

Positive solutions of the p-Laplacian with potential terms on weighted Riemannian manifolds with linear diameter growth

Atsushi Kasue

Abstract. In this paper, we consider the p -Laplacian with potential terms on a connected, noncompact, complete weighted Riemannian manifold whose Ricci curvature has quadratic decay, or a lower bound. We investigate the structure and the behavior of positive solutions under the assumption that the metric spheres of the Riemannian manifold have linear diameter growth.

1. Introduction

Consider a weighted Riemannian manifold $(M, g_M, e^{-f} dv_M)$ of dimension m, where (M, g_M) is a Riemannian manifold of dimension m, f is a smooth function on M, and dv_M is the volume element induced by the metric g_M . In what follows, the measure $e^{-f}dv_M$ is denoted by μ_f .

For a vector field $X \in L^1_{loc}(\Omega, TM)$ on a domain Ω , the divergence div $f X$ of X relative to the measure μ_f is defined weakly by

$$
\int \psi \operatorname{div}^{f} X d\mu_{f} = -\int g_{M}(X, \nabla \psi) d\mu_{f}
$$

for all $\psi \in C_0^{\infty}(\Omega)$. We simply write divX if the weight function f is constant. Then $div^{f} X = div X - g_M (X, \nabla f).$

Fix $p \in (1, +\infty)$. The *p*-Laplacian $\Delta_{f;p}$ acts on $L^{1,p}_{loc}(M)$ by

$$
\Delta_{f;p} u = \text{div}^f (|\nabla u|^{p-2} \nabla u)
$$

in the weak sense, that is,

$$
\int \psi \, \Delta_{f;p} u \, d\mu_f = - \int g_M(|\nabla u|^{p-2} \nabla u, \nabla \psi) \, d\mu_f
$$

for all $\psi \in C_0^{\infty}(M)$.

2020 Mathematics Subject Classification: Primary 53C21; Secondary 31C12, 35B09. *Keywords*: p-Laplacian, quadratic curvature decay, diameter growth, Harnack inequality.

Fix a domain $\Omega \subset M$ and a real-valued function $W \in L^{\infty}_{loc}(\Omega)$. The p-Laplace equation in Ω with potential W is the equation of the form

$$
Q'_{p;W}(u) = -\Delta_{f;p}u + W|u|^{p-2}u = 0
$$
 in Ω .

This is the Euler–Lagrange equation associated with the functional

$$
Q_{p;W}(u) = \frac{1}{p} \int_{\Omega} (|\nabla u|^p + W|u|^p) d\mu_f.
$$

A generalized Allegretto–Piepenbrink theorem says that $Q_{p;W}(u) \ge 0$ for all $u \in L^{1,p}_{loc}(\Omega)$ if and only if $Q'_{p,W}(v) = 0$ admits a positive solution $v \in L^{1,p}_{loc}(\Omega) \cap C^{1,\alpha}_{loc}(\Omega)$ (see Pinchover and Psaradakis [\[24\]](#page-54-0) and references therein). In this paper, we are interested in the structure and the behavior of positive solutions in M . There have been extensive studies on this subject over the recent decades; see for example [\[1,](#page-53-0) [10,](#page-54-1) [11,](#page-54-2) [14,](#page-54-3) [20,](#page-54-4) [23](#page-54-5)[–26\]](#page-55-0) and references therein.

We let $B(x, t)$ (respectively, $S(x, t)$) be the open metric ball around a point x with radius t (respectively, the metric sphere centered at x of radius t). Fix $o \in M$ as a reference point and let r be the distance to o. Given $\sigma \in (0, 1)$ and $t \in (0, +\infty)$, we denote by dis^{$(\sigma;t)$} the (extended) distance induced on $M \setminus B(o,(1 - \sigma)t)$, and by diam^{$(\sigma;t)$} $(S(o,t))$ the diameter of $S(o, t)$ in $M \setminus B(o, (1 - \sigma)t)$ relative to the (extended) distance. We define

$$
\delta^{(\sigma;\infty)}(M) = \limsup_{t \to \infty} \frac{1}{t} \operatorname{diam}^{(\sigma;t)}(S(o,t)) \in [0, +\infty].
$$

Obviously, $\delta^{(\sigma;\infty)}(M) \leq \delta^{(\sigma';\infty)}(M)$ if $0 < \sigma' \leq \sigma < 1$. We note that M has only one end, that is, for sufficiently large compact sets $K \subset M$, the difference $M \setminus K$ has exactly one unbounded connected component if $\delta^{(\sigma;\infty)}(M) < +\infty$. Correspondingly to the case where $\sigma = 1$ in the definition of $\delta^{(\sigma, \infty)}(M)$, we let

$$
\delta^{(\infty)}(M) = \limsup_{t \to \infty} \frac{1}{t} \operatorname{diam}(S(o, t)) \in [0, 2],
$$

where the diameter of the sphere $S(o, t)$ is measured in M. It is obvious that $\delta^{(\infty)}(M) \leq$ $\delta^{(\sigma;\infty)}(M)$, and we note that if $\delta^{(\infty)}(M) < 2$, then $\delta^{(\sigma;\infty)}(M) = \delta^{(\infty)}(M)$ for $\frac{1}{2}\delta^{(\infty)}(M) < \frac{1}{2}$ σ < 1 (see Proposition [4.3](#page-34-0) (ii)).

In order to state the main results of this paper, we need some terminology; see Li and Tam [\[18\]](#page-54-6), Grigor'yan and Saloff-Coste [\[13\]](#page-54-7). Fix a constant $C_A > 1$. We say that a metric space (M, dis_M) has *relatively connected annuli* with respect to o , or satisfies condition (RCA), if for any $t \geq C_A^2$ and all $x, y \in S(o, t)$, there exists a continuous path $\gamma: [0, L] \to M$ with $\gamma(0) = x$, $\gamma(L) = y$ whose image is contained in $B(o, C_A t)$ $B(o, C_A^{-1}t)$ (see [\[13\]](#page-54-7), Definition 5.1). We observe that condition (RCA) holds for some $C_A > 1$ if $\delta^{(\sigma; \infty)}(M) < +\infty$ for some $\sigma \in (0, 1)$. We say that a weighted manifold (M, g_M, μ_f) satisfies the *volume comparison condition* (VC) if there exists a positive constant C_V such that, for all $t > 0$ and all $x \in S(o, t)$, we have that $\mu_f(B(o, t)) \le$ $C_V \mu_f (B(x, t/2))$ (see [\[18\]](#page-54-6) and [\[13\]](#page-54-7), Definition 4.3).

Theorem 1.1. Let (M, g_M, μ_f) be a connected, noncompact, complete weighted Rieman*nian manifold of dimension m. Suppose that the Ricci curvature* Ric_M of M satisfies

$$
\inf_{M} (1+r)^2 \operatorname{Ric}_M > -\infty,
$$

the weight function f *satisfies*

(1.2)
$$
\sup_M (1+r)|\nabla f| < +\infty,
$$

and further,

$$
\delta^{(\sigma; \infty)}(M) < +\infty
$$

for some $\sigma \in (0, 1)$ *. Given* $p \in (1, \infty)$ *, let* W *be a bounded function on* M *such that*

$$
\sup_M (1+r)^p |W| < +\infty,
$$

and assume that $Q_{p,W} \geq 0$. Then the following assertions hold.

(i) (*Annulus Harnack inequality*) *There is a constant* $C_H > 0$ *such that for any* $t > 0$ and for any positive solution $u \in L^{1,p}_{loc}(M) \cap C^{1,\alpha}_{loc}(M)$ to the equation $Q'_{p;W}(u) = 0$ *in* M*,*

$$
\sup_{S(o,t)} u \leq C_H \inf_{S(o,t)} u.
$$

- (ii) In the case where $p = 2$, a positive solution to $Q'_{2;W}(u) = 0$ in M is unique up to *multiple constants.*
- (iii) Let $u \in L^{1,p}_{loc}(M) \cap C^{1,\alpha}_{loc}(M)$ be a positive solution to $Q'_{p;W}(u) = 0$ in M. If $W \ge 0$ *and u is unbounded, then* $\lim_{x \in M \to \infty} u(x) = +\infty$; *if* $W \leq 0$ *and* $\lim_{x \to \infty} u = 0$ *, then* $\lim_{x \in M \to \infty} u(x) = 0.$
- (iv) Let $\phi(r)$ be a nonnegative C¹ function on $[0, \infty)$ such that $\phi'(r) \leq 0$, $\sup_{t\geq 0} \phi(t) t^p$ $< +\infty$ and

$$
\int_1^\infty (t\phi(t))^{1/(p-1)}\,dt=\infty.
$$

Let $u \in L^{1,p}_{loc}(M) \cap C^{1,\alpha}_{loc}(M)$ be a positive solution to the equation $Q'_{p;W}(u) = 0$ *in* M*. If*

$$
\phi(r(x)) \le W(x) \le \frac{\Lambda}{(1+r(x))^p}
$$

for some positive constant Λ *and all* $x \in M$ (*respectively,*

$$
-\frac{\Lambda}{(1+r(x))^{p}} \leq W(x) \leq -\phi(r(x))
$$

for some positive constant Λ *and all* $x \in M$ *), then* $\lim_{x \in M \to \infty} u(x) = +\infty$ (*respectively,* $\lim_{x \in M \to \infty} u(x) = 0$ *.*

In the case where $p = 2$, we have the following.

Theorem 1.2. Let (M, g_M, μ_f) be a connected, noncompact, complete weighted Rieman*nian manifold of dimension* m *satisfying* [\(1.1\)](#page-2-0) *and* [\(1.2\)](#page-2-1)*. Suppose that* (RCA) *and* (VC) *are satisfied, and that the following growth condition holds for some* $\beta > 2$:

(1.3)
$$
C_{\beta}\left(\frac{t}{s}\right)^{\beta} \leq \frac{\mu_f(B(o,t))}{\mu_f(B(o,s))}
$$

for $1 \leq s \leq t$, where C_β *is a positive constant less than* 1*. Let* W *be a bounded function on* M *satisfying*

$$
|W(x)| \leq \psi(r(x))
$$

for all $x \in M$, where $\psi(r)$ is a nonnegative C^1 function on $[0, \infty)$ such that $\psi'(t) \leq 0$ *and*

$$
\int_0^\infty t\,\psi(t)\,dt < +\infty.
$$

Then the following assertions hold.

- (i) There exists a unique solution $v \in C^{1,\alpha}_{loc}(M)$ of the Poisson equation $\Delta_{f;2}v = W$ *in* M *which tends to zero at infinity.*
- (ii) Assume that there is a positive solution $u \in L^{1,2}_{loc}(M) \cap C^{1,\alpha}_{loc}(M)$ of $Q'_{2;W}(u) = 0$ *in* M*.*
	- (ii-a) If $Q'_{2;W}$ is subcritical, that is, if it admits a (positive minimal) Green function, *then* $u(x)$ *converges to a positive constant a as* $x \in M \rightarrow \infty$ *, and one has*

$$
u(x) = a - \int_M G(x, y) W(y) u(y) d\mu_f(y), \quad x \in M,
$$

where $G(x, y)$ *denotes the Green function of the Laplacian* $\Delta_{f, 2}$ *.*

(ii-b) If $Q'_{2;W}$ is critical, that is, if it does not admit the Green function, then $u(x)$ *converges to zero as* $x \in M \to \infty$ *, and one has*

$$
u(x) = -\int_M G(x, y) W(y) u(y) d\mu_f(y), \quad x \in M.
$$

Now we consider a family $\mathcal F$ of balls in M. We say that $\mathcal F$ satisfies the *volume doubling property* (VD) with a constant $C_D > 1$ if, for any ball $B(x, t) \in \mathcal{F}$,

$$
\mu_f(B(x,t)) \leq C_D \mu_f(B(x,t/2)).
$$

If all balls in M satisfy (VD), then we say that (M, g_M, μ_f) satisfies (VD). It is shown that $\delta^{(\sigma;\infty)}(M) < +\infty$ for some $\sigma \in (0,1)$ if (M, g_M, μ_f) satisfies (RCA) and (VD) (see Proposition 4.3 (i)).

We say that F satisfies the *Poincaré inequality* $(PI(p))$ $(1 \le p < +\infty)$ with a constant $C_P > 0$ if, for any $B(x, t) \in \mathcal{F}$ and every $u \in C^1(B(x, t)),$

$$
\int_{B(x,t/2)} |u - u_{B(x,t/2)}|^p \, d\mu_f \leq C_P \, t^p \int_{B(x,t)} |\nabla u|^p \, d\mu_f,
$$

where

$$
u_{B(x,t/2)} = \frac{1}{\mu_f(B(x,t/2))} \int_{B(x,t/2)} u \, d\mu_f.
$$

If all balls in M satisfy (PI(p), then we say that (M, g_M, μ_f) satisfies (PI(p)).

In this paper, we call a ball $B(x, t)$ *remote* to a fixed point *o* if $t \leq \frac{1}{4}r(x)$ (see [\[13\]](#page-54-7), Section 4). Then under conditions [\(1.1\)](#page-2-0) and [\(1.2\)](#page-2-1), a family of balls remote to σ satisfies (VD) and (PI(p)) for a fixed $p \in [1, +\infty)$ (see Proposition [2.17\)](#page-19-0). In fact, keeping the assumption that $\delta^{(\sigma;\infty)}(M) < +\infty$ for some $\sigma \in (0,1)$, if we replace [\(1.1\)](#page-2-0) and [\(1.2\)](#page-2-1) with (VD) and $(PI(p))$ (respectively, (VD) and $(PI(2))$ for all remote balls, then we obtain Theorem $1.1(i)$ $1.1(i)$, (iii) (respectively, Theorem $1.1(i)$ and Theorem 1.2); however, we do not know if the assertion (iv) of Theorem [1.1](#page-2-2) must hold.

When (M, g_M, μ_f) satisfies (VD) and (PI(2)), and further the growth condition [\(1.3\)](#page-3-1) with $\beta > 2$, a result of Ancona (see [\[2\]](#page-53-1), Proposition 3.1), proves that

$$
\int_M \frac{C_1 |u(x)|^2}{1 + r(x)^2} \, d\mu_f(x) \le \int_M |\nabla u|^2 \, d\mu_f
$$

for some positive constant C_1 and all $u \in C_0^{\infty}(M)$. This is a Hardy type inequality on M, and we can apply Theorem [1.1](#page-2-2)(iv) ($p = 2$) to a positive solution to the equation $-\Delta_{f,2}u$ $\frac{C_1}{1+r^2}u = 0$ in M.

Let W be the bounded potential on M considered in Theorem [1.2.](#page-3-0) In order to prove the assertion (ii-a), we use another result by Ancona (see Theorem 3.3 in [\[2\]](#page-53-1)), proving that the Green function $G^W(x, y)$ of $Q'_{2;W}$ satisfies

$$
C_2^{-1} \int_{\text{dis}_M(x,y)}^{\infty} \frac{t \, dt}{\mu_f(B(x,t))} \le G^W(x,y) \le C_2 \int_{\text{dis}_M(x,y)}^{\infty} \frac{t \, dt}{\mu_f(B(x,t))}
$$

for some $C_2 \ge 1$ and for all $x, y \in M$. Moreover, in view of Theorem 10.5 in [\[11\]](#page-54-2) by Grigor'yan, and its proof, we see that in (ii-a), the heat kernel p_t^W of the operator $Q'_{2;W}$ satisfies the two-sided Gaussian estimate (or the Li–Yau estimate) as follows:

$$
\frac{C_3^{-1}}{\mu_f(B(x,\sqrt{t}))}e^{-C_4\operatorname{dis}_M(x,y)^2/t} \le p_t^W(x,y) \le \frac{C_3}{\mu_f(B(x,\sqrt{t}))}e^{-C_5\operatorname{dis}_M(x,y)^2/t}
$$

for all x, $y \in M$ and $t > 0$, where C_3 , C_4 and C_5 are positive constants (see Remark [4.6\(](#page-38-0)ii)).

A weighted Riemannian manifold (M, g_M, μ_f) is called *p-parabolic* if every positive, continuous p-supersolution on M, that is, a positive continuous function $v \in L^{1,p}_{loc}(M)$ satisfying $\Delta_{f, p} v \leq 0$ weakly on M, is constant, and p-nonparabolic otherwise. In The-orem [1.2,](#page-3-0) the weighted manifold M is 2-nonparabolic, since [\(1.3\)](#page-3-1) ($\beta > 2$) is assumed (see [\[7\]](#page-54-8), [\[8\]](#page-54-9), Theorem 1.5), and it will be conjectured that if $\beta > p$ and the function ψ is a nonnegative C¹ function such that $\psi'(t) \leq 0$ and $\int_0^{+\infty} (t \psi(t))^{1/(p-1)} dt < +\infty$, then any positive solution u to the equation $-\Delta_{f;p}u + W|u|^{p-2}u = 0$ in M converges to a positive constant at infinity if $|W| \leq \psi(r)$ on M (see [\[25\]](#page-54-10) and references therein for related problems). We remark that if (M, g_M, μ_f) is p-parabolic, then for any nonnegative $W \in L^{\infty}_{loc}(M)$ which does not vanish identically, a positive solution v to equation $-\Delta_{f, p}v + \widetilde{W|v|^{p-2}}v = 0$ in M is unbounded, because sup_M $v - v$ is p-superharmonic if sup_M $v < +\infty$.

Now we need some terminology to state the next result. For $n \in (-\infty, +\infty]$, the *n*-dimensional Bakry–Émery Ricci curvature is defined by

$$
Ric_f^n = Ric_M + Ddf - \frac{df \otimes df}{n-m}
$$

if $n \in (-\infty, +\infty) \setminus \{m\}$, and

$$
\operatorname{Ric}_{f}^{\infty} = \operatorname{Ric}_{M} + Ddf
$$

if $n = +\infty$. We assume that $n = m$ if and only if f is constant. We note that in Theor-ems [1.1](#page-2-2) and [1.2,](#page-3-0) we can replace conditions (1.1) and (1.2) with the following one:

$$
\inf_M (1+r)^2 \operatorname{Ric}_f^n > -\infty
$$

for some $n > m$ (see Remark [2.14](#page-17-0) and Corollary [2.18\)](#page-19-1). Now we state:

Theorem 1.3. Let (M, g_M, μ_f) be a connected, noncompact, complete weighted Rieman*nian manifold of dimension m. Suppose that for some* $n \in [m, +\infty)$ *and* $\kappa > 0$,

(1.4)
$$
\operatorname{Ric}_f^n \ge -(n-1)\kappa \quad on \ M.
$$

(i) Let $u \in L^{1,p}_{loc}(M) \cap C^{1,\alpha}_{loc}(M)$ be a positive solution to the equation $-\Delta_{f,p}u$ + $\Lambda |u|^{p-2}u = 0$ in M, where Λ is a positive constant. Then one has

(1.5)
$$
Z(p, n, \kappa, \Lambda) \leq \sup_{M} |\nabla \log u| \leq Y(p, n, \kappa, \Lambda).
$$

Here $Z(p, n, \kappa, \Lambda)$ *is the unique positive root of the equation*

$$
(p-1)Zp + (n-1)\sqrt{k}Zp-1 = \Lambda,
$$

and $Y(p, n, \kappa, \Lambda)$ *is the unique positive root of the equation*

$$
(p-1)Yp - (n-1)\sqrt{\kappa}Y^{p-1} = \Lambda.
$$

(ii) *Given* $p > 1$ *and* $\Lambda > 0$ *, suppose that*

(1.6)
$$
\delta^{(\infty)}(M) < \frac{Z(p, n, \kappa, \Lambda)}{Y(p, n, \kappa, \Lambda)} \, (\le 1).
$$

Then every positive solution u *to the equation* $-\Delta_{f,p} u + \Lambda |u|^{p-2} u = 0$ *in M is an exhaustion function and satisfies*

$$
u(x) \ge u(o) e^{Cr(x) + C'}, \quad x \in M,
$$

where $C = \frac{1}{2}(Z(p, n, \kappa, \Lambda) - \delta^{(\infty)}(M)Y(p, n, \kappa, \Lambda))$ and C' is a constant inde*pendent of* u*.*

We note that if $\kappa = 0$, then $Z(p, n, 0, \Lambda) = Y(p, n, 0, \Lambda) = (\Lambda/(p-1))^{1/p}$, the equalities hold in [\(1.5\)](#page-5-0), and $C = \frac{1}{2} (\Lambda/(p-1))^{1/p} (1 - \delta^{(\infty)}(M))$ (see Example [4.7](#page-38-1) for a simple example of Riemannian manifolds satisfying $\delta^{(\infty)}(M) < 1$).

In the case $p = 2$, applying Theorem 2.6 of Ancona [\[2\]](#page-53-1) to Theorem [1.3,](#page-5-1) we have:

Corollary 1.4. Let (M, g_M, μ_f) be as in Theorem [1.3](#page-5-1) and assume [\(1.4\)](#page-5-2). Let Λ be a *positive constant and let* W *be a locally bounded function on* M *satisfying*

$$
\inf \left\{ Q_{2;W}(v) \mid v \in C_0^\infty(M), \int_M v^2 d\mu_f = 1 \right\} > 0.
$$

Suppose that there exists a nonnegative, nonincreasing function $\Psi(t)$ *on* $[0, +\infty)$ *with* $\int_0^\infty \Psi(t) dt < +\infty$ such that

$$
|W(x) - \Lambda| \le \Psi(r(x)), \quad x \in M.
$$

Then the following assertions hold:

(i) *A positive solution u to the equation* $Q'_{2,W}(u) = 0$ *in M satisfies*

$$
u(x) \le u(y) e^{Y(2,n,\kappa,\Lambda) \operatorname{dis}_M(x,y) + C''}
$$

for all $x, y \in M$, where C'' is a positive constant independent of u .

(ii) If [\(1.6\)](#page-5-3) with $p = 2$ holds, then a positive solution u of the equation $Q'_{2;W}(u) = 0$ *in* M *satisfies*

$$
u(x) \ge u(o) e^{Cr(x) + C'}, \quad x \in M,
$$

where $C = \frac{1}{2}(Z(2, n, \kappa, \Lambda) - \delta^{(\infty)}(M)Y(2, n, \kappa, \Lambda))$ as in Theorem [1.3](#page-5-1)*, and* C' is *a constant independent of* u*.*

We remark that in the case where $p = 2$ and $f = 0$, [\(1.5\)](#page-5-0) is proved by Borbély [\[4\]](#page-53-2) in a different way from ours. To get the upper bound in (1.5) , we refer to the method in Sung and Wang [\[32\]](#page-55-1), Dung and Dat [\[9\]](#page-54-11), where positive eigenfunctions with eigenvalue λ (≥ 0) , that is, solutions to the equation $\Delta_{f,p} u + \lambda |u|^{p-2} u = 0$ in M, are studied, and the gradient estimate from above by the constant $Y(p, n, \kappa, -\lambda)$ is proved. For the lower bound in (1.5) , we employ the Laplacian comparison theorem derived from the assumption on a lower bound for the tensor Ric_f^n .

The outline of the paper is as follows. In Section [2,](#page-6-0) we recall first a comparison principle for the operators $Q'_{p;W}$ under consideration and then we show some Laplacian comparison results to derive volume doubling properties (VD) and scaled Poincaré inequalities ($PI(p)$) on metric balls. In Section [3,](#page-23-0) we derive Harnack inequalities for positive solutions to the equation $Q'_{p;W}(u) = 0$ with bounded potentials W. Based on the Harnack inequalities, we completes the proof of Theorem [1.1.](#page-2-2) Section [4](#page-29-0) is devoted to proving Theorem [1.2](#page-3-0) and furthermore discussing some results, remarks and examples concerning Theorems [1.1,](#page-2-2) [1.2](#page-3-0) and [1.3;](#page-5-1) for example, we prove that (M, g_M, μ_f) fulfills (RCA) and (VC) if $\delta^{(\infty)}(M)$ < 1 and some volume growth conditions are satisfied (see Proposition [4.3](#page-34-0) (iii)). In Section [5,](#page-39-0) we study positive solutions to the equation $Q'_{p;\Lambda}(u) = 0$ in M, where λ is a positive constant, and Theorem [1.3,](#page-5-1) Corollary [1.4](#page-5-4) and a related rigidity result are verified.

2. Laplacian comparison results

Let (M, g_M, μ_f) be a connected, complete weighted Riemannian manifold of dimension m. In this section, we first mention a comparison principle for operators $Q'_{p;W}$ on a domain of M to employ sub/supersolution techniques in our situation. We refer to Pinchover and Psaradakis [\[24\]](#page-54-0). Secondly, we discuss some Laplacian comparison results to derive volume doubling properties and scaled Poincaré inequalities on metric balls.

We begin with the following.

Theorem 2.1 ([\[24\]](#page-54-0)). Let Ω be a bounded Lipschitz domain in M. Given a function $W \in$ $L^{\infty}(\Omega)$, suppose that $\inf_{u \in W_0^{1,p}(\Omega)} Q_{p;W}(u)/||u||_{L^p(\Omega)}^p > 0$, that is, that the principal *eigenvalue of the operator* $Q'_{p;W}$ *is positive. Let* $f, \phi, \psi \in L^{1,p}(\Omega) \cap C(\overline{\Omega})$ *, where* $f \geq 0$ *a.e.* in Ω *and* $f > 0$ *on* $\partial\Omega$ *, and*

> $\sqrt{2}$ \int $\overline{\mathcal{L}}$ $Q'_{p,W}(\psi) \leq 0 \leq Q'_{p,W}(\phi)$ in Ω in the weak sense, $\psi \leq f \leq \phi$ on $\partial \Omega$, $0 \leq \phi$ *in* Ω .

Then there exists a unique nonnegative solution $v \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$ of

$$
\begin{cases} Q'_{p;W}(v) = 0 & \text{in } \Omega, \\ v = f & \text{on } \partial\Omega \end{cases}
$$

such that ψ < v < ϕ *in* Ω *.*

Proof. See Proposition 5.2 and Theorem 5.3 in [\[24\]](#page-54-0).

To prove Theorem [1.1,](#page-2-2) we need the following.

Lemma 2.2. Let u be a positive solution to the equation $-\Delta_{f;p}u + W|u|^{p-2}u = 0$ in a *domain including* $M \setminus B(o, T)$ *for some* $T \geq 0$ *. For* $t \geq T$ *, denote* $m(t) = \inf_{S(o,t)} u$ *and* $M(t) = \sup_{S(0,t)} u$.

- (i) *Suppose that* $W \geq 0$ *. Then* $M(t)$ *is monotone for large t and converges to a number* $M \in [0, +\infty]$ as $t \to +\infty$.
- (ii) *Suppose that* $W \leq 0$ *. Then* $m(t)$ *is monotone for large t and converges to a number* $m \in [0, +\infty]$ as $t \to +\infty$.

Proof. For $t_1, t_2 \in (T, +\infty)$ with $t_1 < t_2$, we write $A(t_1, t_2)$ for $B(o, t_2) \setminus B(o, t_1)$. Suppose first that $W \ge 0$. We compare u with a constant function $v = \max\{M(t_1), M(t_2)\}\,$ and we have $Q'_{p,W}(v) = Wv^{p-1} \ge 0 = Q'_{p,W}(u)$ in $A(t_1, t_2)$. For a connected component Ω of $A(t_1, t_2)$, we have $v \geq u$ on $\partial \Omega$, so that $v \geq u$ in Ω by Theorem [2.1.](#page-7-0) Thus $v \geq u$ in $A(t_1, t_2)$. This shows that $M(t) \leq \max\{M(t_1), M(t_2)\}\$ for $t \in [t_1, t_2]$. Then it is easy to see that $M(t)$ is monotone for large t, and converges to a number $M \in [0, +\infty]$ as $t \to +\infty$. Similarly we can prove that $m(t) \ge \min\{m(t_1), m(t_2)\}$ for $t \in [t_1, t_2]$ if $W \le 0$, which shows that $m(t)$ is also monotone for large t and hence converges to a number $m \in [0, +\infty]$ as $t \to +\infty$. This completes the proof of Lemma [2.2.](#page-7-1)

Now we show some Laplacian comparison results on (M, g_M, μ_f) . Take a point $x \in M$ and express the volume density in the geodesic polar coordinates centered at x as

$$
dv_{g|\exp_x(r\xi)} = I(x, r, \xi) dr dv_{\xi}
$$

for $r > 0$ and $\xi \in S_x M = \{\xi \in T_x M | |\xi| = 1\}$, where dv_{ξ} is the Riemannian volume element of the unit sphere S_xM . When we put

$$
\tau_x(\xi) = \sup \{ t > 0 \mid \text{dis}_M(x, \exp_x t\xi) = t \} \in (0, +\infty]
$$

п

for $\xi \in S_xM$, $I(x,t,\xi)$ is a positive smooth function on $(0, \tau_x(\xi))$ satisfying $I(x,0,\xi) = 0$ and $\lim_{t\to 0} I(x, t, \xi)/t^{m-1} = 1$. We denote by r_x the distance function to x. Then at $y = \exp_x(t\xi)$ $(0 < t < \tau_x(\xi))$, we have

$$
\Delta r_x(y) = \frac{I'(x,t,\xi)}{I(x,t,\xi)} \quad \text{and} \quad \Delta_f r_x(y) = \frac{I'_f(x,t,\xi)}{I_f(x,t,\xi)},
$$

where $\Delta_f = \Delta - \nabla f (= \Delta_{f,2})$, and $I_f(x,t,\xi) = e^{-f(t,\xi)}I(x,t,\xi)$ is the f-volume density in the geodesic polar coordinates (t, ξ) .

We assume that there is a positive smooth function χ on $(0, R)$ $(0 < R \leq +\infty)$ such that $m-1 \le \limsup_{t\to 0} t\chi'(\tilde{t})/\chi(t) < +\infty$ and

$$
\frac{I'_f(x,t,\xi)}{I_f(x,t,\xi)} \le \frac{\chi'(t)}{\chi(t)}
$$

for $t \in (0, \tau_x(\xi) \wedge R)$.

Lemma 2.3. Fix a point $x \in M$ and let $\chi(t)$ be as above. Then for a smooth function $\eta: [0, R) \to \mathbb{R}$ with $\eta' > 0$, one has

$$
\Delta_{f;p}\eta(r_x) \le \left((\eta')^{p-1} \right)' + \frac{\chi'}{\chi} (\eta')^{p-1} \Big) (r_x)
$$

in the weak sense on $B(x, R)$; *more precisely, for any nonnegative smooth function* ϕ *on* $B(x, R)$ *with compact support, one has*

$$
\int_{B(x,R)} |\nabla \eta(r_x)|^{p-2} g(\nabla \phi, \nabla \eta(r_x)) d\mu_f \geq \int_{B(x,R)} -\phi \Big(((\eta')^{p-1})' + \frac{\chi'}{\chi} (\eta')^{p-1} \Big) (r_x) d\mu_f.
$$

Proof. See, e.g., Proposition 3.7 in [\[28\]](#page-55-2).

A Laplacian comparison result is stated in the following lemma.

Lemma 2.4. *Fix a point* $x \in M$ *, and let* $k(t)$ *and* $h(t)$ *be continuous functions on* [0, R) *such that*

$$
\text{Ric}_M \ge (m-1)k(r_x), \quad |\nabla f| \le h(r_x)
$$

on $B(x, R)$ *. Let* $J(t)$ *be a unique solution of the equation* $J'' + kJ = 0$ *in* [0, R)*, subject* to the initial conditions $J(0) = 0$ and $J'(0) = 1$, and suppose that $J > 0$ on $(0, R)$. Then

$$
\chi(t) = J(t)^{m-1} \exp \int_0^t h(s) \, ds
$$

satisfies [\(2.1\)](#page-8-0)*.*

We remark that $J(t) \geq t$ for all $t \geq 0$ if $R = +\infty$ and k is nonpositive on $[0, +\infty)$. Let κ be a nonnegative constant. In what follows, we write

$$
s_{\kappa}(t) = \begin{cases} \frac{1}{2\sqrt{\kappa}} \left(e^{\sqrt{\kappa}t} - e^{-\sqrt{\kappa}t} \right) & \text{if } \kappa > 0, \\ t & \text{if } \kappa = 0. \end{cases}
$$

We also let $c_{\kappa}(t) = s'_{\kappa}(t)$.

$$
\blacksquare
$$

Lemma 2.5. *Let* $\chi(t)$ *,* $k(t)$ *,* $h(t)$ *and* R *be as in Lemma* [2.4](#page-8-1)*.*

- (i) *Suppose that* $k(t) = -\kappa$ *and* $h(t) = \alpha$ *, where* κ *and* α *are nonnegative constants. Then* $\chi(t) = s_{\kappa}(t)^{m-1} e^{\alpha t}$ *satisfies* [\(2.1\)](#page-8-0) *with* $R = +\infty$ *.*
- (ii) *Suppose that* $R = +\infty$ *and* k *is nonpositive on* [0, $+\infty$), *and moreover that* $k(t) =$ $-\kappa t^{-2}$ and $h(t) = \alpha t^{-1}$ for all $t \geq T$, where $\kappa \geq 0$, $\alpha \geq 0$, and $T > 0$ are some *constants. Let* $\beta(m, \kappa, \alpha) = \alpha + (m-1)(1 + \sqrt{1+4\kappa})/2$. Then one has

$$
\chi(t) = t^{\beta(m,\kappa,\alpha)} \left(C + C' t^{-\sqrt{1+4\kappa}} \right)^{m-1}
$$

for all $t \geq T$ *, where* $C > 0$ *and* C' *are constants.*

Proof. (i) The first assertion is obvious.

(ii) The solution J of the equation $J'' + k(t)J = 0$ in $[0, +\infty)$ is expressed as

$$
J(t) = C_1 t^{(1+\sqrt{1+4\kappa})/2} + C_2 t^{(1-\sqrt{1+4\kappa})/2}
$$

for all $t \geq T$, where $C_1 > 0$ and C_2 are some constants; moreover, we have

$$
\exp\int_0^t h(s) \, ds = C_3 t^\alpha
$$

for all $t \geq T$ and some constant $C_3 > 0$. These prove the assertion.

Now we fix a point o of M and write simply r for $r_o = \text{dis}_M (o, *)$. Let W be a function in $L^{\infty}_{\text{loc}}(M)$.

We assume first that $W \ge 0$ everywhere, and that there is a nonnegative continuous function $W_*(t)$ on $[0,\infty)$ such that

$$
0 \leq W_*(r) \leq W \quad \text{on } M.
$$

Lemma 2.6. Let χ and $W_*(t)$ be as above. Suppose that for some constants a and b, with $0 \le a < b$, $W_*(t) = 0$ *for* $t \in [0, a]$ *and* $W_*(t) > 0$ *for* $t \in (a, b)$ *. Then there exists a* function $\eta \in C^1[a, +\infty) \cap C^2(a, +\infty)$ such that

- (i) $\eta(a) = 1, \eta'(a) = 0;$
- (ii) $\eta(t) > 1, \eta'(t) > 0$ for $t > a$;

(iii) *it satisfies*

(2.2)
$$
\left(\chi(t)\,\eta'(t)^{p-1}\right)' = W_*(t)\,\chi(t)\,\eta(t)^{p-1} \quad on\,(a,+\infty).
$$

Proof. Let $\chi_{\varepsilon}(t) = \chi(t + \varepsilon)$ for $\varepsilon \in (0, 1]$. Then we can deduce from the existence and uniqueness theorems for ordinary differential equations that there are an interval [a, R_{ε}) and a unique positive solution $\eta_{\varepsilon} \in C^1[a, R_{\varepsilon}) \cap C^2(a, R_{\varepsilon})$ to the equation

$$
\left(\chi_{\varepsilon}(t)\,|\eta_{\varepsilon}'(t)|^{p-2}\,\eta_{\varepsilon}'(t)\right)'=W_*(t)\,\chi_{\varepsilon}(t)\,\eta_{\varepsilon}(t)^{p-1},
$$

subject to the initial conditions $\eta_{\varepsilon}(a) = 1$ and $\eta'_{\varepsilon}(a) = \varepsilon$. In fact, we have

$$
\eta'_{\varepsilon}(t) = \left(\varepsilon^{p-1}\frac{\chi_{\varepsilon}(a)}{\chi_{\varepsilon}(t)} + \frac{1}{\chi_{\varepsilon}(t)}\int_a^t W_*(s)\,\chi_{\varepsilon}(s)\,\eta_{\varepsilon}(s)^{p-1}\,ds\right)^{1/(p-1)} > 0,
$$

so that $1 \leq \eta_{\varepsilon,\delta}(s) \leq \eta_{\varepsilon,\delta}(t)$ for $a \leq s \leq t < R_{\varepsilon}$. We put here

$$
\Phi_{\varepsilon}(t) = \left(\varepsilon^{p-1} \frac{\chi_{\varepsilon}(a)}{\chi_{\varepsilon}(t)} + \frac{1}{\chi_{\varepsilon}(t)} \int_a^t W_*(s) \chi_{\varepsilon}(s) \, ds\right)^{1/(p-1)}, \quad t \in [a, +\infty).
$$

Then we get

$$
\Phi_{\varepsilon}(t) \leq \eta_{\varepsilon}'(t) \leq \Phi_{\varepsilon}(t) \eta_{\varepsilon}(t)
$$

for $t \in (a, R_{\varepsilon})$. These show that

$$
1 + \int_{a}^{t} \Phi_{\varepsilon}(s) ds \le \eta_{\varepsilon}(t) \le \exp \int_{a}^{t} \Phi_{\varepsilon}(s) ds,
$$

$$
\Phi_{\varepsilon}(t) \le \eta'_{\varepsilon}(t) \le \Phi_{\varepsilon}(t) \exp \int_{a}^{t} \Phi_{\varepsilon}(s) ds
$$

for $t \in [a, R_{\varepsilon})$. Now we put

$$
\rho^*(t) = \left(\varepsilon^{p-1} \max_{0 \le \delta \le 1} \frac{\chi_\delta(a)}{\chi_\delta(t)} + \max_{0 \le \delta \le 1} \frac{1}{\chi_\delta(t)} \int_a^t W_*(s) \chi_\delta(s) ds\right)^{1/(p-1)},
$$

$$
\rho_*(t) = \left(\min_{0 \le \delta \le 1} \frac{1}{\chi_\delta(t)} \int_a^t W_*(s) \chi_\delta(s) ds\right)^{1/(p-1)},
$$

for $t \in [a, +\infty)$. Then $\rho^*(t)$ and $\rho_*(t)$ are continuous functions on $[a, +\infty)$ satisfying $\rho_*(a) = 0, \rho_*(t) > 0$ for $t > a$, and

$$
\rho_*(t) \leq \Phi_{\varepsilon}(t) \leq \rho^*(t)
$$

for all $\varepsilon \in (0, 1]$ and for all $t \in [a, +\infty)$. Then we obtain

$$
1 + \int_a^t \rho_*(s) ds \le \eta_{\varepsilon}(t) \le \exp \int_a^t \rho^*(s) ds,
$$

$$
\rho_*(t) \le \eta_{\varepsilon}'(t) \le \rho^*(t) \exp \int_a^t \rho^*(s) ds,
$$

for all $\varepsilon \in (0, 1]$ and for all $t \in [a, R_{\varepsilon})$. These estimates show that $[a, +\infty)$ is the right maximal interval of existence for the solutions η_{κ} , and that the above estimates hold for all $t \in [a, +\infty)$. Furthermore, as ε goes to zero, η_{ε} converges to a function $\eta \in C^1[a, +\infty) \cap$ $C^2(a, +\infty)$, which is a solution to [\(2.2\)](#page-9-0) subject to the initial conditions $\eta(a) = 1$ and $\eta'(a) = 0.$ Г

We remark that if $W_*(0) > 0$, then the same conclusions as in the above lemma with $a = 0$ hold. In what follows, we assume that the function η is defined on $[0, +\infty)$ by setting $\eta(t) = 1$ on [0, *a*] if $a > 0$.

Proposition 2.7. Let W and $\eta(t)$ be as above.

(i) Let $u \in L^{1,p}_{loc}(M) \cap C(M)$ satisfy $-\Delta_{f;p}u + W|u|^{p-2}u \leq 0$ on M in the weak *sense. If* $u(x_0) > 0$ *for some* $x_0 \in M$ *, then*

$$
\max_{S(o,t)} u \ge \frac{u(x_0)}{\eta(r(x_0))} \eta(t)
$$

for all $t > r(x_0)$ *.*

(ii) Let $u \in L^{1,p}_{loc}(M) \cap C(M)$ satisfy $-\Delta_{f;p}u + W|u|^{p-2}u \geq 0$ on M in the weak *sense. If* $u(x_0) < 0$ *for some* $x_0 \in M$ *, then*

$$
\min_{S(o,t)} u \le \frac{u(x_0)}{\eta(r(x_0))} \eta(t)
$$

for all $t > r(x_0)$ *.*

Proof. By Lemma [2.3,](#page-8-2) we have

$$
\Delta_{f;p}\eta(r) \le W_*(r)\,\eta(r)^{p-1} \le W\eta(r)^{p-1}
$$

in the weak sense on M. Suppose that $u(x_0) > 0$ for some $x_0 \in M$ and that

$$
\max_{S(o,t)} u < \frac{u(x_0)}{\eta(r(x_0))} \eta(t)
$$

for some $t > r(x_0)$. We take $\varepsilon > 0$ in such a way that $\max_{S(o,t)} u < (1 - \varepsilon) \frac{u(x_o)}{\eta(r(x_0))} \eta(t)$. Then it follows from Theorem [2.1](#page-7-0) that $u \leq (1 - \varepsilon) \frac{u(x_0)}{\eta(r(x_0))} \eta(r)$ in $B(o, t)$; in particular, we have $u(x_0) \leq (1 - \varepsilon) u(x_0)$, so that $u(x_0) \leq 0$. But this contradicts the assumption. Thus (i) is proved. Applying the same arguments as above to $-u$, we can show the second assertion (ii).

Corollary 2.8. Let W and $\eta(t)$ be as above. Let $u \in L^{1,p}_{loc}(M) \cap C^{1,\alpha}_{loc}(M)$ be a solution *to the equation* $-\Delta_{f,p}u + W|u|^{p-2}u = 0$ *on M. We have that*

- (i) u is positive everywhere on M if $\liminf_{y \in M \to \infty} u(y)/\eta(r(y)) \ge 0$ and $u(x) > 0$. *for some* $x \in M$ *,*
- (ii) u *vanishes identically if* $\lim_{y \in M \to \infty} |u(y)| / \eta(r(y)) = 0.$

Lemma 2.9. Let $k(t)$, $h(t)$, $\chi(t)$, and R be as in Lemma [2.4](#page-8-1). Assume that $R = +\infty$ and *that k is nonpositive on* [0, $+\infty$), and moreover that $k(t) = -\kappa t^{-2}$ and $h(t) = \alpha t^{-1}$ for *all* $t \geq T$ *, where* $\kappa \geq 0$ *,* $\alpha \geq 0$ *and* $T > 0$ *are some constants.*

- (i) Suppose that $W_*(t)$ is nonincreasing in $[T, +\infty)$ and $\int_0^\infty (W_*(s)s)^{1/(p-1)}ds = +\infty$. *Then* $\eta(t)$ *tends to infinity as* $t \to \infty$ *.*
- (ii) *Suppose that* $W_*(t) = \lambda t^{-p}$ *for all* $t \geq T$ *, where* λ *is some positive constant. Let* $\gamma(p, m, \kappa, \alpha, \lambda)$ be the positive solution of the equation

$$
x |x|^{p-2} (x(p-1) + \beta(m, \kappa, \alpha) + 1 - p) = \lambda.
$$

Then satisfies

$$
\eta(t) \ge C(1+t)^{\gamma(p,m,\kappa,\alpha,\lambda)}
$$

for some positive constant C *and all* $t > 0$ *.*

Proof. (i) Since $\eta(t)$ is nondecreasing and $W_*(t)$ is nonincreasing in $[T,\infty)$, we have

$$
\chi(t)(\eta'(t))^{p-1} = \chi(T)(\eta'(T))^{p-1} + \int_T^t W_*(s) \chi(s) \eta(s)^{p-1} ds
$$

$$
\geq \eta(T)^{p-1} W_*(t) \int_T^t \chi(s) ds,
$$

so that we get

$$
\eta'(t) \ge \eta(T) W_*(t)^{1/(p-1)} \Big(\frac{1}{\chi(t)} \int_T^t \chi(s) \, ds\Big)^{1/(p-1)}
$$

for all $t \geq T$. Since we have by Lemma [2.5](#page-9-1) (ii), $C_4^{-1}t^{\beta} \leq \chi(t) \leq C_4 t^{\beta}$ for some constant $C_4 > 1$, where $\beta = \beta(m, \kappa, \alpha)$ in Lemma [2.5,](#page-9-1) we see that

$$
\frac{1}{\chi(t)} \int_T^t \chi(s) \, ds \ge \frac{2^{\beta+1} - 1}{2^{\beta+1}(\beta+1) \, C_4^2} \, t
$$

for all $t > 2T$, so that we obtain

$$
\eta'(t) \ge \left(\frac{2^{\beta+1}-1}{2^{\beta+1}(\beta+1)C_4^2}\right)^{1/(p-1)} \eta(T) \left(W_*(t)t\right)^{1/(p-1)}
$$

for all $t \geq 2T$. This shows that

$$
\eta(t) \ge \eta(2T) + \left(\frac{2^{\beta+1}-1}{2^{\beta+1}(\beta+1)C_4^2}\right)^{1/(p-1)} \eta(T) \int_{2T}^t (W_*(s)s)^{1/(p-1)} ds
$$

for all $t > 2T$. Thus (i) is proved.

(ii) Let $\sigma(t) = C_5 t^{\gamma(p,m,\kappa,\alpha,\lambda)}$, where C_5 is a positive constant chosen later. Then σ satisfies the same equation [\(2.2\)](#page-9-0) as η in $[T, +\infty)$. This shows that $\eta(t) \ge \sigma(t)$ for $t \ge T$ if we choose C_5 in such a way that $\eta(T) \ge \sigma(T)$ and $\eta'(T) \ge \sigma'(T)$. п

Now we consider a function W in $L^{\infty}_{loc}(M)$ such that $W \leq 0$ everywhere on M. We assume that there is a nonnegative continuous function $W_*(t)$ on $[0,\infty)$ such that

$$
W \le -W_*(r) \le 0 \quad \text{on } M.
$$

Lemma 2.10. Let χ and W_* be as above. Suppose that for some constants a and b, with $0 \le a < b$, $W_*(t) = 0$ *for* $t \in [0, a]$ *and* $W_*(t) > 0$ *for* $t \in (a, b)$ *. Then there exist an interval* [a, R) with $a < R \leq +\infty$ and a function $\omega \in C^1[a, R) \cap C^2(a, R)$ such that

- (i) $\omega(a) = 1, \omega'(a) = 0;$
- (ii) $0 < \omega(t) < 1, \omega'(t) < 0$ for $t \in (a, R);$
- (iii) *it satisfies*

(2.3)
$$
\left(\chi(t)(-\omega'(t))^{p-1}\right)' = W_*(t)\,\chi(t)\,\omega(t)^{p-1} \quad on\ (a,\,R);
$$

(iv) $[a, R]$ *is the right maximal interval of existence for the positive solution* ω *, and* $\lim_{t \to R} \omega(t) = 0$ *if* $R < +\infty$.

Proof. As in the proof of Lemma [2.6,](#page-9-2) we let $\chi_{\varepsilon}(t) = \chi(t + \varepsilon)$ for $\varepsilon \in (0, 1]$. Then there are an interval [a, R_{ε}) and a unique positive solution $\omega_{\varepsilon} \in C^1[a, R_{\varepsilon}) \cap C^2(a, R_{\varepsilon})$ to

(2.4)
$$
\left(\chi_{\varepsilon}(t)|\omega'_{\varepsilon}(t)|^{p-2}\omega'_{\varepsilon}(t)\right)' = -W_*(t)\,\chi_{\varepsilon}(t)\,\omega_{\varepsilon}(t)^{p-1}
$$

subject to the initial conditions $\omega_{\varepsilon}(a) = 1, \omega'_{\varepsilon}(a) = -\varepsilon$; moreover, [a, R_{ε}) is the right maximal interval of existence for the positive solution ω_{ε} , and in the case where $R_{\varepsilon} < +\infty$, $\lim_{t\to R}\omega_{\varepsilon}(t) = 0$. We note here that equation [\(2.4\)](#page-12-0) is also expressed as follows:

(2.5)
$$
\omega''_g(t) = -\frac{\chi'_g(t)\,\omega'_g(t)}{(p-1)\,\chi_g(t)} - \frac{W_*(t)\,\omega_g(t)^{p-1}}{(p-1)\,(-\omega'_g(t))^{p-2}}.
$$

Then we have

$$
-\omega'_{\varepsilon}(t) = \left(\varepsilon^{p-1}\frac{\chi_{\varepsilon}(a)}{\chi_{\varepsilon}(t)} + \frac{1}{\chi_{\varepsilon}(t)}\int_a^t W_*(s)\,\chi_{\varepsilon}(s)\,\omega_{\varepsilon}(s)^{p-1}\,ds\right)^{1/(p-1)} > 0
$$

so long as $\omega_{\epsilon}(t)$ exists and keeps to be positive. Thus this holds on [a, R_{ϵ}), and in particular we have $1 \ge \omega_{\varepsilon,\delta}(s) \ge \omega_{\varepsilon,\delta}(t)$ for $a \le s \le t < R_{\varepsilon}$. Using these inequalities, we see that

$$
\Phi_{\varepsilon}(t)\,\omega_{\varepsilon}(t)\leq-\omega'_{\varepsilon}(t)\leq\Phi_{\varepsilon}(t)
$$

for $t \in (a, R_{\varepsilon})$, where as in the proof of Lemma [2.6,](#page-9-2) we let

$$
\Phi_{\varepsilon}(t) = \left(\varepsilon^{p-1} \frac{\chi_{\varepsilon}(a)}{\chi_{\varepsilon}(t)} + \frac{1}{\chi_{\varepsilon}(t)} \int_a^t W_*(s) \chi_{\varepsilon}(s) \, ds\right)^{1/(p-1)}.
$$

Using the last inequality, we obtain

$$
\omega_{\varepsilon}(t) \geq 1 - \int_{a}^{t} \Phi_{\varepsilon}(s) \, ds,
$$

from which it follows that

(2.6)
$$
\Phi_{\varepsilon}(t)\Big(1-\int_a^t \Phi_{\varepsilon}(s)\,ds\Big)\leq -\omega'_{\varepsilon}(t).
$$

Here, in view of [\(2.5\)](#page-13-0), we notice that

$$
\omega''_{\varepsilon}(t) \leq -\omega'_{\varepsilon}(t) \, \frac{\chi'(t)}{(p-1)\chi(t)},
$$

and hence we have

$$
-\omega'_{\varepsilon}(t) \geq -\omega'_{\varepsilon}(s) \Big(\frac{\chi_{\varepsilon}(s)}{\chi_{\varepsilon}(t)}\Big)^{1/(p-1)}, \quad a \leq s \leq t < R_{\varepsilon}.
$$

This together with [\(2.6\)](#page-13-1) shows that

$$
-\omega'_{\varepsilon,\delta}(t) \geq \left(\frac{\chi_{\varepsilon}(s)}{\chi_{\varepsilon}(t)}\right)^{1/(p-1)}\Phi_{\varepsilon}(s)\Big(1-\int_a^s\Phi_{\varepsilon}(u)\,du\Big),\quad a\leq s\leq t < R_{\varepsilon}.
$$

Now, as in the proof of Lemma [2.6,](#page-9-2) we have continuous functions $\rho^*(t)$, $\rho_*(t)$ on $[a, +\infty)$ satisfying $\rho_*(a) = 0$, $\rho_*(t) > 0$ for $t > a$, and $\rho_*(t) \le \Phi_{\varepsilon}(t) \le \rho^*(t)$ for all $\varepsilon \in (0, 1]$ and

for all $t \in [a, +\infty)$. Here we fix a number $b > a$ in such a way that $\int_a^b \rho^*(s) ds < 1$, and then define a positive continuous function $\sigma_*(t)$ by putting $\sigma_*(t) = 1$ for $a \le t \le b$ and

$$
\sigma_*(t) = \min_{0 \le \delta \le 1} \left(\frac{\chi_{\delta}(b)}{\chi_{\delta}(t)}\right)^{1/(p-1)}
$$

for $t \geq b$. Then we obtain

$$
\sigma_*(t)\,\rho_*(t\wedge b)\Big(1-\int_a^{t\wedge b}\rho^*(s)\,ds\Big)\leq -\omega'_\varepsilon(t)\leq \rho^*(t);
$$

$$
1-\int_a^t\rho^*(s)\,ds\leq \omega_\varepsilon(t)\leq 1
$$

for all $\varepsilon \in (0, 1]$ and for all $t \in [a, R_{\varepsilon})$. We remark that $t < R_{\varepsilon}$ if $\int_a^t \rho^*(s)ds < 1$. These estimates show that there are an interval [a, R) and a positive function $\omega \in C^1[a, R) \cap$ $C^2(a, R)$ which is a unique solution to equation [\(2.3\)](#page-12-1), subject to the conditions $\omega(a) = 1$ and $\omega'(a) = 0$, such that [a, R) is the maximal interval of existence for ω , and as ε goes to zero, ω_{ε} converges to ω .

We remark that if $W_*(0) > 0$, then the same conclusions as in the above lemma with $a = 0$ hold. In what follows, we assume that the function ω is defined on [0, R) by setting $\omega(t) = 1$ on [0, a] if $a > 0$.

Proposition 2.11. Let W and $\omega(t)$ be as above. Let $v \in L^{1,p}_{loc}(B(o, R)) \cap C(B(o, R))$ be *a positive function satisfying*

(2.7)
$$
-\Delta_{f;p}v + W|v|^{p-2}v \ge 0
$$

on $B(o, R)$ *in the weak sense. Then*

(2.8)
$$
\omega(t) \ge \frac{1}{v(o)} \min_{S(o,t)} v
$$

for $t \in [0, R)$ *. In particular, if* $R = +\infty$ *, that is, if* [\(2.7\)](#page-14-0) *is satisfied on* M, then [\(2.8\)](#page-14-1) *holds for all* $t \geq 0$ *.*

Proof. We observe that $\omega(r)$ satisfies

$$
\Delta_{f;p}\omega(r) \ge -W_*(r)\omega(r)^{p-1} \ge W\omega(r)^{p-1}
$$

in $B(o, R)$. Then we can deduce [\(2.8\)](#page-14-1) from the same argument as in Proposition [2.7,](#page-10-0) together with Theorem [2.1.](#page-7-0)

Lemma 2.12. *Let* $k(t)$ *,* $h(t)$ *,* $\chi(t)$ *and* R *be as in Lemma [2.4](#page-8-1). Assume that* $Q_{p;W} \geq 0$ *,* $R = +\infty$, and k is nonpositive on $[0, +\infty)$, and moreover that $k(t) = -\kappa t^{-2}$ and $h(t) =$ αt^{-1} for all $t \geq T$, where $\kappa \geq 0$, $\alpha \geq 0$, $T > 0$ are some constants.

(i) Suppose that $W_*(t)$ is nonincreasing in $[T, +\infty)$ and $\int_0^{+\infty} (W_*(t)t)^{1/(p-1)} dt =$ $+\infty$. Then $\omega(t)$ tends to zero as $t \to +\infty$.

(ii) Suppose that $p = 2$ and $W_*(t) = \lambda t^{-2}$ for all $t \geq T$, where λ is a positive constant *less than* $(\beta - 1)^2/4$ *with* $\beta = \beta(m, \kappa, \alpha)$ *in Lemma* [2.5](#page-9-1)*. Then* $\omega(t)$ *satisfies*

$$
\omega(t) \le C (1+t)^{-\xi}
$$

for some positive constant C *and all* $t \geq 0$ *, where*

$$
\zeta = \min \Big\{ \frac{1}{2}((\beta - 1) - \sqrt{(\beta - 1)^2 - 4\lambda}), 2\sqrt{1 + 4\kappa} + \frac{\lambda}{\beta - 1} \Big\}.
$$

Proof. (i) Let $t \ge 2T$. Since $\omega(t)$ and $W_*(t)$ are nonincreasing, we have by [\(2.3\)](#page-12-1),

$$
1 - \omega(t) = 1 - \omega(T) + \int_{T}^{t} \left(\frac{1}{\chi(s)} \int_{0}^{s} W_{*}(x) \chi(x) \omega(x)^{p-1} dx\right)^{1/(p-1)} ds
$$

\n
$$
\geq \int_{T}^{t} \left(\frac{1}{\chi(s)} \int_{T}^{s} W_{*}(x) \chi(x) \omega(x)^{p-1} dx\right)^{1/(p-1)} ds
$$

\n
$$
\geq \omega(t) \int_{T}^{t} \left(\frac{W_{*}(s)}{\chi(s)} \int_{T}^{s} \chi(x) dx\right)^{1/(p-1)} ds.
$$

We recall that

$$
\frac{1}{\chi(s)} \int_T^s \chi(x) \, dx \ge C_6 s
$$

for some constant $C_6 > 0$ and all $s \geq 2T$ (see the proof of Lemma [2.9\)](#page-11-0). Therefore we have

$$
1 - \omega(t) \ge \omega(t) C_6 \int_{2T}^t (W_*(s) s)^{1/(p-1)} ds,
$$

and hence we obtain

$$
\omega(t) \le \frac{1}{1 + C_6 \int_{2T}^t (W_*(s) s)^{1/(p-1)} ds}
$$

.

Thus $w(t)$ tends to zero if $\int_0^{+\infty} (W_*(t)t)^{1/(p-1)} dt = +\infty$. (ii) Let $t \geq 2T$. Then we have

$$
\chi(t)\,\omega'(t) = \chi(T)\,\omega'(T) - \int_T^t \frac{\lambda}{s^2} \,\chi(s)\,\omega(s)\,ds < -\omega(t)\int_T^t \frac{\lambda\,\chi(s)}{s^2}\,ds
$$

and hence we get

$$
\frac{\omega'(t)}{\omega(t)} \leq -\frac{\lambda}{\chi(t)} \int_T^t \frac{\chi(s)}{s^2} ds.
$$

In view of Lemma 2.5 (ii), we see that

$$
-\frac{\lambda}{\chi(t)}\int_T^t \frac{\chi(s)}{s^2} ds = -\frac{\lambda}{\beta-1}\frac{1}{t} + O(t^{-\sqrt{1+4\kappa}}),
$$

so that

(2.9)
$$
\frac{\omega'(t)}{\omega(t)} \leq -\frac{\lambda}{\beta - 1} \frac{1}{t} + O(t^{-\sqrt{1 + 4\kappa}}).
$$

Note here that $\beta > 1$. These show that

$$
\omega(t) \le C_7 t^{-\lambda/(\beta - 1)}
$$

for all $t \geq 2T$ and some constant $C_7 > 0$. Then it follows from [\(2.9\)](#page-15-0) and [\(2.10\)](#page-16-0) that

(2.11)
$$
\omega'(t) \leq -\frac{\lambda}{\beta - 1} C_7 t^{-\lambda/(\beta - 1) - 1} (1 + o(1)).
$$

We now continue the argument to improve the decay order. Let

$$
E(t) = \frac{\chi'(t)}{\chi(t)} - \frac{\beta}{t} \Big(= (m-1)\frac{J'(t)}{J(t)} + h(t) - \frac{\beta}{t} \Big),
$$

\n
$$
\delta_{\pm} = \frac{1}{2} \Big(-(\beta - 1) \pm \sqrt{(\beta - 1)^2 - 4\lambda} \Big),
$$

\n
$$
F(t) = at^{\delta_+} + bt^{\delta_-},
$$

\n
$$
G(t) = t^{\delta_+} \int_T^t s^{1-\beta-2\delta_+} \Big(\int_T^s x^{\beta+\delta_+ - 1} (-E(x) \omega'(x)) dx \Big) ds.
$$

Here, *a* and *b* are constants chosen in such a way that $F(T) = \omega(T)$ and $F'(T) = \omega'(T)$. Then F and G respectively satisfy

$$
F''(t) + \frac{\beta}{t} F'(t) + \frac{\lambda}{t^2} F(t) = 0, \quad F(T) = \omega(T), \quad F'(T) = \omega'(T);
$$

$$
G''(t) + \frac{\beta}{t} G'(t) + \frac{\lambda}{t^2} G(t) = -E(t)\omega'(t), \quad G(T) = G'(T) = 0.
$$

Therefore the uniqueness theorem for ordinary differential equations implies

$$
\omega(t) = F(t) + G(t), \quad t \geq T.
$$

Since $J(t) = c t^{(1+\sqrt{1+4\kappa})/2} + d t^{(1-\sqrt{1+4\kappa})/2}$ for $t \geq T$ and some constants $c > 0$ and d, we have p

$$
E(t) = O(t^{-2\sqrt{1+4\kappa}-1})
$$

and in view of (2.9) , (2.10) and (2.11) , we deduce that

$$
G(t) = O(t^{-2\sqrt{1+4\kappa}-\lambda/(\beta-1)}).
$$

In this way, we obtain

$$
\omega(t) \leq C_8 t^{-\xi}, \quad t \geq T
$$

for some constant $C_8 > 0$. This completes the proof of Lemma [2.12.](#page-14-2)

We have started our arguments from Lemma [2.4.](#page-8-1) Here we mention the following.

Lemma 2.13. Let $n \in (m, +\infty)$ and fix a point $x \in M$. Let $k(t)$ be a continuous function *on* $[0, R)$ $(R \in (0, +\infty])$ *such that*

$$
\operatorname{Ric}_{f}^{n} \ge (n-1)k(r_{x})
$$

 \blacksquare

on $B(x, R)$ *. Let* $J(t)$ *be a unique solution of the equation* $J'' + kJ = 0$ *in* [0, R)*, subject* to the initial conditions $J(0) = 0$ and $J'(0) = 1$, and suppose that $J > 0$ on $(0, R)$. Then

$$
\chi(t) = J(t)^{n-1}
$$

satisfies [\(2.1\)](#page-8-0)*.*

Proof. See [\[16\]](#page-54-12) for the case where *n* is an integer greater than *m*, and [\[27\]](#page-55-3) for $n \in$ $(m, +\infty)$.

Remark 2.14. By starting with this lemma, instead of Lemma [2.4,](#page-8-1) we have Lemmas [2.5,](#page-9-1) [2.9,](#page-11-0) and [2.12,](#page-14-2) where α and m are respectively replaced with 0 and n; furthermore, Theorems [1.1](#page-2-2) and [1.2,](#page-3-0) and Proposition [3.7](#page-28-0) stated at the end of Section [3,](#page-23-0) hold if we replace [\(1.1\)](#page-2-0) and [\(1.2\)](#page-2-1) with the condition $\inf_M (1 + r)^2 \text{Ric}_f^n > -\infty$.

Now we are concerned with the volume growth and scale-invariant Poincaré inequalities on the weighted Riemannian manifold (M, g_M, μ_f) . By virtue of Subsection 5.6.3 in Saloff-Coste [\[31\]](#page-55-4), we have the following.

Lemma 2.15. Fix $p \in [1, +\infty)$, $R > 0$ and a point $y \in M$. Suppose that there is a positive *nondecreasing* C^1 *function* $\chi(t)$ *on* $(0, R)$ *satisfying* [\(2.1\)](#page-8-0) *for all* $x \in B(y, R)$ *and* $t \in$ $(0, \tau_x(\xi) \wedge 2R)$ *, and furthermore that there is a constant* $F(R)$ *such that*

$$
\chi(t) \le F(R) \chi(t/2)
$$

for all 0 < t < 2R: *Then the following volume doubling property* (VD) *and scale-invariant Poincaré inequalities* (PI(p))*, respectively, hold*:

(i) *for any ball* $B(x, 2t) \subset B(y, R)$,

$$
\mu_f(B(x,t)) \leq 4F(R)\,\mu_f(B(x,t/2));
$$

(ii) *for every ball* $B(x, 2t) \subset B(y, R)$ *and any* $u \in L_{loc}^{1,p}(B(x, 2t))$,

$$
\int_{B(x,t/2)} |u - u_{B(x,t/2)}|^p \, d\mu_f \leq 4F(R)t^p \int_{B(x,t)} |\nabla u|^p \, d\mu_f,
$$

where

$$
u_{B(x,t/2)} = \frac{1}{\mu_f(B(x,t/2))} \int_{B(x,t/2)} u \, d\mu_f.
$$

Proof. Since

$$
\left(\frac{I_f(x,t,\xi)}{\chi(t)}\right)'=\frac{I_f(x,t,\xi)}{\chi(t)}\left(\frac{I_f'(x,t,\xi)}{I_f(x,t,\xi)}-\frac{\chi'(t)}{\chi(t)}\right)\leq 0,
$$

we have

$$
\frac{I_f(x,s,\xi)}{\chi(s)}\geq \frac{I_f(x,t,\xi)}{\chi(t)}, \quad 0
$$

Moreover, since

$$
\left(\frac{\int_0^t I_f(x,r,\xi) dr}{\int_0^t \chi(r) dr}\right)' = \frac{\chi(t)}{\left(\int_0^t \chi(r) dr\right)^2} \int_0^t \left(\frac{I_f(x,t,\xi)}{\chi(t)} - \frac{I_f(x,s,\xi)}{\chi(s)}\right) \chi(s) ds \le 0
$$

for $0 < t < \tau_x(\xi) \wedge 2R$, we get

$$
\frac{\int_0^{s\wedge\tau(\xi)}I_f(x,r,\xi)dr}{\int_0^{s\wedge\tau(\xi)}\chi(r)dr} \ge \frac{\int_0^{t\wedge\tau(\xi)}I_f(x,r,\xi)dr}{\int_0^{t\wedge\tau(\xi)}\chi(r)dr}, \quad 0 < s \le t < 2R.
$$

Noting that

$$
\frac{\int_0^{s\wedge\tau(\xi)}\chi(r)\,dr}{\int_0^{t\wedge\tau(\xi)}\chi(r)\,dr} \ge \frac{\int_0^s\chi(r)\,dr}{\int_0^t\chi(r)\,dr},
$$

we obtain

$$
\frac{\int_0^{s\wedge\tau(\xi)}I_f(x,r,\xi)dr}{\int_0^s \chi(r)dr} \geq \frac{\int_0^{t\wedge\tau(\xi)}I_f(x,r,\xi)dr}{\int_0^t \chi(r)dr}.
$$

This shows that

(2.13)
$$
\frac{\mu_f(B(x,s))}{\int_0^s \chi(r) dr} \ge \frac{\mu_f(B(x,t))}{\int_0^t \chi(r) dr}, \quad 0 < s < t \le 2R.
$$

Finally, if $\chi(t/2) \geq \chi(t)/F(R)$, then

(2.14)
$$
\frac{\mu_f(B(x,s))}{\mu_f(B(x,t))} \ge \frac{1}{2F(R)}, \quad 0 < \frac{t}{2} \le s \le t < 2R,
$$

and

(2.15)
$$
\frac{I_f(x, s, \xi)}{I_f(x, t, \xi)} \ge \frac{1}{F(R)}, \quad 0 < \frac{t}{2} \le s \le t \le \tau_x(\xi) \land 2R.
$$

Obviously, [\(2.14\)](#page-18-0) shows the volume doubling property (VD) in (i). Moreover, in view of the proof of Theorem 5.6.5 in [\[31\]](#page-55-4), [\(2.15\)](#page-18-1) yields the inequalities (PI(p)) in (ii). This completes the proof of Lemma [2.15.](#page-17-1) \blacksquare

Similarly, we have the following.

Lemma 2.16. *Fix* $p \in [1,\infty)$, $R > 0$ *and a point* $y \in M$ *. Suppose that*

$$
\sup_{B(y,R)} f - \inf_{B(y,R)} f \le b
$$

for some positive constant b, and that there is a positive nondecreasing C^1 function $\chi_*(t)$ *on* $(0, R)$ *satisfying* $m - 1 \le \limsup_{t \to 0} t \chi'_*(t) / \chi_*(t) < +\infty$,

(2.16)
$$
\frac{I'(x,t,\xi)}{I(x,t,\xi)} \le \frac{\chi'_*(t)}{\chi_*(t)}
$$

for all $x \in B(y, R)$ *and* $t \in (0, \tau_x(\xi) \wedge 2R)$ *, and furthermore*

(2.17)
$$
\chi_*(t) \leq F(R) \chi_*(t/2), \quad 0 < t \leq 2R,
$$

for some $F(R)$ *.*

Then the following volume doubling property (VD) *and scale-invariant Poincaré inequalities* (PI(p))*, respectively, hold*:

(i) *for any ball* $B(x, 2t) \subset B(y, R)$,

$$
\mu_f(B(x,t)) \leq 4F(R)\,e^b\,\mu_f(B(x,t/2));
$$

(ii) *for every ball* $B(x, 2t) \subset B(y, R)$ *and any* $u \in L^{1,p}_{loc}(B(x, 2t))$ *,*

$$
\int_{B(x,t/2)} |u - u_{B(x,t/2)}|^p \, d\mu_f \leq 4F(R) \, e^b t^p \int_{B(x,t)} |\nabla u|^p \, d\mu_f.
$$

Making use of Lemmas [2.15](#page-17-1) and [2.16,](#page-18-2) we extend the Bishop–Gromov volume doubling property and (a weak form of) a theorem due to Buser [\[5\]](#page-53-3) to weighted Riemannian manifolds in the following result.

Proposition 2.17. Let (M, g_M, μ_f) be a connected, noncompact, complete weighted *Riemannian manifold of dimension m. Fix* $p \in [1, +\infty)$ *, R > 0, and a point* $y \in M$ *.*

- (i) Suppose that the Ricci curvature Ric_M is bounded from below by $-(m 1)\kappa$ on $B(y, R)$ *, and that* $\sup_{B(y,R)} f - \inf_{B(y,R)} f \leq b$ *, where k* and *b* are nonnegat*ive constants*. Then (VD) and (PI(p)) (as in Lemma [2.16\)](#page-18-2) hold with a constant $e^{C(m)(1+b+\sqrt{\kappa}R)}$, where $C(m)$ is a constant depending only on m.
- (ii) Suppose that the Bakry-Émery Ricci curvature Ric_f^n with $n > m$ is bounded from *below by* $-(n-1)\kappa$ *on* $B(y, R)$ *, where* κ *is a nonnegative constant. Then* (VD) and $(PI(p))$ (as in Lemma [2.15\)](#page-17-1) hold with a constant $e^{\widetilde{C}(n)(1+\sqrt{k}R)}$, where $C(n)$ is a *positive constant depending only on* n*.*
- (iii) Suppose that the Bakry–Émery Ricci curvature Ric^{∞}_f is bounded from below by $-(m-1)\kappa$ on $B(y, R)$ and that $\sup_{B(y,R)} f - \inf_{B(y,R)} f \leq b$, where κ and b *are nonnegative constants. Then* (VD) *and* (PI(p)) (*as in Lemma* [2.15\)](#page-17-1) *hold with a* p *constant* $e^{C(m)(1+b)(1+\sqrt{\kappa}R)}$.

Proof. For the assertion (i), we let $\chi_*(t) = s_K(t)^{m-1}$. Then by the assumption, we see *Proof.* For the assertion (1), we let $\chi_*(t) = s_K(t)$. Then by the assumption, we see that χ_* satisfies [\(2.16\)](#page-18-3) and we can take $F(R) = 2^{m+1}e^{(m-1)\sqrt{K}R}$ which satisfies [\(2.17\)](#page-18-4). Hence (i) follows from Lemma [2.16.](#page-18-2)

For the assertion (ii), we let $\chi(t) = s_{\kappa}(t)^{n-1}$. Then by the assumption on the tensor For the assertion (ii), we let $\chi(t) = s_{k}(t)$. Then by the assumption on the tensor
Ric^h, χ satisfies [\(2.1\)](#page-8-0) (see Lemma [2.12\)](#page-14-2), and we can take $F(R) = 2^{n+1} e^{(n-1)\sqrt{k}R}$, which satisfies [\(2.12\)](#page-17-2). Hence (ii) follows from Lemma [2.15.](#page-17-1)

We consider assertion (iii). It is shown by Wei and Wylie [\[35\]](#page-55-5) that

$$
\frac{I'_f(x,t,\xi)}{I_f(x,t,\xi)} \leq (m-1)\sqrt{\kappa} \coth(\sqrt{\kappa}t) + \frac{2\kappa}{\sinh^2(\sqrt{k}t)} \int_0^t (f(s,\xi) - f(t,\xi)) \cosh(2\sqrt{\kappa}s) ds.
$$

Since $\sup_{B(y,R)} f - \inf_{B(y,R)} f \leq b$, we obtain

$$
\frac{I'_f(x,t,\xi)}{I_f(x,t,\xi)} \le (m-1)\sqrt{\kappa} \coth(\sqrt{\kappa}t) + \frac{2\kappa b}{\sinh^2(\sqrt{k}t)} \int_0^t \cosh(2\sqrt{\kappa}s) ds
$$

$$
\le (m-1+2b)\sqrt{\kappa} \coth(\sqrt{\kappa}t).
$$

Hence letting $\chi(t) = s_{\kappa}(t)^{m-1+2b}$, we have [\(2.1\)](#page-8-0) and take $F(R) = 2^{m+2b} e^{(m-1+2b)\sqrt{\kappa}R}$, which satisfies (2.12) . In this way, (iii) follows from Lemma [2.15.](#page-17-1)

Corollary 2.18. Let (M, g_M, μ_f) be as above. A family of balls remote to a fixed point of satisfies (VD) and $(PI(p))$ under one of the following conditions:

- (i) $\text{Ric}_M \ge -\frac{(m-1)\kappa}{(1+r)^2}$ and $|\nabla f| \le \frac{\alpha}{1+r}$ on M for some constants $\kappa \ge 0$ and $\alpha \ge 0$;
- (ii) $\text{Ric}_f^n \ge -\frac{(n-1)\kappa}{(1+r)^2}$ $(n > m)$ on *M* for some constant $\kappa \ge 0$;
- (iii) $\text{Ric}_{f}^{\infty} \geq -\frac{(m-1)\kappa}{(1+r)^2}$ on *M* and

$$
\sup \Big\{ \sup_{B(o, 2^{k+2}) \setminus B(o, 2^k)} f - \inf_{B(o, 2^{k+2}) \setminus B(o, 2^k)} f \Big| k = 1, 2, \dots \Big\} \le b < +\infty
$$

for some constants $\kappa \geq 0$ *and* $b \geq 0$ *.*

Proposition 2.19. Let (M, g_M, μ_f) be a connected, noncompact, complete weighted *Riemannian manifold of dimension* m *and assume that* (VC) *holds.*

(i) Suppose that $\text{Ric}_M \ge -\frac{(m-1)\kappa}{(1+r)^2}$ and $|\nabla f| \le \frac{\alpha}{1+r}$ on M for some constants $\kappa \ge 0$ $and \alpha \geq 0$. Then one has

$$
\mu_f(B(o,t)) \le C(1+t)^{m+\alpha}
$$

for some constant $C > 0$ *and all* $t > 0$ *.*

(ii) Suppose that $\text{Ric}_{f}^{n} \geq -\frac{(n-1)\kappa}{(1+r)^{2}}$ $(n > m)$ on M for some constant $\kappa \geq 0$. Then one has

$$
\mu_f(B(o,t)) \le C'(1+t)^n
$$

for some constant $C' > 0$ and all $t > 0$.

(iii) *Suppose that for some constants* $\kappa \ge 0$ *and* $b \ge 0$, Ric $\frac{\infty}{f} \ge -\frac{(m-1)\kappa}{(1+r)^2}$ *on M and* $\sup{\sup_{B(o,2^{k+2}) \setminus B(o,2^k)} f - \inf_{B(o,2^{k+2}) \setminus B(o,2^k)} f \mid k = 1, 2, \ldots} \leq b < +\infty$. Then *one has*

$$
\mu_f(B(o,t)) \le C''(1+t)^{m+4b}
$$

for some constant $C'' > 0$ and all $t > 0$.

Proof. Since (VC) is assumed, we have for $x \in S(o, t)$,

$$
\mu_f(B(o,t)) \le C_V \mu_f(B(x,t/2)),
$$

so it is enough to show that $\mu_f(B(x, t/2)) \leq C(1+t)^{m+\alpha}, \mu_f(B(x, t/2)) \leq C'(1+t)^n$, and $\mu_f(B(x, t/2)) \leq C''(1 + t)^{m+4b}$, respectively, under the assumptions in (i), (ii) and (iii).

We consider assertion (i). It follows from the assumption on f that $|f(x) - f(o)| \le$ $\alpha \int_0^{r(x)} (1 + s)^{-1} ds = \log(1 + r(x))^{\alpha}$ for $x \in M$. Hence we get

$$
e^{-f} \leq e^{|f(o)|} (1+r)^{\alpha} \quad \text{on } M.
$$

Now we fix a point $x \in S(0, t)$. Since Ric $M > -\kappa (1 + t/2)^{-2} > -4\kappa t^{-2}$ on $B(x, t/2)$, we have by [\(2.13\)](#page-18-5) (after letting s go to 0 and letting ω_m stand for the volume of the unit sphere of Euclidean space \mathbb{R}^m).

$$
\mu_f(B(x,t/2)) \le \sup_{B(x,t/2)} e^{-f} \cdot \mu_0(B(x,t/2)) \le e^{|f(o)|} (1+2t)^{\alpha} \omega_m \int_0^{t/2} (s_{2\sqrt{\kappa}/t}(\tau))^{m-1} d\tau
$$

$$
\le e^{|f(o)|} (1+2t)^{\alpha} \omega_m (s_{2\sqrt{\kappa}/t} (t/2))^{m-1} \int_0^{t/2} d\tau \le e^{|f(o)|} C(m,\kappa) (1+t)^{m+\alpha},
$$

where $C(m, \kappa)$ is a positive constant depending only on m and κ .

For the remaining assertions, the same arguments as above are valid, and we omit the proofs of (ii) and (iii).

Remark 2.20 ([\[13\]](#page-54-7), subsection 2.2; [\[12\]](#page-54-13), (15.68)). For any subset U of M and $R > 0$, we consider a family of balls $\mathcal{F} = \{B(x, t) | x \in U, t \leq R\}$. Assume that the family \mathcal{F} satisfies (VD) with constant C_D . Set $\gamma = \log_2 C_D$. Then, for all $0 < s < t \le R$, we have

$$
\frac{\mu_f(B(x,t))}{\mu_f(B(x,s))} \leq C_D \left(\frac{t}{s}\right)^{\gamma}.
$$

For any $B(x, t) \in \mathcal{F}$ with $t < R/2$, assume that $S(x, 3t/4) \cap U \neq \emptyset$. Let y be a point of $S(x, 3t/4) \cap U$. Then we obtain

$$
\mu_f(B(x,t)) \ge \mu_f(B(x,t/2)) + \mu_f(B(y,t/4))
$$

$$
\ge \mu_f(B(x,t/2)) + C_D^{-3} \mu_f(B(y,2t)) \ge \mu_f(B(x,t/2)(1+C_D^{-3})).
$$

We say that a family $\mathcal F$ of balls in M as above satisfies the *reverse volume doubling property* (RVD) with a constant $C_{RD} > 1$ if, for any ball $B(x, t) \in \mathcal{F}$ with $t < R$,

$$
\mu_f(B(x,t)) \geq C_{\text{RD}} \mu_f(B(x,t/2)).
$$

Then, for all $0 < s < t < R/2$,

$$
\frac{\mu_f(B(x,t))}{\mu_f(B(x,s))} \geq C_{\text{RD}}\left(\frac{t}{s}\right)^{\beta},
$$

where $\beta = \log_2 C_{RD}$.

Now we let Λ be a positive constant and consider the equation $Q'_{p;\Lambda}(u) = 0$ in M. We denote by $\eta_{p,\Lambda}$ the solution of [\(2.2\)](#page-9-0) with $\chi(t) = s_{\kappa}(t)^{n-1}$ and $W_* = \Lambda$ subject to the initial conditions $\eta_{p,\Lambda}(0) = 1$ and $\eta'_{p,\Lambda}(0) = 0$. Since $\Lambda > 0$, it is easy to see that $\eta'_{p,\Lambda} > 0$ on $(0, +\infty)$, so $\eta_{p,\Lambda}(t) > 1$. Moreover, it follows from Lemma [2.3](#page-8-2) that $\eta_{p,\Lambda}(r)$ satisfies $-\Delta_{p,f} \eta_{p,\Lambda}(r) + \Lambda \eta_{p,\Lambda}(r)^{p-1} \geq 0$ on M in the weak sense.

To prove Theorem $1.3(i)$ $1.3(i)$, we need the following.

Lemma 2.21. Let $Z(p, n, \kappa, \Lambda)$ be the unique positive root of the equation $(p - 1)Z^p$ + **Lemma 2.21.** Let $Z(p, n, \kappa, \Lambda)$ be then $(n-1)\sqrt{\kappa}Z^{p-1} = \Lambda$. Then one has

$$
\lim_{t \to \infty} \frac{1}{t} \log \eta_{p,\Lambda}(t) = Z(p, n, \kappa, \Lambda).
$$

Proof. For a positive constant a, let $\rho_a(t) = c_{\kappa}(t)^a$ ($t \in [0, \infty)$). Then ρ_a satisfies

$$
(\rho'_a(t)^{p-1})' + (m-1) \frac{c_{\kappa}(\rho)}{s_{\kappa}(\rho)} \rho'_a(t)^{p-1} \leq \lambda(a,t) \rho_a(t)^{p-1},
$$

where we put

$$
\lambda(a,t) = a^{p-1} \kappa^{p-1} \Big((a-1)(p-1) \kappa \Big(\frac{s_{\kappa}(t)}{c_{\kappa}(t)} \Big)^p + (n+p-2) \Big(\frac{s_{\kappa}(t)}{c_{\kappa}(t)} \Big)^{p-2} \Big).
$$

We observe that

$$
\lim_{t \to \infty} \lambda(a, t) = (p - 1)(\sqrt{\kappa}a)^p + (n - 1)\sqrt{\kappa}(\sqrt{\kappa}a)^{p - 1},
$$

so that for $a = \kappa^{-1/2} Z(p, n, \kappa, \Lambda)$,

$$
\lim_{t \to \infty} \lambda(\kappa^{-1/2} Z(p, n, \kappa, \Lambda), t) = \Lambda.
$$

Let *a* be less than $\kappa^{-1/2}Z(p, n, \kappa, \Lambda)$. Then there exists a positive number τ such that $\lambda(a,t) < \Lambda$ for all $t \geq \tau$. We take a positive number b in such a way that $b\rho_a(\tau) < \eta_{p,\Lambda}(\tau)$ and $b\rho'_a(\tau) < \eta'_{p,\Lambda}(\tau)$. Then it holds that $b\rho'_a(t) < \eta'_{p,\Lambda}(t)$ for all $t \geq \tau$. In fact, we suppose contrarily that for some $t_* > \tau$, $b\rho'_a(t) < \eta'_{p,\Lambda}(t)$ for all $t \in [\tau, t_*)$ and $b\rho'_a(t_*) = \eta'_{p,\Lambda}(t_*)$. Since $b\rho_a(s) < \eta_{p,\Lambda}(s)$ for $s \in [\tau, t_*]$, we obtain

$$
s_{\kappa}(t_{*})^{n-1} \eta'_{p,\Lambda}(t_{*})^{p-1} = s_{\kappa}(\tau)^{n-1} \eta'_{p,\Lambda}(\tau)^{p-1} + \int_{\tau}^{t_{*}} \Lambda s_{\kappa}(s)^{n-1} \eta'_{p,\Lambda}(s)^{p-1} ds
$$

\n
$$
> s_{\kappa}(\tau)^{n-1} b^{p-1} \rho'_{a}(\tau)^{p-1} + \int_{\tau}^{t_{*}} \lambda(a,s) s_{\kappa}(s)^{n-1} b^{p-1} \rho'_{a}(s)^{p-1} ds
$$

\n
$$
\geq b^{p-1} s_{\kappa}(\tau)^{n-1} \rho'_{a}(\tau)^{p-1} + b^{p-1} \int_{\tau}^{t_{*}} (s_{\kappa}(s)^{n-1} \rho'_{a}(s)^{p-1})' ds
$$

\n
$$
= b^{p-1} s_{\kappa}(t_{*})^{n-1} \rho'_{a}(t_{*})^{p-1} = s_{\kappa}(t_{*})^{n-1} \eta'_{p,\Lambda}(t_{*})^{p-1}.
$$

This is absurd. Thus we see that $b\rho'_a(t) < \eta'_{p,\Lambda}(t)$ for all $t \ge \tau$, and hence $b\rho_a(t) < \eta_{p,\Lambda}(t)$ for all $t \geq \tau$. This shows that

$$
\sqrt{\kappa}a = \lim_{t \to \infty} \frac{1}{t} \log b\rho_a(t) \le \liminf_{t \to \infty} \frac{1}{t} \log \eta_{p,\Lambda}(t).
$$

This holds for any $a < \kappa^{-1/2} Z(p, n, \kappa, \Lambda)$. Thus we get

$$
Z(p, n, \kappa, \Lambda) \le \liminf_{t \to \infty} \frac{1}{t} \log \eta_{p, \Lambda}(t).
$$

Similarly, we can deduce that

$$
\limsup_{t\to\infty}\frac{1}{t}\log\eta_{p,\Lambda}(t)\leq Z(p,n,\kappa,\Lambda).
$$

In this way, we obtain $\lim_{t\to\infty}\frac{1}{t}\log\eta_{p,\Lambda}(t)=Z(p,n,\kappa,\Lambda)$. This completes the proof of Lemma [2.21.](#page-21-0)

3. Harnack inequalities and proof of Theorem [1.1](#page-2-2)

Let (M, g_M, μ_f) be a connected, noncompact, complete weighted Riemannian manifold of dimension m. Let Ω be an open subset of M. In this section, we assume the volume doubling property (VD) and the family of (weak) scaled Poincaré inequalities $(PI(p))$ $(p \in (1, +\infty))$ as follows:

(i) there exists a positive constant C_D such that, for any ball $B(x, 2t) \subset \Omega$,

$$
\mu_f(B(x,t)) \leq C_D \,\mu_f(B(x,t/2));
$$

(ii) there exists a positive constant C_P such that for every ball $B(x, 2t) \subset \Omega$ and any $u \in L^{1,p}_{loc}(B(x, 2t)),$

$$
\int_{B(x,t/2)} |u - u_{B(x,t/2)}|^p \, d\mu_f \leq C_P \, t^p \int_{B(x,t)} |\nabla u|^p \, d\mu_f,
$$

where

$$
u_{B(x,t/2)} = \frac{1}{\mu_f(B(x,t/2))} \int_{B(x,t/2)} u \, d\mu_f.
$$

Then it is known that the family $(SI(p))$ of Sobolev inequalities holds in such a way that for some constants $k > 1$ and $C_S > 0$, and for every ball $B(x, 2t) \subset \Omega$ and any $v \in L_0^{1,p}(B(x,t)),$

$$
\Big(\int_{B(x,t)}|v|^{pk}\,d\mu_f\Big)^{1/k}\leq \frac{C_S\,t^p}{\mu_f(B(x,t))^{p/\nu}}\int_{B(x,t)}|\nabla v|^p+t^{-p}|v|^p\,d\mu_f,
$$

where we can take $k = v/(v - p)$ with $v = \max\{p + 1, \log_2 C_D\}$, and C_S depends only on C_D and C_P (See [\[7\]](#page-54-8), Lemma 4.3; [\[29\]](#page-55-6), [\[30\]](#page-55-7), [\[31\]](#page-55-4) and references therein.)

A Harnack inequality for positive p-harmonic functions is obtained in Coulhon, Holopainen and Saloff-Coste [\[7\]](#page-54-8) by running the Moser iteration as in [\[30\]](#page-55-7) under the assumption that volume doubling property and suitable Poincaré inequalities hold. In fact, the result is established in a natural framework including the usual p -Laplacians. Along the line of [\[7\]](#page-54-8), we extends the Harnack inequality for positive solutions of equation $-\Delta_{f,pl}u$ + $W|u|^{p-2}u = 0$, where W is a locally bounded potential function. We refer also to [\[26\]](#page-55-0).

The main result of this section is the following.

Theorem 3.1. Let (M, g_M, μ_f) be a noncompact, connected, complete weighted Rieman*nian manifold of dimension* m*. The volume doubling property* (VD) *and the family* (PI(p)) *of Poincaré inequalities with constants* C^D *and* C^P *respectively are satisfied in an open* $subset$ Ω . Then for any nonnegative function $u \in L^{1,p}_{loc}(B(x, 2t))$, $B(x, 2t) \subset \Omega$, satisfying

$$
-\lambda |u|^{p-2}u \leq \Delta_{f;p}u \leq \Lambda |u|^{p-2}u
$$

in the weak sense on $B(x, 2t)$ *, where* λ *and* Λ *are positive constants, one has*

$$
\sup_{B(x,t)} u \leq C \inf_{B(x,t)} u.
$$

Here C is a positive constant depending only on C_D *,* C_P *, p, t^p* λ *<i>, and* t^p Λ *.*

We start with:

Theorem 3.2. Assume $(SI(p))$ is satisfied on Ω and let $B(x, 2t) \subset \Omega$. Let $0 < \sigma < \sigma' < 1$ and $0 < \alpha < +\infty$. For a nonnegative function u in $L^{1,p}_{loc}(B(x, 2t))$ satisfying $-\lambda |u|^{p-2}u \le$ $\Delta_{f, p} u$ *in the weak sense on* $B(x, 2t)$ *, where* λ *is a positive constant, one has*

$$
\sup_{B(x,\sigma t)} u \leq C C_S^{v/p} \Big(\frac{1}{\mu_f(B(x,t))} \int_{B(x,\sigma' t)} u^{\alpha} d\mu \Big)^{1/\alpha},
$$

where *C* is a positive constant depending only on p, k, σ , σ' , α and $t^p\lambda$.

Proof. For the case where $\lambda = 0$, the theorem is shown in [\[7\]](#page-54-8), Theorems 4.4 and 4.5, and we can adapt the proof for our case.

Now we are concerned with a positive function $u \in W^{1,p}_{loc}(B(x, 2t))$ satisfying $\Delta_{f,p} u \leq$ $\lambda |u|^{p-2}u$, where λ is a positive constant. We begin with:

Lemma 3.3. *Suppose that* $(SI(p))$ *is satisfied and* $B(x, 2t) \subset \Omega$ *. Let* $0 < \sigma < \sigma' \leq 1$, $0 < \sigma$ $s' < k^{-1}s < s < k(p-1)$, and $0 < q < +\infty$. For a positive function u in $L^{1,p}_{loc}(B(x, 2t))$ satisfying $\Delta_{f,p} u \leq \Lambda |u|^{p-2}u$ in the weak sense, one has

$$
\left(\frac{1}{\mu_f(B(x,t))}\int_{B(x,\sigma t)}u^sd\mu\right)^{1/s} \leq \left[CC_S^{v^2/p^2}(\sigma'-\sigma)^{-v^2/p}\right]^{1/s'-1/s}\left(\frac{1}{\mu_f(B(x,t))}\int_{B(x,\sigma't)}u^{s'}d\mu\right)^{1/s'}
$$

and

$$
\sup_{B(x,\sigma t)} u^{-q} \leq C C_S^{\nu/p} (\sigma' - \sigma)^{-1/\nu} \frac{1}{\mu_f(B(x,t))} \int_{B(x,\sigma' t))} u^{-q} d\mu,
$$

where C is a positive constant depending only on p, v and $t^p \Lambda$ *.*

Proof. For the case where $\Lambda = 0$, the theorem is shown in [\[7\]](#page-54-8), Theorems 4.6. 4.7, and we can adapt the proof for our case. See also [\[26\]](#page-55-0), Chapter 7.

Now by referring to the proof of Theorem 3.1 in [\[7\]](#page-54-8), we prove the following.

Lemma 3.4. *Suppose that* (PI(p)) *is satisfied on* Ω *and let* $B(x, 2t) \subset \Omega$ *. Let* $0 < \delta < 1$ and let u be a positive function in $L^{1,p}_{loc}(B(x, 2t))$ satisfying $\Delta_{f,p}u \leq \Lambda |u|^{p-2}u$ in the *weak sense. Then*

$$
\int_{B(x,\delta t)} |\nabla \log u|^p \, d\mu_f \leq \frac{2^p (1 + t^p \Lambda)}{(p-1)(1-\delta)^p t^p} \, \mu_f(B(x,t)).
$$

Proof. In this proof, we write B, $B(s)$ ($0 < s < t$) and $V(s)$ respectively for $B(x, t)$, $B(x, s)$ and $\mu_f(B(x, s))$. For any function $w \in L^{1,p}_{loc}(B)$, $w \ge \varepsilon > 0$, we have

$$
-\Delta_{f;p} \log w + \frac{\Delta_{f;p} w}{w^{p-1}} = (p-1)|\nabla \log w|^p
$$

in the weak sense, that is, for any nonnegative function $\psi \in L_0^{1,p}(B)$ with compact support in B , we have

$$
\int g(\nabla \psi, \nabla \log w) |\nabla \log w|^{p-2} d\mu_f - \int g(\nabla w, \nabla \left(\frac{\psi}{w^{p-1}}\right)) |\nabla w|^{p-2} d\mu_f
$$

= $(p-1) \int \psi |\nabla \log w|^p d\mu_f$.

This shows that $log u$ satisfies

$$
(p-1)\int \psi |\nabla \log u|^p \, d\mu_f - \Lambda \int \psi \, d\mu_f \le \int \langle \nabla \psi, \nabla \log u \rangle |\nabla \log u|^{p-2} \, d\mu_f
$$

for any nonnegative $\psi \in L_0^{1,p}(B)$. Taking

$$
\psi(y) = \begin{cases} 1 & \text{if } y \in B(s), \\ 1 - \frac{1}{\varepsilon}(\text{dis}_M(x, y) - 1) & \text{if } y \in B(s + \varepsilon) \setminus B(s), \\ 0 & \text{otherwise,} \end{cases}
$$

yields

$$
(p-1)\int_{B(s)}|\nabla \log u|^p\,d\mu_f\leq \frac{1}{\varepsilon}\int_{B(s+\varepsilon)\setminus B(s)}|\nabla \log u|^{p-1}\,d\mu_f+\lambda\int_{B(t+\varepsilon)}d\mu_f.
$$

Since

$$
\frac{1}{\varepsilon} \int_{B(s+\varepsilon)\setminus B(t)} |\nabla \log u|^{p-1} d\mu_f
$$
\n
$$
\leq \left(\frac{V(s+\varepsilon)-V(t)}{\varepsilon}\right)^{1/p} \left(\frac{1}{\varepsilon} \int_{B(s+\varepsilon)\setminus B(s)} |\nabla \log u|^p d\mu_f\right)^{1/p'},
$$

where $p' = \frac{p}{p-1}$, we get

$$
(p-1)\int_{B(s)} |\nabla \log u|^p \, d\mu_f
$$

\$\leq \left(\frac{V(s+\varepsilon)-V(s)}{\varepsilon}\right)^{1/p} \left(\frac{1}{\varepsilon} \int_{B(s+\varepsilon)\setminus B(s)} |\nabla \log u|^p \, d\mu_f\right)^{p'} + \Lambda V(s+\varepsilon).

Thus putting $H(s) = (p-1) \int_{B(s)} |\nabla \log u|^p d\mu_f$ and letting ε tend to 0 yield

$$
H(s) \le \left(\frac{H'(s)}{p-1}\right)^{1/p'} V'(s)^{1/p} + \Lambda V(s),
$$

and hence

$$
\frac{1}{V'(s)^{1/p}} \leq \frac{1}{(p-1)^{1/p'}} \left(\frac{H'(s)}{H(s)^{p'}}\right)^{1/p'} + \frac{\Lambda V(s)}{H(s)} \frac{1}{V'(s)^{1/p}}.
$$

Suppose that $2\Lambda V(t) = H(s_0)$ for some $s_0 \in (0, t)$. Since

$$
\frac{\Lambda V(s)}{H(s)} \le \frac{\Lambda V(t)}{H(s_0)} = \frac{1}{2},
$$

we have

$$
\frac{1}{2^{p'}} \frac{1}{V'(s)^{p/p'}} \le \frac{1}{p-1} \frac{H'(s)}{H(s)^{p'}}, \quad s_0 \le s \le t.
$$

Integrating both sides from s' to s for $s_0 \leq s' < s \leq t$, we obtain

(3.1)
$$
\frac{1}{2^{p'}} \int_{s'}^{s} \frac{d\sigma}{V'(\sigma)^{p'/p}} \leq \frac{1}{H(s')^{p'/p}} - \frac{1}{H(s)^{p'/p}}.
$$

The left-hand side can be bounded from below by $((s - s')^p / (V(s) - V(s'))^{1/(p-1)}$, because

$$
(s-s')^p = \left(\int_{s'}^s d\sigma\right)^p \le \left(\int_{s'}^s V'(\sigma) d\sigma \int_{s'}^t \frac{1}{V'(\sigma) p'/p} d\sigma\right)^{p/p'} = (V(s) - V(s')) \left(\int_{s'}^s \frac{d\sigma}{V'(\sigma) p'/p}\right)^{p/p'}.
$$

Hence, by (3.1) , we have

$$
\frac{1}{2^{p'}}\left(\frac{(s-s')^{p}}{V(s)-V(s')}\right)^{1/(p-1)} \le \frac{1}{H(s')^{p'/p}} - \frac{1}{H(s)^{p'/p}} \le \frac{1}{H(s)^{p'/p}}
$$

and thus

$$
H(s') \le 2^p \frac{V(s) - V(s')}{(s - s')^p}, \quad s_0 \le s' < s \le t.
$$

This shows that if $\delta t \geq s_0$, then

$$
H(\delta t) \le 2^p \frac{V(t) - V(\delta t)}{t^p (1 - \delta)^p} \le 2^p \frac{V(t)}{t^p (1 - \delta)^p},
$$

and if $\delta t < s_0$, then

$$
H(\delta t) \le H(s_0) = 2\Lambda V(t).
$$

In this way, we obtain

$$
H(\delta t) \leq 2^p \left(\frac{1}{t^p (1 - \delta)^p} + \Lambda \right) V(t) < \frac{2^p (1 + t^p \Lambda)}{(1 - \delta)^p t^p} V(t).
$$

If $H(s) < 2\Lambda V(t)$ for any $s \in (0, t)$, then we have

$$
H(\delta t) < 2\Lambda V(t) < \frac{2^p(1 + t^p \Lambda)}{(1 - \delta)^p t^p} V(t).
$$

This completes the proof of Lemma [3.4.](#page-24-0)

In order to arrive at Theorem [3.1,](#page-23-1) we need an abstract lemma due to Bombieri and Giusti [\[3\]](#page-53-4), which simplifies considerably Moser's original proof of the Harnack inequality.

п

Consider a collection of measurable subsets U_{σ} , $0 < \sigma < 1$, of a fixed measure space endowed with a measure μ , such that $U_{\sigma} \subset U_{\sigma'}$ if $\sigma \leq \sigma'$. In our application, U_{σ} will be $B(x, \sigma t)$ for some fixed metric ball $B(x, t) \subset M$.

Lemma 3.5 ([\[3\]](#page-53-4); [\[31\]](#page-55-4), Subsection 2.2.3). *Fix* $0 < \delta < 1$. Let γ and C be positive constants *and let* $0 < \alpha_0 \leq +\infty$. Let g be a positive measurable function on $U_1 = U$ which satisfies

$$
\Big(\int_{U_{\sigma}} g^{\alpha_0} d\mu\Big)^{1/\alpha_0} \leq (\sigma' - \sigma)^{-\gamma} \mu(U)^{-1}\Big)^{1/\alpha - 1/\alpha_0} \Big(\int_{U_{\sigma'}} g^{\alpha} d\mu\Big)^{1/\alpha}
$$

for all σ , σ' , α such that $0 < \delta \leq \sigma < \sigma' \leq 1$ and $0 < \alpha \leq \min\{1, \alpha_o/2\}$. Assume further *that* g *satisfies*

$$
\mu(\log g > t) \le \mu(U) t^{-1}
$$

for all $t > 0$ *. Then*

$$
\Big(\int_{U_\delta} g^{\alpha_0} \, d\mu\Big)^{1/\alpha_0} \leq A \, \mu(U)^{1/\alpha_0},
$$

where A depends only on δ , γ , *C and a lower bound on* α_0 *.*

Theorem 3.6. *Assume the volume doubling property* (VD) *and the family of Poincaré inequalities* (PI(p)) with constants C_D and C_P ($p \in (1, +\infty)$), respectively, are satisfied *in an open subset* Ω *. Let* $\nu = \max\{p + 1, \log_2 C_D\}$, $0 < s < \nu(p - 1)/(\nu - p)$ *, and* $0 < \delta < 1$. Then a positive function $u \in L^{1,p}_{loc}(B(x, 2t)), B(x, 2t) \subset \Omega$, satisfying

$$
\Delta_{f,p} u \leq \Lambda u^{p-1}
$$

in $B(x, 2t)$ *fulfills*

$$
\Big(\frac{1}{\mu_f(B(x,\delta t))}\int_{B(x,\delta t)}u^s\,d\mu_f\Big)^{1/s}\leq C\inf_{B_x(\delta t)}u.
$$

Here C is a positive constant depending only on δ *, p, C_D, C_P, and t^p* Λ *.*

Proof. Let

$$
c = \frac{1}{\mu_f(B(x,\delta t))} \int_{B(x,\delta t)} \log u \, d\mu.
$$

In view of Lemma [3.3,](#page-24-1) we can apply Lemma [3.5](#page-27-0) to $e^{-c}u$ and $e^{c}u^{-1}$. First it follows from $(PI(p))$ and Lemma [3.4](#page-24-0) that

$$
\int_{B(x,\delta t)} |\log u - c| d\mu \leq \mu_f(B(x,\delta t))^{1-1/p} \Big(\int_{B(x,\delta t)} |\log u - c|^p d\mu \Big)^{1/p}
$$

$$
\leq C_1 \mu_f(B(x,\delta \rho)),
$$

where we put $C_1 = 2(1 + t^p \lambda)^{1/p} (p - 1)^{-1/p} (1 - \delta)^{-1} C_p$. This shows that for any $\tau > 0$,

$$
\tau\mu(\{x\in\delta B\mid\log e^{-c}u\geq\tau\})\leq\int_{\delta B}|\log u-c|\,d\mu\leq C_1\,\mu_f(B(x,\delta t)).
$$

Similarly, we have

$$
\tau\mu(\lbrace x\in\delta B\mid\log e^cu^{-1}\geq\tau\rbrace)\leq C_1\,\mu_f(B(x,\delta t)).
$$

Then it follows from Lemma [3.5](#page-27-0) that

$$
\Big(\int_{B(\delta t)} u^s \, d\mu\Big)^{1/s} \le A \mu_f (B(x,\delta t))^{1/s} e^c, \quad 0 < s < \frac{\nu(p-1)}{\nu - p}
$$

and also

$$
e^c \sup_{\delta B} u^{-1} \le A.
$$

These show the required inequality.

It is clear that Theorem [3.1](#page-23-1) is derived from Theorems [3.2](#page-24-2) and [3.6.](#page-27-1)

Proof of Theorem [1.1](#page-2-2). (i) By the assumptions, we assume that for some positive constants κ , α and α' ,

$$
\text{Ric}_M \ge -\kappa (m-1)(1+r)^{-2}, \quad |\nabla f| \le \alpha (1+r)^{-1} \quad \text{and} \quad |W| \le \alpha' (1+r)^{-p}
$$

on M. Let $b = \sup_{t>0} t^{-1}$ diam^(σ ; ∞)($S(\sigma, t)$) and it is assumed that b is finite. We fix a positive integer k in such a way that $\sigma \leq 2^{k-2}(1-\sigma)$. For any $x, y \in S(o, t)$, let $\gamma_{xy}: [0, L] \to M \setminus B(o, (1 - \sigma)t)$ $(L = \text{dis}^{(\sigma;t)}(x, y))$ be a curve parametrized by arclength joining $x = \gamma_{xy}(0)$ to $y = \gamma_{xy}(L)$. We choose a nonnegative integer j in such a way that

$$
\frac{\sigma j}{2^{k+1}} \leq \frac{L}{t} < \frac{\sigma(j+1)}{2^{k+1}}.
$$

Note that $j \leq 2^{k+1}\sigma^{-1}b$, since $L \leq t$ b. Let $x_i = \gamma_{xy}(2^{-k-1}\sigma t i)$ $(i = 0, 1, ..., j)$ and $x_{j+1} = y$. Note also that $B(x_i, 2^{-k}\sigma t)$ $(i = 0, ..., j)$ are all remote balls, and on $M \setminus B(o, (1 - (1 + 2^{-k})\sigma)t)$ which includes $\bigcup_{i=0}^{j+1} B(x_i, 2^{-k}\sigma t)$, we have the Ricci curvature bounded from below by $-(m-1)\kappa(1 + (1 - (1 + 2^{-k})\sigma)t)^{-2}$, $|\nabla f|$ bounded from above by $\alpha(1 + (1 - (1 + 2^{-k})\sigma)t)^{-1}$ and |W| bounded from above by $\alpha'(1 + (1 (1 + 2^{-k})\sigma(t)^{-p}$. Since $2^{-k}\sigma t < 1 + (1 - (1 + 2^{-k})\sigma)t$, it follows from Theorem [3.1](#page-23-1) that $u(x_i) \leq C_2 u(x_{i+1})$ $(i = 0, \ldots, j)$, and hence we have $u(x) \leq C_2 i + u(y)$, where C_2 is a positive constant independent of u and t . This completes the proof of assertion (i).

(ii) Based on the annulus Harnack inequalities in the first assertion and using the same arguments as in Theorem 7.1 in [\[23\]](#page-54-5), we can verify the second one. We omit the details of the proof.

(iii) Let $M(t) = \sup_{S(a,t)} u$ and $m(t) = \inf_{S(a,t)} u$. If $W \ge 0$ and u is unbounded, then Lemma [2.2](#page-7-1) shows that $M(t)$ diverges to infinity as $t \to \infty$. By the annulus Harnack inequality, $M(t) \leq C_H m(t)$ for all $t \geq 0$. This implies that $u(x) \to +\infty$ as $x \in M \to \infty$. When $W \le 0$ and inf_M $u = 0$, we see from Lemma [2.2](#page-7-1) that $m(t)$ tends to zero as $t \to \infty$. Thus the annulus Harnack inequality shows that $u(x)$ goes to zero as $x \in M \to \infty$.

(iv) Let $\eta(t)$ be the solution of equation [\(2.2\)](#page-9-0) with $W_*(t) = \phi(t)$. Then by Proposi-tion [2.7\(](#page-10-0)i), we have $\sup_{S(a,t)} u \geq u(o)\eta(t)$, and by Lemma [2.9](#page-11-0)(i), $\lim_{t\to\infty} \eta(t) = +\infty$, so that sup_M $u = +\infty$. This proves that $\lim_{x \in M \to \infty} u(x) = +\infty$.

Now let $\omega(t)$ be the solution of [\(2.3\)](#page-12-1) with $W_*(t) = \phi(t)$. Then by Proposition [2.11](#page-14-3) and Lemma [2.12\(](#page-14-2)i), we have $\omega(t) \ge u(o)^{-1} \inf_{S(o,t)} u$ and $\lim_{t \to \infty} w(t) = 0$. These show that inf_M $u = 0$, and hence $\lim_{x \in M \to \infty} u(x) = 0$.

 \blacksquare

Before ending this section, we have by Lemma $2.9(ii)$ $2.9(ii)$ and Lemma $2.12(ii)$ $2.12(ii)$, the following.

Proposition 3.7. *Let* (M, g_M, μ_f) *be a connected, noncompact, and complete weighted Riemannian manifold of dimension m satisfying* [\(1.1\)](#page-2-0), [\(1.2\)](#page-2-1) and $\delta^{(\sigma;\infty)}(M) < +\infty$ for *some* $\sigma \in (0, 1)$ *. Given a bounded function* W *on* M, assume that $Q_{p;W} \geq 0$ *. Let* $u \in$ $L^{1,p}_{loc}(M) \cap C^{1,\alpha}_{loc}(M)$ be a positive solution to the equation $Q'_{p;W}(u) = 0$ in M.

(i) *Suppose that*

$$
\frac{\lambda}{(1+r)^p} \le W \le \frac{\Lambda}{(1+r)^p}
$$

for some positive constants λ , Λ *with* $\lambda < \Lambda$ *. Then one has*

 $u > C(1+r)^{\gamma(p,m,\kappa,\alpha,\lambda)}$ in M,

where C is a positive constant and $\gamma(p, m, \kappa, \alpha, \lambda)$ is the positive solution of

$$
x|x|^{p-2}(x(p-1) + \beta(m, \kappa, \alpha) + 1 - p) = \lambda
$$

with $\beta(m, \kappa, \alpha) = \alpha + (m-1)(1 + \sqrt{1 + 4\kappa})/2$.

(ii) *Suppose that* $p = 2$ *and*

$$
-\frac{\Lambda}{(1+r)^2} \le W \le -\frac{\lambda}{(1+r)^2}
$$

for some positive constants λ , Λ *with* $\lambda < \Lambda$ *. Then one has*

$$
u \leq \frac{C'}{(1+r)^{\xi(m,\kappa,\alpha,\lambda)}} \quad \text{in } M,
$$

where C 0 *is a positive constant and*

$$
\zeta(m,\kappa,\alpha,\lambda)=\min\left\{\frac{1}{2}((\beta-1)-\sqrt{(\beta-1)^2-4\lambda}),2\sqrt{1+4\kappa}+\frac{\lambda}{\beta-1}\right\}.
$$

with $\beta = \beta(m, \kappa, \alpha)$.

4. Proof of Theorem [1.2](#page-3-0)

Under the conditions (1.1) , (1.2) , (VC) and (RCA) , we can conclude from Theorem 5.2, Corollary 5.4 and Theorem 2.7 in [\[13\]](#page-54-7) that (M, g_M, μ_f) satisfies (VD) with a constant $C_D > 1$ and (PI(2)), or equivalently, that the following two-sided estimate for the heat kernel $p(t, x, y)$ of the Laplacian $\Delta_{f, 2}$ holds:

(4.1)
$$
\frac{C_0}{V(x,\sqrt{t})} \exp\left(-C_0' \frac{\text{dis}_M(x,y)^2}{t}\right) \le p(t,x,y) \le \frac{C_0'}{V(x,\sqrt{t})} \exp\left(-C_0 \frac{\text{dis}_M(x,y)^2}{t}\right)
$$

for all $x, y \in M$, $t > 0$ and some $C'_0 > C_0 > 0$, where we put $V(x, t) = \mu_f(B(x, t)).$

Moreover, in view of [\(1.3\)](#page-3-1) $(\beta > 2)$, the Green function

$$
G(x, y) = \int_0^\infty p(t, x, y) dt
$$

exists and satisfies

(4.2)
$$
C_1^{-1} \int_{\text{dis}_M(x,y)}^{\infty} \frac{t}{V(x,t)} dt \le G(x,y) \le C_1 \int_{\text{dis}_M(x,y)}^{\infty} \frac{t}{V(x,t)} dt
$$

for all $x, y \in M$ and some $C_1 > 1$.

Let ψ be a positive nonincreasing C^1 function on $[0, \infty)$ such that

(4.3)
$$
\int_0^\infty t \psi(t) dt < +\infty.
$$

We first observe that for $0 \le a < b < +\infty$,

$$
(4.4) \quad \int_{\{a \le r \le b\}} \psi(r) \, d\mu_f
$$

$$
\le C_\beta^{-1} \psi(a) \, a^\beta \, V(o, b) \, b^{-\beta} + \beta \, C_\beta^{-1} \, V(o, b) \, b^{-\beta} \int_a^b \psi(r) \, r^{\beta - 1} \, dr.
$$

In fact, using the growth condition (1.3) , we have

$$
\int_{\{a \le r \le b\}} \psi(r) d\mu_f = \int_a^b \psi(r) V'(o, r) dr
$$
\n
$$
= \psi(b) V(o, b) - \psi(a) V(o, a) - \int_a^b \psi'(r) V(o, r) dr
$$
\n
$$
\leq \psi(b) V(o, b) + C_\beta^{-1} V(o, b) b^{-\beta} \int_a^b -\psi'(r) r^\beta dr
$$
\n
$$
\leq \psi(b) V(o, b) + C_\beta^{-1} V(o, b) b^{-\beta} \Big(\psi(a) a^\beta - \psi(b) b^\beta + \beta \int_a^b \psi(r) r^{\beta - 1} dr \Big)
$$
\n
$$
\leq C_\beta^{-1} \psi(a) a^\beta V(o, b) b^{-\beta} + \beta C_\beta^{-1} V(o, b) b^{-\beta} \int_a^b \psi(r) r^{\beta - 1} dr.
$$

Thus we obtain [\(4.4\)](#page-30-0).

Now for a nonnegative number k , we let

$$
G_k(x) = \int_{M \setminus B(o,k)} G(x,z) \,\psi(r(z)) \, d\mu_f(z), \quad x \in M.
$$

Then we have:

Lemma 4.1. *The following assertions hold*:

- (i) $\lim_{x \in M \to \infty} G_0(x) = 0,$
- (ii) $\lim_{k \to \infty} \sup_{x \in M} G_k(x) = 0.$

Proof. To estimate $G_k(x)$, we put

$$
G_{k;1}(x) = \int_{\{k \le r(z) \le 2r(x); d(x,z) \ge r(x)/2\}} G(x, z) \psi(r(z)) d\mu_f(z),
$$

\n
$$
G_{k;2}(x) = \int_{\{r(z) \ge k; d(x,z) \le r(x)/2\}} G(x, z) \psi(r(z)) d\mu_f(z),
$$

\n
$$
G_{k;3}(z) = \int_{\{r(z) \ge 2r(x)\}} G(x, z) \psi(r(z)) d\mu_f(z).
$$

In view of [\(4.2\)](#page-30-1) and the volume doubling property (VD) with a constant $C_D > 1$ (see Remark [2.20\)](#page-21-1), we see that

$$
G(x, z) \le C_1 \int_{r(x)/2}^{\infty} \frac{t \, dt}{V(x, t)} = C_1 \int_{r(x)/2}^{\infty} \frac{V(o, t)}{V(x, t)} \frac{t \, dt}{V(o, t)}
$$

\n
$$
\le C_1 \int_{r(x)/2}^{\infty} \frac{V(o, t)}{V(x, t + r(x))} \frac{V(x, t + r(x))}{V(x, t)} \frac{t \, dt}{V(o, t)}
$$

\n
$$
\le C_1 C_0 \left(\frac{t + r(x)}{t}\right)^{\gamma} \int_{r(x)/2}^{\infty} \frac{t \, dt}{V(o, t)} \le 3^{\gamma} C_1 C_0 \int_{r(x)}^{\infty} \frac{t \, dt}{V(o, t)}
$$

if $d(x, z) \ge r(x)/2$. Putting $C_2 = 3^{\gamma}C_1C_D$, we have

$$
G_{k;1}(x) \leq C_2 \int_{r(x)/2}^{\infty} \frac{t \, dt}{V(o,t)} \int_{\{k \leq r(z) \leq 2r(x); d(x,z) \geq r(x)/2\}} \psi(r(z)) \, d\mu_f(z).
$$

Since we assume the volume growth [\(1.3\)](#page-3-1), we get

$$
\int_{r(x)/2}^{\infty} \frac{t \, dt}{V(o,t)} \leq 2^{\beta} \frac{C_{\beta}^{-1}}{V(o,r(x)/2)} \int_{r(x)/2}^{\infty} t \left(\frac{r(x)}{t}\right)^{\beta} dt = \frac{C_{\beta}^{-1} r(x)^2}{2^2(\beta-2) V(o,r(x)/2)},
$$

and we have by [\(4.4\)](#page-30-0),

$$
\int_{\{k \le r(z) \le 2r(x); d(x,z) \ge r(x)/2\}} \psi(r(z)) d\mu_f(z)
$$
\n
$$
\le \frac{C_\beta^{-1} \psi(k) k^{\beta} V(o, 2r(x))}{2^{\beta} r(x)^{\beta}} + \frac{\beta C_\beta^{-1} V(o, 2r(x))}{2^{\beta} r(x)^{\beta}} \int_k^{2r(x)} \psi(r) r^{\beta-1} dr
$$
\n
$$
\le \frac{C_\beta^{-1} \psi(k) k^{\beta} V(o, 2r(x))}{2^{\beta} r(x)^{\beta}} + \frac{\beta}{2^{\beta}} C_\beta^{-1} V(o, 2r(x)) \int_{k/r(x)}^2 \psi(r(x) t) t^{\beta-1} dt.
$$

In this way, we obtain

$$
G_{k;1}(x) \leq C_3 \frac{\psi(k)k^{\beta}}{r(x)^{\beta-2}} + C_3 r(x)^2 \int_0^2 \psi(r(x)t) t^{\beta-1} dt,
$$

where we put $C_3 = C_1 C_D^2 C_\beta^{-2} 16^\gamma \beta (\beta - 2)^{-1}$.

For $G_{k,2}(x)$, we have

$$
G_{k;2}(x) \leq \psi((r(x)/2) \vee k) \int_{\{d(x,z) \leq r(x)/2\}} G(x,z) d\mu_{f}(z)
$$

\n
$$
\leq C_{1} \psi((r(x)/2) \vee k) \int_{0}^{r(x)/2} \int_{r}^{\infty} \frac{t dt}{V(x,t)} V'(x,r) dr
$$

\n
$$
= C_{1} \psi((r(x)/2) \vee k) \Big(\int_{r(x)/2}^{\infty} \frac{t dt}{V(x,t)} V(x,r(x)/2) + \int_{0}^{r(x)/2} r dr \Big)
$$

\n
$$
\leq C_{1} \psi((r(x)/2) \vee k) \Big(\int_{r(x)/2}^{3r(x)} \frac{t V(x,r(x)/2)}{V(x,t)} dt + \int_{3r(x)}^{\infty} \frac{t V(x,r(x)/2)}{V(x,t)} dt + r(x)^{2} \Big)
$$

\n
$$
\leq C_{1} \psi((r(x)/2) \vee k) \Big(6r(x)^{2} + \int_{3r(x)}^{\infty} \frac{t V(o,3r(x)/2)}{V(o,t-r(x))} dt \Big)
$$

\n
$$
\leq C_{1} \psi((r(x)/2) \vee k) \Big(6r(x)^{2} + C_{\beta} \int_{3r(x)}^{\infty} t \Big(\frac{3r(x)/2}{t-r(x)} \Big)^{\beta} dt \Big)
$$

\n
$$
\leq 6C_{1} \Big(1 + \frac{C_{\beta}}{\beta - 2} \Big) \psi((r(x)/2) \vee k) r(x)^{2}.
$$

Finally, we consider $G_{k,3}(x)$. Since we have for $t \ge 2r(x)$,

$$
V(x,t) \ge V(o, t - r(x)) \ge C_D \left(\frac{t - r(x)}{t}\right)^{\gamma} V(o, t) \ge \frac{C_D}{2^{\gamma}} V(o, t),
$$

we get

$$
G_{k;3}(x) \leq C_1 \int_{\{r(z)\geq 2r(x)\}} \int_{d(x,z)}^{\infty} \frac{t dt}{V(x,t)} \psi(r) d\mu_f(z)
$$

\n
$$
\leq C_1 \int_{\{r(z)\geq 2r(x)\}} \int_{r(z)-r(x)}^{\infty} \frac{t dt}{V(x,t)} \psi(r) d\mu_f(z)
$$

\n
$$
\leq C_1 C_D \int_{r(x)}^{\infty} \left(\frac{t}{V(o,t)} \int_{\{2r(x)\leq r(z)\leq t+r(x)\}} \psi(r) d\mu_f(z) \right) dt.
$$

Since we have by (4.4) ,

$$
\int_{\{2r(x)\leq r\leq t+r(x)\}} \psi(r) d\mu_f
$$
\n
$$
\leq C_{\beta}^{-1} \frac{V(o, t+r(x))}{(t+r(x))^{\beta}} \Big(\psi(2r(x))(2r(x))^{\beta} + \beta \int_{2r(x)}^{t+r(x)} \psi(r)r^{\nu-1} dr \Big)
$$

and

$$
\frac{V(o,t+r(x))}{V(o,t)} \leq C_D \left(\frac{t+r(x)}{t}\right)^{\gamma} \leq C_D 2^{\gamma},
$$

putting $C_4 = 2^{\gamma} \beta C_1 C_D^2 C_{\beta}^{-1}$, we get

$$
G_{k;3}(x) \leq C_4 \int_{r(x)}^{\infty} \frac{t}{(t+r(x))^\beta} \left(\psi(2r(x))(2r(x))^\beta + \int_{2r(x)}^{t+r(x)} \psi(r)r^{\beta-1} \right) dt
$$

\n
$$
\leq C_4 \psi(2r(x))(2r(x))^\beta \int_{r(x)}^{\infty} \frac{t dt}{(t+r(x))^\beta}
$$

\n
$$
+ C_4 \int_{r(x)}^{\infty} \frac{t}{(t+r(x))^\beta} \int_{2r(x)}^{t+r(x)} \psi(r)r^{\beta-1} dr dt
$$

\n
$$
\leq C_4 (\beta-2)^{-1} \psi(2r(x))(2r(x))^2 + C_4 \int_{2r(x)}^{\infty} \psi(r)r^{\beta-1} \int_{r-r(x)}^{\infty} \frac{t dt}{(t+r(x))^\beta} dr
$$

\n
$$
\leq C_4 (\beta-2)^{-1} \psi(2r(x))(2r(x))^2 + C_4 \int_{2r(x)}^{\infty} \psi(r)r dr.
$$

In this way, we obtain

$$
G_k(x) \le C_5 \Big(\frac{\psi(k)k^{\beta}}{r(x)^{\beta-2}} + \int_0^2 \psi(r(x)t) (r(x)t)^2 t^{\beta-3} dt + \psi((r(x)/2) \vee k) r(x)^2 + \psi(2r(x)) (2r(x))^2 + \int_{r(x)}^{\infty} t \psi(t) dt \Big)
$$

for some positive constant C_5 and for all $k \geq 0$ and $x \in M$. This shows the assertions in the lemma. The proof of Lemma [4.1](#page-30-2) is completed.

Now we will finish the proof of Theorem [1.2.](#page-3-0)

(i) It follows from Lemma [4.1\(](#page-30-2)i) that $v(x) = -\int_M G(x, y)W(y)d\mu_f(y)$ is a unique solution of equation $\Delta_{f,2} v = W$ in M which tends to zero at infinity.

(ii-a) By the assumption that $\int_0^\infty t \psi(t) dt$ converges, we are able to apply a res-ult by Ancona (see Theorem 3.3 in [\[2\]](#page-53-1)) to assert that the Green functions $G^W(x, y) =$ \int_{0}^{∞} $\int_0^{\infty} p_t^W(x, y) dt$ of $Q'_{2;W}$ and $G(x, y)$ are equivalent in the sense that

$$
C_6^{-1}G(x, y) \le G^W(x, y) \le C_6G(x, y), \quad x, y \in M
$$

for some $C_6 \geq 1$, which implies that

$$
C_6^{-2} \frac{G(x, y)}{G(o, y)} \le \frac{G^W(x, y)}{G^W(o, y)} \le C_6^2 \frac{G(x, y)}{G(o, y)}, \quad x, y \in M.
$$

Since

$$
\lim_{y \in M \to \infty} \frac{G(x, y)}{G(o, y)} = 1 \quad \text{and} \quad \lim_{y \in M \to \infty} \frac{G^W(x, y)}{G^W(o, y)} = \frac{u(x)}{u(o)}
$$

by Theorem 1.1 (ii), we get

$$
C_6^{-2}u(o) \le u(x) \le C_6^2u(o), \quad x \in M.
$$

Then Lemma [4.1](#page-30-2)(i) shows that $\hat{v}(x) = \int_M G(x, y) W(y) u(y) d\mu_f(y)$ converges for all $x \in M$, and $\hat{v}(x)$ tends to zero as $x \in M \to \infty$. Thus $u + \hat{v}$ is harmonic and bounded in M, so that it must be a constant, say a. In this way, we conclude that $u(x) = a \int_M G(x, y)W(y)u(y) d\mu_f(y)$ for all $x \in M$.

(ii-b) We assume here that $Q'_{2;W}$ is critical, that is, $Q'_{2;W}$ does not admit the Green function. Then following a result due to Pinchiover (Theorem 4.2 in [\[21\]](#page-54-14)), we are able to take a function V of class $C^{0,\alpha}(M)$ with compact support in such a way that $Q'_{2;V+W}$ is subcritical and

$$
u(x) = \int_M G^{V+W}(x, y) V(y) u(y) d\mu_f(y), \quad x \in M.
$$

Since $|V + W| \le C_7 \psi(r)$ for some constant $C_7 > 0$, G^{V+W} is equivalent to G and hence it turns out that $u(x)$ tends to zero as $x \in M \to \infty$. This shows that $u + \hat{v}$ is a harmonic function on M tending to zero at infinity. Thus we conclude that $u + \hat{v} = 0$, namely, $u(x) = -\int_M G(x, y)W(y)u(y) d\mu_f(y).$

Now we end this section with some results, remarks, and examples related to Theorems [1.1,](#page-2-2) [1.2](#page-3-0) and [1.3.](#page-5-1) We begin with the following.

Proposition 4.2 ([\[13\]](#page-54-7)). Let (M, g_M, μ_f) be a connected, noncompact, complete weighted *Riemannian manifold. Condition* (VD) *for remote balls relative to a fixed point is satisfied, and* (VC) *holds true if and only if* (VD) *for all balls is satisfied.*

Proof. See Lemma 4.4 and Proposition 4.7 in [\[13\]](#page-54-7).

Proposition 4.3. Let (M, g_M, μ_f) be a connected, noncompact and complete weighted *Riemannian manifold.*

- (i) Suppose that (RCA) holds true and (VD) for all balls is satisfied. Then $\delta^{(\sigma;\infty)}(M)$ < $+\infty$ for some $\sigma \in (0, 1)$ *.*
- (ii) Suppose that $\delta^{(\infty)}(M) < 2$. Then $\delta^{(\sigma;\infty)}(M) = \delta^{(\infty)}(M)$ for all $\sigma \in (\frac{1}{2}\delta^{(\infty)}(M), 1)$.
- (iii) Let *o* be a point of M. Suppose that there are constants β , γ , C_{β} , C_{γ} such that $0 < \beta \leq \gamma$, $C_{\beta} \leq 1 \leq C_{\gamma}$, and

(4.5)
$$
C_{\beta}\left(\frac{t}{s}\right)^{\beta} \leq \frac{\mu_f(B(o,t))}{\mu_f(B(o,s))} \leq C_{\gamma}\left(\frac{t}{s}\right)^{\gamma}
$$

for all $1 \leq s \leq t$, and suppose that $\delta^{(\infty)}(M) < 1$. Then (M, g_M, μ_f) satisfies (RCA) *and* (VC)*.*

Proof. (i) Let C_A be a constant greater than 1 in condition (RCA). We take constants σ , $\delta \in (0, 1)$ in such a way that $0 < \delta < 4^{-1}C_A^{-1}$, and $1 - \sigma < C_A^{-1} - 2\delta$. By (RCA), for any two points on $S(o, t)$, there is a path connecting these points in $B(o, C_A t) \setminus B(o, C_A^{-1}t)$. Set $A^*(t)$ to be the union of $B(o, C_A t) \setminus B(o, t)$ and the δt -neighborhoods of all such paths. This construction ensures that $A^*(t)$ is a connected set which contains $S(o, t)$ and is included in $M \setminus B(o, (1 - \sigma)t)$ (see [\[13\]](#page-54-7), Subsection 5.1). We consider a maximal set $\{x_i | i = 1, 2, ..., N\}$ of points in $A^*(t)$ at distance at least δt from each other (i.e., an δt -net in $A^*(t)$). Then $\{B(x_i, \delta t/2) | i = 1, ..., N\}$ is a set of pairwise disjoint balls and the union of $\{B(x_i, \delta t) | i = 1, ..., N\}$ covers $A^*(t)$. Associated with the covering is a graph consisting of the set of vertices V and the set of edges E by setting

$$
V = \{x_i \mid i = 1, 2, ..., N\} \text{ and } E = \{(x_i, x_j) \in V \times V \mid \text{dis}_M(x_i, x_j) < 2\delta t\}
$$

 \blacksquare

(see [\[13\]](#page-54-7), Subsection 3.1). Since $A^*(t)$ is connected, it follows that the associated graph (V, E) is connected. Moreover, in view of (VD) and (VC), we see that the cardinality N of V is bounded from above by a constant N^* which is independent of t. In fact, since

$$
(C_A^{-1} - \delta)t < r(x_i) < (C_A + \delta)t,
$$

we have

$$
\mu_f(B(o, (C_A^{-1} - \delta)t)) \le \mu_f(B(o, r(x_i))) \le C_V \mu_f(B(x_i, r(x_i)/2))
$$

$$
\le C_V \mu_f(B(x_i, (C_A + \delta)t/2)) \le C_V C_D \left(\frac{C_A + \delta}{\delta}\right)^{\gamma} \mu_f(B(x_i, \delta t/2)),
$$

and hence

$$
N \mu_f(B(o, (C_A^{-1} - \delta)t)) \le C_V C_D \left(\frac{C_A + \delta}{\delta}\right)^{\gamma} \sum_{i=1}^N \mu_f(B(x_i, \delta t/2))
$$

= $C_V C_D \left(\frac{C_A + \delta}{\delta}\right)^{\gamma} \mu_f \left(\bigcup_{i=1}^N B(x_i, \delta t/2)\right)$

$$
\le C_V C_D \left(\frac{C_A + \delta}{\delta}\right)^{\gamma} \mu_f(B(o, (C_A + \delta)t))
$$

$$
\le C_V C_D^2 \left(\frac{C_A + \delta}{\delta}\right)^{\gamma} \left(\frac{C_A + \delta}{C_A^{-1} - \delta}\right)^{\gamma} \mu_f(B(o, (C_A^{-1} - \delta)t)).
$$

In this way, we obtain

$$
N \leq C_V C_D^2 \Big(\frac{C_A + \delta}{\delta}\Big)^{\gamma} \Big(\frac{C_A + \delta}{C_A^{-1} - \delta}\Big)^{\gamma} =: N^*.
$$

Then for any pair of points of $A^*(t)$, there is a path in $M \setminus B(o, (1 - \sigma)t)$ joining these points whose length is at most $2\delta(N^* + 2)t$. This shows that the diameter of $A^*(r)$ in $M \setminus B(o, (1 - \sigma)t)$ is bounded from above by $2\delta(N^* + 2)t$. In this way, we can deduce that

$$
\delta^{(\sigma;\infty)}(M) = \limsup_{t \to \infty} \frac{1}{t} \operatorname{diam}^{(\sigma;\infty)}(S(o,t)) \le 2\delta(N^* + 2).
$$

(ii) We take positive numbers ε , t_{ε} so that $\delta^{(\infty)}(M) + \varepsilon < 2\sigma$ and t^{-1} diam $(S(o, t)) <$ $\delta^{(\infty)}(M) + \varepsilon$ for all $t \ge t_{\varepsilon}$. For $x, y \in S(o, t)$ $(t \ge t_{\varepsilon})$, let $\gamma_{xy}: [0, L] \to M$ $(L :=$ $dis_M(x, y)$ be a distance minimizing curve joining $x = \gamma_{xy}(0)$ to $y = \gamma_{xy}(L)$. Since t^{-1} dis $_M(x, y) < \delta^{(\infty)}(M) + \varepsilon < 2\sigma$, we see that γ_{xy} is included in $M \setminus B(o, (1 - \sigma)t)$. This implies that t^{-1} dis^{$(\sigma; t)(x, y) = t^{-1}L < \delta^{(\infty)}(M) + \varepsilon$, and hence}

$$
\frac{1}{t}\operatorname{diam}^{(\sigma;t)}(S(o,t)) < \delta^{(\infty)}(M) + \varepsilon
$$

so that we have

$$
\delta^{(\sigma;\infty)}(M) \leq \delta^{(\infty)}(M) + \varepsilon.
$$

Letting $\varepsilon \to 0$, we obtain

$$
\delta^{(\sigma;\infty)}(M) \leq \delta^{(\infty)}(M) < 2\sigma.
$$

Since $\delta^{(\infty)}(M) \leq \delta^{(\sigma;\infty)}(M)$, we thus have

$$
\delta^{(\sigma;\infty)}(M) = \delta^{(\infty)}(M) < 2\sigma
$$

for $\sigma \in (\frac{1}{2} \delta^{(\infty)}(M), 1)$.

(iii) We first fix a constant $b > 2$ large enough so that $C_{\beta} b^{\beta} > 2$. Take a number $\sigma \in (\delta^{(\infty)}(M), 1)$. Then there exists $t_{\sigma} > 0$ such that t^{-1} diam $(S(o, t)) \leq \sigma$ for all $t \geq t_{\sigma}$. Let $t \in [bt_\sigma, +\infty)$ and $a \in [b^{-1}, 1]$. For any $x \in S(o, t)$ and $y \in S(o, at)$, we take a point $z \in S(o, at)$ in such a way that $dis_M(x, z) = (1 - a)t$. Then we get

 $dis_M(x, y) \leq dis_M(x, z) + dis_M(z, y) \leq (1 - a)t + \sigma at \leq (1 - (1 - \sigma)b^{-1})t.$

This shows that $S(o, at) \subset B(x, (1 - (1 - \sigma)b^{-1})t)$, and hence

$$
B(o,t) \setminus B(o,b^{-1}t) = \bigcup_{b^{-1} \leq a < 1} S(o,at) \subset B(x,(1-(1-\sigma)b^{-1})t).
$$

Therefore using [\(4.5\)](#page-34-1), we have

$$
\mu_f(B(x, (1 - (1 - \sigma)b^{-1})t) \ge \mu_f(B(o, t)) - \mu_f(B(o, b^{-1}t))
$$

$$
\ge (C_\beta b^\beta - 1)\mu_f(B(o, b^{-1}t)) \ge \mu_f(B(o, b^{-1}t))
$$

for all $t \ge bt_{\sigma}$. Since $1/2 > 1 - (1 - \sigma)b^{-1}$, we have $\mu_f(B(x, t/2)) > \mu_f(B(x, (1 - \sigma)))$ $(1 - \sigma) b^{-1}$ t), and by [\(4.5\)](#page-34-1), we get $\mu_f(B(o, b^{-1}t)) \ge C_y^{-1} b^{\gamma} \mu_f(B(o, t))$. These prove that

$$
\mu_f(B(x,t/2)) \ge C_{\gamma}^{-1} b^{\gamma} \mu_f(B(o,t)).
$$

In this way, we see that (VC) holds.

Corollary 4.4. Let (M, g_M, μ_f) be as above. Assume that (VD) and (PI(2)) for remote *balls to a fixed point hold true. Then* (M, g_M, μ_f) *satisfies* (RCA), (VD) *and* (PI(2)) *if* [\(4.5\)](#page-34-1) *is satisfied and* $\delta^{(\infty)}(M) < 1$,

Proof. By Proposition [4.3](#page-34-0) (iii), we see that (RCA) and (VC) hold, so that the corollary follows from Theorem 5.2 in [\[13\]](#page-54-7).

Fix $p \in (1, +\infty)$. A function $u \in L^{1,p}_{loc}(M) \cap C^{1,\alpha}_{loc}(M)$ satisfying $\Delta_{f;p} u = 0$ in M is said to be p -harmonic. Now as an application of the annulus Harnack inequality in Theorem $1.1(i)$ $1.1(i)$ to p-harmonic functions, we prove the following.

Theorem 4.5. Let (M, g_M, μ_f) be a connected, noncompact, complete weighted Reman*nian manifold. Assume that* (VD) *and* (PI(p)) *hold for all remote balls with respect to a reference point* $o \in M$ *, and* $\delta^{(\sigma; \infty)}(M)$ *is finite for some* $\sigma \in (0, 1)$ *.*

- (i) *A positive* p*-harmonic function on* M *is constant.*
- (ii) *There is a positive number such that if a* p*-harmonic function* h *on* M *satisfies*

$$
|h(x)| \le C(1+r(x))^{\rho/\log(1+\delta^{(\infty)}(M))}
$$

for some positive constants C *and all* $x \in M$ *, then* h *is constant. In particular, if* $\delta^{(\infty)}(M) = 0$, then any p-harmonic function h on M with polynomial growth is *constant.*

 \blacksquare

Proof. (i) This is a consequence from the annulus Harnack inequality and the maximum principle for p-harmonic functions.

(ii) For a nonconstant p-harmonic function h on M, let $m(t) = \inf_{S(0,t)} h$ and $M(t) =$ $\sup_{S(a,t)} h$, and let $v(t) = M(t) - m(t)$. Let δ be a positive number. Then $h - m((1 +$ $\delta + 3\delta^{(\infty)}(M)/4)t$ is p-harmonic and positive on $B(o, (1 + \delta + 3\delta^{(\infty)}(M)/4)t)$, and moreover for sufficiently large $t \geq t_0$, we can apply the argument in the proof of The-orem [1.1\(](#page-2-2)i) to the function $h - m((1 + \delta + 3\delta^{(\infty)}(M)/4)t)$ by noting that the curve γ_{xy} there stays in $B(o, (1 + \delta/2 + 3\delta^{(\infty)}(M)/4)t) \setminus B(o, (1 - \sigma)t)$, and obtain

$$
h(x) - m((1 + \delta + 3\delta^{(\infty)}(M)/4)t) \le C_H\big(h(y) - m((1 + \delta + 3\delta^{(\infty)}(M)/4)t)\big)
$$

for all $x, y \in S(o, t)$ and all $t > t_0$, where C_H is a constant independent of h and t. This shows that

$$
(4.6) \ \ M(t) - m((1+\delta+3\delta^{(\infty)}(M)/4)t) \le C_H(m(t) - m((1+\delta+3\delta^{(\infty)}(M)/4)t)).
$$

Since $M(1 + \delta + 3\delta^{(\infty)}(M)/4)t$ – h is also p-harmonic and positive on $B(o, (1 + \delta +$ $3\delta^{(\infty)}(M)/4)t$), we get

$$
(4.7) \ \ M((1+\delta+3\delta^{(\infty)}(M)/4)t) - m(t) \le C_H\big(M((1+\delta+3\delta^{(\infty)}(M)/4)t) - M(t)\big).
$$

Then it follows from (4.6) and (4.7) that

$$
v((1+\delta+3\delta^{(\infty)}(M)/4)t)+v(t)\leq C_H(v((1+\delta+3\delta^{(\infty)}(M)/4)t)-v(t)),
$$

and hence

$$
\frac{C_H+1}{C_H-1}v(t) \le v((1+\delta+3\delta^{(\infty)}(M)/4)t)
$$

for all $t \ge t_0$. Thus letting $D = \frac{C_H + 1}{C_H - 1}$, we have

$$
D^q v(t) \le v((1+\delta+3\delta^{(\infty)}(M)/4)^q t)
$$

for all $t \geq t_0$ and positive integers q. This shows that

$$
\frac{\log D(\log t - \log t_0)}{\log(1 + \delta + 3\delta^{(\infty)}(M)/4)} \le \log v(t) - \log v(t_0) + \log D
$$

$$
\le \sup_{B(o,t)} \log 2|h| - \log v(t_0) + \log D.
$$

Suppose that $\delta^{(\infty)}(M) > 0$ and $|h| \leq C_8(1+r)^{\rho/\log(1+\delta^{(\infty)}(M))}$. Then we have

$$
\frac{\log D}{\log(1+\delta+3\delta^{(\infty)}(M)/4)}\left(\log t - \log t_0\right) \le \frac{\rho}{\log(1+\delta^{(\infty)}(M))}\log(1+t) + C_9
$$

for all $t \ge t_0$ and some positive constant C₉. Now taking $\delta < \delta^{(\infty)}(M)/4$, we see that h must be constant if $\rho \leq \log D$.

Suppose that $\delta^{(\infty)}(M) = 0$ and $|h| \leq C_{10}(1+r)^{\nu}$ for some positive constants C_{10} and ν . Then we have

$$
\frac{\log D}{\log(1+\delta)}(\log t - \log t_0) \le \nu \log(1+t) + C_{11}
$$

for all $t \ge t_0$ and some positive constant C_{11} . Taking δ so small that $\log D > v \log(1 + \delta)$, we conclude that h must be constant.

Remark 4.6. (i) In the case where $p = 2$, Theorem [4.5](#page-36-0) generalizes some result in [\[15\]](#page-54-15), and moreover the last statement in Theorem 4.5 (ii) is extended by Carron [\[6\]](#page-53-5). But it is not clear whether such an extension in [\[6\]](#page-53-5) is possible for the case where p is different from 2.

(ii) In Theorem [1.2,](#page-3-0) the potential W under consideration satisfies the following conditions:

$$
\sup_{x \in M} \int_M G(x, y)W_+(y) d\mu_f(y) < +\infty;
$$

$$
\lim_{k \to \infty} \sup_{x \in M} \int_{M \setminus B(o,k)} G(x, y)W_-(y) d\mu_f(y) < 1,
$$

as shown in Lemma [4.1.](#page-30-2) According to Theorem 4.1 in Devyver $[8]$, these are sufficient conditions for the heat kernel of $Q'_{2;W}$ to satisfy the Li–Yau estimate, under the conditions that (M, g_M, μ_f) satisfies [VD] and [PI(2)], and further W is subcritical.

Nonnegative Schrödinger operators, and their heat semigroups, have been studied intensively by many authors (see, e.g., [\[11,](#page-54-2) [14\]](#page-54-3) and references therein).

(iii) In Theorem [1.2,](#page-3-0) the Ricci curvature of the Riemannian manifold M possesses a lower bound as in (1.1) , and a Hardy type inequality holds on M as mentioned in the introduction. Then a recent result due to Munteanu, Sung and Wang (see Theorem 1.5 in [\[19\]](#page-54-16)), is also applicable to deduce existence and sharp estimates for solutions to the Poisson equation on M as in the first assertion of Theorem [1.2](#page-3-0) with $f = 0$. The method in [\[19\]](#page-54-16) is different from ours and more effective in dealing with a wider class of Riemannian manifolds.

Example 4.7. Let g be a Riemannian metric on \mathbb{R}^m such that g can be represented in the polar coordinates (r, θ) in \mathbb{R}^m as follows: $g = dr^2 + \rho(r)^2 d\theta^2$, where $\rho(r)$ is a positive smooth function on $(0, +\infty)$ such that $\rho(0) = 0$ and $\rho'(0) = 1$. We assume that $\rho(r) =$ Cr^d for $r \ge 1$, where C is a positive constant and d is a constant less than or equal to 1. Then in this model space $M = (\mathbb{R}^m, g), \delta^{(\sigma; \infty)}(M) < +\infty$ for any $\sigma \in (0, 1), \delta^{(\infty)}(M) =$ $\delta^{(\sigma;\infty)}(M) = 0$ if $d < 1$, and $\delta^{(\infty)}(M) = \sqrt{2(1 - \cos(\min{\pi, C \pi})})$ if $d = 1$; in particular $\delta^{(\infty)}(M) < 2$ for $C < 1$ and $\delta^{(\infty)}(M) < 1$ for $C < 1/3$. The Riemannian volume element of M is given by $dv_M = \rho(r)^{m-1} dr dv_\theta$, where dv_θ is the Riemannian volume element of the unit sphere $S^{m-1}(1)$ of dimension $m-1$. Given $\gamma \in \mathbb{R}$, let $f(x) = -\log(1 + r^2)^{\gamma/2}$ and define a new measure by $\mu_f = (1 + r^2)^{\gamma/2} dv_M$. Obviously (M, g_M, μ_f) satisfies conditions (1.1) and (1.2) .

- (i) The following conditions are mutually equivalent:
	- $(a-1)\gamma + (m-1)d + 1 > 0,$
	- $(a-2)$ (VC) holds,
	- $(a-3)$ *M* satisfies (VD) and (PI(2)).

(ii) The following are mutually equivalent (see [\[7\]](#page-54-8), Proposition 3.4):

 $(b-1)\gamma + (m-1)d + 1 > p$,

- (b-2) The growth conditions [\(1.3\)](#page-3-1) holds and the power $\beta > p$,
- (b-3) (M, g_M, μ_f) is p-nonparabolic.

(iii) (See Example 9.1 in [\[23\]](#page-54-5)) Let $u(x) = 2 + \sin(\log \sqrt{1 + r(x)^2})$ and define $W =$ Δ_{f} ; $2u/u$. Clearly, $1 \le u(x) \le 3$, $|W(x)| \le C/(1 + r(x)^2)$, and u is the unique (up to a constant multiple) positive solution of the equation $Q'_{2;W}v = 0$ in M. But $\lim_{x\to\infty} u(x)$ does not exist.

(iv) (See Example 9.2 in [\[23\]](#page-54-5)) Let $d = 1$ and $\vartheta: S^{m-1}(1) \rightarrow [-1, 1]$ a nonconstant smooth function. For $x \in M$ with $r(x) > 1$, let $u(x) = 2 + \vartheta(x/r(x))$, and extend the function u as a smooth positive function on M. Let $W = \Delta_{f, 2}u/u$. Then $|W| \le$ $C/(1 + r(x)^2)$ and $u(x)$ is a bounded positive function which is bounded away from zero. Moreover, $u(x)$ is the unique (up to a constant multiple) positive solution of the equation $Q'_{2;W}v = 0$ in M. But $\lim_{x\to\infty} u(x)$ does not exist.

Example 4.8. Li and Tam [\[18\]](#page-54-6) shows that property (VC) is satisfied in the following two classes of connected, complete, noncompact Riemannian manifolds.

(i) (M, g_M) has asymptotically nonnegative sectional curvature, that is, there exists a point $o \in M$ and a continuous nonincreasing function $k: (0, +\infty) \to (0, +\infty)$ satisfying $\int_0^\infty s k(s) ds < \infty$ such that the sectional curvature Sect(x) of M at a point x is greater than or equal to $-k$ (dis_M (o, x)).

(ii) M has nonnegative Ricci curvature outside a compact set and the first Betti number is finite.

We notice that M has asymptotically nonnegative sectional curvature if, for some $C > 0$ and $\varepsilon > 0$, Sect $(x) \geq -C \text{dis}_M(o, x)^{-2-\varepsilon}$; on the other hand, we have Sect $(x) \geq$ $-C \text{dis}_M(o, x)^{-2}$ for some $C > 0$ if M has asymptotically nonnegative sectional curvature.

5. Proof of Theorem [1.3](#page-5-1)

We first demonstrate that estimate (1.5) in Theorem [1.3](#page-5-1) is optimal.

Example 5.1. Let $(L, g_L, e^{-\eta} dv_L)$ be a connected, complete weighted Riemannian manifold of dimension $m - 1$, and let $M = \mathbb{R} \times L$ with a warped product metric

$$
g_M = dt^2 + e^{2\sqrt{\kappa}t} g_L,
$$

where κ is a nonnegative constant. Suppose that for some $n \ge m$, Ric $_{\eta}^{n-1} \ge 0$ on L. Define where *k* is a nonnegative constant. Suppose that for some $n \ge m$, κ ic_n ≥ 0 on *L*. Defined a weight function on *M* by $f(t, x) = (n - m)\sqrt{k}t + \eta(x)$. Then it can be directly verified that $\text{Ric}_f^n \ge -(n-1)\kappa g_M$. We let $\hat{u}(t, x) = e^{at}$ for a positive constant a, and we put that $\text{Re} f \ge -(n-1)\kappa g M$, we fet $u(t, x) = e^{-t}$ is
 $\Lambda = (p-1)a^p + (n-1)\sqrt{\kappa} a^{p-1}$. Then \hat{u} satisfies

$$
\Delta_{f;p}\hat{u} = \Lambda \hat{u}^{p-1} \quad \text{and} \quad |\nabla \log \hat{u}| = a = Z(p, n, \kappa, \Lambda)
$$

on M. Now take a number $b > (n-1)/(p-1)$ in such a way that $(p-1)b^p - (n-1)$ $\overline{k} b^{p-1} = \Lambda$, and let $\check{u}(t, x) = e^{-bt}$. Then \check{u} satisfies

$$
\Delta_{f;p}\check{u} = \Lambda \check{u}^{p-1} \quad \text{and} \quad |\nabla \log \check{u}| = b = Y(p,n,\kappa,\Lambda) \quad \text{on } M.
$$

In fact, we have a rigidity result as follows:

Theorem 5.2. Let (M, g_M, μ_f) be a connected, noncompact complete weighted Rieman*nian manifold of dimension m such that* $\text{Ric}_f^n \ge -(n-1)\kappa g_M$ *for some constants* $\kappa \ge 0$ *and* $n \ge m$. Let u be a positive solution to the equation $-\Delta_{f;p}u + \Lambda |u|^{p-2}u = 0$ in M, *where* Λ *is a positive constant. Suppose that there is a point* $y \in M$ *such that* $|\nabla \log u(y)|$ $\sup_M |\nabla \log u| = Y(p, n, \kappa, \Lambda)$ or $|\nabla \log u(y)| = \sup_M |\nabla \log u| = Z(p, n, \kappa, \Lambda).$ Then M is isometric to a warped product $\mathbb{R} \times_{e^{\sqrt{\kappa}t}} L$ as in Example [5.1;](#page-39-1) in the case *where* $|\nabla \log u(y)| = \sup_M |\nabla \log u| = Y(p, n, \kappa, \Lambda), u(t, x) = e^{-Y(p, n, \kappa, \Lambda)t}, f(t, x) =$ where $|V \log u(y)| = \sup_M |V \log u| = Y(p, n, \kappa, \Lambda)$, $u(t, x) = e^{-X(p, n, \kappa, \Lambda)},$ $f(t, x) = (n - m)\sqrt{\kappa} t + \eta(x)$ for some $\eta \in C^{\infty}(L)$ satisfying $Ric_{\eta}^{n-1} \geq 0$ on L, and in the case *where* $|\nabla \log u(y)| = \sup_M |\nabla \log u| = Z(p, n, \kappa, \Lambda)$, $u(t, x) = e^{Z(p, n, \kappa, \Lambda)t}$, $f(t, x) = -(n - m)\sqrt{\kappa}t + \eta(x)$ for some $\eta \in C^{\infty}(L)$ satisfying $\text{Ric}_{\eta}^{n-1} \geq 0$ on L.

Theorem [5.2](#page-39-2) will be verified at the end of the present section. We remark that in the case where $p = 2$ and $f = 0$, Theorem [5.2](#page-39-2) is proved by Borbély [\[4\]](#page-53-2) in a different way from ours.

Now we need some preliminary results to prove the upper estimate in [\(1.5\)](#page-5-0) of Theorem [1.3.](#page-5-1)

Consider a positive solution u to the equation $-\Delta_{p,f} u + \Lambda |u|^{p-2} u = 0$ in the metric ball $B(o, R)$ of radius R around a fixed point o of M. In what follows, we write simply $B(R)$ and $V(R)$ respectively for $B(o, R)$ and $\mu_f(B(o, R))$. We set

$$
v = -(p-1)\log u
$$
, $h = |\nabla v|^2$ and $K = \{x \in B(R) | h(x) = 0\}$.

We note that u is smooth on $B(R) \setminus K$. We consider the following linear operator \mathcal{L}_f on $B(R) \setminus K$:

$$
\mathcal{L}_f \psi = e^f \operatorname{div} \left(e^{-f} h^{p/2-1} A(\nabla \psi) \right) - p h^{p/2-1} \langle \nabla v, \nabla \psi \rangle,
$$

where

$$
A = id + (p - 2) \frac{\nabla v \otimes \nabla v}{|\nabla v|^2}.
$$

Then we have

(5.1)
$$
\mathcal{L}_f h = 2h^{p/2-1} \Big(|Ddv|^2 + \text{Ric}_M(\nabla v, \nabla v) + Ddf(\nabla v, \nabla v) \Big) + \Big(\frac{p}{2} - 1 \Big) h^{p/2-2} |\nabla h|^2
$$

(see Lemma 2.1 in [\[9\]](#page-54-11), Lemma 2.1 in [\[17\]](#page-54-17)). We also observe that v satisfies

$$
\Delta_{f;p} v = |\nabla v|^p - \Lambda (p-1)^{p-1},
$$

which is rewritten as follows:

(5.2)
$$
\Delta v - \langle \nabla f, \nabla v \rangle + \left(\frac{p}{2} - 1\right) h^{-1} \langle \nabla h, \nabla v \rangle - h + \Lambda (p - 1)^{p-1} h^{1-p/2} = 0.
$$

Let $\{e_1, \ldots, e_m\}$ be a local orthonormal frame of TM with $e_1 = \nabla v/|\nabla v|$ in an open set Ω of $B(R) \setminus K$, and let $\{e_1^*, \ldots, e_m^*\}$ be the dual frame. We write

$$
Dd\ v = \sum_{i,j=1}^m v_{ij}e_i^* \otimes e_j^*.
$$

Then the following identities hold:

(5.3)
$$
v_{11} = \frac{1}{2} h^{-1} \langle \nabla v, \nabla h \rangle,
$$

\n(5.4)
$$
\sum_{i=1}^{m} v_{1i}^{2} = \frac{1}{4} h^{-1} |\nabla h|^{2},
$$

\n(5.5)
$$
\sum_{i=2}^{m} v_{ii} = h - \Lambda (p-1)^{p-1} h^{1-p/2} - (p-1) v_{11} + \langle \nabla f, \nabla v \rangle \text{ (by (5.2))}.
$$

Then using the inequality

$$
(a+b)^2 \ge \frac{a^2}{1+\delta} - \frac{b^2}{\delta}, \quad \delta = \frac{n-m}{m-1},
$$

we can derive from (5.5) that

(5.6)
$$
\frac{1}{m-1} \left(\sum_{i=2}^{m} v_{ii} \right)^2 \ge \frac{1}{n-1} \left(h - \Lambda (p-1)^{p-1} h^{1-p/2} - (p-1) v_{11} \right)^2 - \frac{1}{n-m} \left\langle \nabla f, \nabla v \right\rangle^2,
$$

where the equality holds if and only if

$$
(5.7) \qquad (n-m)(h-\Lambda(p-1)^{p-1}h^{1-p/2}-(p-1)v_{11})=-(n-1)\langle \nabla f, \nabla v \rangle.
$$

We note that

$$
(5.8) \quad (h - \Lambda(p-1)^{p-1}h^{1-p/2} - (p-1)v_{11})^2
$$

$$
\ge (h - \Lambda(p-1)^{p-1}h^{1-p/2})^2 - 2(p-1)(h - \Lambda(p-1)^{p-1}h^{1-p/2})v_{11},
$$

where the equality holds if and only if

$$
(5.9) \t\t v_{11} = 0.
$$

Furthermore, we observe that

(5.10)
$$
\sum_{i,j=2}^{m} v_{ij}^2 \ge \frac{1}{m-1} \left(\sum_{i=2}^{m} v_{ii} \right)^2,
$$

where the equality holds at a point $x \in \Omega$ if and only if for some $\tau(x) \in \mathbb{R}$,

(5.11)
$$
\sum_{i,j=2}^{m} v_{ij}(x) e_i^* \otimes e_j^* = \tau(x) \sum_{i=2}^{m} e_i^* \otimes e_i^*.
$$

Then we obtain

$$
|Dd v|^2 \ge \sum_{i=1}^m v_{1i}^2 + \sum_{i,j=2}^m v_{ij}^2
$$

\n
$$
\ge \frac{1}{4} h^{-1} |\nabla h|^2 + \frac{1}{m-1} \Big(\sum_{i=2}^m v_{ii}\Big)^2 \quad \text{(by (5.4), (5.10))}
$$

\n
$$
\ge \frac{1}{4} h^{-1} |\nabla h|^2 + \frac{1}{n-1} (h - \Lambda (p-1)^{p-1} h^{1-p/2} - (p-1) v_{11})^2
$$

\n
$$
- \frac{1}{n-m} \langle \nabla f, \nabla v \rangle^2 \quad \text{(by (5.6))}
$$

\n
$$
\ge \frac{1}{4} h^{-1} |\nabla h|^2 + \frac{1}{n-1} (h - \Lambda (p-1)^{p-1} h^{1-p/2})^2 - \frac{p-1}{n-1} \langle \nabla v, \nabla h \rangle
$$

\n(5.12)
$$
+ \frac{\Lambda (p-1)^{p-1}}{n-1} h^{-1} |\nabla v|^{p-2} \langle \nabla v, \nabla h \rangle - \frac{\langle \nabla v, \nabla h \rangle^2}{n-m} \quad \text{(by (5.8), (5.3))}.
$$

By [\(5.12\)](#page-42-0) and the assumption that Ric $_{f}^{n} \ge -(n-1)\kappa g$, we get

$$
\mathcal{L}_{f}h = 2h^{p/2-1}(|Ddv|^{2} + \text{Ric}_{M}(\nabla v, \nabla v)) + \frac{p-2}{2}h^{p/2-2}|\nabla h|^{2}
$$

\n
$$
= 2h^{p/2-1}(|Ddv|^{2} + \text{Ric}_{f}^{n}(\nabla v, \nabla v)) + \frac{2}{n-m}h^{p/2-1}(\nabla v, \nabla f)^{2}
$$

\n
$$
+ \frac{p-2}{2}h^{p/2-2}|\nabla h|^{2}
$$

\n
$$
\geq 2h^{p/2-1}\left(\frac{1}{2}h^{-1}|\nabla h|^{2} + \frac{1}{n-1}(h - \Lambda(p-1)^{p-1}|\nabla v|^{2-p}\right)^{2} - \frac{p-1}{n-1}\langle\nabla v, \nabla h\rangle
$$

\n
$$
+ \frac{\Lambda(p-1)^{p}}{n-1}h^{-1}|\nabla v|^{2-p}\langle\nabla v, \nabla h\rangle - (n-1)\kappa|\nabla v|^{2}\right) + \frac{p-2}{2}h^{p/2-2}|\nabla h|^{2}
$$

\n
$$
= \frac{2}{n-1}h^{p/2-1}\Big((h - \Lambda(p-1)^{p-1}h^{1-p/2})^{2} - ((n-1)\sqrt{\kappa}h^{1/2})^{2}\Big)
$$

\n
$$
- \frac{2(p-1)}{n-1}h^{p/2-1}\langle\nabla v, \nabla h\rangle + \frac{p}{2}h^{p/2-2}|\nabla h|^{2} + \frac{2\Lambda(p-1)^{p}}{n-1}h^{-1}\langle\nabla v, \nabla h\rangle.
$$

Thus we have the following.

Lemma 5.3. *One has*

$$
\mathcal{L}_f h \ge \frac{2}{n-1} h^{p/2-1} \left((h - \Lambda (p-1)^{p-1} h^{1-p/2})^2 - ((n-1)\sqrt{\kappa} h^{1/2})^2 \right) - \frac{2(p-1)}{n-1} h^{p/2-1} \langle \nabla v, \nabla h \rangle + \frac{p}{2} h^{p/2-2} |\nabla h|^2 + \frac{2\Lambda (p-1)^p}{n-1} h^{-1} \langle \nabla v, \nabla h \rangle
$$

in $B(R) \setminus K$ *, where the equality holds if and only if there hold* [\(5.7\)](#page-41-6)*,* [\(5.9\)](#page-41-7)*,* (5.11*) and*

(5.13)
$$
\text{Ric}_f^n(\nabla v, \nabla v) = -(n-1)\kappa |\nabla v|^2.
$$

Lemma 5.4. Let u be a positive solution of the equation $-\Delta_{f,p}u + \Lambda |u|^{p-2}u = 0$ in M. *Then* $|\nabla \log u|$ *is bounded.*

Proof. Since

$$
(h - \Lambda(p-1)^{p-1}h^{1-p/2})^2 - ((n-1)\sqrt{\kappa}h^{1/2})^2
$$

> $h^2 - 2\Lambda(p-1)^{p-1}h^{2-p/2} - (n-1)^2\kappa h,$

it follows from Lemma [5.3](#page-42-1) that

$$
\mathcal{L}_f h \ge -2(n-1)\kappa h^{p/2} + \frac{2}{n-1} h^{p/2+1} - \frac{4\Lambda(p-1)^{p-1}}{n-1} h + \frac{p-1}{2} h^{p/2-2} |\nabla h|^2
$$

$$
- \frac{2(p-1)}{n-1} h^{p/2-1} \langle \nabla h, \nabla v \rangle + \frac{2\lambda(p-1)^p}{n-1} h^{-1} \langle \nabla h, \nabla v \rangle
$$

in $B(R) \setminus K$.

Then for a nonnegative function ψ with compact support in $B(R) \setminus K$, we have

$$
\int_{B(R)} \langle h^{p/2-1} \nabla h + (p-2) h^{p/2-2} \langle \nabla v, \nabla h \rangle \nabla v, \nabla \psi \rangle d\mu_f
$$
\n
$$
+ p \int_{B(R)} h^{p/2-1} \langle \nabla h, \nabla v \rangle \psi d\mu_f + \frac{2}{n-1} \int_{B(R)} h^{p/2+1} \psi d\mu_f
$$
\n(5.14)
$$
\leq 2(n-1) \kappa \int_{B(R)} h^{p/2} \psi d\mu_f + \frac{2(p-1)}{n-1} \int_{B(R)} h^{p/2-1} \langle \nabla h, \nabla v \rangle \psi d\mu_f
$$
\n
$$
- \frac{2\Lambda(p-1)^p}{n-1} \int_{B(R)} h^{-1} \langle \nabla h, \nabla v \rangle \psi d\mu_f + \frac{4\Lambda(p-1)^{p-1}}{n-1} \int_{B(R)} h \psi d\mu_f
$$

(see (2.4) in [\[9\]](#page-54-11)).

For constants $\varepsilon > 0$ and $b > 2$, we choose

$$
\psi = h_{\varepsilon}^b \eta^2,
$$

where $h_{\varepsilon} = (h - \varepsilon)^{+}$, $\eta \in C_0^{\infty}(B(R))$ is nonnegative and less than or equal to 1, and b is to be determined later. Then a direct calculation shows that

$$
\nabla \psi = b h_{\varepsilon}^{b-1} \eta^2 \nabla h + 2 h_{\varepsilon}^b \eta \nabla \eta.
$$

Insert this identity into (5.14) , we obtain

$$
(5.15) \t b \int_{B(R)} \left(h^{p/2-1} h_{\varepsilon}^{b-1} |\nabla h|^{2} + (p-2) h^{p/2-2} h_{\varepsilon}^{b-1} \langle \nabla v, \nabla h \rangle^{2} \right) \eta^{2} d\mu_{f}
$$

+2 \int_{B(R)} h^{p/2-1} h_{\varepsilon}^{b} \eta \langle \nabla h, \nabla \eta \rangle d\mu_{f} + p \int_{B(R)} h^{p/2-1} h_{\varepsilon}^{b} \eta^{2} \langle \nabla h, \nabla v \rangle d\mu_{f}
+2(p-2) \int_{B(R)} h^{p/2-2} h_{\varepsilon}^{b} \eta \langle \nabla h, \nabla v \rangle \langle \nabla v, \nabla \eta \rangle d\mu_{f}
+ \frac{2}{n-1} \int_{B(R)} h^{p/2+1} h_{\varepsilon}^{b} \eta^{2} d\mu_{f}
\leq 2(n-1)\kappa \int_{B(R)} h^{p/2} h_{\varepsilon}^{b} \eta^{2} d\mu_{f} + \frac{2(p-1)}{n-1} \int_{B(R)} h^{p/2-1} \langle \nabla h, \nabla v \rangle h_{\varepsilon}^{b} \eta^{2} d\mu_{f}
- \frac{2\Lambda(p-1)^{p}}{n-1} \int_{B(R)} \langle \nabla h, \nabla v \rangle h^{-1} h_{\varepsilon}^{b} \eta^{2} d\mu_{f} + \frac{4\Lambda(p-1)^{p-1}}{n-1} \int_{B(R)} h h_{\varepsilon}^{b} \eta^{2} d\mu_{f}.

Since we have

$$
h^{p/2-1} h_{\varepsilon}^{b-1} |\nabla h|^{2} + (p-2) h^{p/2-2} h_{\varepsilon}^{b-1} \langle \nabla v, \nabla h \rangle^{2} \ge a_0 h^{p/2-1} h_{\varepsilon}^{b-1} |\nabla h|^{2},
$$

where $a_0 = 1$ if $p \ge 2$ and $a_0 = (p - 1)$ if $p \in (1, 2)$, by replacing the integrand of the first term of the left side in [\(5.15\)](#page-43-1) with the right side of the just above inequality and passing ε to 0, we obtain

$$
a_0 b \int_{B(R)} h^{p/2+b-2} |\nabla h|^2 \eta^2 d\mu_f
$$

+ $2 \int_{B(R)} h^{p/2+b-1} \langle \nabla h, \nabla \eta \rangle \eta d\mu_f$
+ $2(p-2) \int_{B(R)} h^{p/2+b-2} \langle \nabla v, \nabla h \rangle \langle \nabla v, \nabla \eta \rangle \eta d\mu_f$
+ $p \int_{B(R)} h^{p/2+b-1} \langle \nabla v, \nabla h \rangle \eta^2 d\mu_f + \frac{2}{n-1} \int_{B(R)} h^{p/2+b+1} \eta^2 d\mu_f$
(5.16) $\leq 2(n-1)\kappa \int_{B(R)} h^{p/2+b} \eta^2 d\mu_f$
+ $\frac{2(p-1)}{n-1} \int_{B(R)} h^{p/2+b-1} \langle \nabla h, \nabla v \rangle^2 \eta^2 d\mu_f$
- $\frac{2\Lambda(p-1)^p}{n-1} \int_{B(R)} h^{b-1} \langle \nabla h, \nabla v \rangle \eta^2 d\mu_f$
+ $\frac{4\Lambda(p-1)^{p-1}}{n-1} \int_{B(R)} h^{b+1} \eta^2 d\mu_f$

(see (2.5) in [\[9\]](#page-54-11), (2.5) in [\[34\]](#page-55-8)). Using [\(5.16\)](#page-44-0), we see that

$$
(5.17) \quad a_0 b \int_{B(R)} h^{p/2+b-2} |\nabla h|^2 \eta^2 d\mu_f + \frac{2}{n-1} \int_{B(R)} h^{p/2+b+1} \eta^2 d\mu_f
$$

$$
\leq 2(n-1)\kappa \int_{B(R)} h^{p/2+b} \eta^2 d\mu_f + \frac{4\Lambda(p-1)^{p-1}}{n-1} \int_{B(R)} h^{b+1} \eta^2 d\mu_f
$$

$$
+ I_1 + I_2 + I_3
$$

(see (2.6) in $[34]$), where we put

$$
I_1 = \frac{p(n+1)-2}{n-1} \int_{B(R)} h^{p/2+b-1/2} |\nabla h| \eta^2 d\mu_f,
$$

\n
$$
I_2 = \frac{2\Lambda(p-1)^p}{n-1} \int_{B(R)} h^{b-1/2} |\nabla h| \eta^2 d\mu_f,
$$

\n
$$
I_3 = 2(1+|p-2|) \int_{B(R)} h^{p/2+b-1} |\nabla h| |\nabla \eta| \eta d\mu_f.
$$

Now applying Young's inequality to I_1 , I_2 , and I_3 respectively, we obtain

$$
\begin{split} |I_{1}|&=2\int_{B(R)}\frac{\sqrt{a_{0}b}}{2}\,h^{p/2+b-2)/2}\,|\nabla h|\,\eta\cdot\frac{p(n+1)-2}{\sqrt{a_{0}b}(n-1)}\,h^{(p/2+b+1)/2}\,\eta\,d\mu_{f}\\ &\leq\frac{a_{0}b}{4}\int_{B(R)}h^{p/2+b-2}\,|\nabla h|^{2}\,\eta^{2}\,d\mu_{f}+\frac{(p(n+1)-2)^{2}}{a_{0}b(n-1)^{2}}\int_{B(R)}h^{p/2+b+1}\,\eta^{2}\,d\mu_{f},\\ |I_{2}|&=2\int_{B(R)}\frac{\sqrt{a_{0}b}}{2}\,h^{(p/2+b-2)/2}\,|\nabla h|\,\eta\cdot\frac{2|\Lambda|(p-1)^{p}}{\sqrt{a_{0}b}(n-1)}\,h^{(b-p/2+1)/2}\,\eta\,d\mu_{f}\\ &\leq\frac{a_{0}b}{4}\int_{B(R)}h^{p/2+b-2}\,|\nabla h|^{2}\,\eta^{2}\,d\mu_{f}+\frac{4\,\Lambda^{2}(p-1)^{2p}}{a_{0}b(n-1)^{2}}\int_{B(R)}h^{b-p/2+1}\,\eta^{2}\,d\mu_{f},\\ |I_{3}|&=2\int_{B(R)}\frac{\sqrt{a_{0}b}}{2}\,h^{(p/2+b-2)/2}\,|\nabla h|\,\eta\cdot\frac{2(1+|p-2|)}{\sqrt{a_{0}b}}\,h^{(p/2+b)/2}\,|\nabla \eta|\,d\mu_{f}\\ &\leq\frac{a_{0}b}{4}\int_{B(R)}h^{p/2+b-2}\,|\nabla h|^{2}\,\eta^{2}\,d\mu_{f}+\frac{4(1+|p-2|)^{2}}{a_{0}b}\int_{B(R)}h^{p/2+b}\,|\nabla \,\eta|^{2}\,d\mu_{f}.\end{split}
$$

In what follows, b is chosen in such a way that

(5.18)
$$
\frac{(p(n+1)-2)^2}{a_0b} < \frac{1}{n-1},
$$

and a_i ($i = 1, 2, 3, \ldots$) stand for positive constants depending only on n and p. Now it follows from (5.17) and (5.18) that

$$
(5.19) \t b \int_{B(R)} h^{p/2+b-2} |\nabla h|^2 \eta^2 d\mu_f + \frac{1}{n-1} \int_{B(R)} h^{p/2+b+1} \eta^2 d\mu_f
$$

\n
$$
\leq a_1 \kappa \int_{B(R)} h^{p/2+b} \eta^2 d\mu_f + \frac{a_2}{b} \int_{B(R)} h^{p/2+b} |\nabla \eta|^2 d\mu_f
$$

\n
$$
+ \frac{a_3 \Lambda^2}{b} \int_{B(R)} h^{b-p/2+1} \eta^2 d\mu_f + a_4 \int_{B(R)} \Lambda h^{b+1} \eta^2 d\mu_f.
$$

Using

$$
|\nabla (h^{p/4+b/2}\eta)|^2 \le \frac{(p/2+b)^2}{2} \, h^{p/2+b-2} \, |\nabla h|^2 \, \eta^2 + 2 \, h^{p/2+b} \, |\nabla \eta|^2,
$$

we have by (5.19) ,

$$
(5.20) \qquad \int_{B(R)} |\nabla (h^{p/4+b/2}\eta)|^2 \, d\mu_f + a_4 b \int_{B(R)} h^{p/2+b+1} \eta^2 \, d\mu_f
$$

$$
\leq a_5 b \kappa \int_{B(R)} h^{p/2+b} \eta^2 \, d\mu_f + a_6 \int_{B(R)} h^{p/2+b} |\nabla \eta|^2 \, d\mu_f
$$

$$
+ a_7 \Lambda^2 \int_{B(R)} h^{b-p/2+1} \eta^2 \, d\mu_f + a_8 b \Lambda \int_{B(R)} h^{b+1} \eta^2 \, d\mu_f.
$$

We recall here the following Sobolev embedding theorem of Saloff-Coste [\[29,](#page-55-6) [30\]](#page-55-7):

$$
\Big(\int_{B(R)} |\phi|^{2n/(n-2)} d\mu_f\Big)^{(n-2)/n} \le e^{C(n)(1+\sqrt{\kappa}R)} V(R)^{-2/n} \int_{B(R)} (R^2 |\nabla \phi|^2 + \phi^2) d\mu_f
$$

for any $\phi \in C_0^{\infty}(B(R))$, where $C(n)$ is some positive constant depending only on n, and $V(R)$ stands for $\mu_f(B(R))$.

Now letting $\phi = h^{p/4 + b/2} \eta$, we have

$$
(5.21) \quad \left(\int_{B(R)} h^{\frac{(p/2+b)n}{n-2}} \eta^{\frac{2n}{n-2}} d\mu_f\right)^{(n-2)/n} \n\leq e^{C(n)(1+\sqrt{\kappa}R)} V(R)^{-2/n} \left(R^2 \int_{B(R)} |\nabla (h^{p/4+b/2}\eta)|^2 d\mu_f + \int_{B(R)} h^{p/2+b} \eta^2 d\mu_f\right)
$$

(see (2.9) in [\[9\]](#page-54-11)). Let $b_0 = a_9 + \sqrt{ }$ $\overline{\kappa}R$, where we assume that b_0 satisfies [\(5.18\)](#page-45-0). We put

$$
I_4 = a_4 e^{C(n)b_0} b R^2 V(R)^{-2/n} \int_{B(R)} h^{p/2+b+1} \eta^2 d\mu_f,
$$

\n
$$
I_5 = a_5 \kappa e^{C(n)b_0} b R^2 V(R)^{-2/n} \int_{B(R)} h^{p/2+b} \eta^2 d\mu_f,
$$

\n
$$
I_6 = a_6 e^{C(n)b_0} R^2 V(R)^{-2/n} \int_{B(R)} h^{p/2+b} |\nabla \eta|^2 d\mu_f,
$$

\n
$$
I_7 = a_7 \Lambda^2 e^{C(n)b_0} R^2 V(R)^{-2/n} \int_{B(R)} h^{b-p/2+1} \eta^2 d\mu_f,
$$

\n
$$
I_8 = a_8 \Lambda e^{C(n)b_0} b R^2 V(R)^{-2/n} \int_{B(R)} h^{b+1} \eta^2 d\mu_f,
$$

\n
$$
I_9 = e^{C(n)b_0} V(R)^{-2/n} \int_{B(R)} h^{p/2+b} \eta^2 d\mu_f.
$$

Then (5.20) and (5.21) combined give

$$
(5.22) \left(\int_{B(R)} h^{\frac{(p/2+b)n}{n-2}} \eta^{\frac{2n}{n-2}} d\mu_f \right)^{(n-2)/n} + I_4
$$

\n
$$
\leq e^{C(n)b_0} V(R)^{-2/n} R^2 \Big(\int_{B(R)} |\nabla (h^{p/4+b/2} \eta)|^2 d\mu_f + a_4 b \int_{B(R)} h^{p/2+b+1} \eta^2 d\mu_f \Big)
$$

\n
$$
+ e^{C(n)b_0} V(R)^{-2/n} \int_{B(R)} h^{p/2+b} \eta^2 d\mu_f
$$

\n
$$
\leq e^{C(n)b_0} V(R)^{-2/n} R^2 \Big(a_5 b \kappa \int_{B(R)} h^{p/2+b} \eta^2 d\mu_f + a_6 \int_{B(R)} h^{p/2+b} |\nabla \eta|^2 d\mu_f
$$

\n
$$
+ a_7 \Lambda^2 \int_{B(R)} h^{b-p/2+1} \eta^2 d\mu_f + a_8 b \Lambda \int_{B(R)} h^{b+1} \eta^2 d\mu_f
$$

\n
$$
+ e^{C(n)b_0} V(R)^{-2/n} \int_{B(R)} h^{p/2+b} \eta^2 d\mu_f
$$

\n
$$
\leq I_5 + I_6 + I_7 + I_8 + I_9
$$

\n(see (2.10) in [9]).

Now we let $D = \{x \in B(R) \mid h(x) \geq 10 \kappa a_5/a_4\}$. Since

$$
a_5 \kappa e^{C(n)b_0} b R^2 V(R)^{-2/n} \int_D h^{p/2+b} \eta^2 d\mu_f \leq \frac{1}{10} I_4,
$$

we obtain

$$
I_5 < \frac{1}{10} I_4 + a_5 \kappa e^{C(n)b_0} b R^2 V(R)^{-2/n} \int_{B(R)\backslash D} h^{p/2+b} \eta^2 d\mu_f
$$
\n
$$
< \frac{1}{10} I_4 + a_5 \kappa e^{C(n)b_0} b R^2 \Big(\frac{10 a_5 \kappa}{a_4}\Big)^{p/2+b} V(R)^{1-2/n}
$$
\n
$$
\leq \frac{1}{10} I_4 + a_{10}^{p/2+b} e^{C(n)b_0} \kappa^{p/2+b+1} b R^2 V(R)^{1-2/n}.
$$

Similarly, we get

$$
(5.24) \tI_7 < \frac{1}{10} I_4 + a_7 \Lambda^2 \Big(\frac{10a_7 \Lambda^2}{a_4} \Big)^{(b-p/2+1)/p} e^{C(n)b_0} R^2 V(R)^{1-2/n}
$$

$$
< \frac{1}{10} I_4 + a_1^{p/2+b} e^{C(n)b_0} \Lambda^{2b/p+2/p+1} R^2 V(R)^{1-2/n},
$$

$$
(5.25) \tI_8 < \frac{1}{10} I_4 + a_8 \Lambda \Big(\frac{10a_5 \Lambda}{a_4} \Big)^{2(b+1)/p} e^{C(n)b_0} b R^2 V(R)^{1-2/n}
$$

$$
< \frac{1}{10} I_4 + a_1^{p/2+b} e^{C(n)b_0} \Lambda^{2b/p+2/p+1} b R^2 V(R)^{1-2/n},
$$

$$
(5.26) \tI_9 < \frac{1}{10} I_4 + \Big(\frac{10}{a_4 b R^2} \Big)^{p/2+b} e^{C(n)b_0} V(R)^{1-2/n}
$$

$$
< \frac{1}{10} I_4 + a_1^{p/2+b} \Big(\frac{1}{bR^2} \Big)^{p/2+b}.
$$

So far as I_6 is concerned, we let $\eta_1 \in C_0^{\infty}(B(R))$ satisfy $0 \le \eta_1 \le 1$ in $B(R)$, $\eta_1 = 1$ in $B(3R/4), |\nabla \eta_1| \le 10/R$, and choose $\eta = \eta_1^{p/2+b+1}$. Then we have

$$
R^2 |\nabla \eta|^2 \le 10^2 (p/2 + b + 1)^2 \eta^{\frac{p/2+b}{p/2+b+1}}.
$$

Employing the Hölder and the Young inequalities, we then obtain

$$
R^{2} \int_{B(R)} h^{p/2+b} |\nabla \eta|^{2} d\mu_{f}
$$

\n
$$
\leq 10^{2} (p/2+b+1)^{2} \int_{B(R)} h^{p/2+b} \eta^{\frac{p+2b}{p/2+b+1}} d\mu_{f}
$$

\n
$$
\leq 10^{2} (p/2+b+1)^{2} V(R) \overline{p/2+b+1} \left(\int_{B(R)} h^{p/2+b+1} \eta^{2} d\mu_{f} \right)^{\frac{p/2+b}{p/2+b+1}}
$$

\n
$$
\leq \frac{a_{4}bR^{2}}{2a_{6}} \int_{B(R)} h^{p/2+b+1} \eta^{2} d\mu_{f}
$$

\n
$$
+ a_{10}(p/2+b)^{p/2+b} (p/2+b+1)^{p/2+b+1} \left(\frac{2a_{6}}{a_{4}bR^{2}} \right)^{p/2+b} V(R),
$$

so that we get

$$
(5.27) \ I_6 \le \frac{1}{2} I_4
$$

+ $a_{10} e^{C(n)b_0} (p/2 + b)^{p/2+b} (p/2 + b + 1)^{p/2+b+1} \left(\frac{2a_6}{a_4 b R^2}\right)^{p/2+b} V(R)^{1-2/n}$
 $< \frac{1}{2} I_4 + a_{11}^{p/2+b} e^{C(n)b_0} \left(\frac{1}{b R^2}\right)^{p/2+b} (p/2 + b)^{p/2+b} (p/2 + b + 1)^{p/2+b+1}.$

Thus it follows from (5.22) through (5.27) that

$$
(5.28) \quad \left(\int_{B(3R/4)} h^{\frac{(p/2+b)n}{n-2}} d\mu_f\right)^{\frac{n-2}{n(p/2+b)}}
$$

\n
$$
\le a_{11} e^{C(n)b_0/(p/2+b)} V(R)^{(n-2)/n(p/2+b)} \left(\kappa^{p/2+b+1} bR^2 + \Lambda^{2b/p+2/p+1} (1+b) R^2 + \left(\frac{1}{bR^2}\right)^{p/2+b} + \left(\frac{1}{bR^2}\right)^{p/2+b} (p/2+b)^{p/2+b} (p/2+b+1)^{p/2+b+1}\right)^{1/(p/2+b)}.
$$

Now we write $G(R, b)$ for the right-hand side of [\(5.28\)](#page-48-1). We fix $r > 1$ and take $R > 2r$. Then

$$
\Big(\int_{B(r)}h^{\frac{(p/2+b)n}{n-2}}\,d\mu_f\Big)^{\frac{n-2}{n(p/2+b)}}\leq \Big(\int_{B(3R/4)}h^{\frac{(p/2+b)n}{n-2}}\,d\mu_f\Big)^{\frac{n-2}{n(p/2+b)}}\leq G(R,b).
$$

We let $b = a_9 + R$ keep to satisfy [\(5.18\)](#page-45-0), and observe that $V(R) \le a_{12} e^{(n-1)R}$. Then we see that $G(R, b)$ is bounded as $R \to \infty$. Therefore we have

$$
\sup_{B(r)} h = \lim_{R \to \infty} \Big(\int_{B(r)} h^{\frac{(p/2+b)n}{n-2}} d\mu_f \Big)^{\frac{n-2}{n(p/2+b)}} \leq \sup_{R \geq 2} G(R, b) < +\infty.
$$

Finally, letting $r \to \infty$, we conclude that h is bounded in M.

Lemma 5.5. *Suppose there is a point* $y \in M$ *such that*

$$
h(y) = \sup_M h = (p-1)^2 Y(p, n, \kappa, \lambda)^2
$$

or

$$
h(y) = \sup_M h = (p-1)^2 Z(p, n, \kappa, \Lambda)^2.
$$

Then h *is constant on* M*.*

Proof. Let (x^1, \ldots, x^m) be local coordinates on a neighborhood Ω of y in $M \setminus K$. We write

$$
g_M = \sum_{i,j=1}^m g_{ij} \, dx^i \otimes dx^j
$$

 \blacksquare

and let $G = \det(g_{ij})$. We define functions A, B_1 and B_2 on $\Omega \times \mathbb{R} \times \mathbb{R}^m$ respectively by

$$
A(x, s, \xi) = e^{-f(x)} \sqrt{G(x)} h(x)^{p/2-1} (\xi + (p-2)h(x)^{-2} \langle \nabla v(x), \xi \rangle \nabla v(x)),
$$

\n
$$
B_1(x, s, \xi) = -\frac{2}{n-1} e^{f(x)} \sqrt{G(x)} h(x)^{1-p/2}
$$

\n
$$
+ (s^{p/2} + (n-1) \sqrt{\kappa} s^{(p-1)/2} - (p-1)^{p-1} \Lambda)
$$

\n
$$
\cdot (s^{p/2} - (n-1) \sqrt{\kappa} s^{(p-1)/2} - (p-1)^{p-1} \Lambda),
$$

\n
$$
B_2(x, s, \xi) = e^{f(x)} \sqrt{G(x)} \left(\frac{2(p-1)}{n-1} h(x)^{p/2-1} \langle \nabla v(x), \xi \rangle - \frac{2\Lambda(p-1)^p}{(n-1)} h(x)^{-1} \langle \nabla v(x), \xi \rangle - \frac{(p-1)}{2} h(x)^{p/2-1} \langle \nabla v(x), \xi \rangle - p h(x)^{p/2-1} \langle \nabla h(x), \xi \rangle \right).
$$

Then Lemma [5.3](#page-42-1) shows that

$$
\operatorname{div}(A(x, h, \nabla h)) + B_1(x, h, \nabla h) + B_2(x, h, \nabla h) \ge 0
$$

on Ω . Moreover, the constant functions

$$
c_1 = (p-1)^2 Y(p, n, \kappa, \Lambda)^2
$$
 and $c_2 = (p-1)^2 Z(p, n, \kappa, \Lambda)^2$

satisfy

$$
div(A(x, c_i, \nabla c_i)) = 0,
$$

\n
$$
B_1(x, c_i, \nabla c_i) = 0,
$$

\n
$$
B_2(x, c_i, \nabla c_i) = 0 \quad (i = 1, 2).
$$

Therefore, letting $w = c_1 - h$ in case $h(y) = \sup_M h = (p - 1)^2 Y(p, n, \kappa, \Lambda)^2$, or $w =$ $c_2 - h$ in case $h(y) = \sup_M h = (p-1)^2 Z(p, n, \kappa, \Lambda)^2$, we see that w satisfies $w(y) = 0$, $w \geq 0$ in M and

(5.29)
$$
\text{div}A(x, w, \nabla w) + B_1(x, c_i - w, \nabla(c_i - w)) + B_2(x, c_i - w, \nabla(c_i - w))
$$

=
$$
\text{div}A(x, h, \nabla h) - B_1(x, h, \nabla h) - B_2(x, h, \nabla h) \leq 0.
$$

Then we can apply the weak Harnack inequality for supersolutions due to Trudinger [\[33\]](#page-55-9) to get

$$
\int_{B(y,t)} w \, dx \le C \inf_{B(y,t)} w
$$

for a sufficiently small number t, where C is a positive constant. This shows that $w \equiv 0$ in $B(y, t)$ and hence in $B(R)$, since $w(y) = 0$ (see [\[26\]](#page-55-0), Theorem 2.5.1). Since M is connected, we can conclude that $w = 0$ everywhere in M. This proves Lemma [5.5.](#page-48-2) \blacksquare

Lemma 5.6. *One has*

(5.30)
$$
\langle \nabla f, \nabla v \rangle = -(n-m)(p-1)\sqrt{\kappa} Y(p, n, \kappa, \Lambda),
$$

(5.31)
$$
Ddv = (p-1)\sqrt{\kappa} Y(p,n,\kappa,\Lambda) \Big(g_M - \frac{1}{h} dv \otimes dv\Big),
$$

if
$$
h \equiv (p-1)^2 Y(p, n, \kappa, \Lambda)^2
$$
, and

(5.32)
$$
\langle \nabla f, \nabla v \rangle = (n-m)(p-1)\sqrt{\kappa} Z(p, n, \kappa, \Lambda),
$$

(5.33)
$$
Ddv = -(p-1)\sqrt{\kappa} Z(p,n,\kappa,\Lambda)(g_M - \frac{1}{h} dv \otimes dv),
$$

if $h \equiv (p-1)^2 Z(p, n, \kappa, \Lambda)^2$.

Proof. We consider the case where $h \equiv (p-1)^2 Y(p, n, \kappa, \Lambda)^2$. We note first that $v_{11} = 0$ by (5.3) , and hence it follows from (5.7) that

$$
\langle \nabla f, \nabla v \rangle = -(n-m)(p-1)\sqrt{\kappa} Y(p, n, \kappa, \Lambda).
$$

Since $\Delta v = (m - 1) \tau$ in [\(5.11\)](#page-41-8), making use of [\(5.5\)](#page-41-0), we get

$$
Ddv = (p-1)\sqrt{\kappa} Y(p,n,\kappa,\Lambda) \times (g_M - h^{-1}dv \otimes dv).
$$

Similarly, we see that

$$
\langle \nabla f, \nabla v \rangle = (n - m)(p - 1)\sqrt{\kappa} Z(p, n, \kappa, \Lambda)
$$

and

$$
Ddv = -(p-1)\sqrt{\kappa} Z(p, n, \kappa, \Lambda)(g_M - h^{-1}dv \otimes dv)
$$

if $h \equiv (p-1)^2 Z(p, n, \kappa, \Lambda)^2$.

Proof of Theorem [1.3](#page-5-1). Let u be a positive solution of $-\Delta_{p,f} u + \Lambda |u|^{p-2}u = 0$ in M. So far, as the upper estimate of $|\nabla \log u|$ is concerned, since $\sup_M |\nabla \log u| < +\infty$ by Lemma [5.3,](#page-42-1) we are able to apply the same arguments as in $[32]$ and $[9]$ to prove that $|\nabla \log u| \leq Y(p, n, \kappa, \Lambda).$

Suppose now that $\sup_M |\nabla \log u| \leq (1 - \varepsilon)Z(p, n, \kappa, \Lambda)$ for some $\varepsilon \in (0, 1)$. Then it follows that

$$
|\log u(x) - \log u(y)| \le (1 - \varepsilon) Z(p, n, \kappa, \Lambda) \operatorname{dis}_M(x, y)
$$

for all $x, y \in M$. On the other hand, in view of Lemma [2.21,](#page-21-0) we can take a large r_{ε} so that $\log \eta_{p,\Lambda}(r) \geq (1 - \varepsilon/2)Z(p,n,\kappa,\Lambda)r$ for all $r \geq r_{\varepsilon}$, and by Proposition [2.7,](#page-10-0) we find points x_r of $S(o, r)$ such that

$$
\log u(x_r) \ge \log u(o) + \log \omega_{p,n,\Lambda}(r) \ge \log u(o) + (1 - \varepsilon/2) Z(p, n, \kappa, \Lambda)r
$$

for all $r \ge r_{\varepsilon}$. But this is absurd, because we have

$$
\log u(x_r) \leq \log u(o) + (1 - \varepsilon)Z(p, n, \kappa, \Lambda)r.
$$

Thus we have proved that $Z(p, n, \kappa, \Lambda) \leq \sup_{M} |\nabla \log u|$. This completes the proof of the first assertion of Theorem [1.3.](#page-5-1)

Now we prove the second one. We first observe from [\(1.6\)](#page-5-3) that

$$
\log u(x) \ge \log u(y) - Y(p, n, \kappa, \Lambda) \operatorname{dis}_M(x, y)
$$

for all $x, y \in M$.

Now we take positive numbers ε and r_{ε} in such a way that

$$
\varepsilon \Big(\frac{1}{Y(p, n, \kappa, \Lambda)} + 1 \Big) \leq \frac{1}{2} \Big(\frac{Z(p, n, \kappa, \Lambda)}{Y(p, n, \kappa, \Lambda)} - \delta_{\infty}(M) \Big),
$$

$$
\frac{\log \eta_{p, \lambda}(r)}{r} \geq Z(p, n, \kappa, \Lambda) - \varepsilon,
$$

$$
\frac{\text{diam}(S(o, r))}{r} \leq \delta_{\infty}(M) + \varepsilon
$$

for all $r \ge r_{\varepsilon}$. For such r, we let x_r be a point of $S(o, r)$ such that $u(x_r) = \max_{S(o,r)} u$. Then for any $x \in S(o, r)$, we have

$$
\log u(x) \ge \log u(x_r) - Y(p, n, \kappa, \Lambda) \operatorname{dis}_M(x, x_r)
$$

\n
$$
\ge \log u(o) + \log \eta_{p,\Lambda}(r) - Y(p, n, \kappa, \Lambda) \operatorname{diam}(S(o, r))
$$

\n
$$
= \log u(o) + r \left(\frac{\log \eta_{p,\Lambda}(r)}{r} - Y(p, n, \kappa, \Lambda) \frac{\operatorname{diam}(S(o, r)}{r} \right)
$$

\n
$$
\ge \log u(o) + r Y(p, n, \kappa, \Lambda) \left(\frac{Z(p, n, \kappa, \Lambda)}{Y(p, n, \kappa, \Lambda)} - \delta_{\infty}(M) - \frac{\varepsilon}{Y(p, n, \kappa, \Lambda)} - \varepsilon \right)
$$

\n
$$
\ge \log u(o) + \frac{1}{2} \left(Z(p, n, \kappa, \Lambda) - \delta_{\infty}(M) Y(p, n, \kappa, \Lambda) \right) r.
$$

Applying the Harnack inequality to u in $B(0, 2r_{\varepsilon})$, we have

$$
\log u(x) \ge \log u(o) - C_1
$$

for some positive constant C_1 and all $x \in B(o, r_s)$. These show that

$$
\log u(x) \ge \log u(o) + \frac{1}{2} \left(Z(p, n, \kappa, \Lambda) - \delta_{\infty}(M) Y(p, n, \kappa, \Lambda) \right) \text{dis}_{M}(o, x) - C_2
$$

for some positive constant C_2 and all $x \in M$. This completes the proof of Theorem [1.3.](#page-5-1)

Proof of Corollary [1.4](#page-5-4). Let $G^{\Lambda}(x, y)$ and $G^{W}(x, y)$ be respectively the Green functions of $Q'_{2, \Lambda}$ and $Q'_{2, W}$. Then by the assumptions, we can apply Theorem 2.6 of Ancona [\[2\]](#page-53-1) to show that there is a constant $C_3 > 1$ such that

$$
C_3^{-1} G^{\Lambda}(x, y) \le G^{W}(x, y) \le C_3 G^{\Lambda}(x, y), \quad x, y \in M.
$$

Let

$$
K^{\Lambda}(x, y) = \frac{G^{\Lambda}(x, y)}{G^{\Lambda}(o, y)} \quad \text{and} \quad K^{W}(x, y) = \frac{G^{W}(x, y)}{G^{W}(o, y)}.
$$

Let ξ be a point of the Martin boundary ∂M of the operator $Q'_{2,W}$ and $\{y_k\}$ a sequence of points of M which converges to ξ . By taking a subsequence if necessary, denoted by the same letters, $\{y_k\}$, we may assume that $K^{\Lambda}(x, y_k)$ converges, as $k \to \infty$, to a function $u_{\xi}(x)$ on M which is a positive solution of $Q'_{2,\Lambda}(u) = 0$. Then we have

$$
C_3^{-2} u_{\xi}(x) \le K^W(x,\xi) \le C_3^2 u_{\xi}(x)
$$

for all $x \in M$. Since we have, by [\(1.6\)](#page-5-3),

$$
u_{\xi}(x) \le u_{\xi}(y) e^{Y(2,n,\kappa,\Lambda) \operatorname{dis}_M(x,y)}
$$

for all $y \in M$, we get

$$
K^{W}(x,\xi) \left(\leq u_{\xi}(y) \, C_{3}^{2} \, e^{Y(2,n,\kappa,\Lambda) \, \text{dis}_{M}(x,y)} \right) \leq K^{W}(y,\xi) \, C_{3}^{4} \, e^{Y(2,n,\kappa,\Lambda) \, \text{dis}_{M}(x,y)}
$$

for $\xi \in \partial M$. Integrating both sides with respect to a Radon measure ν on the Martin boundary ∂M with $\int_{\partial M} dv(\xi) = 1$, we obtain

$$
\int_{\partial \mathcal{M}} K^{W}(x,\xi) d\nu(\xi) \leq \int_{\partial \mathcal{M}} K^{W}(y,\xi) d\nu(\xi) C_{3}^{4} e^{Y(2,n,\kappa,\Lambda) \operatorname{dis}_{M}(x,y)}.
$$

Since a positive solution u of $Q'_{2,W}(u) = 0$ is represented by

$$
u(x) = u(o) \int_{\partial M} K^W(x, \xi) \, dv(\xi), \quad x \in M
$$

for some Radon measure ν as above on the Martin boundary, we have

$$
u(x) \le u(y) C_3^4 e^{Y(2,n,\kappa,\Lambda) \operatorname{dis}_M(x,y)}
$$

for all $x, y \in M$.

Now we assume [\(1.6\)](#page-5-3) ($p = 2$). Then it follows from the second assertion of Theorem [1.3](#page-5-1) that

$$
e^{Cr(x)-C'} \le u_{\xi}(x) \le C_3^2 K^W(x,\xi)
$$

for all $x \in M$, and hence we get

$$
e^{Cr(x)-C'} \leq C_3^2 \int_{\partial M} K^W(x,\xi) \, dv(\xi) = C_3^2 \, u(x)
$$

for all $x \in M$. This completes the proof of Corollary [1.4.](#page-5-4)

Proof of Theorem [5.2](#page-39-2). Suppose that there exists a point y of M such that $h(y) = \sup_M h$ $= (p-1)^2 Y(p, n, \kappa, \Lambda)^2$. Then it follows from Lemma [5.4](#page-42-2) that h is constant and equal to $(p-1)^2 Y(p, n, \kappa, \Lambda)^2$. Let

$$
B = \frac{v}{|\nabla v|} = \frac{v}{(p-1)Y(p,n,\kappa,\Lambda)}.
$$

Then we can deduce from (5.4) and (5.30) that B is a smooth function on M satisfying $|\nabla B| = 1$ and

(5.34)
$$
DdB = \sqrt{\kappa}(g - dB \otimes dB).
$$

Put $L = B^{-1}(0)$ and let $\{\Omega_t\}$ be the complete flow generated by the gradient ∇B of B. We observe that Ω_t induces a diffeomorphism between L and $B^{-1}(t)$ by sending $z \in L$ to $\Omega_t(z) \in B^{-1}(t)$. Then it follows from [\(5.34\)](#page-52-0) that

p

$$
(5.35) \t\t\t |d\Omega_t(v)| = e^{\sqrt{\kappa}t} |v|
$$

for all $t > 0$ and $v \in T_z L$. We define a diffeomorphism $\Theta: \mathbb{R} \times L \to M$ by

$$
\Theta(t,z)=\Omega_t(z).
$$

Then [\(5.35\)](#page-52-1) implies that

$$
\Theta^* g_M = dt^2 + e^{2\sqrt{\kappa}t} g_L.
$$

Therefore, (M, g_M) is the warped product of R and L with the warping function $e^{\sqrt{\kappa t}}$. This shows, in particular, that $\text{Ric}_M(\nabla B, \nabla B) = -(m-1)\kappa$. Since $\text{Ric}_f^n(\nabla B, \nabla B) =$ $-(n-1)\kappa$ by [\(5.13\)](#page-42-3) and $\langle \nabla f, \nabla B \rangle^2 = (n-m)^2 \kappa$ by [\(5.30\)](#page-49-0), we get $Ddf(\nabla B, \nabla \beta) = 0$, which implies that $\frac{d^2}{dt^2} f(\Omega_t(z)) = 0$ for all $t \in \mathbb{R}$ and $z \in L$. Thus we have

$$
f(t, z) = \langle \nabla f, \nabla B \rangle t + \eta(z) = -(n - m)\sqrt{\kappa} t + \eta(z),
$$

where we set $\eta(z) = f(0, z)$. The $(n - 1)$ -dimensional Bakry–Émery Ricci tensor Ric $_L^{n-1}$ of the weighted Riemannian manifold $(L, g_L, e^{-\eta} dv_L)$ with weight $e^{-\eta}$ satisfies

$$
\text{Ric}_{L}^{n-1} = \text{Ric}_{M}^{n} + (2n - 3m + 1) \kappa e^{2\sqrt{\kappa}t} g_{L} \ge -3(n - m) \kappa e^{2\sqrt{\kappa}t} g_{L}
$$

on $T_{(t,z)}(\{t\} \times L)$, where $T_z L$ is identified with $T_{(t,z)}(\{t\} \times L)$. Thus letting $t \to -\infty$, we get $\operatorname{Ric}_{L}^{n-1} \geq 0$ on L.

When there exists a point *o* of *M* such that $h(o) = \sup_M h = (p-1)^2 Z(p, n, \kappa, \Lambda)^2$, we let

$$
B=-\frac{v}{|\nabla v|}=-\frac{v}{(p-1)Z(p,n,\kappa,\Lambda)}.
$$

Then we use (5.32) and (5.33) , and repeat the same argument as above to get the conclusion. This completes the proof of Theorem [5.2.](#page-39-2)

Acknowledgements. The author would like to thank Satoshi Ishiwata and the referees for useful suggestions and helpful comments.

References

- [1] Allegretto, W. and Huang, Y. X.: A Picone's identity for the p[-Laplacian and applications.](https://doi.org/10.1016/S0362-546X(97)00530-0) *Nonlinear Anal.* 32 (1998), no. 7, 819–830.
- [2] Ancona, A.: Green's functions, generalized first eigenvalues and perturbation of diffusions or Markov chains. In *Random walks and discrete potential theory (Cortona, 1997)*, pp. 1–25. Sympos. Math. 39, Cambridge Univ. Press, Cambridge, 1999.
- [3] Bombieri, E. and Giusti, E.: [Harnack's inequality for elliptic differential equations on minimal](https://doi.org/10.1007/BF01418640) [surfaces.](https://doi.org/10.1007/BF01418640) *Invent. Math.* 15 (1972), 24–46.
- [4] Borbély, A.: [Gradient comparison theorems for harmonic functions on Riemannian manifolds.](https://doi.org/10.1093/qmathj/50.1.19) *Q. J. Math.* 51 (2000), no. 1, 19–37.
- [5] Buser, P.: [A note on the isoperimetric constant.](https://doi.org/10.24033/asens.1426) *Ann. Sci. École Norm. Sup. (4)* 15 (1982), no. 2, 213–230.
- [6] Carron, G.: [Harmonic functions on manifolds whose large spheres are small.](https://doi.org/10.5802/ambp.362) *Ann. Math. Blaise Pascal* 23 (2016), no. 2, 249–261.
- [7] Coulhon, T., Holopainen, I. and Saloff-Coste, L.: [Harnack inequality and hyperbolicity for](https://doi.org/10.1007/s00039-001-8227-3) subelliptic p[-Laplacians with applications to Picard type theorems.](https://doi.org/10.1007/s00039-001-8227-3) *Geom. Funct. Anal.* 11 (2001), no. 6, 1139–1191.
- [8] Devyver, B.: [Heat kernel and Riesz transform of Schrödinger operators.](https://doi.org/10.5802/aif.3249) *Ann. Inst. Fourier (Grenoble)* 69 (2019), no. 2, 457–513.
- [9] Dung, N. T. and Dat, N. D.: Weighted p[-harmonic functions and rigidity of smooth metric](https://doi.org/10.1016/j.jmaa.2016.05.065) [measure spaces.](https://doi.org/10.1016/j.jmaa.2016.05.065) *J. Math. Anal. Appl.* 443 (2016), no. 2, 959–980.
- [10] Fraas, M. and Pinchover, Y.: [Positive Liouville theorems and asymptotic behavior for](https://doi.org/10.1142/S1793744211000321) p-[Laplacian type elliptic equations with a Fuchsian potential.](https://doi.org/10.1142/S1793744211000321) *Confluentes Math.* 3 (2011), no. 2, 291–323.
- [11] Grigor'yan, A.: [Heat kernels on weighted manifolds and applications.](https://doi.org/10.1090/conm/398/07486) In *The ubiquitous heat kernel*, pp. 93–191. Contemp. Math. 398, Amer. Math. Soc., Providence, RI, 2006.
- [12] Grigor'yan, A.: *[Heat kernel and analysis on manifolds](https://doi.org/10.1090/amsip/047)*. AMS/IP Studies in Advanced Mathematics 47, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2009.
- [13] Grigor'yan, A. and Saloff-Coste, L.: [Stability results for Harnack inequalities.](https://doi.org/10.5802/aif.2116) *Ann. Inst. Fourier (Grenoble)* 55 (2005), no. 3, 825–890.
- [14] Ishige, K. and Mukai, A.: [Large time behavior of solutions of the heat equation with inverse](https://doi.org/10.3934/dcds.2018176) [square potential.](https://doi.org/10.3934/dcds.2018176) *Discrete Contin. Dyn. Syst.* 38 (2018), no. 8, 4041–4069.
- [15] Kasue, A.: [Harmonic functions with growth conditions on a manifold of asymptotically](https://doi.org/10.1007/BFb0083054) [nonnegative curvature. I.](https://doi.org/10.1007/BFb0083054) In *Geometry and analysis on manifolds (Katata/Kyoto, 1987)*, pp. 158–181. Lecture Notes in Math. 1339, Springer, Berlin, 1988.
- [16] Kasue, A. and Kumura, H.: [Spectral convergence of Riemannian manifolds.](https://doi.org/10.2748/tmj/1178225756) *Tohoku Math. J. (2)* 46 (1994), no. 2, 147–179.
- [17] Kotschwar, B. and Ni, L.: [Local gradient estimates of](https://doi.org/10.24033/asens.2089) p-harmonic functions, $1/H$ -flow, and [an entropy formula.](https://doi.org/10.24033/asens.2089) *Ann. Sci. Éc. Norm. Supér. (4)* 42 (2009), no. 1, 1–36.
- [18] Li, P. and Tam, L.-F.: [Green's functions, harmonic functions, and volume comparison.](https://doi.org/10.4310/jdg/1214456219) *J. Differential Geom.* 41 (1995), no. 2, 277–318.
- [19] Munteanu, O., Sung, C.-J. A. and Wang, J.: [Weighted Poincaré inequality and the Poisson](https://doi.org/10.1090/tran/8291) [equation.](https://doi.org/10.1090/tran/8291) *Trans. Amer. Math. Soc.* 374 (2021), no. 3, 2167–2199.
- [20] Murata, M.: [Structure of positive solutions to](https://doi.org/10.1215/S0012-7094-86-05347-0) $(-\Delta + V)u = 0$ in \mathbb{R}^n . *Duke Math. J.* 53 (1986), no. 4, 869–943.
- [21] Pinchover, Y.: [On positive solutions of second-order elliptic equations, stability results, and](https://doi.org/10.1215/S0012-7094-88-05743-2) [classification.](https://doi.org/10.1215/S0012-7094-88-05743-2) *Duke Math. J.* 57 (1988), no. 3, 955–980.
- [22] Pinchover, Y.: [On the equivalence of Green functions of second order elliptic equations in](https://doi.org/10.57262/die/1370979313) \mathbb{R}^n . *Differential Integral Equations* 5 (1992), no. 3, 481–493.
- [23] Pinchover, Y.: [On positive Liouville theorems and asymptotic behavior of solutions of Fuch](https://doi.org/10.1016/S0294-1449(16)30187-1)[sian type elliptic operators.](https://doi.org/10.1016/S0294-1449(16)30187-1) *Ann. Inst. H. Poincaré C Anal. Non Linéaire* 11 (1994), no. 3, 313–341.
- [24] Pinchover, Y. and Psaradakis, G.: [On positive solutions of the](https://doi.org/10.2140/apde.2016.9.1317) (p, A) -Laplacian with potential [in Morrey space.](https://doi.org/10.2140/apde.2016.9.1317) *Anal. PDE* 9 (2016), no. 6, 1317–1358.
- [25] Pinchover, Y. and Tintarev, K.: Ground state alternative for p [-Laplacian with potential term.](https://doi.org/10.1007/s00526-006-0040-2) *Calc. Var. Partial Differential Equations* 28 (2007), no. 2, 179–201.
- [26] Pucci, P. and Serrin, J.: *[The maximum principle](https://doi.org/10.1007/978-3-7643-8145-5)*. Progress in Nonlinear Differential Equations and their Applications 73, Birkhäuser, Basel, 2007.
- [27] Qian, Z.: [Estimates for weighted volumes and applications.](https://doi.org/10.1093/qmath/48.2.235) *Quart. J. Math. Oxford Ser. (2)* 48 (1997), no. 2, 235–242.
- [28] Sakurai, Y.: [Rigidity of manifolds with boundary under a lower Bakry–Émery Ricci curvature](https://doi.org/10.2748/tmj/1552100443) [bound.](https://doi.org/10.2748/tmj/1552100443) *Tohoku Math. J. (2)* 71 (2019), no. 1, 69–109.
- [29] Saloff-Coste, L.: [A note on Poincaré, Sobolev, and Harnack inequalities.](https://doi.org/10.1155/S1073792892000047) *Internat. Math. Res. Notices* (1992), no. 2, 27–38.
- [30] Saloff-Coste, L.: [Uniformly elliptic operators on Riemannian manifolds.](https://doi.org/10.4310/jdg/1214448748) *J. Differential Geom.* 36 (1992), no. 2, 417–450.
- [31] Saloff-Coste, L.: *[Aspects of Sobolev-type inequalities](https://doi.org/10.1112/s0024609302261561)*. London Mathematical Society Lecture Note Series 289, Cambridge University Press, Cambridge, 2002.
- [32] Sung, C.-J. A. and Wang, J.: [Sharp gradient estimate and spectral rigidity for](https://doi.org/10.4310/MRL.2014.v21.n4.a14) p-Laplacian. *Math. Res. Lett.* 21 (2014), no. 4, 885–904.
- [33] Trudinger, N. S.: [On Harnack type inequalities and their application to quasilinear elliptic](https://doi.org/10.1002/cpa.3160200406) [equations.](https://doi.org/10.1002/cpa.3160200406) *Comm. Pure Appl. Math.* 20 (1967), 721–747.
- [34] Wang, X. and Zhang, L.: Local gradient estimate for p[-harmonic functions on Riemannian](https://doi.org/10.4310/CAG.2011.v19.n4.a4) [manifolds.](https://doi.org/10.4310/CAG.2011.v19.n4.a4) *Comm. Anal. Geom.* 19 (2011), no. 4, 759–771.
- [35] Wei, G. and Wylie, W.: [Comparison geometry for the Bakry–Émery Ricci tensor.](https://doi.org/10.4310/jdg/1261495336) *J. Differential Geom.* 83 (2009), no. 2, 377–405.

Received April 1, 2022; revised March 25, 2023. Published online June 2, 2023.

Atsushi Kasue

Department of Mathematics, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; kasuesan@staff.kanazawa-u.ac.jp