s
= (p—1)2Y(p.n,k, A)?. Then it follows from Lemma 5.4 that / is constant and equal
to(p—1)2Y(p,n,k,A)?. Let
B = v = v .
Vol (p=DY(p.n.k,A)

Then we can deduce from (5.4) and (5.30) that B is a smooth function on M satisfying
|[VB| = 1and

(5.34) DdB = k(g —dB ® dB).

Put L = B~1(0) and let {Q2,} be the complete flow generated by the gradient VB of B.
We observe that Q, induces a diffeomorphism between L and B~!(¢) by sending z € L
to Q;(z) € B~ (¢). Then it follows from (5.34) that

(5.35) 1d2 (v)| = V¥ |v]
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forallt > 0 and v € T, L. We define a diffeomorphism ®: R x L — M by
O, z) = Q(2).

Then (5.35) implies that

O*gy = dr® + eZﬁt gL-
Therefore, (M, gpr) is the warped product of R and L with the warping function eVkr,
This shows, in particular, that Ricys (VB, VB) = —(m — 1)k. Since Ric}’p(VB, VB) =
—(n — 1)k by (5.13) and (V £, VB)? = (n — m)?k by (5.30), we get Ddf(VB,VB) =0,
which implies that % f(R2¢(z)) =0forallt € Rand z € L. Thus we have

f(t.2) =(VLVB) t +n(z) = —=(n —m)Vk t +1(2),

where we set 7(z) = £(0,z). The (n — 1)-dimensional Bakry—Emery Ricci tensor Ricz_1
of the weighted Riemannian manifold (L, g7, e "dvy,) with weight e™" satisfies

Ric) ™! = Rich, + 2n —3m + 1) e®V¥ g > —3(n —m)ic e>V¥ g

on T(,z)({t} x L), where T, L is identified with T, -y({t} x L). Thus letting t — —o0,
we get Ric} ™' > 0on L.
When there exists a point 0 of M such that (o) = supy, h = (p — 1)?> Z(p,n,k, A)?,

we let
v v

Vol (p=1DZ(p.n.k, A)

Then we use (5.32) and (5.33), and repeat the same argument as above to get the conclu-
sion. This completes the proof of Theorem 5.2. ]

B =
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