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Real Kaehler submanifolds in codimension up to four

Sergio Chion Aguirre and Marcos Dajczer

Abstract. Let f WM 2n ! R2nC4 be an isometric immersion of a Kaehler mani-
fold of complex dimension n � 5 into Euclidean space with complex rank at least 5
everywhere. Our main result is that, along each connected component of an open
dense subset of M 2n, either f is holomorphic in R2nC4 Š CnC2, or it is in a
unique way a composition f D F ı h of isometric immersions. In the latter case, we
have that hWM 2n ! N 2nC2 is holomorphic and F WN 2nC2 ! R2nC4 belongs to
the class, by now quite well understood, of non-holomorphic Kaehler submanifolds
in codimension two. Moreover, the submanifold F is minimal if and only if f is
minimal.

1. Introduction

By a real Kaehler submanifold f WM 2n ! R2nCp we mean an isometric immersion of a
connected Kaehler manifold .M 2n; J / of complex dimension n � 2 into Euclidean space
with codimension p. Throughout this paper, it is assumed that f is locally substantial,
which means that the image of f restricted to any open subset of M 2n does not lie inside
a proper affine subspace of R2nCp . Moreover, if the codimension is even then f , when
restricted to any open subset of M 2n, is not allowed to be holomorphic in R2nC2q Š
CnCq . Notice that conditions that yield that f is holomorphic have been given in [5], and
that f is just minimal, in [2].

The study of real Kaehler submanifolds has acquired increasing relevance since the
pioneering work by Dajczer and Gromoll in [8]. Clearly, the main motivation for their
study is that when these submanifolds are minimal, they enjoy many of the feature prop-
erties of minimal surfaces. For instance, if simply-connected, they admit an associated
one-parameter family of non-congruent isometric minimal submanifolds with the same
Gauss map, and can be realized as the real part of its holomorphic representative. More-
over, they are pluriharmonic (sometimes called pluriminimal) submanifolds and, in partic-
ular, they are austere submanifolds. Furthermore, as seen in Appendix A, there are several
cases when a classification is reached through a Weierstrass type representation. For a
partial account of results and references on this subject of research, we refer to [13].
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It is well known that the second fundamental form ˛W TM � TM ! NfM of a real
Kaehler submanifold f WM 2n!R2nCp with codimension pD 1 or pD 2 has necessarily
a large kernel. The complex dimension of that kernel is measured by way of the notion of
(complex) rank.

The rank %f .x/ of f at x 2M 2n is given by

2%f .x/ D 2n � dim�.x/ \ J�.x/;

where
�.x/ D ¹Y 2 TxM W ˛.X; Y / D 0 for any X 2 TxM º

is known as the relative nullity subspace of f at x 2M 2n.
As recalled below, outside a flat point, the rank is %f D 1 if the codimension is p D 1,

and that it is %f � 2 at any point if p D 2. The situation is quite different for submanifolds
in higher codimension, in part due to the presence of compositions of isometric immer-
sions. For instance, already for pD 3we have that if F WN 2nC2!R2nC3 is a real Kaehler
hypersurface and gWM 2n ! N 2nC2 an holomorphic submanifold, then the composition
of isometric immersions f D F ı gWM 2n ! R2nC3 may have any rank since there is no
bound under holomorphicity. Thus, in the search of local classifications of real Kaehler
submanifolds in higher codimension than two, but still low, a necessary step is to provide
conditions that impose the existence of a composition.

At this time there is substantial knowledge about the local real Kaehler submanifolds
that are free of flat points and lie in codimension of at most four. On one hand, the ones in
codimension one or two are quite well understood. On the other hand, for the higher codi-
mensions three and four, it turns out that under a proper rank assumption, the submanifold
has to be a composition as the one for p D 3 discussed above.

The non-flat real Kaehler hypersurfaces f WM 2n ! R2nC1, n � 2, have been locally
classified by Dajczer and Gromoll [8] by way of the so called Gauss parametrization in
terms of a pseudoholomorphic surface in the 2n-dimensional round sphere and any smooth
function on the surface. This was made possible because in this case the rank is %f D 1;
see Theorem 15:14 in [13] for a more detailed proof of this classification. It turns out that
the hypersurface is minimal if and only if the function on the surface is an eigenvector
of the Laplacian for the eigenvalue 2. For this special case, there is a Weierstrass type
parametrization given by Hennes [16].

For real Kaehler submanifolds f WM 2n! R2nC2, n � 3, Dajczer [6] showed that we
have dim�.x/� 2n� 4 at any x 2M 2n. For a discussion of the classification for the real
Kaehler submanifolds that lie in codimension two in terms of its rank, see Appendix A.

We say that real Kaehler submanifold f WM 2n ! R2nCp admits a Kaehler extension
if there exist a (maybe flat) real Kaehler submanifold F WN 2nC2` ! R2nCp , ` � 1, and a
holomorphic isometric embedding j WM 2n ! N 2nC2`, such that f D F ı j .

For f WM 2n ! R2nC3, n � 4, it was stated by Dajczer and Gromoll [10] that if
dim� < 2n � 6 everywhere, then there exists an open dense subset of M 2n such that,
along each connected component, the submanifold admits a unique Kaehler extension to
a real Kaehler hypersurface. Unfortunately, the existence part of the proof in [10] depends
on an algebraic lemma that went unproven. But that result is correct for the specific non-
symmetric bilinear form given by (1) in that paper, as follows from Lemma 3.6 or from
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Lemma 1 in [19]. A nice observation due to Yan and Zheng [19] is that this result should
hold under a weaker assumption on the rank of the submanifold. In this paper, we provide
a proof of this.

The case of real Kaehler submanifolds f WM 2n ! R2nC4, n � 5, is treated by Yan
and Zheng in [19] and [18]. It is proved in [19] that, if the rank of f satisfies %f > 4

everywhere, there exists an open dense subset of M 2n such that f restricted to each
connected component admits a Kaehler extension F WN 2nC2 ! R2nC4. In the present
paper, by way of an alternative approach, we are able to complement in some directions
the Main Theorem in [19]. In particular, we show that their result is correct in spite of
a rather minor inaccuracy in the proof. In fact, their statement that the vanishing of a
shape operator on one normal direction amounts to a reduction of the codimension of the
submanifold does not hold. It is just elementarily false that in this case there is a reduction
of the codimension and, of course, there is no statement in Spivak [17] that proves such
a claim. Nevertheless, it turns out that even in this case their theorem is correct since, in
this situation, the submanifold is holomorphic inside a flat submanifold as the one given
in the non-minimal case (i)-(a) in Appendix A.

The main achievement of this paper is to prove that the Kaehler extension is unique,
up to reparametrizations, in opposition to a assertion in [19]. Consequently, the subman-
ifold f is minimal if and only if its extension F is also minimal. What makes our proof
of uniqueness possible is that the way we construct the extensions is somehow more
restricted than in [19]; see Remark 2.6.

Theorem 1.1. Let f WM 2n ! R2nCp , 3 � p � 4 and n > p, be a real Kaehler subman-
ifold whose rank satisfies %f > p everywhere. Then there exists an open dense subset
of M 2n such that the restriction of f to each connected components admits a unique
Kaehler extension F WN 2nC2! R2nCp . Moreover, the rank of F is constant %F � p � 2
and F is a minimal submanifold if and only if f is minimal.

Under the rank assumption required in the above result, the manifold M 2n is free of
points where all the sectional curvatures vanish. In fact, by a classical result going back to
Cartan, at such a point we have dim� � 2n � p and hence %f � p.

Theorem 1.1 is sharp even if the submanifold is asked to be isometrically complete.
For instance, the extrinsic product immersion of two complete minimal ruled submani-
folds lying in codimension two classified in [9] has rank four.

From Appendix A, it follows that the geometric options for the extension F , and hence
for f , in Theorem 1.1 not to be minimal are quite limited.

We observe that Yan and Zheng in [19] made a very interesting and rather challenging
conjecture: if the codimension is p � 11, then Kaehler extensions always exist for real
Kaehler submanifolds f WM 2n!R2nCp , n > p, if the rank satisfies %f > p everywhere.
In this respect, the results in the first section of this paper, that hold for any codimension,
should be useful. Finally, in [3] it is shown why in the Yang and Zheng conjecture, limiting
the codimension to 11 is essential. This was done proving that the structure of the second
fundamental form until that codimension is the one expected, and this by an argument that
fails beyond that codimension. As for the full conjecture, we intend to give an answer in a
forthcoming paper that makes use of some results from the present one.
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2. A class of Kaehler extensions

The goal of this section is to establish a set of conditions for a real Kaehler submanifold
to admit a Kaehler extension of a certain type. The result achieved holds regardless of the
size the codimension, and should be of use for further applications.

We first introduce some notations and definitions. Let 
 W V � V ! W be a bilinear
form between real vector spaces. The image of 
 is the vector subspace of W given by

�.
/ D span ¹
.X; Y / for all X; Y 2 V º;

whereas the (right) nullity of 
 is the vector subspace of V defined by

N .
/ D ¹Y 2 V W 
.X; Y / D 0 for all X 2 V º:

Henceforth f WM 2n ! R2nCp stands for a real Kaehler submanifold, and

˛ W TM � TM ! NfM

its second fundamental form. If P � NfM.x/ is a vector subspace and if ˛P is the
P -component of the second fundamental form ˛ at x 2 M 2n, then the complex kernel
of ˛P is the tangent vector subspace

Nc.˛P / D N .˛P / \ JN .˛P /:

Throughout this section, L denotes a normal vector subbundle of (real) rank 2` > 0
that satisfies L.x/ � �.˛.x// everywhere and is endowed with the induced metric and
vector bundle connection. Moreover, it is assumed that L carries an isometric complex
structure J 2 �.Aut.L//, that is, a vector bundle isometry that satisfies J2 D �I . Fur-
thermore, it is required the complex tangent vector subspaces D.x/ D Nc.˛L?.x// to
have constant (even) dimension and thus form a holomorphic tangent subbundle denoted
by D.

In the sequel, the pair .L;J/ is required to satisfy the following conditions:
(C1) The complex structure J 2 �.Aut.L// is parallel, that is,

.r?X J�/L D J.r?X �/L for any X 2 X.M/ and � 2 �.L/,

and the second fundamental form of f satisfies

(2.1) J˛L.X; Y / D ˛L.X; J Y / for any X; Y 2 X.M/,

or, equivalently, the shape operators satisfy

AJ� D J ı A� D �A� ı J for � 2 �.L/:

(C2) The subbundle L is parallel along D in the normal connection of f , that is,

r
?
Y � 2 �.L/ for any Y 2 �.D/ and � 2 �.L/.
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We observe that the subbundle L is necessarily proper in N1 D �.˛/ along any open
subset U �M 2n where the latter has constant rank since, otherwise we would have from
the condition .C2/ that N1 D NfM , and then f would be holomorphic along U as estab-
lished by Proposition 3.1 below.

Let the vector bundle TM ˚ L over M 2n be endowed with the complex structure
OJ 2 �.Aut.TM ˚ L// defined by

(2.2) OJ.X C �/ D JX C J�:

Condition .C1/ easily gives that OJ is parallel in the induced vector bundle connection
defined by

OrX .Y C �/ D . QrX .Y C �//TM˚L;

where Qr denotes the Euclidean connection in the ambient space R2nCp . That is, we have

(2.3) . QrX OJ.Y C �//TM˚L D OJ.. QrX .Y C �//TM˚L/

for any X; Y 2 X.M/ and � 2 �.L/.

Proposition 2.1. The distribution D D Nc.˛L?/ is integrable.

Proof. The Codazzi equation .r?X ˛/.S; T / D .r
?
S ˛/.X; T / and the condition .C2/ give

(2.4) .r?X ˛.S; T //L? C ˛L?.X;rST / D 0

for any X 2 X.M/ and S; T 2 �.D/.
From (2.4) it follows that ŒS; T � 2 N .˛L?/ for any S; T 2 �.D/. On the other hand,

from (2.1) we have ˛.S; JT / D ˛.JS; T / for any S; T 2 �.D/. This and (2.4) give

˛L?.X; J ŒS; T �/ D ˛L?.X;rSJT � rT JS/ D .r
?
X .˛.T; JS/ � ˛.S; JT ///L? D 0

for anyX 2 X.M/ and S;T 2 �.D/. Thus also J ŒS;T � 2N .˛L?/ and hence ŒS; T � 2D
for any S; T 2 �.D/.

Proposition 2.1 gives that M 2n carries an holomorphic foliation. Let i W† ! M 2n

denote the inclusion of the leaf † through x 2 M 2n, and let gW†! R2nCp be the iso-
metric immersion g D f ı i .

We have that

QrST D f�.rST /D C f�.rST /D? C ˛
f .S; T /

for any S; T 2 �.D/. Hence

(2.5) ˛g.y/.S; T / D f�.i.y//.ri�S i�T /D? C ˛
f .i.y//.i�S; i�T /

for any S; T 2 X.†/.
We have that g D f ı i W†! R2nCp satisfies g.†/ � f�TxM ˚ L.x/. To see this,

observe that the normal bundle of g splits orthogonally as Ng†D i�.f�D? ˚L˚L?/,
and that the condition .C2) gives that the vector subbundle i�L? of Ng† is constant
in R2nCp . Thus, we may also see g.†/ as a submanifold of R2nC2` D f�TxM ˚L.x/�
R2nCp when it is convenient.
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Proposition 2.2. The submanifolds gW†! R2nC2` are holomorphic. Moreover, for any
given g, the map  W �.˛g/! �.˛f jD�D/ defined by

 .˛g.S; T // D ˛f .i�S; i�T /

is an isomorphism.

Proof. Let NJ be the complex structure on R2nC2` induced by OJ. Then

NJg�T D OJf�i�T D f�J i�T D f�i�J jT†T D g�J jT†T

for any T 2 X.†/, and hence g is holomorphic.
From (2.5), the map  is surjective. To prove injectivity, let ı D

Pk
jD1 ˛

g.Sj ; Tj / for
Sj ; Tj 2 X.†/ satisfy

 .ı/ D

kX
jD1

˛f .i�Sj ; i�Tj / D 0:

From (2.1) we have

kX
jD1

˛f .i�Sj ; i�JTj / D J

kX
jD1

˛f .i�Sj ; i�Tj / D 0:

We obtain from (2.4) that

kX
jD1

˛L?.X;rSj i�Tj / D �

kX
jD1

.r?X ˛
f .i�Sj ; i�Tj //L? D 0;

and, similarly, that
kX

jD1

˛L?.X; JrSj i�Tj / D 0:

Hence
kX

jD1

rSj i�Tj 2 �.D/;

and we conclude from (2.5) that ı D 0.

In the sequel, the pair .L;J/ is assumed to satisfy the additional condition:
(C3) L D �.˛jD�D/ at any point of M 2n.

Lemma 2.3. Let � Wƒ!M 2n be the OJ-invariant vector subbundle of TM˚L defined by

(2.6) ƒ D span ¹.rST /D? C ˛
f .S; T /WS; T 2 �.D/º:

Then rankƒ D 2` and ƒ \ TM D 0. Moreover, we have that

(2.7) QrX� 2 f�TM ˚ L

for any � 2 �.ƒ/ and X 2 X.M/.
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Proof. From Proposition 2.2, it follows that rank �.˛g/ D rank i�L. If † is the leaf of D
that contains x 2M 2n, we have from (2.5) thatƒ.i.x//D �.˛g/.x/. Thusƒ has constant
dimension at each x 2 M 2n and hence is a subbundle. If � 2 ƒ \ TM , it follows from
Proposition 2.2 and (2.5) that � D 0 and hence ƒ \ TM D 0.

We obtain from (2.4) that

. QrX .f�.rST /D? C ˛
f .S; T ///L? D 0

for any S; T 2 �.D/, as we wished.

Lemma 2.4. A real Kaehler submanifold f WM 2n ! R2nCp is minimal if and only if it
is pluriharmonic, that is, if

(2.8) ˛.JX; Y / D ˛.X; J Y / for any X; Y 2 X.M/

or, equivalently, if the shape operators satisfy J ı A� D �A� ı J for any � 2 NfM .

Proof. This is Theorem 1:2 in [11] or Theorem 15:7 in [13].

Theorem 2.5. Let f WM 2n ! R2nCp be an embedding and let � Wƒ2` ! M 2n be the
vector subbundle of TM ˚ L2` defined by (2.6). Let N 2nC2` be an open neighborhood
of the 0-section j WM 2n ! N 2nC2` of ƒ2` such that the map F WN 2nC2` ! R2nCp

defined by
F.�/ D f .�.�//C �

is an embedding. Then F is a Kaehler extension of f DF ı j , and its second fundamental
form satisfies Nc.˛

F / D D ˚ƒ at any point and thus, in particular, its rank is 2%F D
2n � rankD. Moreover, the submanifold F is minimal if and only if f is minimal.

Proof. If �0 2 N 2nC2` and x0 D �.�0/, let � 2 �.ƒ/ be such that �.x0/ D �0. Then

QrXF.�0/ D f�.x0/X C QrX�.x0/ if X 2 Tx0M:

Thus T�N D T�.�/M ˚ L.�.�// and NFN.�/ D L?.�.�// for any � 2 N 2nC2`.
We first show that F is a real Kaehler submanifold. Let JN 2 �.Aut.TN // be the

complex structure defined by JN .�/ D OJ.�.�//, where OJ is given by (2.2). Thus JN

is constant along the fibers of ƒ. Then JN is parallel with respect to the Levi-Civita
connection Or on N 2nC2`, since by (2.3) we have that

OrXJ
N .Y C �/ D . QrX OJ.Y C �//TM˚L D OJ. QrX .Y C �//TM˚L D J

N OrX .Y C �/

for any X; Y 2 X.M/ and � 2 �.L/.
We show next that Nc.˛

F / D D ˚ƒ. The condition .C2/ gives

QrS� D �A
f
� S Cr

?
S � D r

?
S � 2 �.L

?/

for any S 2 �.D/ and � 2 �.L?/. We obtain D ˚ƒ � N .˛F /. Since D is J -invariant
andƒ is OJ-invariant, thenD˚ƒ is JN -invariant. ThusD˚ƒ �Nc.˛

F /. For the other
inclusion, we have to verify that if Z 2 X.M/ \Nc.˛

F /, then Z 2 �.D/. Since
F
r
?
Z � D

QrZ� D �A
f
� Z C

f
r
?
Z � and F

r
?
JZ� D

QrJZ� D �A
f
� JZ C

f
r
?
JZ�

for any � 2 �.L?/, then Af� Z D A
f
� JZ D 0.
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Assume that f is minimal. We first prove the following fact:

(2.9) J.r?X �/L C .r
?
JX �/L D 0 for any X 2 X.M/ and � 2 �.L?/.

Let � 2 �.ƒ/ be such that .�/L D J.r?X �/L C .r
?
JX �/L. Using first that (2.8) holds and

then (2.7) at the end of the argument, we obtain

k.�/Lk
2
D h�;J.r?X �/LC.r

?
JX �/Li D h�;�JA�XCJ.r?X �/L � A�JXC.r

?
JX �/Li

D h�; OJ. QrX�/TM˚L C . QrJX�/TM˚Li D h QrX OJ�; �i � h QrJX�; �i D 0:

Since QrX� D �A
f
� X Cr

?
X �, then AF� X D A

f
� X � .r

?
X �/L. Using (2.9), we have

AF� J
NX D Af� JX � .r

?
JX �/L D �JA

f
� X C J.r?X �/L

D � OJ.Af� X � .r
?
X �/L/ D �J

NAF� X

for any � 2 �.L?/ and X 2 X.M/. Since we have seen that Nc.˛
F / D D ˚ ƒ, then

˛F .ı; �/ D ˛F .ı; JN �/ D 0 holds for any ı 2 TN and � 2 ƒ, and hence F is a minimal
immersion.

Assume that F is minimal. Since J is holomorphic, then ˛j .JS;T /D ˛j .S; JT / for
any S; T 2 X.†/. Now since f D F ı j , then

˛f .S; JT / D F�˛
j .S; JT /C ˛F .j�S; j�JT / D F�˛

j .JS; T /C ˛F .j�S; J
N j�T /

D F�˛
j .JS; T /C ˛F .JN j�S; j�T / D F�˛

j .JS; T /C ˛F .j�JS; j�T /

D ˛f .JS; T /;

and hence f is a minimal submanifold.

Remark 2.6. In Proposition 2 in [19], the extension is obtained by means of a developable
ruling L, whereas here Theorem 2.5 uses the subbundle ƒ given by (2.6). This is more
restricted since ƒ is a special case of a canonical developable ruling as defined in [19]. In
fact, our ƒ is J -invariant, and that may not be the case of L.

3. The proof of Theorem 1.1

The proof of Theorem 1.1 requires several results. The first one holds for any codimension
and is of independent interest.

Proposition 3.1. Let f WM 2n ! R2nCp be an isometric immersion of a Kaehler mani-
fold. Assume thatN1.x/D �.˛.x// satisfiesN1.x/DNfM.x/ at any x 2M 2n, and that
there is an isometry J 2 �.Aut.NfM// such that

(3.1) J˛.X; Y / D ˛.X; J Y / for any X; Y 2 X.M/:

Then p is even and f is holomorphic.
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Proof. From (3.1), we have that the J is a complex structure which we claim to be par-
allel in the normal connection. If we apply J to the Codazzi equation .r?X ˛/.Y; Z/ D
.r?Y ˛/.X;Z/, subtract .r?X ˛/.Y; JZ/ D .r

?
Y ˛/.X; JZ/, and then use (3.1), we obtain

(3.2) K.X/ ˛.Y;Z/ DK.Y / ˛.X;Z/;

where K.X/ 2 �.End.NfM// is the skew-symmetric tensor defined by

K.X/� D Jr?X � � r
?
X J�:

If we denote
hK.X/ ˛.Y;Z/; ˛.S; T /i D .X; Y;Z; S; T /;

then, by (3.2) and since K.X/ is skew-symmetric, we obtain

.X; Y;Z; S; T / D �.X; S; T; Y;Z/ D �.S;X; T; Y;Z/ D .S; Y;Z;X; T /

D .Y; S;Z;X; T / D �.Y;X; T; S;Z/ D �.T;X; Y; S;Z/

D .T; S;Z;X; Y / D .Z; S; T;X; Y / D �.Z;X; Y; S; T /

D �.X; Y;Z; S; T / D 0

for anyX;Y;Z;S;T 2 X.M/. BecauseN1 D NfM everywhere, then K.X/D 0 for any
X 2 X.M/, and the claim has been proved.

It follows from the claim that J is constant along the submanifold and hence J ˚ J

extends to a complex structure on R2nCp , still denoted by J, such that J ı f� D f� ı J,
and therefore f is holomorphic.

Let f WM 2n! R2nCp be a real Kaehler submanifold and letNfM.x/˚NfM.x/ be
endowed with the inner product of signature .p; p/ given by

hh.�1; �2/; .�1; �2/ii D h�1; �1i � h�2; �2i:

We call a bilinear form 'WTxM � TxM ! NfM.x/˚NfM.x/ flat if

hh'.X; Y /; '.Z; T /ii � hh'.X; T /; '.Z; Y /ii D 0

for any X; Y;Z; T 2 TxM .

Lemma 3.2. The bilinear form 
 WTxM � TxM ! N1.x/˚N1.x/ defined by

(3.3) 
.X; Y / D .˛.X; Y /; ˛.X; J Y //

is flat.

Proof. It is well known that the curvature tensor of a Kaehler manifold M 2n satisfies
R.X;Y /D R.JX;J Y / and R.X;Y /JZ D JR.X;Y /Z for any X;Y;Z 2 TxM . Then a
roughly short straightforward computation making use of this as well as the Gauss equa-
tion of f gives the flatness.

A vector subspace V � NfM.x/˚NfM.x/ is called a degenerate space if V \ V ?

¤ 0, and nondegenerate otherwise.
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Lemma 3.3. Let f WM 2n ! R2nCp , p < n, be an isometric immersion of a Kaehler
manifold and let P � N1.x/ be a vector subspace of dimension dimP � 5. Assume that
the bilinear form 
P WTxM � TxM ! P ˚ P defined by


P .X; Y / D .˛P .X; Y /; ˛P .X; J Y //

is flat and that the vector space �.
P / is nondegenerate. Then

dim Nc.˛P .x// � 2n � 2 dim :

In particular, if p � 5 and the flat bilinear form 
 in (3.3) satisfies that �.
/ is a
nondegenerate vector space, then %f .x/ � p.

Proof. The proof follows from Proposition 5 in [4].

Lemma 3.4. Let f WM 2n ! R2nCp , p < n and 2 � p � 5, be an isometric immersion
of a Kaehler manifold with rank %f > p everywhere.

(i) At any x 2M 2n, there are a subspace L.x/ � N1.x/ of dimL.x/D 2`.x/ > 0 and
an isometry J.x/ 2 Aut.L.x// such that

(3.4) J.x/ ˛L.x/.X; Y / D ˛L.x/.X; J Y / for any X; Y 2 TxM;

the subspace �.
L?.x// is nondegenerate, and dim Nc.˛L.x/?/ � 2n� 2pC 4`.x/.

(ii) On each connected component of an open dense subset U � M 2n, we have that
`.x/ D ` and dim Nc.˛L.x/?/ are constant, the subspaces L.x/ form a normal vec-
tor subbundle L � N1 of rankL D 2`, there is an isometry J 2 �.Aut.L// that
satisfies (2.1), and there is a tangent subbundle Nc.˛L?/ such that rank Nc.˛L?/ �

2n � 2p C 4`.

Proof. By Lemma 3.3, the bilinear form 
 given by (3.3) satisfies that �.
/ is a degenerate
subspace at any x 2M 2n, that is, we have that U.x/ D �.
/ \ .�.
//? ¤ 0. If .�; �/ 2
U.x/, then also .�;��/ 2 U.x/, since

hh
.X; Y /; .�;��/ii D hh
.X; J Y /; .�; �/ii

for any X; Y 2 TxM . Then dim U.x/ D 2`.x/ > 0.
We have that �1.U.x// D �2.U.x//, where �j WN1.x/˚N1.x/! N1.x/, j D 1; 2,

is the projection onto the j -th component. Since �j jU.x/, j D 1; 2, is injective, then
L.x/D�j .U.x// satisfies dimL.x/D 2`.x/. We have U.X/� �.
L.x//�L.x/˚L.x/

and thus, by dimension reasons, we obtain U.X/ D �.
L.x//. Then

(3.5) h˛L.x/.X; Y /; ˛L.x/.Z; T /i D h˛L.x/.X; J Y /; ˛L.x/.Z; JT /i

for any X; Y;Z; T 2 TxM . Thus, there is an isometry J.x/ 2 Aut.L.x// such that (3.4)
holds. We have that 
 is flat, and (3.5) just says that also


L.x/.X; Y / D .˛L.x/.X; Y /; ˛L.x/.X; J Y //
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is flat. Since 
.x/ D 
L.x/ C 
L?.x/, then also 
L?.x/ is flat. Having that the subspace
�.
L?.x// is nondegenerate, then Lemma 3.3 gives

dim Nc.˛L?.x// � 2n � 2p C 4`.x/:

Let U �M 2n be an open sense subset such that `.x/ and dimNc.˛L?.x// are constant
on each connected component. Along any component, the subspaces U.x/ form a vector
bundle and thus also the subspaces L.x/ do, since they possess equal dimension. Finally,
that J 2 �.Aut.L// is smooth follows from (3.4).

For codimension p D 2, the following result generalizes the one in [6]. A proof should
also follow from the arguments in [19].

Theorem 3.5. Let f WM 2n ! R2nC2, n � 3, be an isometric immersion of a Kaehler
manifold. If the rank is %f > 2 everywhere, then f is an holomorphic submanifold.

Proof. Lemma 3.4 gives that N1 D NfM and an isometry J 2 �.Aut.NfM// satisfying

J˛.X; Y / D ˛.X; J Y /

for any X; Y 2 X.M/. Then Proposition 3.1 yields that f is holomorphic.

Lemma 3.6. Let f WM 2n!R2nCp , 3� p � 4 and n > p, be a real Kaehler submanifold
with rank %f > p everywhere. Then along each connected component, say U0, of an open
dense subset of M 2n, there exists a pair .L;J/ such thatL�N1jU0 is a vector subbundle
of rank 2 and J 2 �.Aut.L// an isometric complex structure that satisfies (2.1).

Moreover, the subspaces D.x/ D Nc.˛L?.x// form a tangent vector subbundle such
that rankD � 2n� 2pC 4. Furthermore, if .L0;J0/ is a pair along U0 such thatL0 �N1
is a vector subbundle and the isometry J0 2 �.Aut.L0// satisfies (2.1), then .L; J/ D
.L0;J0/.

Proof. By Lemma 3.4, on each connected component of an open dense subset U of M 2n

there are a normal vector subbundle L � N1 and an isometry J 2 �.Aut.L// such that
rankL D 2 if p D 3, and either rankL D 2 or rankL D 4 if p D 4. Moreover, D D
Nc.˛L?/ satisfies dimD � 2n� 2pC 2 rankL. If rankLD 4, then p D 4 andLDN1 D
NfM . Hence (2.1) holds forLDNfM , and Proposition 3.1 yields that f is holomorphic,
which has been excluded. Therefore, rankLD 2 on each connected component of U , and
rankD � 2n � 2p C 4.

We prove the uniqueness part of the statement. From Proposition 3.1, we obtain that
rankL0 D 2. By assumption, we have that 
L0.X;Y /D .˛L0.X;Y /; ˛L0.X; J Y // satisfies

hh
L0.X; Y /; 
L0.Z; T /ii D 0

for any X; Y; Z; T 2 X.M/, and since 
 D 
L0 C 
L0? , thus 
L0? is flat. We claim that
D0 D Nc.˛L0?/ satisfies dimD0 � 2n � 2p C 4. If �.
L0?/ is nondegenerate, the claim
follows from Lemma 3.3. Thus, it suffices to show that

U0 D �.
L0?/ \ .�.
L0?//
?
¤ 0
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leads to a contradiction. If .�; N�/ 2 U0, then also . N�;��/ 2 U0, since

hh
L0?.X; Y /; .
N�;��/ii D hh
L0?.X; J Y /; .�;

N�/ii D 0:

Hence dim U0 D 2 and p D 4. Since U0 � �.
L0?/ � .L
0? \N1/˚ .L

0? \N1/; then

(3.6) U0 D �.
L0?/

and thus
hh
L0?.X; Y /; 
L0?.S; JT /ii D 0:

Then there is a complex structure of the form .J0 ˚ NJ/ 2 �.Aut.NfM// such that

.J0 ˚ NJ/˛.X; Y / D ˛.X; J Y /:

Being �j jU0 injective, then �j .U0/ D N1 \ L0? D L0?, and hence L0? � N1 by (3.6).
ThereforeN1DNfM and thus f is holomorphic by Proposition 3.1, which is not allowed
and proves the claim.

Suppose that we have L ¤ L0. If p D 3, then dimL? ˚ L0? D 2. Since we have
dimD; dimD0 � 2n � 2 then dim Nc.˛L?˚L0?/ � dimD \D0 � 2n � 4. We have that
L \ .L? ˚ L0?/ ¤ 0 and thus (2.1) gives that %f � 2, a contradiction. Hence p D 4.

If L? C L0? D NfM , we have that D \D0 � Nc.˛/, which is not possible since it
yields %f � 4. Hence dim.L? C L0?/ D 3 and then L \ .L? C L0?/ ¤ 0. Since (2.1) is
equivalent to AJ� D J ı A� for any � 2 �.L/, it follows that D \D0 � Nc.˛L/. Hence
if S 2 �.D \D0/, then

˛.X; S/ D ˛L.X; S/C ˛L?.X; S/ D 0;

where the first term on the right-hand side vanishes since S 2 �.D \D0/, and the second
since S 2 �.D/. Thus we obtain again that D \D0 � Nc.˛/.

Lemma 3.7. Let f WM 2n!R2nCp , 3� p � 4 and n > p, be a real Kaehler submanifold
with rank %f > p everywhere. Then any pair .L; J/ given by Lemma 3.6 satisfies the
conditions .C1/, .C2/ and .C3/.

Proof. The condition .C1/ is trivially satisfied.
For the proof of the condition .C2/, we first show that the distributionD is integrable.

Given ı 2 �.L/, from the Codazzi equation .rZA/.�IY /D .rYA/.�IZ/ for � D Jı and
since AJı D J ı Aı , we have

J.rZAıY � AırZY / � Ar?ZJıY D J.rYAıZ � AırYZ/ � Ar?Y JıZ

for any Y;Z 2 X.M/. From the above Codazzi equation for � D ı and the condition .C1/,
we obtain

JA.r?Z ı/L?
Y � A.r?ZJı/

L?
Y D JA.r?Y ı/L?

Z � A.r?Y Jı/
L?
Z

for any Y;Z 2 X.M/. Hence

(3.7) h˛.Y;X/; .r?Zı/L?i � h˛.Y; JX/; .r
?
ZJı/L?i D 0

for any ı 2 �.L/, Z 2 �.D/ and X; Y 2 X.M/.
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On one hand, the Codazzi equation .r?Z1˛/.Z;Z2/ D .r
?
Z2
˛/.Z;Z1/ gives

(3.8) ˛L?.Z; ŒZ1; Z2�/ D .r
?
Z1
˛.Z;Z2/ � r

?
Z2
˛.Z;Z1//L?

for any Z1; Z2 2 �.D/ and Z 2 X.M/. On the other hand, from the Codazzi equation
.r?Z˛/.Zi ; JZj / D .r

?
Zi
˛/.Z; JZj /; we obtain

.r?Z˛.Zi ; JZj //L? D .r
?
Zi
˛.Z; JZj //L? � ˛L?.Z;rZiJZj /

for any Zi ; Zj 2 �.D/ and Z 2 X.M/. Since ˛.Z1; JZ2/ D ˛.JZ1; Z2/ by (2.1) then

(3.9) ˛L?.Z; J ŒZ1; Z2�/ D .r
?
Z1
˛.Z; JZ2/ � r

?
Z2
˛.Z; JZ1//L?

for any Z1; Z2 2 �.D/ and Z 2 X.M/.
Using first (3.8) and (3.9), and then (3.7) for ı D ˛.Z;Zi /, we obtain

h˛L?.Y;X/; ˛L?.Z; ŒZ1; Z2�/i � h˛L?.Y; JX/; ˛L?.Z; J ŒZ1; Z2�/i

D h˛L?.Y;X/;r
?
Z1
˛.Z;Z2/i � h˛L?.Y;X/;r

?
Z2
˛.Z;Z1/i

� h˛L?.Y; JX/;r
?
Z1
˛.Z; JZ2/i C h˛L?.Y; JX/;r

?
Z2
˛.Z; JZ1/i

D 0

for any Z1; Z2 2 �.D/ and X; Y;Z 2 X.M/. Thus we have shown that

hh
L?.Y;X/; 
L?.Z; ŒZ1; Z2�/ii D 0

for anyZ1;Z2 2 �.D/ andX;Y;Z 2X.M/. Since the subspace �.
L?/ is nondegenerate
by part (i) of Lemma 3.4, we have 
L?.Z; ŒZ1; Z2�/ D 0 for any Z1; Z2 2 �.D/ and
Z 2 X.M/. Hence ŒZ1; Z2� 2 �.D/, as we wished.

Since D is integrable, then the Codazzi equation .rSA/.�; T / D .rTA/.�; S/ yields

(3.10) A.r?S �/L
T D A.r?T �/L

S

for any S; T 2 �.D/ and � 2 �.L?/. If the condition .C2/ does not hold, there is S 2
�.D/ and � 2 �.L?/ such that � D .r?S �/L ¤ 0. It follows from (3.10) and dimD �

2n� 2pC 4 that dim kerA� � 2n� 2pC 2, and hence we have by (2.1) that %f � p � 1,
which is a contradiction.

From (2.1) we have that �.˛f jD�D/ is of even dimension. Then L satisfies condi-
tion (C3) since, otherwise, we have ˛jD�D D 0 and hence A�D � D? if � 2 �.L/. But
then dim kerA� jD � 2n � 4p C 8, and (2.1) gives that %f � 2p � 4, which is a contra-
diction.

Finally, we are in the condition to prove our main result.

Proof of Theorem 1.1. By Lemma 3.6 and Lemma 3.7, there is an open dense subset
of M 2n such that along any connected component, say U , the submanifold f jU is an
embedding and there is a unique pair .L; J/, where L � N1jU has rankL D 2, and a
J -invariant vector subbundle D D Nc.˛L?/ with rankD � 2n � 2p C 4 such that con-
ditions .C1/ to .C3/ are satisfied. Then it follows from Theorem 2.5 that f jU admits a
Kaehler extension F as in the statement.
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We now argue for the uniqueness of the Kaehler extension. Let F WN 2nC2 ! R2nCp ,
n � p C 1 and 3 � p � 4, be a real Kaehler submanifold such that the tangent vector
subspaces�c.z/DNc.˛

F .z// satisfy that dim�c.z/ is constant and thus form a tangent
vector subbundle. In fact, it is easy to verify that the distribution �c is integrable and that
its leaves are totally geodesic submanifolds in M 2n as well as in R2nCp .

From Lemma 3.3 if pD 3, and Theorem 3.5 if pD 4, we have rank�c � 2n�2pC6.
Then let j WM 2n ! N 2nC2 be an holomorphic submanifold of N 2nC2 such that the
real Kaehler submanifold f D F ı j WM 2n ! R2nCp is substantial and satisfies that
%f .x/ > p at any x 2M 2n. To conclude the proof, we have to show that F is the unique
Kaehler extension of f up to a reparametrization.

From Lemmas 3.6 and 3.7, along each connected component, say U , of an open dense
subset of M 2n there is a unique pair .L; J/ where L � N1jU is a vector subbundle of
rank two and the isometric complex structure J 2 �.Aut.L// satisfies

J˛L.X; Y / D ˛L.X; J Y / for any X; Y 2 X.U /:

Moreover, there is a tangent vector subbundleD D Nc.˛
f

L?
/ with rankD � 2n� 2pC 4

and the conditions .C1/ to .C3/ hold.
Since f D F ı j , then NfM D F�NjM ˚ j �NFN , and hence

(3.11) ˛f .X; Y / D F�˛
j .X; Y /C ˛F .j�X; j�Y /

for any X; Y 2 X.M/. The vector subspace E � TxM given by

j�E D �
c.j.x// \ j�TxM

satisfies dimE � 2n� 2pC 4 since the codimension of j�TxM in Tj.x/N is two. Being j
holomorphic, then NJ˛j .X; Y / D ˛j .X; J Y / for any X;Y 2 X.M/, where NJ is the com-
plex structure of N 2nC2. Since �c.j.x//\ j�TxM is NJ -invariant, then E is J -invariant,
and therefore either ˛j jE�E D 0 or �.˛j jE�E / D NjM .

Suppose that ˛j jE�E D 0. If 0 ¤ � 2 �.NjM/ and Aj
�

is the shape operator of j ,

then kerAj
�
jE � E \Nc.˛

f /. In fact, if S 2 kerAj
�
jE , then rankNjM D 2 gives that

S; JS 2 kerAj
�
jE \ kerAj

NJ�
jE � Nc.˛

j / \E:

Since j�E � �c , we have ˛F .j�X; j�S/ D 0 if S 2 �.E/ and X 2 X.M/. Now (3.11)
yields kerAj

�
jE � Nc.˛

f / and thus dim Nc.˛
f / � 2n � 4p C 8. Then %f � 2p � 4,

which is a contradiction. It follows that �.˛j jE�E / D NjM , and we obtain from (3.11)
that �.˛f jE�E / D F�NjM � N1.

The vector subbundle F�NjM � N1 is endowed with the complex structure F� ı
NJ jNjM , and F� NJ jNjM˛

j .X; Y / D F�˛
j .X; J Y / holds. Now, the uniqueness part of

Lemma 3.6 yields that L D F�NjM and J D F� ı NJ jF�NjM .
We claim that E D D. Since from (3.11) we have ˛f

L?
.X; Y / D ˛F .j�X; j�Y /,

then j�D D Nc.˛
F jj�TM�j�TM /, and hence �c \ j�TM � j�D. Given S 2 �.D/, the

condition .C2/ yields r?S F�� 2 �.L/ for any � 2 �.NjM/. Thus ˛F .j�S; �/ D 0 for
any � 2 �.NjM/. Since ˛F .j�S; j�X/ D ˛

f

L?
.S; X/ D 0 for any X 2 X.M/, hence

j�S 2 �
c , giving the other inclusion and hence the claim.
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Let � Wƒ!U be the vector subbundle of f�T U ˚L given by (2.6). Then Lemma 2.3
and Theorem 2.5 yield the Kaehler extension NF W NN 2nC2 � ƒ! R2nCp of f defined by
NF .�/D f .�.�//C�. To conclude the proof, it remains to show that NN 2nC2 can be chosen

sufficiently small so that NF .�/ 2 F.N/ if � D f�.rST /D? C ˛f .S; T / 2 NN 2nC2. On
one hand, from (3.11) and since j�D � �c from the claim, we obtain

� D F�j�.rST /D? C F�˛
j .S; T / D F�j�.rST /D? C F�.

N
rSj�T /NjM

D F�.
N
rSj�T /j�D?˚NjM :

On the other hand, we have

N
rSj�T D .

N
rSj�T /j�D C .

N
rSj�T /j�D?˚NjM :

Since the distribution �c is totally geodesic and j�D � �c , it follows that

R D .NrSj�T /j�D?˚NjM 2 �.j
��c/:

The restriction of F to the leaf of �c that contains j.�.�// is an open subset of the affine
subspace F.j.�.�///C F��c.j.�.�/// of R2nCp . Then

NF .�/ D F.j.�.�///C F�R 2 F.N/;

as we wished.

The following result generalizes Theorem 2 in [10] since our rank hypothesis is weaker
than the corresponding assumption there.

Theorem 3.8. Let f WM 2n ! R2nC3, n � 4, be a real Kaehler submanifold with rank
%f > 3 everywhere. Then f is locally isometrically rigid unless there exists an open subset
U � M 2n such that the Kaehler extension F of f jU is either a flat or a minimal hyper-
surface. In this case, any isometric deformation of f jU is the restriction of an isometric
deformation of F .

Proof. By Lemma 3.6 and Lemma 3.7, let V �M 2n be an open subset ofM 2n on which
there are a unique pair .L; J/, with L � N1 of rank 2, and a tangent subbundle D D
Nc.˛L?/ with rankD � 2n � 2, such that the conditions .C1/ to .C3/ are satisfied.

The subset U � V of points where dimD D 2n � 2 is open and dense since oth-
erwise f would not be locally substantial. We argue for points in U . Since Nc.˛/ D

Nc.˛L/ \D and dim Nc.˛/ � 2n � 8 by the rank assumption, then

(3.12) dim.Nc.˛L/CD/ D dim Nc.˛L/C dimD � dim Nc.˛/ � dim Nc.˛L/C 6:

Thus dimNc.˛L/� 2n� 6. Since N .˛L/DNc.˛L/ by (2.1), hence dimN .˛L/� 2n� 6.
We claim that dim N .˛/ < 2n � 6 on U . Since N .˛/ � N .˛L/, we may suppose

that dim N .˛L/ D 2n � 6. Since the subspace Nc.˛L/ C D is J -invariant, then either
dim N .˛L/CD D 2n � 2, or N .˛L/CD D TM . In the former case, the equality part
in (3.12) gives %f D 3, a contradiction. Hence N .˛L/CD D TM . In that case, and since
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dimD D 2n � 2, then dim N .˛L?/ � 2n � 1. Hence, from N .˛/ D N .˛L/ \N .˛L?/

we get

2n D dim.N .˛L/CN .˛L?// D dim N .˛L/C dim N .˛L?/ � dim N .˛/

and thus dim N .˛/ < 2n � 6 as claimed. Now the proof follows from Theorem 2 in [10].

A. Appendix

The local structures of the substantial real Kaehler submanifolds F WM 2n ! R2nC2 for
n � 3 are discussed next with separation in the cases were F is a minimal submanifold or
is free of points where it is minimal.

The non-minimal case.
We assume further that either M 2n is flat or nowhere flat. In the non-flat case, the

classifications given below was obtained from [15].
(i) If M 2n D U � R2nC2 is an open subset where either N1 D �.˛F / has rank one

and it is not parallel in the normal connection at any point, or it satisfies that rank N1 D 2
everywhere.

(a) If rank N1 D 1, then Theorem 1 in [12] gives that F D H ı i , where i WU ! V is a
totally geodesic inclusion with V �R2nC1 an open subset, andH WV !R2nC2 is an
isometric immersion free of totally geodesic points. Moreover, if Z.i.y// 2 Ti.y/V
is an eigenvector corresponding to the unique nonzero principal curvature ofH , then
the conditions Z.i.y// 62 i�TyU and Z.i.y// 62 Ni.y/U hold at any y 2 U .

(b) If rank N1 D 2, the nicest local parametric classification is given by Corollary 18
in [14].

(ii) An open subset of a cylinder h � idWL2 � Cn�1 ! R2nC2 over a non-flat and
nowhere minimal surface hWL2 ! R4.

(iii) A composition of isometric immersions F D h ı f , where f WM 2n! V �R2nC1

is a non-flat real Kaehler hypersurface, and hWV ! R2nC2 is not totally geodesic.
(iv) An open subset of an extrinsic product of two Euclidean real Kaehler hypersur-

faces where at least one is neither flat nor minimal.
The minimal case.
For minimal real Kaehler submanifolds F WM 2n ! RN in any codimension, there is

the representation given in [1] and discussed in the Appendix of Chapter 15 in [13]. Very
roughly, the holomorphic representative of the submanifold is determined by a set of n
independent holomorphic functions which span an isotropic subspace of CN and have to
satisfy certain integrability conditions, thus this cannot be seen as a classification.

(i) If %F D 1, we have:
(a) An open subset of a cylinder h� idWL2 �Cn�! R2nC2 over a substantial minimal

surface hWL2 ! R4.
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(b) A cylinder over a submanifold parametrically classified by Theorem 27 in [7] by
means of a Weierstrass type representation given in terms of .m � 1/-isotropic sur-
face. These surfaces have been completely described in [7].

(ii) If %F D 2, we have:
(a) An open subset of the extrinsic product of two minimal Euclidean real Kaehler

hypersurfaces.
(b) Examples can be constructed by the use of the representation .8/ in [9] as explained

by part (i) of the Remark given there. If M 2n is complete, there is the paramet-
ric classification provided in [9]. A classification in the local case remains an open
problem unless n D 2, for which there is the classification obtained in [16]. Finally,
for complete examples for n D 2 see [10].
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any point and thus [. . .]” on August 31, 2023.
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