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Amenability and acyclicity in bounded cohomology

Marco Moraschini and George Raptis

Abstract. Johnson’s characterization of amenable groups states that a discrete group
� is amenable if and only ifHn�1

b
.�IV / D 0 for all dual normed RŒ��-modules V .

In this paper, we extend the previous result to homomorphisms by proving the con-
verse of the mapping theorem: a surjective group homomorphism 'W �!K has
amenable kernelH if and only if the induced inflation mapH �

b
.KIVH /!H �

b
.�IV /

is an isometric isomorphism for every dual normed RŒ��-module V . In addition,
we obtain an analogous characterization for the (smaller) class of surjective group
homomorphisms 'W � ! K with the property that the inflation maps in bounded
cohomology are isometric isomorphisms for all Banach �-modules. Finally, we also
prove a characterization of the (larger) class of boundedly acyclic homomorphisms,
that is, the class of group homomorphisms 'W� ! K for which the restriction maps
in bounded cohomology H �

b
.KI V /! H �

b
.�I '�1V / are isomorphisms for a suit-

able family of dual normed RŒK�-modules V including the trivial RŒK�-module R.
We then extend the first and third results to topological spaces and obtain characteriz-
ations of amenable maps and boundedly acyclic maps in terms of the vanishing of the
bounded cohomology of their homotopy fibers with respect to appropriate choices of
coefficients.

1. Introduction and statement of results

Bounded cohomology H �
b
.�I �/ was first introduced by Johnson in [22] and Trauber

(unpublished) to address problems about Banach algebras. The theory of bounded coho-
mology grew into an independent and active research field after the pioneering work of
Gromov [17], who extended the theory from groups to topological spaces, developed many
of its fundamental properties, and explored its connections with geometry and group the-
ory. In the setting of topological spaces, bounded cohomology is a functional-analytic
variant of ordinary singular cohomology which involves only those singular cochains that
have bounded norm. Building on Gromov’s work, Ivanov [20,21] gave a detailed account
of the foundations of bounded cohomology that also emphasized the use of methods from
homological algebra; the case of twisted coefficients was treated also by Noskov [33]. The
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theory of bounded cohomology was developed further and extended to topological groups
by Burger and Monod [8, 27].

Among the first striking results of bounded cohomology theory is the following char-
acterization of amenable groups due to Johnson [22]: a discrete group � is amenable if
and only if Hn

b
.�I V / D 0 for all dual normed RŒ��-modules V and n � 1 (see also

Corollary 3.11 in [15]). We emphasize that this characterization holds specifically with
respect to dual normed RŒ��-modules. In other words, the bounded cohomology groups
Hn
b
.�I V / of an amenable group � do not vanish in general for arbitrary normed RŒ��-

modules (see, e.g., [33]). On the other hand, the triviality of the bounded cohomology
of � with trivial coefficients in R does not suffice to characterize amenability; counter-
examples were constructed by Matsumoto–Morita [26] and Löh [25]. In fact, the situation
is even more delicate: Monod has recently shown that even the vanishing of the bounded
cohomology for all separable coefficients is not sufficient for a group to be amenable [31].

The central role of amenability in the theory of bounded cohomology is further elu-
cidated by Gromov’s mapping theorem [16, 17, 21]. We state here a strong version of this
theorem for maps f WX ! Y and twisted coefficients on X (Corollary 2.8.5 in [24]); the
complete proof can be obtained by combining, e.g., Corollary 7.5.10 in [27], Appendix B
of [23] and Corollary 6.4 in [21]. We will review the definition and basic properties of
bounded cohomology in Section 2.

Theorem (Mapping theorem). Let f WX ! Y be a map of based path-connected spaces
such that f�W �1.X/! �1.Y / is surjective with amenable kernel H . Then, for all dual
normed RŒ�1.X/�-modules V; the induced inflation map

H �b .f I IV / W H
�
b .Y IV

H /! H �b .X IV /

is an isometric isomorphism. Here, IV WV H ! V denotes the inclusion of H -fixed points
of V .

We call a map f WX ! Y amenable if it satisfies the conclusion of the mapping the-
orem (see Definition 2.26). As a consequence of Johnson’s characterization of amenability
and the mapping theorem, we observe that a map X ! � is amenable if and only if X has
amenable fundamental group. In this case, we also say that X is amenable.

Our first goal in this paper is to prove that the assumptions of the mapping the-
orem completely characterize amenable maps. This characterization may be regarded
as a parametrized version of Johnson’s characterization of amenable groups. To clarify
this viewpoint, let us first observe the following homotopy-theoretic reformulation of the
assumptions on f� in the mapping theorem (cf. [27], pp. 167–168). Let F denote the
homotopy fiber of f , that is, the fiber of a replacement of f by a fibration up to (weak)
homotopy equivalence. The (weak) homotopy type of F is uniquely determined and there
is a long exact sequence of homotopy groups (see, for example, [37]):

� � � ! �2.Y /! �1.F /! �1.X/
f�
�! �1.Y /! �0.F /! �0.X/! � � � :

Since X is path-connected, it follows that F is path-connected if and only if f� is surject-
ive. Moreover, �1.F / is a (central) extension of ker.f�/,

1! A! �1.F /! ker.f�/! 1;

where the abelian group A is given by the image of the homomorphism �2.Y /! �1.F /.
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Therefore, �1.F / is amenable if and only if ker.f�/ is amenable (Proposition 3.4 in [15]).
The following theorem partly reformulates the mapping theorem and also shows that the
assumptions of the mapping theorem completely characterize amenable maps.

Theorem A. Let f WX ! Y be a map of based path-connected spaces, let f�W�1.X/!
�1.Y / be the induced homomorphism between the fundamental groups, and let H denote
its kernel. Let F denote the homotopy fiber of f and suppose that F is path-connected
(equivalently, f� is surjective). Then the following are equivalent:

(1) f is an amenable map, that is, for all dual normed RŒ�1.X/�-modules V , the
induced inflation map

H �b .f I IV / W H
�
b .Y IV

H /! H �b .X IV /

is an isometric isomorphism.

(2) For all dual normed RŒ�1.X/�-modules V , the induced inflation map

H 1
b .f I IV / W H

1
b .Y IV

H /! H 1
b .X IV /

is an isomorphism.

(3) F is amenable.

We note that the characterization in (3) essentially states that a map f WX ! Y is
amenable if and only if f is fiberwise amenable. Using the mapping theorem, Theorem
A will be obtained from an analogous characterization of amenable homomorphisms in
the context of discrete groups (see Definition 2.26 and Theorem 3.4). More precisely,
Theorem 3.4 characterizes surjective group homomorphisms 'W � ! K with amenable
kernel in terms of bounded cohomology and conditions analogous to Theorem A – the
statement for discrete groups corresponds to the special case of Theorem A for maps
of the form B'W B� ! BK. The proof of this characterization for discrete groups is
obtained from a “relative” version of Johnson’s characterization of amenability combined
with the exact sequences in bounded cohomology that are induced by group extensions
(see Chapter 12 in [27]). We prove Theorem 3.4 and then deduce Theorem A in Section 3.

It is well known that the vanishing of the bounded cohomology groups Hn�1
b

.�I V /

for all Banach �-modules V is a much stronger condition on � which actually charac-
terizes the class of finite groups (see Section 3.5 in [15]). In Section 3, we also prove the
following generalization of this characterization to the context of group homomorphisms.

Theorem B. Let 'W� ! K be a surjective homomorphism of discrete groups, and let H
denote the kernel of '. Then the following are equivalent:

(1) For all Banach �-modules V , the induced inflation map

H �b .'I IV / W H
�
b .KIV

H /! H �b .�IV /

is an isometric isomorphism.

(2) For all Banach �-modules V , the induced inflation map

H 1
b .'I IV / W H

1
b .KIV

H /! H 1
b .�IV /

is an isomorphism.

(3) H is finite.
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We do not know a corresponding statement to Theorem B for topological spaces that
would be analogous to Theorem A, because the argument for passing from groups to
topological spaces cannot be applied in the same way (see Remark 3.5).

Once we have these characterizations, a natural question is to understand what happens
if we only consider the weaker condition that the bounded cohomology of the homo-
topy fiber F (respectively, H ) with coefficients in R vanishes in positive degrees. (For
any group � , R is regarded as an RŒ��-module with the trivial �-action.) Since there
are many non-amenable groups with trivial bounded cohomology with R-coefficients
(e.g., the group of compactly supported homeomorphisms of Rn [26] and the mitotic
groups [25]), this class of maps (or homomorphisms) is strictly larger than the class of
amenable maps (or homomorphisms). Additionally, in connection with the definition and
properties of acyclic maps in classical homotopy theory (see, for example, [18, 35]), it
seems natural to identify the corresponding class of maps for bounded cohomology. We
say that a map f WX ! Y of based path-connected spaces is boundedly n-acyclic if the
induced restriction map

H i
b.f IV / W H

i
b.Y IV /! H i

b.X If
�1
� V /

is an isomorphism for i � n and injective for i D nC 1, for every dual normed RŒ�1.Y /�-
module V of the form `1.S;R/ where S is a �1.Y /-set. A Banach �-module of this
form will be called R-generated. The key property of these modules is that every group
with trivial bounded cohomology with R-coefficients also has trivial bounded cohomology
with respect to every R-generated Banach �-module (Proposition 2.39). Moreover, we
say that a topological space X is boundedly n-acyclic if the map X ! � is boundedly
n-acyclic; equivalently, this means that X is path-connected and H i

b
.X IR/ D 0 for 1 �

i � n (see Proposition 2.39). In analogy with the characterizations of acyclic maps for
singular cohomology, we obtain the following characterizations for the class of boundedly
n-acyclic maps.

Theorem C. Let f WX ! Y be a map of based path-connected spaces, let F denote
its homotopy fiber, and let n � 0 be an integer or n D 1. We denote by f�W �1.X/!
�1.Y / the induced homomorphism between the fundamental groups. Then the following
are equivalent:

(1) f is boundedly n-acyclic.

(2) The induced restriction map

H i
b.f IV / W H

i
b.Y IV /! H i

b.X If
�1
� V /

is surjective for 0 � i � n and every R-generated Banach �1.Y /-module V .

(3) F is path-connected and H i
b
.X I f �1� V / D 0 for 1 � i � n and every relatively

injective R-generated Banach �1.Y /-module V .

(4) F is boundedly n-acyclic, that is,H 0
b
.F IR/Š R andH i

b
.F IR/D 0 for 1 � i � n.

The proof of Theorem C makes use of the properties of bounded cohomology purely
from the viewpoint of homological algebra. More precisely, we introduce boundedly acyc-
lic resolutions, which are analogous to the classical notion of acyclic resolutions in ordin-
ary cohomology. The drawback of the purely algebraic viewpoint for bounded cohomo-
logy is that it neglects the metric structure of bounded cohomology. In particular, it seems
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likely that the statements in (3) and (4) of Theorem C fail in general to characterize the
maps f W X ! Y for which the induced restriction maps are isometric isomorphisms
in bounded cohomology. Still, it is reasonable to make full and unreserved use of this
viewpoint and of the corresponding well-established methods of homological (and homo-
topical) algebra, especially, given that relatively few calculations of bounded cohomology
groups are actually known. We hope that working with boundedly (n-)acyclic maps and
the characterizations in Theorem C can lead to new and interesting examples of bounded
cohomology equivalences outside situations which involve amenable groups. Note that
restriction maps are a special case of inflation maps (Remark 2.22); this also clarifies the
connection between Theorem A and Theorem C.

Using the mapping theorem, the proof of Theorem C will again be deduced from
an analogous statement which characterizes the homomorphisms 'W � ! K of discrete
groups such that the restriction map

H �b .'IV / W H
�
b .KIV /! H �b .�I'

�1V /

is an isomorphism for i � n and injective for i D n C 1, for every R-generated K-
module V (Theorem 4.1). Similarly to Theorem C (4), these turn out to be exactly the
surjective homomorphisms 'W � ! K whose kernel H is boundedly n-acyclic, that is,
H i
b
.H IR/ D 0 for 1 � i � n. Our indexing convention in the definition of boundedly

n-acyclic maps/homomorphisms is made to agree with the vanishing range of the bounded
cohomology of the respective homotopy fiber/kernel.

Some known examples of boundedly n-acyclic groups are the amenable groups (by
the mapping theorem), the group of compactly supported homeomorphisms of Rn [26]
and the mitotic groups [25] (for n D 1), as well as lattices in higher rank Lie groups [7]
and groups with dynamical properties [12] (known for finite n). The study of bounded
acyclicity has attracted renewed interest recently, and many new examples have been dis-
covered. The results of Matsumoto–Morita [26] and Löh [25] were generalized and unified
in the proof that all binate groups are boundedly acyclic [14]. Moreover, finitely presented
non-amenable boundedly acyclic groups have also been constructed [13]. Furthermore,
Monod [31] recently proved the boundedly acyclicity of Thompson’s group F and of
lamplighter groups, and Monod–Nariman [32] showed examples of homeomorphism and
diffeomorphism groups which are boundedly acyclic. It is worth mentioning that these
new examples of boundedly acyclic groups, together with the study of bounded acycli-
city in general, also led to the first computations of the full bounded cohomology rings
of certain groups, including Thompson’s group T [14, 31] and the group of orientation-
preserving homeomorphisms of S1 [32].

In Section 4, we prove Theorem 4.1 and then deduce Theorem C. Moreover, we use
these characterizations to discuss the closure properties of the class of boundedly n-acyclic
groups and the stability properties of boundedly n-acyclic maps under various standard
homotopy-theoretic operations. Finally, we discuss an application to the vanishing of the
relative simplicial volume of an oriented compact connected n-manifold .M;@M/, assum-
ing that the inclusion @M !M is boundedly .n � 1/-acyclic.
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2. Preliminaries

2.1. Bounded cohomology

We briefly recall the definition and the basic properties of bounded cohomology of groups
and spaces. We refer the reader to Gromov [17], Ivanov [20, 21], Frigerio [15], Löh [24]
and Monod [27], for detailed expositions of the theory.

Let � be a discrete group. An RŒ��-module is a normed R-module V WD .V; k�kV /

equipped with an action of � by R-linear isometries. Similarly, a Banach �-module is a
complete RŒ��-module. We say that V is a trivial RŒ��-module if the group � acts trivially
on V .

Let X WD .X; x/ be a based path-connected topological space and let � WD �1.X; x/
denote its fundamental group. We restrict throughout this paper to based topological
spacesX equipped with a universal covering pW QX!X and a basepoint Qx 2 p�1.x/. The
group � acts continuously on QX by deck transformations. We consider the real singular
chain complex C�. QX IR/ as a normed RŒ��-module endowed with the `1-norm. We recall
that the `1-norm of a singular reduced R-chain c D

Pk
iD1 ˛i�i 2 C�.

QX IR/ is defined by
kck1 D

Pk
iD1 j˛i j. Here a chain is said to be in reduced form if �i ¤ �j for all i ¤ j .

Let V be a normed RŒ��-module. Then, we can consider the normed RŒ��-module of
bounded operators B.C�. QX IR/; V / (with the `1-norm); this is equipped with an action
of � given by

.g � f /.c/ D g � f .g�1c/;

where g 2 � , f 2 B.C�. QX IR/; V / and c 2 C�. QX IR/. We then denote by C �
b
.X IV / the

(normed) space of �-invariants B.C�. QX IR/;V /� of B.C�. QX IR/;V /. Since the cobound-
ary operators ı� preserve �-invariant bounded cochains, we obtain the bounded cochain
complex .C �

b
.X IV /; ı�/ of X with coefficients in V:

Definition 2.1 (Bounded cohomology of spaces). Let X , � and V be as above. Then, the
bounded cohomology of X with coefficients in V , denoted by H �

b
.X IV /; is the cohomo-

logy of the bounded cochain complex .C �
b
.X IV /; ı�/.

Remark 2.2 (Seminorm on bounded cohomology). The bounded cohomology groups are
canonically endowed with a seminorm that is induced by the `1-norm. We will say that
an isomorphism in bounded cohomology is isometric if it preserves the `1-seminorm.

Using this definition of bounded cohomology for spaces, it is possible to define the
bounded cohomology H �

b
.�I V / of a discrete group � to be the corresponding bounded

cohomology of a model for the classifying space B� . This definition is independent of
the choice of a model because bounded cohomology is homotopy invariant [21]. But it
might also be useful to recall the standard definition of bounded cohomology of groups
using the standard resolution (see, for example, [15]) as this will be needed later. Let �
be a discrete group and let V be a normed RŒ��-module. We define

C �.�IV / WD ¹f W��C1 ! V º

to be the group of n-cochains on � with coefficients in V ; these groups form the standard
resolution .C �.�IV /; ı�/ that is used in the definition of the group cohomology of � with
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coefficients in V: As before, we restrict to the bounded cochains C �
b
.�IV / � C �.�IV /;

C �b .�IV / WD ¹f 2 C
�.�IV / j kf k1 <1º;

where kf k1 WD supg0;:::;g� kf .g0; : : : ; g�/kV is the `1-norm. Finally, we denote by

C �b .�IV /
�
� C �b .�IV /

the �-invariant bounded functions; here, C �
b
.�I V / is endowed with the corresponding

diagonal �-action:

.g � f /.g0; : : : ; g�/ WD g � f .g
�1g0; : : : ; g

�1g�/:

Note that the coboundary operators ı� of C �.�I V / preserve �-invariant bounded co-
chains, so we obtain the bounded cochain complex .C �

b
.�IV /� ; ı�/ of � with coefficients

in V:

Definition 2.3 (Bounded cohomology of groups). Let � and V be as above. We define
the bounded cohomology of � with coefficients in V , denoted by H �

b
.�I V /, to be the

cohomology of the cochain complex of bounded �-invariant cochains .C �
b
.�IV /� ; ı�/.

Remark 2.4 (Dual normed modules). Even though bounded cohomology with twisted
coefficients is defined for arbitrary normed RŒ��-modules V , it is common in the literature
to restrict to Banach �-modules or further to dual normed RŒ��-modules. We recall that
a normed RŒ��-module V is a dual normed RŒ��-module if there exists a normed RŒ��-
module W such that V is isomorphic to the topological dual of W (as RŒ��-modules).
Note that a dual normed RŒ��-module is always a Banach �-module.

The restriction to dual normed modules is standard in the literature because it provides
a convenient setting for many of the methods and techniques used in the theory in con-
nection with actions by amenable groups [15, 21, 27]. However, it would be useful to
understand more precisely the importance of the restriction to dual normed RŒ��-modules.
For example, we do not know if the bounded cohomology of an amenable group � van-
ishes for general normed trivial RŒ��-modules.

2.2. Restriction maps

Bounded cohomologyH �
b
.X IV / (andH �

b
.�IV /) has several functoriality properties with

respect to X and V: For a fixed X (or �), bounded cohomology H �
b
.X I �/ (or H �

b
.�I �/)

is clearly (covariantly) functorial with respect to bounded linear �-maps, and defines a
functor with values in the category of graded seminormed R-modules and bounded linear
maps.

In this subsection, we recall some details about the functoriality of bounded cohomo-
logy in X (and �) given by the restriction homomorphisms.

Definition 2.5. Let � and K be discrete groups and let 'W� ! K be a homomorphism.
For every normed RŒK�-module V , we define the pullback (or restricted) normed RŒ��-
module '�1V to be the normed module V equipped with the �-action

g � v D '.g/ � v
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for every g 2 � and v 2 V . Then precomposition with the homomorphism 'W � ! K

induces the restriction map:

'� WD H �b .'IV / W H
�
b .KIV /! H �b .�I'

�1V /:

Notation 2.6. In the special case of an inclusion �WH ! � , following Monod’s notation
(see Section 8.6 in [27]), we will write

res� W C �b .�IV /
�
! C �b .H IV /

H

for the restriction map of cochain complexes, given by

res�.'/.h0; : : : ; h�/ WD '.�.h0/; : : : ; �.h�//I

note that V denotes here both an RŒ��-module and the restricted RŒH �-module ��1V .
This map induces the corresponding restriction map and will be denoted by

res� W H �b .�IV /! H �b .H IV /:

Moreover, it is worth noticing that given a group extension

1! H
�
�! � ! K ! 1

the map res�WH �
b
.�I V / ! H �

b
.H I V / factors through the K-invariants H �

b
.H I V /K ,

where K acts by conjugation (Corollary 8.7.4 in [27]).

Definition 2.7. Let f WX ! Y be a (based) map of based path-connected spaces, let
f�W�1.X/! �1.Y / denote the induced homomorphism, and let Qf W . QX; Qx/! . QY ; Qy/ be
the unique based lift of the map f . For every normed RŒ�1.Y /�-module V , precomposi-
tion with the �1-equivariant map Qf induces the restriction map

f � WD H �b .f IV / W H
�
b .Y IV /! H �b .X If

�1
� V /:

The restriction homomorphisms in bounded cohomology are analogous to the cor-
responding homomorphisms in singular cohomology with local coefficients. In analogy
with the class of acyclic maps in homotopy theory [18, 35], there is a corresponding class
of maps (or homomorphisms) which induce isomorphisms in bounded cohomology with
respect to the restriction homomorphisms. However, certain subtle features of the category
of normed or Banach �-modules require us to specialize the definition to suitable classes
of coefficients. Recall that a set S equipped with an action by a (discrete) group � is called
�-set. Given a �-set S and a Banach �-moduleW , the space ofW -valued bounded func-
tions `1.S;W / is a Banach �-module endowed with the action

.g � f /.s/ D gf .g�1s/

for all g 2 � , s 2 S and f 2 `1.S;W /.

Definition 2.8. Let � be a discrete group.
(a) A Banach �-module V is called R-generated if it is of the form `1.S;R/ for a

�-set S .
(b) Let W be a Banach �-module. A W -generated Banach �-module is a Banach

�-module V of the form `1.S;W /, where S is a �-set.
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Remark 2.9. Every Banach �-moduleW is also aW -generated Banach �-module. More-
over, given a group homomorphism 'W� ! K and a W -generated Banach K-module V ,
then the restricted RŒ��-module '�1V is a '�1W -generated Banach �-module. Every
R-generated Banach �-module is also a dual normed RŒ��-module.

Definition 2.10 (Boundedly n-acyclic maps/homomorphisms). Let n � 0 be an integer or
n D1.

(a) A map f WX ! Y of based path-connected spaces is boundedly n-acyclic if the
restriction map

H i
b.f IV / W H

i
b.Y IV /! H i

b.X If
�1
� V /

is an isomorphism for i � n and injective for i D nC 1 for every R-generated Banach
�1.Y /-module V .

(b) A homomorphism 'W�!K of discrete groups is boundedly n-acyclic if the restric-
tion map

H i
b.'IV / W H

i
b.KIV /! H i

b.�I'
�1V /

is an isomorphism for i � n and injective for i D nC 1 for every R-generated Banach
K-module V .

(c) We say that a map f WX ! Y of based path-connected spaces (respectively, a group
homomorphism 'W� ! K) is boundedly acyclic if it is boundedly1-acyclic.

Note that the class of boundedly n-acyclic maps/homomorphisms is closed under
composition. The following proposition shows the close connection between boundedly
n-acyclic maps and boundedly n-acyclic homomorphisms.

Proposition 2.11. Let n � 0 be an integer or n D 1. A map f WX ! Y of based path-
connected spaces is boundedly n-acyclic if and only if the induced homomorphism

f� W �1.X/! �1.Y /

is boundedly n-acyclic.

Proof. Consider the following diagram of spaces:

X
cX //

f

��

B�1.X/

Bf�

��

Y
cY

// B�1.Y /;

where the horizontal maps cX and cY are the canonical maps to (some functorial model
of) the classifying spaces of the respective fundamental groups. By the mapping theorem
(with coefficients) [16, 17, 21, 24], the restriction homomorphisms associated to the hori-
zontal maps cX and cY induce (isometric) isomorphisms in bounded cohomology

H �b .B�1.�/IV /
Š
�! H �b .�IV /

for all R-generated (or dual normed) Banach �1-modules V . Note that since the classify-
ing maps are �1-isomorphisms, V is isomorphic as RŒ�1�-module to its pullback. So, f is
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boundedly n-acyclic if and only if Bf� is boundedly n-acyclic, and therefore the required
result follows.

Remark 2.12. The class of boundedly n-acyclic maps/homomorphisms is closed under
composition, but it does not satisfy the 2-out-of-3 property: there are composable homo-

morphisms �
'
�! K

'0

�! L such that '0 and '0' are boundedly n-acyclic but ' is not (e.g.,
for � and L the trivial group and K a non-trivial amenable group – note the surjectiv-
ity assumption in Theorem 4.1). On the other hand, '0 is boundedly n-acyclic if both '
and '0' are boundedly n-acyclic.

Remark 2.13. There are analogous definitions in the case of W -generated Banach mod-
ules. Let n � 0 be an integer or n D1, let f WX ! Y be a map of based path-connected
spaces and let W be a Banach �1.Y /-module. The map f is hW i-boundedly n-acyclic if
the restriction map

H i
b.f IV / W H

i
b.Y IV /! H i

b.X If
�1
� V /

is an isomorphism for i � n and injective for i D nC 1 for every W -generated Banach
�1.Y /-module V . Definition 2.10 corresponds to the case W D R. We do not know if a
boundedly acyclic map is also hW i-boundedly acyclic for general W .

2.3. Induction modules

We recall the analogue of the Eckmann–Shapiro lemma for bounded cohomology (see
Section 10.1 in [27] and Remark 2.20). This identifies the bounded cohomology of a
subgroup H � � with the bounded cohomology of � with coefficients in the induction
module.

Definition 2.14 (Induction module). Let � be a discrete group and let H � � be a
subgroup. Let V be a (dual) normed RŒH �-module. The induction module I�HV is the
(dual) normed RŒ��-module `1.�; V /H of H -invariant bounded functions f W � ! V ;
the �-action on I�HV is given by right translation, i.e., .g � f /.x/ D f .xg/ for g; x 2 � .

Remark 2.15. Suppose that V is a dual normed RŒ��-module, instead of just a dual
normed RŒH �-module. Then, the dual normed RŒ��-module I�HV is isomorphic to the
module `1.�=H; V / endowed with the following �-action:

.g � f /.k/ D gf .g�1k/

for all k 2�=H , g 2� and f 2 `1.�=H;V / (see Remark 10.1.2 (v) in [27]). In particular,
I�HV is a V -generated Banach �-module.

Proposition 2.16 (Eckmann–Shapiro lemma, Proposition 10.1.3 in [27]). Let � be a dis-
crete group and let H � � be a subgroup. For every dual normed RŒH �-module V , there
is a canonical isometric isomorphism

i� W H �b .H IV /
Š
�! H �b .�I I

�
HV /:
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The construction of the induction module has several naturality properties (see Pro-
position 10.1.5 in [27]). Given a diagram of homomorphisms between discrete groups,

(?) H �

'jH
��

�

'

��

H 0 � K;

where the horizontal maps are inclusions of subgroups, and given a dual normed RŒH 0�-
module V , then there is a natural transformation of dual normed RŒ��-modules

‰ W '�1IKH 0V ! I�H .'jH /
�1V; f ! f ı ';

where f 2 `1.K; V /H
0

. We record the following special case of ‰ for later use.

Proposition 2.17. Let 'W� ! K be a surjective homomorphism of discrete groups, and
let H denote its kernel. Assume that V is a dual normed R-module. Then the map

‰ W '�1IK
¹1ºV ! I�H .'jH /

�1V

is an isometric isomorphism of V -generated Banach �-modules.

Proof. Unwinding the definitions, the comparison map ‰ is identified in this case with
the canonical isometric isomorphism of dual normed RŒ��-modules

`1.K; V /
Š
�! `1.�; V /H ; f 7! f ı ';

where V is endowed with the trivial action.

The isomorphism of Proposition 2.16 is natural with respect to diagrams (?) and
restriction homomorphisms:

Proposition 2.18 (see Proposition 10.1.5 (iv) in [27]). Consider a diagram of group homo-
morphisms,

H �

'jH
��

�

'

��

H 0 � K;

where the horizontal maps are inclusions of subgroups, and let V be a dual normed RŒH 0�-
module. Then the following diagram commutes:

H �
b
.H 0IV /

Š

i�
//

.'jH /
�

��

H �
b
.KI IKH 0V /

'�

))

H �
b
.�I'�1IKH 0V /

H �
b
.id� I‰/uu

H �
b
.H I .'jH /

�1V /
Š

i�
// H �

b
.�I I�H .'jH /

�1V /:
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Remark 2.19. Notice that if V is a trivial dual normed RŒH 0�-module, all the coefficients
appearing in the previous diagram are V -generated Banach modules (see Remark 2.9 and
Proposition 2.17).

Remark 2.20. All the previous statements can be found in the work of Monod [27] in the
case of a second countable locally compact group � and a coefficient �-module V , i.e.,
a dual Banach �-module that is the topological dual of a separable Banach �-module.
However, in the case of discrete groups both the condition that � is countable as well as
the separability of the predual of V can be omitted. Indeed, in the discrete case, the theory
of amenable actions and of strong resolutions via relatively injective modules generally
becomes simpler and can be applied without additional assumptions. See Section 4.9
in [15] and Section 2.5 in [27] for more details.

2.4. Inflation maps

Bounded cohomology H�
b
.X I V / (or H�

b
.�I V /) has additional functoriality properties

in X (or �) given by the inflation homomorphisms. These provide a refinement of the
restriction homomorphisms of the previous subsection. In this subsection, we recall briefly
some details about the functoriality of bounded cohomology given by these maps.

Definition 2.21. Let � be a discrete group and letH E � be a normal subgroup. Given a
normed RŒ��-module V , the normed module V H of H -fixed points inherits the structure
of an RŒ��-module from V ; moreover, this descends to an RŒ�=H�-module. The inclusion
IV WV H ! V is a map of RŒ��-modules. The restriction along the quotient homomorphism
'W � ! K WD �=H together with the map IV W V H ! V of RŒ��-modules induce the
inflation map:

'#
WD H �b .'I IV / W H

�
b .KIV

H /! H �b .�IV /:

Remark 2.22. Given a surjective homomorphism 'W� ! �=H and a normed RŒ�=H�-
module V , the inflation map H �

b
.'I I'�1V / agrees with the restriction map H �

b
.'IV /.

Inflation and restriction are related in low degrees via a useful exact sequence shown
in Section 12.4 of [27]. We will only need the following weak form of this exact sequence.

Proposition 2.23. Let 'W� ! K be a surjective homomorphism of discrete groups with
kernel H , and let V be a Banach �-module. Then, the following sequence is exact:

0! H 1
b .KIV

H /
H1
b
.'IIV /

������! H 1
b .�IV /

res1
��! H 1

b .H IV /:

Proof. This is the first part of a longer exact sequence which extends to degrees � 2; 3
(see Theorem 12.4.2 in [27]). Note that for this extended exact sequence,H 1

b
.H IV /must

be replaced by theK-invariants ofH 1
b
.H IV / with respect to the action that is induced by

conjugation.

Corollary 2.24. Let 'W�!K be a surjective homomorphism of discrete groups with ker-
nel H , and let V be a Banach �-module. If the inflation map H 1

b
.'I IV /WH 1

b
.KIV H /!

H 1
b
.�IV / is an isomorphism, then res1WH 1

b
.�IV /! H 1

b
.H IV / is the zero map.
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Definition 2.25. Let f WX ! Y be a (based) map of based path-connected spaces, let
f�W�1.X/! �1.Y / denote the induced homomorphism, and let Qf W . QX; Qx/! . QY ; Qy/ be
the unique based lift of the map f . Suppose that f� is surjective and let H denote its
kernel. For every normed RŒ�1.X/�-module V , precomposition with Qf together with the
map IV WV H ! V of RŒ�1.X/�-modules induce the inflation map:

f #
WD H �b .f I IV / W H

�
b .Y IV

H /! H �b .X IV /:

Similarly to the case of boundedly acyclic maps (or homomorphisms) (see Defin-
ition 2.10), we consider the corresponding class of maps (or homomorphisms) which
induce isomorphisms in bounded cohomology with respect to the inflation homomorph-
isms. This is motivated by the mapping theorem (with coefficients), which provides exam-
ples of such maps.

Definition 2.26 (Amenable maps/homomorphisms).
(a) Let f WX! Y be a map as in Definition 2.25. The map f is amenable if the inflation

map
H �b .f I IV / W H

�
b .Y IV

H /! H �b .X IV /

is an isometric isomorphism for all dual normed RŒ�1.X/�-modules V . We say that
a path-connected space X is amenable if the map X ! � is amenable.

(b) A surjective homomorphism 'W�!K of discrete groups with kernelH is amenable
if the inflation map

H �b .'I IV / W H
�
b .KIV

H /! H �b .�IV /

is an isometric isomorphism for all dual normed RŒ��-modules V .

Remark 2.27. By the characterization of amenability in terms of bounded cohomology,
a group � is amenable if and only if the trivial homomorphism � ! 1 is amenable.
Moreover, using the mapping theorem, a path-connected space X is amenable if and only
if X has amenable fundamental group.

Proposition 2.28. Let f WX ! Y be a map as in Definition 2.25. Then f WX ! Y is
amenable if and only if f�W�1.X/! �1.Y / is amenable.

Proof. The proof is the same as the proof of Proposition 2.11.

Remark 2.29. The class of amenable maps/homomorphisms satisfies the 2-out-of-3 prop-

erty: given composable maps X
f
�! Y

g
�! Z between spaces (as in Definition 2.25), then

the three maps f; g; and gf are amenable if any two of these are amenable. The proof
uses Remark 2.22 for the less trivial case (f; gf amenable) g amenable).

2.5. Acyclic resolutions

If we ignore the metric structure, bounded cohomology theory of groups can be described
as a (universal) ı-functor in the classical sense of homological algebra. A foundational
approach to bounded cohomology based on this observation is developed by Bühler [5,6].
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In this subsection, we recall the main algebraic properties of bounded cohomology from
the viewpoint of (relative) homological algebra.

Let Mod�R denote the category of normed RŒ��-modules and bounded linear �-maps.
In addition, let CsnR denote the category of complete seminormed R-modules and bound-
ed linear maps. We begin by recalling the definition of relatively injective normed RŒ��-
modules.

Definition 2.30. Let A and B be two normed RŒ��-modules. A morphism i W A ! B

in Mod�R is strongly injective if there exists an R-linear map � WB ! A such that k�k � 1
and � ı i D IdA.

A normed RŒ��-module V is relatively injective if for every strongly injective morph-
ism i WA! B and bounded linear �-map ˛WA! V , there exists a morphism ˇWB ! V

in Mod�R such that ˇ ı i D ˛ and kˇk � k˛k.

Theorem 2.31. Let � be a discrete group. Then the familiy of functors H i
b
.�I �/WMod�R

! CsnR; i 2 N; satisfies the following properties:
(1) (Normalization) H 0

b
.�IV / Š V � for all normed RŒ��-modules V .

(2) (Vanishing) H i
b
.�IV / D 0 for every i 2 N>0 and every relatively injective normed

RŒ��-module V .

(3) (Long exact sequence) Let 0 ! A ! B ! C ! 0 be a short exact sequence of
Banach �-modules. Then, there exists a natural family of bounded maps .��/ such
that the following sequence:

� � � ! H �b .�IA/! H �b .�IB/! H �b .�IC/
��

�! H �C1
b

.�IA/! � � � ;

is exact.

Proof. We just include a few comments for the convenience of the reader, and refer to
Bühler [5,6] and Monod [27] for detailed proofs. First, we recall that the bounded cohomo-
logy groups are always complete seminormed spaces. Then, (1) follows easily from the
fact that C 0

b
.�I V /� Š V � . For (2), let V be a relatively injective normed RŒ��-module

and consider the resolution 0! V
IdV
��! V ! 0. Using the general properties of (strong)

resolutions by relatively injective RŒ��-modules, it follows that this resolution can be used
to compute the bounded cohomology with coefficients in V (see, for example, Corol-
lary 4.15 in [15]). As a consequence, H i

b
.�IV / D 0, for every i 2 N>0. (3): Since � is a

discrete group, every Banach �-module is continuous in the sense of Lemma 1.1.1 in [27].
Then the result is a special case of Proposition 8.2.1 in [27]. See also Section 4 in [5].

Using these properties, it follows by standard methods of homological algebra that
bounded cohomology can also be computed using resolutions by boundedly acyclic mod-
ules instead of the standard resolution (Section 2.1) or other strong resolutions by rel-
atively injective modules. We emphasize that allowing this flexibility has the drawback
that it neglects the metric structure given by the seminorm on the bounded cohomology
groups.
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Definition 2.32. Let � be a discrete group and let n� 1 be an integer or nD1. A normed
RŒ��-module V 2Mod�R is boundedly n-acyclic if H i

b
.�IV / D 0 for 1 � i � n. We say

that V is boundedly acyclic if V is boundedly1-acyclic.

Proposition 2.33. Let � be a discrete group and let n � 1 be an integer or nD1. Let V
be a normed RŒ��-module and suppose that

0! V D I.�1/! I.0/! I.1/! � � �

is an exact sequence in Mod�R such that each I.j / 2 Mod�R is a Banach �-module and
boundedly .n � j /-acyclic for every 0 � j � n � 1 . Consider the cochain complex

I �;� D .0! I.0/� ! I.1/� ! � � � /:

Then there are preferred isomorphisms

H i .I �;�/
Š
�! H i

b.�IV /; for 0 � i � n;

and a preferred injective map

HnC1.I �;�/ ,! HnC1
b

.�IV /:

Proof. The idea of the proof is standard in homological algebra; we include the details
for completeness. The assertion holds for i D 0. For every j � 0; let Zj�1I � denote the
image of ıj�1W I.j � 1/! I.j /. Since I.j / is a Banach �-module and the resolution
0! V ! I � is exact, we also know that the spaces Zj�1I � are Banach �-modules. This
implies that the short exact sequences for 0 � j � n � 1:

0! Zj�1I � ! I.j /! Zj I � ! 0

induce long exact sequences in bounded cohomology (Theorem 2.31(3)):

� � � ! H i
b.�IZ

j I �/! H iC1
b

.�IZj�1I �/! H iC1
b

.�I I.j //

! H iC1
b

.�IZj I �/! � � �

Moreover, using the fact that each I.j / is boundedly .n� j /-acyclic, i.e.,H i
b
.�I I.j //D

0 for 1 � i � n � j , we conclude that

H iC1
b

.�IZj�1I �/ Š H i
b.�IZ

j I �/

for 2 � i C 1 � n � j . This shows that for every 1 � i � n, we have isomorphisms

H i
b.�IV / D H

i
b.�IZ

�1I �/ Š H i�1
b .�IZ0I �/ Š � � � Š H 1

b .�IZ
i�2I �/:

On the other hand, the long exact sequence in low degrees has the form

0! H 0
b .�IZ

j�1I �/! H 0
b .�I I.j //! H 0

b .�IZ
j I �/! H 1

b .�IZ
j�1I �/! 0

for 0 � j � n � 1. Hence, for every 1 � i � n, we obtain the following identification
(using Theorem 2.31(1)):

H i
b.�IV / Š H

1
b .�IZ

i�2I �/ Š coker.I.i � 1/� ! .Zi�1I �/�/:

Using the left exactness of .�/� , the latter is then isomorphic to H i .I �;�/. This finishes
the proof for 1 � i � n.



M. Moraschini and G. Raptis 2386

Let us consider the case i D n C 1 � 2. For 0 � j � n � 1, we have a long exact
sequence (Theorem 2.31(3))

� � � ! 0! H
n�j

b
.�IZj I �/

�
�! H

n�jC1

b
.�IZj�1I �/! H

n�jC1

b
.�I I.j //! � � �

This shows that there exists a chain of injective maps

HnC1
b

.�IV / � Hn
b .�IZ

0I �/ � Hn�1
b .�IZ1I �/ � � � � � H 1

b .�IZ
n�1I �/:

Moreover, since the last object fits into the long exact sequence

H 0
b .�I I.n// D I.n/

�
! H 0

b .�IZ
nI �/ D ZnI �� ! H 1

b .�IZ
n�1I �/! H 1

b .�I I.n//;

we have

HnC1.I �;�/ Š coker.I.n/� ! .ZnI �/�/ � H 1
b .�IZ

n�1I �/;

whence the desired inclusion HnC1.I �;�/ ,! HnC1
b

.�IV / follows.

Remark 2.34. Assuming that the resolution I.�/ in Proposition 2.33 is strong (see Sec-
tion 7.1 in [27]), we may also identify the maps in Proposition 2.33 directly using the
standard resolution of V . Let

0! V D C�1b .�IV /! C 0b .�IV /
ı0

�! C 1b .�IV /
ı1

�! � � �

be the standard resolution of V by relatively injective Banach �-modules as described
earlier. There is an essentially unique morphism of resolutions .g�W I.�/! C �

b
.�I V //

of V (see, for example, Section 7.2 in [27])

0 // V
� // I.0/

g0

��

ı0 // I.1/

g1

��

ı1 // � � �

0 // V
� // C 0

b
.�IV /

ı0 // C 1
b
.�IV /

ı1 // � � �

The maps in Proposition 2.33 are identified with the maps in cohomology that are induced
by the morphism g�W

�
I.�/; ı�

�
!
�
C �
b
.�IV /; ı�

�
, after first passing to the �-invariants.

To see this, letZj�1C �
b

denote the image of ıj�1WC j�1
b

.�IV /!C
j

b
.�IV /; and consider

the associated mophisms of short exact sequences:

0 // Zj�1I �

gj

��

// I.j / //

gj

��

Zj I �

gjC1

��

// 0

0 // Zj�1C �
b

// C
j

b
.�IV / // ZjC �

b
// 0:

Then, applying the method of Proposition 2.33 to the standard resolution of V and using
the functoriality of the long exact sequences in Theorem 2.31(3), we obtain the following
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identifications for 0 � i � n:

H i .I.�/� ; ı�/ Š coker
�
I.i � 1/� ! .Zi�1I �/�

�
H i .g�/

�� ��

Š // H i
b
.�IZ�1I �/

H i .C �
b
.�IV /� ; ı�/ Š coker

�
C i�1
b

.�IV /� ! .Zi�1C �
b
/�
� Š // H i

b
.�IZ�1C �

b
/;

where the vertical maps are induced by g� andZ�1I �DZ�1C �
b
D V . The case i D nC 1

is similar. It follows from the properties of g� that H i .g�/ is norm non-increasing (see
Theorem 4.16 in [15], and [27]).

2.6. Boundedly acyclic groups and spaces

We consider the following class of (discrete) groups and topological spaces. For any
group � , we recall that R is viewed as a Banach �-module with the trivial action.

Definition 2.35. Let n � 1 be an integer or n D1.
(a) A topological spaceX is called boundedly n-acyclic ifH 0

b
.X IR/ŠR andH i

b
.X IR/

D 0 for 1 � i � n. We say that X is boundedly acyclic if X is boundedly1-acyclic.
(b) A group � is called boundedly n-acyclic if H i

b
.�IR/ D 0 for 1 � i � n. We say

that � is a boundedly acyclic group if � is boundedly1-acyclic.
(c) We denote by BAcn the class of boundedly n-acyclic groups when n < 1. For

n D1, we denote the class of boundedly acyclic groups by BAc.

Remark 2.36. Note that since every group � has H 0
b
.�IR/ Š R, we omitted this condi-

tion from the definition of a boundedly n-acyclic group.

The family of boundedly acyclic groups was introduced by Löh [25] under the name of
groups with bounded cohomological dimension zero. Our choice of terminology follows
the definition of an acyclic space in homotopy theory (i.e., a space X with trivial reduced
singular homology in all degrees). As a consequence of the mapping theorem, note that a
path-connected space X is boundedly n-acyclic if and only if X has boundedly n-acyclic
fundamental group.

Example 2.37. Amenable groups are boundedly acyclic. Moreover, the group of homeo-
morphisms of Rn with compact support was shown to be boundedly acyclic by Matsumoto
and Morita [26]. Later, following the methods of [26], Löh showed that the class of mitotic
groups is also contained in BAc (see Theorem 1.2 in [25]).

Since there exist mitotic groups which contain non-abelian free subgroups (see [25]),
it follows that BAc is not closed under taking subgroups in general. In fact, a much
more general result has been shown recently: every (finitely generated) group embeds
into a (finitely generated) boundedly acyclic group [13, 31]. In addition, the results by
Matsumoto–Morita [26] and Löh [25] were generalized to a proof that binate groups lie in
BAc [13]. Finally, more examples of homeomorphism and diffeomorphism groups which
lie in BAc have been found by Monod–Nariman [32].

Recently, Monod showed that lamplighter groups are boundedly acyclic [31], provid-
ing a new class of non-amenable finitely generated boundedly acyclic groups. Based on
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this result, Monod also showed that Thompson’s group F is boundedly acyclic (it is a
well-known open question whether F is in fact amenable or not).

Example 2.38. There are many known examples of 2-boundedly acyclic groups, most
notably lattices in higher rank Lie groups (both in the cocompact case [7] and in the
general case [8]).

Other examples of 2-boundedly acyclic groups arise from dynamics. Most of these
examples have been discussed in the recent work by Fournier-Facio and Lodha [12] in
connection with the notion of commuting conjugates. However, many 2-boundedly acyclic
groups coming from dynamics were known much earlier. We mention here Thompson’s
group F [9] (now known to be boundedly acyclic [31]), Thompson’s group V [14] (now
known to be boundedly acyclic [1]), and some homeomorphism groups [3].

Examples of 3-boundedly acyclic groups can be found again among certain lattices
in higher rank Lie groups [29, 30], e.g., lattices in SLn are known to be 3-boundedly
acyclic [28]. Moreover, Bucher and Monod also showed [4] that Burger–Mozes groups are
3-boundedly acyclic (extending the classical result about their 2-bounded acyclicity [7]).

There are further examples of non-amenable groups whose bounded cohomology van-
ishes in low degrees that have been found recently [13, 14, 32].

Proposition 2.39. Let � 2 BAcn. Then H i
b
.�I V / D 0 for every R-generated trivial

Banach �-module V and 1 � i � n.

Proof. We need to show that the cochain complex of �-invariants associated to the stand-
ard resolution .V; C �

b
.�IV /; ı�/ of V ,

0! C 0b .�IV /
� ı0

�! C 1b .�IV /
� ı1

�! C 2b .�IV /
� ı2

�! � � � ;

has vanishing cohomology in degrees 1 � i � n when V D `1.S;R/ is an R-generated
trivial Banach �-module. By assumption, this holds for V D R. For the general case,
let V D `1.S;R/ be an R-generated trivial Banach �-module. Then we have a natural
identification of Banach �-modules

C �b .�IV / Š `
1.S; C �b .�IR//

induced by
f 7!

�
s 7!

�
.g0; : : : ; g�/ 7! f .g0; : : : ; g�/.s/

��
:

Using that the �-action on S is trivial, these identifications yield an identification of
cochain complexes

`1.S; C �b .�IR//
�
Š `1.S; C �b .�IR/

�/:

The n-truncation of C �
b
.�IR/� ,

0! C 0b .�IR/
�
! � � � ! C n�1b .�IR/� ! ker.ın/! 0! � � � ;

is an acyclic cochain complex of Banach spaces. Then the result follows because the
functor `1.S;�/ preserves short exact sequences of Banach spaces, using the arguments
of Lemma 8.2.4 in [27], therefore, it also preserves acyclic cochain complexes of Banach
spaces.
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Remark 2.40. Proposition 2.39 shows that the definitions of boundedly n-acyclic homo-
morphism and boundedly n-acyclic group are compatible in the following sense: a group �
is boundedly n-acyclic if and only if the trivial homomorphism � ! 1 is boundedly n-
acyclic. The analogous statement also holds for topological spaces.

Remark 2.41. The previous result explains the motivation for introducing the class of R-
generated Banach modules. More precisely, the class of R-generated Banach �-modules
is a natural choice of a family of Banach �-modules for which boundedly acyclic groups �
have vanishing bounded cohomology. However, we do not know if the vanishing result of
Proposition 2.39 is true for general dual normed trivial RŒ��-modules V . On the other
hand, given a Banach space W , the proof of Proposition 2.39 shows more generally that
the homomorphism 'W� ! 1 is hW i-boundedly n-acyclic (see Remark 2.13) if and only
if H i

b
.�I'�1W / D 0 for 1 � i � n.

3. Proof of Theorems A and B

3.1. Theorem A for discrete groups

In this subsection, we will state and prove the analogue of Theorem A in the case of maps
f WX ! Y which arise from homomorphisms 'W� ! K of discrete groups.

Let H be a subgroup of a discrete group � . We begin by recalling the definition of a
left H -invariant mean on `1.�/.

Definition 3.1. A left H -invariant mean on `1.�/ is a linear functional

mW `1.�/! R

such that
(a) infg2� f .g/ � m.f / � supg2� f .g/ for every f 2 `1.�/;
(b) m.h � f / D m.f / for every f 2 `1.�/ and h 2 H .

Here H acts on `1.�/ by the restriction of the standard �-action:

g � f .g0/ D f .g
�1g0/

for g; g0 2 � and f 2 `1.�/.

Remark 3.2. When H D � the previous definition leads to the classical definition of
amenability, i.e., a group � is amenable if it admits a left �-invariant mean.

The existence of a left H -invariant mean on `1.�/ is equivalent to the existence
of a non-trivial H -invariant (linear) functional � 2 `1.�/0, where the latter denotes the
topological dual of `1.�/ (cf. Lemma 3.2 in [15]). More precisely, we have the following.

Proposition 3.3. Let H be a subgroup of a discrete group � . Then the following are
equivalent:

(1) H is amenable.

(2) There exists a left H -invariant mean on `1.�/.

(3) There exists a non-trivial H -invariant (continuous) functional � 2 `1.�/0.
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Proof. The equivalence .1/,.2/ is a classical result on the amenability of subgroups
(see, for example, Theorem 6 in [10]). .2/).3/ is obvious: simply set �.f / WD m.f /,
wheremW `1.�/!R is a leftH -invariant mean. The implication .3/).2/ is shown ver-
batim as in the classical absolute case, which can be found in [15]; indeed, the only differ-
ence in the present relative situation is working withH -invariance instead of �-invariance
as in the absolute case.

We are now ready to state and prove the version of Theorem A for discrete groups. We
refer the reader to Definition 2.26 for the notion of amenable homomorphism.

Theorem 3.4. Let 'W�!K be a surjective homomorphism of discrete groups, and letH
denote the kernel of '. Then the following are equivalent:

(1) ' is an amenable homomorphism.

(2) For all dual normed RŒ��-modules V , the induced inflation map

H 1
b .'I IV / W H

1
b .KIV

H /! H 1
b .�IV /

is an isomorphism.

(3) H is amenable.

Proof. We will prove the implications

.3/) .1/) .2/) .3/:

Proof of .3/).1/. This is an algebraic version of the mapping theorem with twis-
ted coefficients given by dual normed RŒ��-modules (see, for example, Corollary 7.5.10
in [27]).

Proof of .1/).2/. This is obvious.
Proof of .2/).3/. Our proof follows the classical approach to characterize amenab-

ility using the Johnson class in bounded cohomology, see [22] and Section 3.4 in [15].
Recall that the Johnson class is constructed as follows. Let .`1.�/=R/0 denote the topo-
logical dual of the quotient space `1.�/=R, where we identify R with the subspace of
constant functions. Note that the space .`1.�/=R/0 can be identified with the subspace of
functionals in `1.�/0 which vanish on the constant functions. We consider the bounded
1-cocycle

J 2 C 1b .�I .`
1.�/=R/0/

defined by J.g0; g1/ D ıg1 � ıg0 . Here, for every g 2 � , ıg 2 `1.�/0 denotes the Dirac
functional at g: f 7! ıg.f / WD f .g/. An easy computation (see Section 3.4 in [15]) shows
that J is also �-invariant and hence it defines a class in bounded cohomology

ŒJ � 2 H 1
b .�I .`

1.�/=R/0/

called the Johnson class. We are interested in the image of the Johnson class under the
restriction map

res1 W H 1
b .�I .`

1.�/=R/0/! H 1
b .H I .`

1.�/=R/0/:

By the definition of the restriction map, an explicit representative of res1ŒJ � is given by

res1.J /.h0; h1/ WD ıh1 � ıh0 2 C
1
b .H I .`

1.�/=R/0/H :
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On the other hand, using assumption (2) and Corollary 2.24, it follows that res1ŒJ �D 0.
This means that there exists

˛ 2 C 0b .H I .`
1.�/=R/0/H

such that ı˛ D res1.J /. Using the construction of J , we are going to show that there
exists a non-trivialH -invariant functional � 2 `1.�/0. This will imply the required result
in (3) by applying Proposition 3.3. For each h 2 H , we define Ǫ .h/ 2 `1.�/0 to be the
(continuous) functional given by

Ǫ .h/.f / D ˛.h/.�.f //;

where � W `1.�/! `1.�/=R denotes the �-equivariant quotient map. This allows us to
define our candidate � 2 `1.�/0 by

� WD ı1 � Ǫ .1/:

First, � 2 `1.�/0 is non-trivial: for every non-zero constant function f , we have Ǫ .1/.f /
D 0 and ı1.f / ¤ 0. Hence, it remains to prove that � isH -invariant. To this end, we note
first that Ǫ defines an element in C 0

b
.H I `1.�/0/H : for every h; h0 2 H and f 2 `1.�/,

.h0 � Ǫ /.h/.f / D Ǫ .h0�1h/.h0�1f / D ˛.h0�1h/.�.h0�1f // D ˛.h0�1h/.h0�1�.f //

D .h0 � ˛/.h/.�.f // D ˛.h/.�.f // D Ǫ .h/.f /:

Note that we used the fact that ˛ is H -invariant. Moreover, since ı˛ D res1.J /, we also
have

ıh1 � ıh0 D Ǫ .h1/ � Ǫ .h0/

for all h0; h1 2 H . In particular, the following equality holds for all h 2 H :

ıh � Ǫ .h/ D ı1 � Ǫ .1/:

These computations imply that for all h 2 H , we have

h � � D h � .ı1 � Ǫ .1// D h � ı1 � h � Ǫ .1/ D ıh � h � Ǫ .h
�1h/

D ıh � .h � Ǫ /.h/ D ıh � Ǫ .h/ D ı1 � Ǫ .1/ D �:

This completes the proof of the existence of a non-trivial H -invariant (continuous) func-
tional � on `1.�/0. By Proposition 3.3, this implies that H is amenable, as required.

3.2. Proof of Theorem A

We recall the statement (see Definition 2.26):

Theorem A. Let f WX ! Y be a map of based path-connected spaces, let f�W�1.X/!
�1.Y / be the induced homomorphism between the fundamental groups, and let H denote
its kernel. Let F denote the homotopy fiber of f and suppose that F is path-connected
(equivalently, f� is surjective). Then the following are equivalent:

(1) f is an amenable map.
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(2) For all dual normed RŒ�1.X/�-modules V , the induced inflation map

H 1
b .f I IV / W H

1
b .Y IV

H /! H 1
b .X IV /

is an isomorphism.

(3) F is amenable.

Proof. By Proposition 2.28, conditions (1) and (2) of Theorem A are equivalent respect-
ively to the conditions (1) and (2) of Theorem 3.4 for f�. Moreover, the long exact
sequence of homotopy groups

� � � ! �2.Y /! �1.F /! �1.X/
f�
�! � � �

shows that the kernel of the surjective homomorphism �1.F /! ker.f�/ is abelian, there-
fore, also amenable. As already discussed in Remark 2.27, condition (3) is equivalent to
the condition that �1.F / is amenable. It follows that the condition (3) of Theorem A is
equivalent to the condition of Theorem 3.4 (3) for f�. Then the result follows directly from
Theorem 3.4.

3.3. Proof of Theorem B

In the case of arbitrary coefficients, the analogue of Theorem 3.4 leads to a character-
ization of surjective homomorphisms whose kernel is finite. We recall the statement of
Theorem B:

Theorem B. Let 'W� ! K be a surjective homomorphism of discrete groups, and let H
denote the kernel of '. Then the following are equivalent:

(1) For all Banach �-modules V , the induced inflation map

H �b .'I IV / W H
�
b .KIV

H /! H �b .�IV /

is an isometric isomorphism.

(2) For all Banach �-modules V , the induced inflation map

H 1
b .'I IV / W H

1
b .KIV

H /! H 1
b .�IV /

is an isomorphism.

(3) H is finite.

Proof. We will prove the implications

.3/) .1/) .2/) .3/:

Proof of .3/).1/. Since finite subgroups are compact, this readily follows from the
corresponding statement for topological groups in Proposition 8.5.6 of [27].

Proof of .1/).2/. This is obvious.
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Proof of .2/).3/. Our proof follows Frigerio’s characterization of finite groups (see
Section 3.5 in [15]). Let `1.�/ be the Banach �-module of summable real functions on �
with countable support. We restrict our attention to the kernel of the summation function

� W `1.�/! R; f 7!
X
g2�

f .g/;

which is a Banach �-submodule of `1.�/, denoted by `10.�/, and consider the analogous
version of the Johnson class in this setting. More precisely, let J 2 C 1

b
.�I `10.�// be the

cocycle defined by

J.g0; g1/ D ıg1 � ıg0 ; for all g0; g1 2 �;

where ıg 2 `1.�/ denotes the characteristic function for ¹gº � � . Since J is �-invariant
(see Section 3.5 in [15]), it defines a class in bounded cohomology ŒJ � 2 H 1

b
.�I `10.�//.

As in the proof of Theorem 3.4, we are going to study the image of the class ŒJ � under the
restriction map

res1 W H 1
b .�I `

1
0.�//! H 1

b .H I `
1
0.�//:

By assumption (2) and Corollary 2.24, we know that res1ŒJ � D 0, so there exists

˛ 2 C 0b .H I `
1
0.�//

H

such that

(�) ˛.h1/ � ˛.h0/ D ıh1 � ıh0 ; for all h0; h1 2 H:

We can then use ˛ to define a non-trivial H -invariant summable function

� WD ı1 � ˛.1/ 2 `
1.�/:

Note that � is non-trivial since �.�/ D �.ı1/� �.˛.1// D 1. Moreover, for every h 2 H ,
we have

h � � D h � .ı1 � ˛.1// D h � ı1 � h � ˛.1/ D ıh � ˛.h/ D ı1 � ˛.1/ D �;

where we used the H -invariance of ˛ and the formula (�). This shows that � 2 `1.�/H .
Since � is H -invariant, it must be constant on each coset of H in � . Combining this

fact with the non-triviality of � 2 `1.�/, it follows that the group H must be finite.

Remark 3.5. It would be interesting to find a suitable generalization of Theorem B in the
context of topological spaces. Note that the argument that we used to deduce Theorem A
from Theorem 3.4 cannot be applied in the same way for two related reasons. First, given
a map f WX ! Y (as in Theorem A), there is an exact sequence of groups

� � � ! �2.Y /! �1.F /! ker.f�/! 1I

therefore, whether the homomorphism �1.F /! ker.f�/ satisfies the conditions of The-
orem B depends also on the homomorphism �2.Y /! �1.F /. Second, it is not known
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whether the inflation maps associated with the canonical map cX WX ! B�1.X/ are iso-
morphisms for arbitrary Banach �1.X/-modules (cf. Proposition 2.28). In fact, it seems
more likely that this would only hold when the higher homotopy groups of X are finite.
Similarly, it seems likely that the analogous characterization to Theorem B for topolo-
gical spaces would characterize the maps f WX ! Y whose homotopy fiber F has finite
homotopy groups. In future work, we aim to address these questions about coefficients
in general Banach �1-modules and explore possible connections with properties of the
higher homotopy groups.

4. Proof of Theorem C

4.1. Theorem C for discrete groups

We will first prove the following algebraic version of Theorem C for discrete groups (see
Definition 2.10).

Theorem 4.1. Let 'W� ! K be a homomorphism of discrete groups, and let H denote
its kernel. Let n � 0 be an integer or n D1. Then the following are equivalent:
(1) ' is boundedly n-acyclic.

(2) The induced restriction map

H i
b.'IV / W H

i
b.KIV /! H i

b.�I'
�1V /

is surjective for 0 � i � n and every R-generated Banach K-module V .

(3) ' is surjective and H i
b
.�I '�1V / D 0 for 1 � i � n and every relatively injective

R-generated Banach K-module V .

(4) ' is surjective and H is a boundedly n-acyclic group.

Proof. We will prove the implications

.1/) .2/) .3/) .4/) .1/:

Proof of .1/).2/. This is obvious.
Proof of .2/).3/. Suppose that ' induces a surjective map

H i
b.'IV / W H

i
b.KIV /! H i

b.�I'
�1V /

for 0 � i � n and every R-generated BanachK-module V . Let V be a relatively injective
R-generated Banach K-module. Then

H 0
b .KIV / Š V

K and H i
b.KIV / D 0 for all i � 1

(see Theorem 2.31(2)). Therefore,

H i
b.�I'

�1V / D 0
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for 1 � i � n. It remains to prove that ' is surjective. Let K 0 WD im.'/ denote the image
of '. Consider theK-set of left cosets J WDK=K 0 and the R-generated BanachK-module
V WD `1.J;R/. Then we have (using Theorem 2.31(1))

H 0
b .KIV / Š V

K
Š R and H 0

b .�I'
�1V / Š .'�1V /� Š V K

0

:

The mapH 0
b
.KIV /!H 0

b
.�I'�1V / is surjective (if and) only if J is a transitiveK 0-set.

This happens exactly when J is a singleton, that is, only when ' is surjective.
Proof of .3/).4/. Assuming (3), we have that ' induces an isomorphism

H i
b.'IV / W H

i
b.KIV /! H i

b.�I'
�1V /

for every relatively injective R-generated BanachK-module V and 0� i � n. To see this,
note thatH i

b
.KIV /D 0 for i � 1 (by Theorem 2.31(2)) andH 0

b
.'IV / is an isomorphism

for every R-generated Banach K-module V since ' is surjective. Now we consider the
dual normed RŒK�-module

V WD IK
¹1ºR D `

1.K;R/:

Viewing R as a dual normed RŒK�-module endowed with the trivial action, we can assume
that V is endowed with the usual left action by K, as discussed in Remark 2.15. In
particular, IK

¹1º
R is an R-generated Banach K-module. Moreover, the RŒK�-module V

is relatively injective because K acts freely on itself (Definition 4.20 and Lemma 4.22
in [15]). Therefore, ' induces isomorphisms

'� D H i
b.'IV / W H

i
b.KIV /! H i

b.�I'
�1V /

for 0 � i � n.
Next we consider the diagram of groups

H �

'jH
��

�

'

��

¹1º � K:

By Proposition 2.18, Proposition 2.17 and Proposition 2.16, we have a commutative dia-
gram as follows:

H i
b
.¹1ºIR/

i
Š
//

.'jH /
�

��

H i
b
.KIV /

'�

Š
''

H i
b
.�I'�1V /

H i
b
.id� ;‰/

Š

ww

H i
b
.H IR/

i
Š
// H i

b
.�I `1.�;R/H / ;
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for every 0� i � n (where all the coefficients are R-generated Banach modules as noticed
in Remark 2.19). This diagram readily implies thatH i

b
.H IR/ is isomorphic toH i

b
.¹1ºIR/

for 0� i � n, thereforeH 0
b
.H IR/DR andH i

b
.H IR/D 0 for all 1� i � n, as required.

Proof of .4/).1/. Let V be an R-generated Banach K-module. We are required to
show that the induced restriction map

H i
b.'IV / W H

i
b.KIV /! H i

b.�I'
�1V /

is an isomorphism for 0 � i � n and injective for i D nC 1. Let Dj denote the relatively
injective R-generated Banach K-module `1.KjC1; V / and let Wj D '�1Dj denote the
corresponding R-generated Banach �-module (see Remark 2.9). We also writeD�1 D V
and W�1 D '�1V , respectively.

Since 'W� ! K is surjective, there is a canonical (isometric) isomorphism between
the normed modules C j

b
.KIV /K andW �

j for all j � 0. Therefore it suffices to show that
the resolution (i.e., acyclic cochain complex) of Banach �-modules:

(*) 0! W�1 ! W0 ! W1 ! � � �

can be used to compute the bounded cohomology of � with coefficients in '�1V in the
required range. Since the previous resolution is strong (Lemma 7.5.5 and Example 2.1.2 (i)
in [27]), using Proposition 2.33 and Remark 2.34, it suffices to prove that the Banach �-
module Wj satisfies

H i
b.�IWj / D 0

for 1 � i � n and j � 0. Moreover, since H E � is the kernel of ', each module Wj is a
trivial R-generated Banach H -module. (We will use the same notation Wj for the corres-
ponding RŒH �-module in order to simplify the notation.) Therefore, by Proposition 2.39,
we have H i

b
.H IWj / D 0 for 1 � i � n and j � �1. Using the Eckmann–Shapiro lemma

(Proposition 2.16), we obtain the following identifications for all i � 0 and j � �1:

i W H i
b.H IWj / Š H

i
b.�I I

�
HWj /:

SinceH acts trivially onWj and ' is surjective, we may identify these induction modules
as follows (Remark 2.15):

I�HWj Š `
1.K; `1.KjC1; '�1V // Š `1.KjC2; '�1V / Š WjC1;

which then readily implies

0 D H i
b.H IWj / Š H

i
b.�I I

�
HWj / Š H

i
b.�IWjC1/

for all 1� i � n and j � �1. This finishes the proof of (4)) (1) and completes the proof
of the theorem.

Example 4.2. The following is a well-known open question: does every surjective homo-
morphism 'W� ! K between discrete groups induce injective maps

H �b .'/WH
�
b .KIR/! H �b .�IR/

in all degrees?
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Bouarich [2] proved that this is always the case in degree 2 and Huber [19] showed
that H 2

b
.'/ is also isometric. On the other hand, by applying Theorem 4.1 .4/).1/, we

conclude that the map

H 2
b .'IV / W H

2
b .KIV /! H 2

b .�I'
�1V /

is injective for every R-generated Banach K-module V ; this is because every discrete
group is 1-acyclic, see Section 2.1 in [15]. See also Theorem 12.4.2 in [27].

4.2. Applications to boundedly acyclic groups

We may apply Theorem 4.1 to study the hereditary properties of the class BAcn of
boundedly n-acyclic groups. We recall that this class of groups is not closed under tak-
ing subgroups in general (see Example 2.37). On the other hand, we may characterize the
situation for normal subgroups as an immediate consequence of Theorem 4.1.3/,.4/.

Corollary 4.3. Let n � 1 be an integer or nD1. Let � be a boundedly n-acyclic group,
let H E � be a normal subgroup, and let 'W� ! �=H be the quotient homomorphism.
Then H is a boundedly n-acyclic group if and only if

H i
b.�I'

�1V / D 0

for every relatively injective R-generated Banach �=H -module V and 1 � i � n.

Moreover, using Theorem 4.1 .1/,.4/, we also easily deduce the following result
about the relationship between boundedly acyclic groups and group extensions.

Corollary 4.4. Let n � 1 be an integer or n D 1. Let 1! H ! � ! K ! 1 be an
extension of discrete groups. Suppose that H 2 BAcn. Then, we have that

� 2 BAcn ” K 2 BAcn :

Remark 4.5. There exists a boundedly acyclic group � that contains a normal subgroup
whose bounded cohomology is infinite dimensional in all degrees � 2 (Theorem 1.5
in [14]) and such that the quotient is still boundedly acyclic.

Example 4.6. Corollary 4.4 allows us to construct new discrete groups in BAcn by taking
extensions of a group in BAcn by the lattices described in Example 2.38.

4.3. Proof of Theorem C

We recall the statement:

Theorem C. Let f WX! Y be a map between based path-connected spaces, let F denote
its homotopy fiber, and let n � 0 be an integer or n D 1. We denote by f�W �1.X/!
�1.Y / the induced homomorphism between the fundamental groups. Then the following
are equivalent:

(1) f is boundedly n-acyclic.
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(2) The induced restriction map

H i
b.f IV / W H

i
b.Y IV /! H i

b.X If
�1
� V /

is surjective for 0 � i � n and every R-generated Banach �1.Y /-module V .

(3) F is path-connected and H i
b
.X I f �1� V / D 0 for 1 � i � n and every relatively

injective R-generated Banach �1.Y /-module V .

(4) F is boundedly n-acyclic, that is,

H 0
b .F IR/ Š R and H i

b.F IR/ D 0 for 1 � i � n.

Proof. The proof of Proposition 2.11 (using the mapping theorem) shows that the condi-
tions (1) and (2) of Theorem C are equivalent respectively to the conditions (1) and (2) of
Theorem 4.1 for the homomorphism f�.

Since X is path-connected by assumption, the homotopy fiber F is path-connected if
and only if f� is surjective. Therefore, the condition (3) of Theorem C is also equivalent
to the condition of Theorem 4.1 (3) for the homomorphism f� – again, using the mapping
theorem.

Finally, assuming that F is path-connected (, H 0
b
.F IR/ Š R), the canonical map

F ! B�1.F / is amenable by the mapping theorem. Moreover, the long exact sequence
of homotopy groups

� � � ! �2.Y /! �1.F /! �1.X/
f�
�! � � �

shows that the kernel of the homomorphism �1.F / ! ker.f�/ is abelian. As a con-
sequence of the mapping theorem, the homomorphism �1.F /! ker.f�/ is also amenable.
In particular, condition (4) of Theorem C is equivalent to the condition of Theorem 4.1(4)
for f�. Then the result follows directly from Theorem 4.1.

Scholium 4.7. We recall that a map f WX ! Y of path-connected spaces is called acyclic
if its homotopy fiber F satisfies QH�.F IZ/ D 0. Acyclic maps can be equivalently char-
acterized as the maps f WX ! Y which induce isomorphisms in cohomology for all local
coefficients of abelian groups on Y (see [18, 35] for more details and further character-
izations). Thus, the equivalence .1/,.4/ in Theorem C is an analogue of this classical
characterization of acyclic maps.

We note that the classical characterization of acyclic maps can be shown using the
Serre spectral sequence. A version of the Hochschild–Serre spectral sequence for the
bounded cohomology of (not necessarily discrete) groups was established and studied
by Burger–Monod [8, 27]. There is a subtle point here which concerns the identification
of the E2-page; this is due to the fact that bounded cohomology groups (as seminormed
spaces) are not Hausdorff in general (see Chapter 12 of [27]). Still, it is possible to use
the Hochschild–Serre spectral sequence directly for the implication .4/).1/ in The-
orem 4.1 – our proof is, in fact, essentially not very different (see also [11] for more
details). We expect that the Hochschild–Serre spectral sequence agrees in general with the
hypercohomology spectral sequence associated with the resolution (*) used in the proof
of Theorem 4.1 (4))(1) (without any prior assumptions on the RŒ��-modules Wj ).
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4.4. Stability properties of boundedly acyclic maps

We discuss the stability properties of boundedly n-acyclic maps under various homotopy-
theoretic constructions. First, the characterization of boundedly n-acyclic maps in The-
orem C has the following immediate consequence.

Corollary 4.8. The class of boundedly n-acyclic maps is closed under homotopy pull-
backs. More precisely: given a homotopy pullback of based path-connected spaces

X 0 //

f 0

��

X

f

��

Y 0 // Y;

where f is boundedly n-acyclic, then so is f 0.
Conversely, if f 0 is boundedly n-acyclic, then so is f .

Proof. This follows easily from Theorem C .1/,.4/ because f and f 0 have the same
homotopy fiber.

Furthermore, even though bounded cohomology does not satisfy excision in general,
the characterization .1/,.4/ of Theorem C shows that boundedly (n-)acyclic maps sat-
isfy the following descent property.

Corollary 4.9. The class of boundedly n-acyclic maps is closed under glueing of equi-
fibered maps. More precisely: given a diagram of based path-connected spaces

X1

f1

��

X0 //oo

f0

��

X2

f2

��

Y1 Y0 //oo Y2;

where both squares are homotopy pullbacks and the three vertical maps are boundedly
n-acyclic, then the induced map between the homotopy pushouts

f W X1

h[
X0

X2 ! Y1

h[
Y0

Y2

is also boundedly n-acyclic.

Proof. The homotopy fiber of f agrees (up to weak homotopy equivalence) with the
common homotopy fiber of the maps fi ; i D 0; 1; 2 (this is a classical result which can be
found in [34]; see also [36] for a modern perspective on homotopical descent). Then the
required result follows from Theorem C .1/,.4/.

Concerning the stability of boundedly n-acyclic maps with respect to homotopy push-
outs, the situation is more delicate:
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Corollary 4.10. Let

X
g
//

f

��

X 0

f 0

��

Y // Y 0

be a homotopy pushout of based path-connected spaces, where f is boundedly n-acyclic.
LetH WD ker.f�/E�1.X/ and letH 0 denote the image ofH under g�W�1.X/!�1.X

0/.
Then f 0 is boundedly n-acyclic if and only if the normal closure of H 0 � �1.X 0/ is
boundedly n-acyclic.

Proof. By the van Kampen theorem, we obtain a pushout of groups after applying �1
to the given homotopy pushout. Note that f� is surjective; therefore, so is f 0�. By Pro-
position 2.11, the map f 0 is boundedly n-acyclic if and only if the homomorphism f 0� is
boundedly n-acyclic. By Theorem 4.1, this holds if and only if ker.f 0�/ 2 BAcn. Using
the diagram of pushouts of groups

H // //

��

�1.X/
g� //

f�
����

�1.X
0/

f 0�
����

¹�º // �1.Y / // �1.Y
0/;

we observe that ker.f 0�/ is the normal closure of H 0 � �1.X 0/ and the result follows.

4.5. An application to simplicial volume

We end this section with an application of Theorem C to simplicial volume. The sim-
plicial volume is a homotopy invariant of oriented compact manifolds introduced by
Gromov [17], which measures the complexity of manifolds in terms of the “size” of their
fundamental cycles in the singular chain complex. We recall that given an oriented com-
pact manifold (possibly with non-empty boundary), a (relative) fundamental cycle c 2
Cn.M; @M IR/ is simply a representative of the (relative) fundamental class ŒM; @M� 2

Hn.M; @M IR/ Š R.

Definition 4.11. Let M be an oriented compact connected n-dimensional manifold with
(possibly empty) boundary @M . The (relative) simplicial volume ofM is defined to be the
following non-negative real number:

kM; @Mk WD inf
° kX
iD1

j˛i j
ˇ̌̌ kX
iD1

˛i �i is a fundamental cycle of .M; @M/
±
:

In order to compute the simplicial volume of an oriented compact manifold with
boundary, it is convenient to extend the definition of bounded cohomology of spaces to
the relative case. The relative bounded cochain complex is the subobject of the relative
singular cochain complex C �.M; @M IR/ which consists of bounded cochains,

C �b .M; @M IR/ WD
°
' 2 C �.M; @M IR/

ˇ̌̌
sup

� W�n!M

j'.�/j <1
±
:
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The cohomology of this cochain complex is the relative bounded cohomology of .M;@M/.
There is a natural inclusion of cochain complexes

C �b .M; @M IR/ ,! C �.M; @M IR/

which induces a map in cohomology

comp�.M;@M/ W H
�
b .M; @M IR/! H �.M; @M IR/

called the comparison map. A useful relationship between the simplicial volume and the
comparison map is given by the following elementary fact (see [17] and Proposition 5.15
in [23]).

Proposition 4.12 (Duality principle). Let M be an oriented compact connected n-mani-
fold with (possibly empty) boundary @M . Then,

kM; @Mk > 0 ” compn.M;@M/ is surjective:

As an application of Theorem C and Proposition 4.12, we deduce the following new
result on the vanishing of the relative simplicial volume of compact manifolds with bound-
ary.

Corollary 4.13. Let M be an oriented compact connected n-manifold with non-empty
connected boundary @M . Let i W@M !M denote the boundary inclusion and let F denote
its homotopy fiber. Suppose that F is boundedly .n � 1/-acyclic. Then,

H k
b .M; @M IR/ D 0; for all 0 � k � n.

In particular, we have
kM; @Mk D 0:

Proof. Since the homotopy fiber F satisfies the condition .4/ of Theorem C, it follows
that i is boundedly .n � 1/-acyclic. In particular, the induced map

H k
b .i/WH

k
b .M IR/! H k

b .@M IR/

is an isomorphism in degrees 0 � k � n � 1 and injective in degree k D n. If we now
consider the long exact sequence in bounded cohomology of the pair .M;@M/ (Section 5.7
in [15]),

� � � ! H k�1
b .M IR/! H k�1

b .@M IR/! H k
b .M; @M IR/! H k

b .M IR/! � � �

we conclude that
H k
b .M; @M IR/ D 0 for all 0 � k � n.

Then the vanishing of the relative simplicial volume is an easy application of Proposi-
tion 4.12.
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