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Tangent ray foliations and their associated outer billiards

Yamile Godoy, Michael Harrison and Marcos Salvai

Abstract. Let v be a unit vector field on a complete, umbilic (but not totally geo-
desic) hypersurfaceN in a space form; for example, on the unit sphere S2k�1 �R2k

or on a horosphere in hyperbolic space. We give necessary and sufficient conditions
on v for the rays with initial velocities v (and �v) to foliate the exterior U of N .
We find and explore relationships among these vector fields, geodesic vector fields,
and contact structures on N . When the rays corresponding to each of ˙v foliate U ,
v induces an outer billiard map whose billiard table is U . We describe the unit vec-
tor fields on N whose associated outer billiard map is volume preserving. Also we
study a particular example in detail, namely, when N ' R3 is a horosphere of the
four-dimensional hyperbolic space and v is the unit vector field on N obtained by
normalizing the stereographic projection of a Hopf vector field on S3. In the corre-
sponding outer billiard map we find explicit periodic orbits, unbounded orbits, and
bounded nonperiodic orbits. We conclude with several questions regarding the topol-
ogy and geometry of bifoliating vector fields and the dynamics of their associated
outer billiards.

1. Motivation

We begin with a simple observation: given one of the two unit tangent vector fields on the
unit circle S1 � R2, the corresponding tangent rays foliate the exterior of S1 � R2. This
leads to the following question.

Question 1.1. What conditions on a unit tangent vector field on S2k�1 � R2k guarantee
that the corresponding tangent rays foliate the exterior of S2k�1?

Prototypical examples arise from great circle fibrations of S2k�1, for example, the
standard Hopf fibrations. Indeed, each great circle C can be written as the intersection
of S2k�1 with a 2-plane PC . Since no two great circles intersect, the exterior of S2k�1

can be foliated using the corresponding collection of planes, and the exterior of C in each
such plane PC is foliated by the rays tangent to C . In this way, Question 1.1 is related to
the study of geodesic fibrations of spheres.
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Figure 1. The outer billiard map in the plane.

Our interest in Question 1.1 also stems from the fact that skew geodesic fibrations of
Euclidean space (that is, fibrations of Rn by nonparallel straight lines) can only exist for
odd n. Therefore, the tangent ray foliations we study here may be viewed as an even-
dimensional counterpart to the odd-dimensional phenomenon of skew line fibrations.

Additional motivation for Question 1.1 arises from the study of outer billiards. As sug-
gested by its name, outer billiards is played outside a smooth closed strictly convex curve
 �R2, and can be easily defined as follows: Fix one of the two unit tangent vector fields v
on  , and observe that the corresponding tangent rays foliate the exterior of  . In particu-
lar, for each point x outside of  , there exists exactly one tangent ray passing through x,
and the outer billiard map B is defined by reflecting x about the point of tangency (see
Figure 1). Originally popularized by Moser [20,21], who studied the outer billiard map as
a crude model for planetary motion, the outer billiard has since been studied in a number
of contexts, see [9, 25, 26, 28, 29].

When attempting to define outer billiards in higher-dimensional Euclidean space, one
encounters the following issue: Given a smooth closed strictly convex hypersurface N ,
there are too many tangent lines passing through each point x outside ofN , and so it is not
obvious how to define outer billiards with respect toN . In [27], Tabachnikov resolved this
issue in the even-dimensional Euclidean space R2k , endowed with the standard symplectic
structure !, by appealing to the characteristic line bundle � WD ker.!jN / on N . This
line bundle � has two unit sections ˙v, and each has the property that the corresponding
tangent rays foliate the exterior ofN . Thus, choosing either v or �v yields a well-defined,
invertible outer billiard map on the exterior of N ; moreover, Tabachnikov proved that
this outer billiard map is a symplectomorphism with respect to !. As an example, when
N D S2k�1, the characteristic lines are tangent to the great circles of the Hopf fibration.

We emphasize that the essential ingredient in the outer billiard construction is that
the tangent rays corresponding to both ˙v foliate the exterior of N . Thus, an additional
motivation for Question 1.1 is the construction of outer billiard systems which may exhibit
interesting dynamical properties.

2. Statement of results

Our main result not only provides a complete answer to Question 1.1, but it also applies
to the more general situation in which the ambient Euclidean space is replaced by the
.nC 1/-dimensional space form M� of constant sectional curvature �, and the role of the
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Figure 2. The exterior U , from left to right, for � D 0, � > 0, and � < 0.

sphere Sn � RnC1 is played by a complete umbilic hypersurface N � M� which is not
totally geodesic (recall that N �M� is umbilic if all of its principal curvatures are equal).
In particular, the sectional curvature of N is constant and strictly larger than � (as a corol-
lary of the Gauss theorem, see for instance Remark 2.6 in Chapter 6 of [2]).

Specifically, we will consider Question 1.1 in the following five settings:
(1) � D 0: M0 D RnC1 and N is an n-dimensional round sphere.
(2) � > 0: M� is a round sphere and N is a geodesic sphere which is not a great sphere;

that is, its curvature is larger than �.
(3) � < 0: M� is the .nC 1/-dimensional hyperbolic space HnC1. It is convenient to

describe the umbilics in the upper-half space model ¹.x0; : : : ; xn/ 2 RnC1 j x0 > 0º
with the metric ds2 D .dx20 C � � � C dx

2
n/=.��x

2
0/. The umbilic hypersurfaces are

then the intersections with HnC1 of hyperspheres and hyperplanes in RnC1, and
there are three possibilities for N :
(3a) N is a geodesic sphere,
(3b) N is a horosphere, which is congruent by an isometry to x0 D 1,
(3c) N is congruent by an isometry to the intersection of HnC1 with a hyperplane

through the origin which is not orthogonal to the hyperplane x0 D 0.
Observe that, in each case, N is diffeomorphic to a sphere or to Euclidean space.

Next, we define the exterior U of N as the connected component of M� � N into
which the opposite of the mean curvature vector field of N points, except that for � > 0,
we further restrict U to be the zone between N and its antipodal image. The exterior U in
each of the five situations is depicted in Figure 2.

Given u 2 TM� , we denote by u the unique geodesic in M� with initial velocity u,
and we write T� D1 for � � 0 and T� D �=

p
� for � > 0. Note that a unit speed geodesic

of the sphere tangent to N at p travels through U and hits �p 2 �N at time T� .

Definition 2.1. Let v be a smooth unit vector field on a complete umbilic hypersurface N
of M� which is not totally geodesic, and let U be the exterior of N as defined above. We
say that v:

• forward foliatesU if the geodesic rays v.p/.0;T�/ are the leaves of a smooth foliation
of U ,

• backward foliates U if the geodesic rays �v.p/.0; T�/ are the leaves of a smooth
foliation of U ,

• bifoliates U if v both forward and backward foliates U .
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While a forward or backward foliation induces a dynamical system which may not
be time-reversible, a bifoliation induces a smooth, invertible outer billiard map on U
(see (2.1) for the definition), justifying our interest in this specific notion.

With all of the terminology introduced above, Question 1.1 admits the following gen-
eral formulation:

Question 2.2. Let U be the exterior of a complete umbilic not totally geodesic hypersur-
face N in M� . What conditions on a smooth unit vector field v on N guarantee that v
bifoliates U ?

We denote byr the Levi-Civita connection onN . Observe that since v has unit length,
the image of .rv/p is orthogonal to v.p/ for every p 2N . In particular, .rv/p is singular
and preserves the subspace v.p/? � TpN .

We now provide a complete classification of bifoliating vector fields.

Theorem 2.3. Let U be the exterior of a complete umbilic not totally geodesic hypersur-
face N inM� , and let v be a smooth unit vector field on N . Then the assertions below are
equivalent:

(a) The vector field v bifoliates U .

(b) For each p 2 N , any real eigenvalue � of the restriction of the operator .rv/p to
v.p/? � TpN satisfies �2 C � � 0.

(c) For each p 2 N and any real eigenvalue � of .rv/p , the following condition holds:
(i) for � D 0, � D 0,

(ii) for � > 0, � D 0 with algebraic multiplicity one,

(iii) for � < 0, �2 � ��.

Remarks. Regarding Theorem 2.3, we observe the following:
(1) Although it is written without explicit topological restrictions on N , the existence

of v implies that N is not an even-dimensional sphere.
(2) We emphasize a surprising feature of the theorem: the global condition that v bifo-

liates U is characterized by an infinitesimal condition on v, which one might expect
to only guarantee a smooth foliation locally.

(3) Looking at the proof, one can easily deduce conditions for a unit vector field on N
to forward or backward foliate the exterior.

At the beginning of Section 1, we observed that great circle fibrations of odd-dimen-
sional spheres induce bifoliating vector fields. This statement persists in the general set-
ting. A geodesic vector field on N is a unit vector field on N whose integral curves are
geodesics. Using the explicit criterion of Theorem 2.3, we show that geodesic vector fields
are bifoliating, but not all bifoliating vector fields are geodesic.

Theorem 2.4. Let U be the exterior of a complete umbilic not totally geodesic hypersur-
face N in M� .

(a) If a smooth unit vector field v on N is geodesic, then v is bifoliating.

(b) If n > 1, there exists a smooth bifoliating vector field on N which is not geodesic.
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The latter statement is credible for the following simple reason: for � � 0, the vector
field v tangent to the Hopf fibration on N D S2kC1 is both bifoliating and geodesic,
but an arbitrarily small perturbation can ruin the symmetry of the integral curves while
maintaining the open condition that the restriction of the operator .rv/p to v.p/? � TpN
has no real eigenvalues. This idea motivates the explicit examples which we provide in the
proof of Theorem 2.4.

A geodesic vector field on a Riemannian manifoldM determines an oriented geodesic
foliation of M . In this language, Theorem 2.4 says that a geodesic vector field on N
determines both a geodesic foliation of N itself and a bifoliation of the exterior U , but
that some bifoliations of U arise from vector fields onN which do not determine geodesic
foliations.

Geodesic foliations of the space forms M� are of interest in their own right and have
been studied extensively. Great circle fibrations of S3 are characterized in [6] and studied
in higher dimensions in [7, 17, 19]. Geodesic foliations of R3 and hyperbolic space H 3

have been characterized in [10,11,14,16,22,24]. In [4], Gluck proved that the plane field
orthogonal to a great circle fibration of S3 is a tight contact structure. The relationship
between line fibrations of R3 and (tight) contact structures was studied in [1, 15, 16]. We
show that a similar relationship exists for bifoliating vector fields.

Theorem 2.5. Let v be a smooth bifoliating unit vector field on a 3-sphereN � S4. Then
the 1-form dual to v is a contact form.

Remarks. We make several remarks to contextualize Theorem 2.5.
(1) By Theorem 2.3, every bifoliating vector field v on N � S4 satisfies a certain con-

dition, namely, that .rv/p has rank 2 for all p 2 S3. Bifoliating vector fields on
S3 �R4 do not necessarily satisfy this nondegeneracy condition; see Proposition 6.1
for an example. However, Theorem 2.5 and its proof do hold for smooth bifoliating
vector fields on S3 � R4 if the condition is added as a hypothesis.

(2) Theorem 2.5 fails in higher dimensions for � � 0. In [8], Gluck and Yang construct
examples of unit vector fields on Sn, for odd n � 5, which determine great circle
fibrations (and thus are bifoliating by Theorem 2.4) for which the dual form is not
contact.

(3) Theorem 2.5 fails for the horosphere in hyperbolic space, since a constant vector
field is bifoliating, but the dual 1-form is not contact.

(4) We do not know if the contact structures in Theorem 2.5 are tight; see Question 9.1
for discussion.

We now turn our attention to the dynamical properties exhibited by bifoliating vec-
tor fields. A bifoliating vector field v on N induces an outer billiard map BWU ! U ,
defined by

(2.1) B.v.p/.�t // D v.p/.t/; .p; t/ 2 N � .0; T�/:

See Figure 3 for a depiction in hyperbolic space.
Typically, the dynamics of billiard systems can be studied via their symplectic proper-

ties. However, the outer billiard systems induced by bifoliating vector fields are, in general,
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Figure 3. Two iterations of the outer billiard map induced by a bifoliating vector field on a horo-
sphere N , seen in the upper-half space model of hyperbolic space.

not symplectic. It seems plausible that different techniques are necessary for a careful
study of their dynamics.

On the other hand, we study a particular example in detail, for which N ' R3 is a
horosphere in H 4 and v is the unit vector field obtained by normalizing the stereographic
projection of the Hopf vector field on S3. For the associated outer billiard map we find
explicit periodic orbits, unbounded orbits, and bounded nonperiodic orbits, see Proposi-
tion 8.3.

We conclude by studying the relationship between volume-preservation of B and the
characteristic polynomials Qp.s/ WD det.s idTpN � .rv/p/ of .rv/p for p 2 N .

Theorem 2.6. Let U be the exterior of a complete umbilic not totally geodesic n-dimen-
sional hypersurface N in M� , and let v be a smooth bifoliating unit vector field on N .
Then the associated outer billiard map BWU ! U preserves volume if and only if, for all
p 2 N and s 2 R,

Qp.�s/ D .�1/
nQp.s/I

that is, for all p, the parity of Qp coincides with the parity of n.

Corollary 2.7. Let U be the exterior of a complete umbilic not totally geodesic n-dimen-
sional hypersurface N in M� , and let BWU ! U be the outer billiard map associated to
a bifoliating unit vector field v on N .

(a) If the map B preserves volume, then div v vanishes identically, that is, the flow of v
preserves the volume of N . If additionally n is even, then the restriction of .rv/p
to v.p/? is singular for all p 2 N .

(b) If n D 2 (which implies that � < 0, N is diffeomorphic to R2, and its intrinsic
metric has constant Gaussian curvature k, with � < k � 0), then the following are
equivalent:
(i) the map B preserves volume,

(ii) v is orthogonal to a geodesic foliation of N ,

(iii) div v vanishes identically.

If N ' R2 � H 3 is a horosphere, the above conditions are equivalent to v being
constant.
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(c) If n D 3, then the map B preserves volume if and only if div v vanishes identi-
cally. If additionally N D S3 and v is geodesic (that is, v determines a great circle
fibration), then B preserves volume if and only if v is tangent to a Hopf fibration.

We comment that the normalization of a nowhere vanishing Killing field on N � H 3

provides an example of a vector field satisfying the conditions in (b).
We would like to share the perspective of one of the referees: Since the space forms

are the Riemannian manifolds with the same local projective connection as Euclidean
space, the theorems of the paper could be written in terms of the underlying projective
connections; this should make the pseudo-Riemannian generalizations easier.

3. Preliminaries on Jacobi fields

Here we provide a brief review of Jacobi fields, which arise naturally when studying varia-
tions of geodesics, and thus play a central role in the proofs of the main theorems. A more
thorough treatment can be found in any standard Riemannian geometry text, see, e.g., [2].

LetM be a complete Riemannian manifold and let  be a complete unit speed geodesic
ofM . A Jacobi field J along  is by definition a vector field along  arising via a variation
of geodesics as follows: let ı > 0 and let �WR � .�ı; ı/!M be a smooth map such that
s 7! �.s; t/ is a geodesic for each t 2 .�ı; ı/, and �.s; 0/ D .s/ for all s. Then

J.s/ D
d

dt

ˇ̌̌
0
�.s; t/:

When M DM� , it is well known that Jacobi fields along a unit speed geodesic  and
orthogonal to  0 are exactly those vector fields J along  with hJ;  0i D 0 satisfying the
equation

(3.1)
D2J

ds2
C �J D 0:

If the initial conditions of J are J.0/ D a 0.0/ C u and DJ
dt
.0/ D w, with a 2 R

and u;w orthogonal to  0.0/, then

(3.2) J.t/ D a 0.t/C c�.t/U.t/C s�.t/W.t/;

where U;W are parallel vector fields along  with U.0/ D u and W.0/ D w,

(3.3) s�.t/ D

8̂<̂
:

sin.
p
�t/=
p
� if � > 0;

t if � D 0;
sinh.
p
��t/=

p
�� if � < 0;

and ck.t/ D s
0
k.t/:

Also, we set cot� D c�=s� . Expression (3.2) will allow us to perform most computations
without having to resort to coordinates of M� or a particular model of it.

Lemma 3.1. Let � 2 R. If �2 C � > 0, then the equation c�.t/ � j�js�.t/ D 0 has a
solution in the interval .0; T�/.
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Proof. The assertion follows from the fact that for � D 0, � > 0 and � < 0, the equation
reads j�jt D 1, cot.

p
�t/ D j�j=

p
� and coth.

p
��t/ D j�j=

p
��, respectively.

Lemma 3.2. Let M be a Riemannian manifold and let �W .�"; "/ � .0; T / ! M be a
geodesic variation, that is, s W .0; T / ! M is a unit speed geodesic in M for all s 2
.�"; "/, where s.t/ D �.s; t/. Suppose that V is a unit vector field on M such that
V.s.t// D 

0
s.t/ for all s; t . Then the Jacobi field along 0 associated with � vanishes at

some to 2 .0; T / only if it is identically zero.

Proof. We set ˇ.s/ D �.s; to/: We have that 0 D J.to/ D ˇ0.0/. We compute

DJ

dt
.to/ D

D

@t

ˇ̌̌
to

@

@s

ˇ̌̌
0
�.s; t/ D

D

@s

ˇ̌̌
0

@

@t

ˇ̌̌
to
s.t/

D
D

@s

ˇ̌̌
0
 0s.to/ D

D

@s

ˇ̌̌
0
V.ˇ.s// D rˇ 0.0/V D 0:

Since J is the solution of a second order differential equation, J � 0, as desired.

4. Bifoliations and the proof of Theorem 2.3

We now return to the situation in which N is a complete umbilic hypersurface of M�

which is not totally geodesic. Recall that a complete list of such pairs .M� ; N / was given
at the beginning of Section 2. We denote by r and r the Levi-Civita connections of M�

and N , respectively. The Gauss formula in this case is given by

(4.1) rXY D rXY C hX; Y i�H; X; Y 2 X.N /;

where H is the mean curvature vector field on N . Unless otherwise stated, geodesics are
always in M� .

Now let v be a unit vector field on N . For t 2 .0; T�/, we define

ft W N !M� ; ft .p/ D v.p/.t/:

We first concentrate on the image of ft .
Let G� D Isoo.M�/ be the identity component of the isometry group of M� and let

L D ¹g 2 G� j g.N / D N º, which is isomorphic to Isoo.N /. When N is a sphere, there
are one or two trivial orbits of L (depending on the ambient space); otherwise, the orbits
of L are the parallel hypersurfaces to N , which are well known to be umbilic.

Lemma 4.1. For each t 2 .0;T�/, the image of ft is contained in exactly one hypersurface
parallel to N .

Proof. Let p; q 2 N . Since N is extrinsically two-point homogeneous, there exists h 2 L
such that h.p/ D q and dhp v.p/ D v.q/. So,

ft .q/ D v.q/.t/ D dhpv.p/.t/ D h.v.p/.t// D h.ft .p//;

as desired.
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Now for t 2 .0; T�/, we define Nt as the hypersurface parallel to N which contains
the image of ft . SinceNt is embedded, the map ft WN ! Nt is smooth. We next compute
its differential.

Lemma 4.2. Let v be a unit vector field on N . Let p 2 N and x D av.p/C u 2 TpN ,
with a 2 R and u ? v.p/. Then

(4.2) .dft /p.x/ D �
t
0

�
av.p/C .c�.t/uC s�.t/rxv/C s�.t/aH.p/

�
;

where � t0 denotes the parallel transport along v.p/ between 0 and t .

Proof. Let ˛ be a smooth curve inN with ˛0.0/D x. Let J be the Jacobi field along v.p/
associated with the geodesic variation .s; t/ 7! v.˛.s//.t/. We have J.0/ D x and, with
an argument similar to that in the proof of Lemma 3.2,

DJ

dt
.0/ D rxv:

So J depends only on x and we call it Jx . By (3.2) and (4.1),

(4.3) Jx.t/ D a
0
v.p/.t/C c�.t/ �

t
0.u/C s�.t/ �

t
0.rxv C aH.p//:

Then

.dft /p.x/ D
d

ds

ˇ̌̌
0
ft .˛.s// D Jx.t/;

and the lemma follows.

Proposition 4.3. If for each p 2N , any real eigenvalue � of the restriction of the operator
.rv/p to v.p/? � TpN satisfies �2 C � � 0, then ft WN ! Nt is a diffeomorphism.

Proof. We prove first that ft is a local diffeomorphism. To argue the contrapositive, sup-
pose that .dft /p.x/ D 0 for some x ¤ 0. Since the three terms on the right-hand side
of (4.2) are pairwise orthogonal, we conclude that a D 0 (in particular, x D u) and
c�.t/x C s�.t/rxv D 0. Hence,

rxv D � cot�.t/x;

that is, x 2 v.p/? is an eigenvector of .rv/p with eigenvalue � cot� t . Together with the
observation that cot2�.t/C � > 0 holds for all �, this completes the argument.

Next we prove that ft WN ! Nt is a diffeomorphism. For N D S1, the assertion is
clear. If N is a sphere different from the circle, then, by compactness, ft is a covering
map, which must be a bijection since N is simply connected.

If N is not a sphere, then � < 0 and both N and Nt are diffeomorphic to Rn. To
see that ft is a diffeomorphism, we apply a “global inverse” result of Hadamard (see
Theorem 6.2.8 in [18] or [12]), which asserts that a proper local diffeomorphism from Rn

to Rn is a diffeomorphism; here proper means that the preimage of every compact set is
compact. Properness of ft follows from the facts that ft displaces each point by distance t
(in M�) and that N is properly embedded in M� . Hence, ft is a diffeomorphism.

We are now prepared to prove Theorem 2.3.
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Proof of Theorem 2.3. “(a)) (b)” Let � 2 R and suppose there exists a nonzero tangent
vector u 2 v.p/? � TpN such that ruv D �u. We consider the Jacobi vector field

J.t/ D
d

ds

ˇ̌̌
0
v.˛.s//.t/;

where ˛ is a smooth curve in N with ˛0.0/ D u. By (4.1), we have that ruv D ruv, and
so J.0/ D u and DJ

dt
.0/ D �u. Using (3.2), we obtain

J.t/ D .c�.t/C �s�.t//U.t/;

where U is the parallel vector field along v.p/ such that U.0/ D u.
Now J is associated with the variation given by the geodesic rays of the forward folia-

tion of U , and Lemma 3.2 implies that J does not vanish for any t 2 .0;T�/. Now if �� 0,
Lemma 3.1 applies and yields �2 C � � 0, as desired. In case � > 0, we instead consider
the Jacobi field associated with the variation given by the geodesic rays �v.˛.s//.t/ of the
backward foliation of U and proceed similarly.

“(b)) (a)” To verify that the vector field v bifoliates U , we show that FC and F� are
diffeomorphisms, where FC and F� are the restrictions to N � .0; T�/ and N � .�T� ; 0/,
respectively, of the smooth function

F W N � .�T� ; T�/!M� ; F .p; s/ D v.p/.s/:

We deal only with FC, since the case of F� is analogous.
The map FC is a bijection by Proposition 4.3, since ft .N / D Nt for all t 2 .0; T�/,

and the umbilic hypersurfaces Nt foliate U .
Now we check that .dFC/.p;t/ is an isomorphism. By Proposition 4.3, it sends TpN �

¹0º isomorphically to Tft .p/Nt D .dft /p.TpN/. Hence, it suffices to show that

.dFC/.p;t/

�
0;
@

@s

ˇ̌̌
t

�
D  0v.p/.t/ 62 Tft .p/Nt :

Assume otherwise, so that  0
v.p/

.t/ D .dft /p.x/ for some x 2 TpN . Applying .� t0/
�1

to (4.2), we have

v.p/ D av.p/C .c�.t/uC s�.t/rxv/C s�.t/aH.p/:

Now, the scalar product with v.p/ yields a D 1, but the scalar product with H.p/ yields
a D 0 (indeed, s�.t/H.p/ ¤ 0, since N is not totally geodesic and s� does not vanish
on .0; T�/). This is a contradiction. Consequently, .dFC/.p;t/ is an isomorphism.

Finally, the smooth vector field that gives the foliation ¹v.p/.0; T�/ jp 2 N º of U is
given by V D dF ı .0; @

@s
/ ı F �1.

“(b), (c)” The equivalence of (b) and (c) follows from the following linear algebra
lemma, with T D .rv/p and W D v.p/?.

Lemma 4.4. Let T W V ! V be a linear transformation whose image is contained in
the codimension one subspace W (in particular, 0 is an eigenvalue of T ) and let S D
T jW WW ! W . Then S has no real eigenvalues if and only if the only real eigenvalue
of T is zero with algebraic multiplicity one.
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Proof. The lemma is a consequence of the following two assertions:
(a) A real number � ¤ 0 is an eigenvalue of S if and only if � is an eigenvalue of T .
(b) The map S has eigenvalue 0 if and only if T has eigenvalue 0 with algebraic multi-

plicity greater than one.
Both arguments are straightforward; we only write the details of (b).

Suppose that 0 is an eigenvalue of S with eigenvector x 2 W . We may assume that
the image of T is equal to W , since otherwise dim ker.T / � 2, and the proof is complete.
Thus, x D Ty for some y 2 V , hence y is a generalized eigenvector of T (which must
be linearly independent from x) and so the eigenvalue 0 of T has algebraic multiplicity at
least 2.

Conversely, suppose that 0 is an eigenvalue of T with algebraic multiplicity at least 2.
Then the subspace ¹y 2V j T 2yD 0º intersectsW nontrivially. If a nonzero vector y 2 W
satisfies T 2y D 0, then either y or Ty is a nonzero vector in ker.T /, and hence in ker.S/.

5. Bifoliations and geodesic vector fields

Here we prove Theorem 2.4, that geodesic vector fields are bifoliating, but not all bifoli-
ating vector fields are geodesic.

Proof of Theorem 2.4. Let v be a smooth unit vector field on N �M� . To show part (a),
we assume that v is geodesic and we verify that v satisfies the criterion of Theorem 2.3 (b).

Suppose that N has constant sectional curvature k, in particular k > �. Let p 2 N ,
let x be a unit vector in TpN orthogonal to v.p/, and suppose that rxv D �x, with � 2R.
As in the proof of “(a)) (b)” of Theorem 2.3, but considering Jacobi fields onN defined
on .0;Tk/ along geodesics inN (instead ofM�), we obtain that �2C k � 0. Consequently,
�2 C � � 0, and so v is bifoliating by Theorem 2.3. This completes the proof of part (a).

We now prove part (b). We begin by constructing a unit vector field on the unit sphere
S2k�1 which is bifoliating in any ambient space but is not geodesic, obtained by perturb-
ing the standard Hopf fibration.

Let J WR2k ! R2k denote the standard almost complex structure, which we write
explicitly as J.p1; : : : ; p2k/ D .�p2; p1; : : : ;�p2k ; p2k�1/. We define P WR2k ! R2k

by P.p1; : : : ; p2k/ D .�p4; p3;�p2; p1; 0; : : : ; 0/ and the unit vector field

v" W S
2k�1

! S2k�1; v".p/ D
.J C "P /.p/

j.J C "P /.p/j
�

It is straightforward to check that for 0 � " < 1, v" defines a smooth unit tangent vec-
tor field on S2k�1. Moreover, v0.p/ D J.p/ is tangent to the standard Hopf fibration
on S2k�1, and so by the computation in part (a), the restriction of .rv0/p to v0.p/?

has no real eigenvalues. (In fact, since the restriction is equal to the restriction of the lin-
ear map J itself, it is easy to check that the eigenvalues are ˙i .) Now by continuity of
the roots of the characteristic polynomials and the compactness of S2k�1, the restriction
of .rv"/p to v".p/? has no real eigenvalues for sufficiently small " > 0, and therefore
such v" are bifoliating by Theorem 2.3.
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Observe that if a unit tangent vector field vWS2k�1! S2k�1 determines a great circle
fibration, then v.v.p//D�p for all p. We show next that v" does not satisfy this condition
at p D e1 if " > 0. Since v" is the normalization of a linear map, it suffices to check that
.J C "P /2.e1/ does not normalize to �e1. This follows from the following computation:

.J C "P /2.e1/ D .J C "P /.e2 C "e4/ D �.1C "
2/e1 � 2"e3:

Hence, v" does not define a great circle fibration for " > 0.
Note that the proof can be repeated, with an appropriate scaling, to construct an exam-

ple on a sphere of any radius. Thus, any sphereN in any ambient space admits a bifoliating
nongeodesic vector field.

It remains to consider the cases when � < 0 and N is diffeomorphic to Rn, n � 2.
If N has constant negative sectional curvature, by rescaling, we may suppose that N is
hyperbolic space with curvature �1 (and so � < �1). For " 2 R, we define on N the unit
vector field

w".y0; : : : ; yn�1/ D
y0p

1C "2 sin2 y1
.1; " siny1; 0; : : : ; 0/:

Then w0 is geodesic (orthogonal to a foliation by parallel horospheres) and by the proof
of part (a), any real eigenvalue � of .rw0/p satisfies �2 � 1 < �� (actually, �2 D 1). For
" > 0 sufficiently small, the eigenvalue condition is maintained but the vector field is no
longer geodesic. For a horosphere N , which is isometric to Rn, a similar argument can be
made for a perturbation

u".y1; : : : ; yn/ D
1p

1C "2 sin2 y1
.1; " siny1; 0 : : : ; 0/

of the constant vector field u0, since the eigenvalues of .ru0/p are zero for all p.

6. Contact forms and bifoliating vector fields on S 3

Here we show that the 1-form dual to a bifoliating vector field on a 3-sphere N � S4 is a
contact form. The proof is a simple computation.

Proof of Theorem 2.5. We study the contact condition for a unit 1-form ˛ on an ori-
ented Riemannian 3-manifold .N;g/, with dual vector v. Consider � WD ker.˛/ cooriented
with ˛, and consider X; Y 2 �. Then

˛ ^ d˛.v;X; Y / D d˛.X; Y / D g.rXv; Y / � g.X;rY v/

D g.X; .rv/T Y / � g.X; .rv/Y / D g.X; ..rv/T � rv/Y /:

If ˛ is not contact at some point p, then for all x;y 2 �p , gp.x; ..rvp/T �rvp/y/D 0.
Thus, .rvp/T � rvp restricts to the zero linear map on �p , so rvp D .rvp/

T on �p .
Therefore, rvpj�p is symmetric and hence has real eigenvalues. This implies, by Theo-
rem 2.3 (b), that v is not bifoliating.
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As mentioned, following the statement of Theorem 2.5, the same proof works in
ambient space R4 with the additional hypothesis that .rv/p has rank 2 for all p. The
next example shows that bifoliating vector fields on S3 � R4 do not necessarily satisfy
this nondegeneracy condition; that is, there exists a bifoliating vector field on a 3-sphere
N �R4 which does not bifoliate the exterior ofN � S4 and whose dual is not contact. In
particular, this vector field satisfies condition (i) of Theorem 2.3 (c), but not condition (ii).

Proposition 6.1. There exists a bifoliating unit vector field v on S3 � R4 such that
.rv/eit D 0 for all t 2 R.

Proof. We identify S3 with unit elements in the space H of quaternions, and we represent
the standard basis elements as ¹1; i; j; kº. The idea is to smoothly interpolate between
a third-order bifoliating vector field near eit and the standard Hopf vector field away
from eit .

We consider Fermi coordinates centered around the unit speed geodesic .t/ D eit D

.cos t; sin t; 0; 0/, defined on the whole S3 except the great circles C1i and Cjk determined
by span¹1; iº and span¹j;kº.

Let E D ¹.t; r; s/ 2 R3 j 0 < r < �=2º and define 'WE ! S3 by

'.t; r; s/ D cos r eit
C sin r eisj D .cos r cos t; cos r sin t; sin r cos s; sin r sin s/:

Let hW .��=2; �=2/! R be a C1 odd strictly increasing function such that h.0/ D
h0.0/ D 0 and h.r/ D sin r for 1 < r < �=2, and let g D

p
1 � h2. Define the unit vector

field v on S3 by

v.'.t; r; s// D g.r/ i eit
C h.r/eis k D .�g.r/ sin t; g.r/ cos t;�h.r/ sin s; h.r/ cos s/;

and v.p/D ip for p 2C1i [Cjk. Notice that v coincides with the Hopf vector field q 7! iq
on an open neighborhood of Cjk, and so it is smooth there. Smoothness at C1i is not
difficult to verify explicitly. Moreover, the vector field is invariant by rotations R2� .q/ D
ei�qe�i� around  and transvections T2� .q/ D ei�qei� along  . Therefore, it suffices to
check the bifoliating property only when t D s D 0. We compute the partial derivatives
of ' at points � WD .0; r; 0/:

't .�/ D cos r i; 'r .�/ D � sin r 1C cos r j and 's.�/ D sin r kI

these form a basis B of TpS3, where p D '.�/. We will compute .rv/p in the basis B.
Let P WH! TpS

3 D p? be the orthogonal projection. A straightforward computation
gives P.1/ D h1; 'r .�/i'r .�/ D � sin r 'r .�/ and, similarly, P.j/ D cos r 'r .�/.

We compute

.r't .�/v/p D
D

dt

ˇ̌̌
0
v.'.t; r; 0// D P

� d
dt

ˇ̌̌
0
v.cos r eit

C sin r j/
�

D P
� d
dt

ˇ̌̌
0
g.r/ i eit

C h.r/k
�
D P.�g.r/1/ D g.r/ sin r 'r .�/:

We compute .r'r .�/v/p and .r's.�/v/p in the same way, obtaining

Œ.rv/p�B D

0@ 0 g0.r/ sec r 0

g.r/ sin r 0 �h.r/ cos r
0 h0.r/ csc r 0

1A ;
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for which the eigenvalues are 0 and ˙
p
g.r/g0.r/ tan r � h.r/h0.r/ cot r . Using the fact

that gg0 D �hh0, the radicand is equal to

�
h.r/h0.r/

sin r cos r
;

which is negative for 0 < r < �=2.
On the other hand, a similar computation yields .rv/.0;0;0/ is identically zero. There-

fore, v is bifoliating and .rv/eit D 0.

7. Outer billiards and preservation of volume

Let U be the exterior of a complete umbilic not totally geodesic hypersurface N in M� .
Recall that if a smooth unit vector field v bifoliates U , then a smooth invertible outer
billiard map BWU ! U is well defined by (2.1). Using the notation of the proof of The-
orem 2.3, we write B D FC ı g ı .F�/�1, where gWN � .�T� ; 0/! N � .0; T�/ is the
smooth function given by g.p; t/ D .p;�t /. The fact that B is a diffeomorphism follows
from the proof of Theorem 2.3. To prove Theorem 2.6, we compute the differential of B .

Proof of Theorem 2.6. For p 2 N , let h ¤ 0 and let ¹ui j i D 1; : : : ; nº be an orthonor-
mal basis of TpN such that u1 D v.p/ and B D ¹u1; : : : ; un; H.p/=hº is a positively
oriented orthonormal basis of TpM� . Now, for s 2 .�T� ; T�/, let Bs be the basis of
Tv.p/.s/M� given by the parallel transport of B along v.p/ between 0 and s. Since the
parallel transport is an isometry between the corresponding tangent spaces and preserves
the orientation, the bases Bs are positively oriented and orthonormal as well.

Besides, we consider the basis of T.p;s/.N �R/ defined by

Cs D
°
.u1; 0/; : : : ; .un; 0/;

�
0;
@

@r

ˇ̌̌
s

�±
:

Computing, we obtain

dF.p;s/.ui ; 0/ D Jui .s/ and dF.p;s/

�
0;
@

@r

ˇ̌̌
s

�
D  0v.p/.s/;

where Jui are as in (4.3). Hence, the matrix of dF.p;s/ with respect to the pairs of bases Cs
and Bs is

(7.1) ŒdF.p;s/�Cs ;Bs
D

0B@ 1 0Tn�1 1

s�.s/b c�.s/ In�1 C s�.s/A 0n�1

s�.s/h 0Tn�1 0

1CA ;
where A is the matrix of .rv/jv.p/? with respect to the basis ¹ui j i D 2; : : : ; nº, b is the
column vector whose entries are the coordinates of rv.p/v with respect to the same basis,
0m is the null column vector, and Im denotes the identity m �m matrix.

Now, we fix q 2 U and let p 2 N and t 2 .0; T�/ such that F�.p;�t / D q. We want
to compute the determinant of ŒdBq�B�t ;Bt

. We observe that

dBq D .dFC/.p;t/ ı .dg/.p;�t/ ı .dF
�1
� /q :
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An easy computation shows that detŒ.dg/.p;�t/�C�t ;Ct D �1. Using (7.1), for 0 ¤ s 2
.�T� ; T�/, we obtain

detŒdF.p;s/�Cs ;Bs
D s�.s/ h det.c�.s/ In�1 C s�.s/A/
D h.s�.s//

n det.cot�.s/ In�1 C A/:

Calling P the characteristic polynomial of .rv/jv.p/? , since cot�.�s/ D � cot�.s/, the
above equality can be written as

detŒdF.p;s/�Cs ;Bs
D h.s�.s//

nP.cot�.�s//:

Using that .dF �1� /q D ..dF�/.p;�t//
�1 and s� is an odd function, we obtain

ŒdBq�B�t ;Bt
D .�1/nC1P.cot�.�t //=P.cot�.t//;

where the expression is well defined since v is a bifoliating vector field ofN (see part (c) of
Theorem 2.3). Besides, the image of .rv/p is contained in v.p/?. Thus, the characteristic
polynomial Qp of .rv/p satisfies Qp.s/ D sP.s/ for all s. In consequence, since the
image of cot� is open in the set of real numbers, B preserves the volume form if and only
if Qp.s/ D .�1/nQp.�s/ for all s.

Proof of Corollary 2.7. For all parts of Corollary 2.7, it is useful to write

(7.2) Qp.s/ D s
n
� trace.rv/p sn�1 C cn�2.p/sn�2 C � � � C c2.p/s2 C c1.p/s;

where the term c0.p/ D .�1/
n det.rv/p vanishes since v is unit.

To verify part (a), we apply Theorem 2.6 to equation (7.2). In particular, ifB preserves
volume, the parity of each Qp.s/ matches that of n. Thus, the coefficient of sn�1, namely
trace.rv/p , vanishes for all p, and so div.v/ vanishes identically.

If additionally n is even, then so is eachQp , hence the linear coefficient c1.p/ is iden-
tically 0. Therefore, 0 is eigenvalue of .rv/p with algebraic multiplicity 2, so by item (b)
in the proof of Lemma 4.4, the restriction of .rv/p to v.p/? has a zero eigenvalue.

For part (b), let n D 2, so that v.p/? � TpN has dimension one for all p 2 N .
“(i)) (ii)” Let u be a unit vector field on N such that u.p/ ? v.p/ for all p 2 N .

Since u is unit, hruu; ui D 0. Since B is volume-preserving, ruv D 0 by part (a). There-
fore, we have

hruu; ui D 0 and hruu; vi D uhu; vi � hu;ruvi D 0:

Since ¹u; vº is an orthonormal frame, u is a geodesic field, and so v is orthogonal to a line
foliation of N .

“(ii)) (i)” If v is orthogonal to a geodesic foliation of N given by a unit vector u,
we have that

hruv; ui D uhu; vi � hruu; vi D 0:

Since v is unit, hrwv; vi D 0 for all w. Then the matrix of rv with respect to the basis
¹u; vº is strictly upper triangular. Thus, Qp.s/ D s2 for all p, and so B preserves volume
by part (a).
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“(i), (iii)” Since n D 2, equation (7.2) can be written as

Qp.s/ D s
2
� trace.rv/p s:

The volume-preservation condition and the divergence-free condition both correspond to
the vanishing of the coefficient of s.

Now if N � H 3 is a horosphere, the claim is immediate since N , with the intrinsic
metric, is isometric to R2.

To verify item (c), observe that for n D 3, equation (7.2) can be written as

Qp.s/ D s
3
� trace.rv/p s2 C c1 s;

and the volume-preservation condition and the divergence-free condition both correspond
to the vanishing of the coefficient of s2. The final assertion follows from the main result
in [5] (see also [13] and Proposition 1 in [23]), which states that the only great circle
fibrations of S3 with volume-preserving flows are the Hopf fibrations.

8. A Hopf-like bifoliating vector field on R3 � H 4

Here we give an example of a unit vector field on a horosphere in the hyperbolic 4-
space bifoliating the exterior, and we find explicit periodic orbits, unbounded orbits, and
bounded nonperiodic orbits of the associated billiard map.

We consider the upper half-space model H D ¹.p0; p1; : : : ; pn/ 2 RnC1 j p0 > 0º

of the .n C 1/-dimensional hyperbolic space of constant curvature �1. For 0 < h � 1,
define the horospheres Hh D ¹p 2 H j p0 D hº. Let v be a bifoliating vector field on
N WDH1, so the associated billiard map B is well defined on U D ¹p 2H j 0 < p0 < 1º
and preserves each horosphere Hh for 0 < h < 1. Keeping in mind that Hh ' Rn, we
consider the following flow.

Definition 8.1. Let v be a unit vector field on Rn and ı > 0. The associated .v; ı/-flow is
the discrete flow on Rn generated by the map

f .v; ı/ W Rn ! Rn; f .v; ı/.p/ D p C ıv.p/:

Observe that for ı > 0 andm 2 N, both small, f .v; ı/m.p/ approximates the integral
curve of v which emanates from p.

It is convenient to write the billiard map B in terms of f . Fix 0 < h < 1 and let
r D
p
1 � h2. We identify Hh with Rn in the obvious way.

Proposition 8.2. The restriction Bh of B to Hh equals

f .v ı .id � rv/�1; 2r/:

Proof. We first observe that .id � rv/�1 exists due to Theorem 2.3; in particular, the
inverse function theorem applies to .id � rv/ because �1=r is not an eigenvalue of rv.

Let q D .h; q0/ 2 U . By Theorem 2.3, there exists p D .1; p0/ 2 N such that q D
v.p/.s/ for some s < 0. Now, the image of v.p/ is the vertical semicircle centered
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Figure 4. Stereographic projection of the Hopf fibration; the straight line is the x-axis.

at .0; p0/ tangent to N at p and containing q (this was depicted in Figure 3 in Section 2).
Identifying v.p/ with v.p0/, we have q0 D p0 � rv.p0/. So B.q/D .h; p0 C rv.p0//, and
hence Bh.q0/ D p0 C rv.p0/, which equals

q0 C 2rv.p0/ D f .v ı .id � rv/�1; 2r/.q0/;

since .id � rv/�1.q0/ D p0.

Now let V be the Hopf vector field on S3 given by

V.t; x; y; z/ D .�x; t;�z; y/;

and consider the stereographic projection

F W S3 � ¹.1; 0; 0; 0/º ! R3; F .t; x; y; z/ D
1

1 � t
.x; y; z/:

Let v be the induced unit vector field on R3, which can be written explicitly as

v.x; y; z/ D
1

x2 C y2 C z2 C 1
.x2 � y2 � z2 C 1; 2xy C 2z; 2xz � 2y/:

It is invariant by rotations around the x-axis, that is, v ı R D dR ı v for any rotation R
fixing the x-axis. The circle x D 0, y2 C z2 D 1 and the x-axis are images of integral
curves of v. See Figure 4.

We use the notation for the upper half space model established above; in particular,

Hh D ¹p 2 H j p0 D hº; N D H1 and U D ¹p 2 H j 0 < p0 < 1º:

Proposition 8.3. The unit vector field v defined above, considered on the horosphere
N ' R3 � H 4, bifoliates U . Moreover, for the associated billiard map BWU ! U and
fixed h 2 .0; 1/, we have the following:
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(a) For m 2 Z, Bm.h; x; 0; 0/ D .h; x C 2m
p
1 � h2; 0; 0/I in particular, the orbit of

.h; x; 0; 0/ is unbounded.

(b) The map B preserves the circle Ch D ¹.h; x; y; z/ j y2 C z2 D 2 � h2; x D 0º.

(c) The restriction of B to Ch is a rotation by angle �h D 2 arctan.
p
1 � h2/, and hence

the orbits on Ch are periodic if and only if �h is a rational multiple of � .

Proof. To show that v bifoliates U , it suffices by Theorem 2.3 to show that for all p 2 N ,
the only real eigenvalue of .rv/p is 0. Since v is invariant by rotations about the x-axis,
we only need to consider p in the plane z D 0. Now, the matrix of .rv/.x;y;0/ with respect
to the canonical basis is 2

.1Cx2Cy2/2
A, where

A D

0@ 2xy2 �2y.1C x2/ 0

y.1 � x2 C y2/ x.1C x2 � y2/ 1C x2 C y2

2xy �.1C x2 � y2/ x.1C x2 C y2/

1A :
Since v is a unit vector field, v is in the kernel of AT , and so v is an eigenvector of AT

with associated eigenvalue 0. The other two eigenvalues of AT are .1C x2 C y2/.x ˙ i/,
with eigenvectors .�iy; 1 ˙ ix; x � i/. Consequently, 0 is the only real eigenvalue of
.rv/.x;y;0/ and so v bifoliates U by Theorem 2.3.

Now using Proposition 8.2 and the definition of f , we write

Bh.x; y; z/ D f .v ı .id � rv/�1; 2r/.x; y; z/ D .x; y; z/C 2rv..id � rv/�1.x; y; z//;

where r D
p
1 � h2.

To verify part (a), we use the fact that .id � rv/.x C r; 0; 0/ D .x; 0; 0/, and we com-
pute

Bh.x; 0; 0/ D .x; 0; 0/C 2rv.x C r; 0; 0/ D .x C 2r; 0; 0/ D .x C 2
p

1 � h2; 0; 0/:

The formula for Bm
h
.x; 0; 0/ follows inductively.

To verify part (b), we use the fact that .id � rv/.0; 1; 0/ D .0; 1; r/, and we compute

Bh.0; 1; r/ D .0; 1; r/C 2rv.0; 1; 0/ D .0; 1;�r/:

Therefore, Bh.0; 1; r/ has the same norm as .0; 1; r/, and by the rotational symmetry, this
is true for all .x; y; z/ 2 Ch. Therefore, Bh is invariant on Ch.

Part (c) follows from the observation that the angle �h subtending the arc between
.0; 1; r/ and .0; 1;�r/ is equal to 2 arctan.

p
1 � h2/.

9. Further comments and questions

We have classified bifoliating vector fields by an infinitesimal condition, and we have seen
that prototypical examples of bifoliating vector fields are given by geodesic vector fields.
We conclude with several compelling questions regarding the topology and geometry of
bifoliating vector fields and the dynamics of their associated outer billiards.
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Question 9.1. Does the space of bifoliating vector fields on N deformation retract to the
space of geodesic vector fields on N ?

In [6], Gluck and Warner showed that the space of great circle fibrations of S3 defor-
mation retracts to its subspace of Hopf fibrations, so a positive answer to this question for
N D S3 � S4 would provide a full topological classification of bifoliating vector fields.
Moreover, by Gray stability (see Theorem 2.2.2 in [3]), it would give a tightness result for
the contact structures induced by bifoliating vector fields.

On the other hand, the contact structure associated to a bifoliating vector field on S3

naturally induces a symplectic structure ! on S3 � .0;1/ ' U .

Question 9.2. Under what conditions on v is the associated outer billiard map B sym-
plectic with respect to the induced symplectic structure ! on U ?

Of course, the symplectic structure induced by the Hopf vector field is the standard
one, and the corresponding outer billiard map is symplectic.

We have seen that the volume-preservation of B is related to the volume-preservation
of v itself, and we have seen that these conditions are equivalent for n D 2 and n D 3.

Question 9.3. What is the relationship between volume-preservation ofB and the volume-
preservation of v in higher dimensions?

More specifically, in light of Theorem 2.6, the volume-preservation condition of B ,
which is given by the vanishing of several coefficients of Qp.s/, is a priori much stronger
than the volume-preservation condition of v, which is given by the vanishing of a single
coefficient ofQp.s/. However, we do not have an example of a divergence-free bifoliating
vector field for which B does not preserve volume.

On the other hand, we have seen from [5] that a geodesic vector field on S3 preserves
volume if and only if it is Hopf.

Question 9.4. Is there a nongeodesic bifoliating vector field v on S3 such that v (and
hence B/ preserves volume?

We are especially interested in understanding the dynamics of bifoliating outer billiard
systems, for example in low dimensions.

Question 9.5. Does there exist a bifoliating vector field on a horosphere in H 3 such that
the associated outer billiard map has a periodic orbit?

By Proposition 8.2, each orbit of Bh describes a polygonal line in Hr ' R2, with
edges of length 2r . As h tends to 1, these lines approach in a certain sense the integral
curves of v, which cannot be closed. We believe that the condition on the eigenvalues
of rv prevents these polygonal lines from being closed.
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