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Global well-posedness for the defocusing, cubic nonlinear
Schrödinger equation with initial data in a critical space

Benjamin Dodson

Abstract. In this note we prove global well-posedness for the defocusing, cubic
nonlinear Schrödinger equation with initial data lying in a critical Sobolev space.

1. Introduction

In this note, we discuss the defocusing, cubic, nonlinear Schrödinger equation in three
dimensions,

(1.1) iut C�u D F.u/ D juj
2u; u.0; x/ D u0 2 PH

1=2.R3/:

Equation (1.1) has a scaling symmetry. For any � > 0, if u solves (1.1), then

(1.2) u�.t; x/ D �u.�
2t; �x/;

also solves (1.1). The initial data �u0.�x/ has PH 1=2.R3/ norm that is invariant under the
scaling (1.2).

The local theory for initial data lying in PH 1=2.R3/ has been completely worked out,
and the scaling symmetry has been shown to control the local well-posedness theory.

Theorem 1.1. Assume u0 2 PH 1=2.R3/, ku0k PH1=2.R3/ � A. Then there exists ı D ı.A/

such that if keit�u0kL5t;x.I�R3/ < ı, then there exists a unique solution to (1.1) on I �R3

with u 2 C.I I PH 1=2.R3//, and

kukL5t;x.I�R3/ � 2ı:

Moreover, if u0;k ! u0 in PH 1=2.R3/, then the corresponding solutions uk ! u in
C.I I PH 1=2.R3//.

This theorem was proved in [3].
From this, it is straightforward to show that local well-posedness holds for (1.1) for any

initial data u0 2 PH 1=2.R3/. Indeed, by the dominated convergence principle combined
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with Strichartz estimates, for any u0 2 PH 1=2.R3/,

(1.3) lim
T&0
keit�u0kL5t;x.Œ�T;T ��R3/ D 0:

Since ı.A/ is decreasing as A%C1, Strichartz estimates imply that there exists ı0 > 0
such that if ku0k PH1=2.R3/ < ı0, (1.1) has a global solution that scatters. By scattering, we
mean that there exist uC0 , u�0 so that

lim
t!C1

ku.t/ � eit�uC0 k PH1=2 D 0;

and
lim
t!�1

ku.t/ � eit�u�0 k PH1=2 D 0:

However, it is important to note that while (1.3) holds for any fixed u0 2 PH 1=2.R3/,
the convergence is not uniform, even for ku0k PH1=2.R3/ � A <1. Thus, one cannot con-
clude directly from [3] that a uniform bound for ku.t/k PH1=2.R3/ on the entire time of the
existence of the solution to (1.1) implies that the solution is global. This result was instead
proved in [9], using concentration compactness methods.

Theorem 1.2. Suppose that u is a solution of (1.1) with initial data u0 2 PH 1=2.R3/ and a
maximal interval of existence I D .T�;TC/. Also assume that supt2.T�;TC/ ku.t/k PH1=2.R3/

D A <1. Then TC.u0/ D C1, T�.u0/ D �1, and the solution u scatters.

It is conjectured that (1.1) is globally well-posed and scattering for any u02 PH 1=2.R3/,
without the a priori assumption of a universal bound on the PH 1=2 norm of the solu-
tion u.t/. Partial progress has been made in this direction.

A solution to (1.1) has the conserved quantities mass,

M.u.t// D

Z
ju.t; x/j2 dx DM.u.0//;

and energy,

(1.4) E.u.t// D
1

2

Z
jru.t; x/j2 dx C

1

4

Z
ju.t; x/j4 dx:

This fact implies global well-posedness for (1.1) with u0 2 H 1
x .R

3/, where H 1
x .R

3/ is
the inhomogeneous Sobolev space of order one. In this case, one could also prove bounds
on the scattering size directly, using the interaction Morawetz estimate of [5].

Theorem 1.3. If u is a solution to (1.1), on an interval I , then

(1.5) kuk4
L4t;x.I�R3/

. kuk2
L1t L

2
x.I�R3/

kuk2
L1t
PH1=2.I�R3/

. E.u/1=2M.u/3=2:

Interpolating (1.4) and (1.5) then implies

(1.6) kuk4
L8tL

4
x.I�R3/

. M.u/3=4E.u/3=4;
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with bounds independent of I �R. Combining Strichartz estimates and local well-posed-
ness theory, a uniform bound on (1.6) for any I � R directly implies a uniform bound on

kukL5t;x.I�R3/:

The argument from [3] implies that proving scattering is equivalent to proving

(1.7) kukL5t;x.R�R3/ <1:

Indeed, assuming that (1.7) is true, the interval R may be partitioned into finitely many
pieces Jk such that

kukL5t;x.Jk�R3/ � ı:

Then iterate the argument over the intervals Jk , which proves scattering.
This argument also shows that a solution to (1.1) blowing up at a finite time T0 <1

is equivalent to
kukL5t;x.Œ0;T0/�R3/ D1:

Remark. Prior to [5], [8] and [10] proved scattering using the standard Morawetz estim-
ate. See [12] for more details on Strichartz estimates.

Many have attempted to lower the regularity needed in order to prove global well-
posedness. For any s > 1=2, the inhomogeneous Sobolev space H s

x.R
3/ � PH 1=2.R3/.

Therefore, if u0 2 H s
x.R

3/, then it would be conjectured that the solution to (1.1) with
initial data u0 is global and scatters.

Proving a uniform bound on the H s
x.R

3/ norm would be enough, since by interpola-
tion this would guarantee a uniform bound on the PH 1=2

x .R3/ norm. The difficulty is that
there does not exist a conserved quantity at regularity s that controls the PH s norm for
1=2 < s < 1.

Instead, [2] used the Fourier truncation method (see also [1] for the cubic problem in
two dimensions). Decompose the initial data

u0 D P�Nu0 C P>Nu0 D v0 C w0:

Then v0 2H 1.R3/, and kw0k PH1=2.R3/ is small. Thus, (1.1) has a global solution for initial
data v0 or w0, call them v and w. Since (1.1) is a nonlinear equation, it is necessary
to also estimate the interaction between v and w in the nonlinearity of (1.1). Then, [2]
proved global well-posedness for (1.1) with initial data u0 2 H s

x.R
3/ when s > 11=13.

Moreover, [2] proved that the solution is of the form

eit�u0 C v.t/; where v.t/ 2 H 1
x .R

3/.

The results from the Fourier truncation method for (1.1) were improved using the
I-method. First, [4] improved the regularity necessary for global well-posedness to s>5=6.
Then, [5] improved the necessary regularity to s > 4=5. To the author’s best knowledge,
the best known regularity result is the result of [11], proving global well-posedness and
scattering for regularity s > 5=7. For radial initial data, [6] proved global well-posedness
and scattering for any s > 1=2. This result is almost sharp at high frequencies.
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In this paper, we study the cubic nonlinear Schrödinger equation (1.1) with initial data
lying in the Sobolev space W 7=6;11=7

x .R3/. That is,

kjrj
11=7u0kL7=6.R3/ <1:

Remark. This norm is well-defined using the Littlewood–Paley decomposition. See for
example [13].

This norm is preserved under the scaling (1.2), and is therefore a critical Sobolev norm.
Moreover, W 7=6;11=7

x .R3/ � PH 1=2.R3/, so (1.1) has a local solution for this initial data.
We prove global well-posedness for (1.1) with this initial data.

Theorem 1.4. The cubic nonlinear Schrödinger equation is globally well-posed for initial
data u0 2 W

7=6;11=7
x .R3/.

The proof of this theorem will heavily utilize dispersive estimates. Interpolating be-
tween the fact that eit� is a unitary operator,

keit�u0kL2.R3/ D ku0kL2.R3/;

and the dispersive estimate,

keit�u0kL1.R3/ .
1

t3=2
ku0kL1.R3/;

gives the estimate

(1.8) keit�u0kL7.R3/ .
1

t15=14
ku0kL7=6.R3/:

This implies that the linear solution eit�u0 has very good behavior when t > 1, in fact
it is integrable in time. We then rescale so that u0 has a local solution on an interval Œ�1;1�.
We prove that this solution may be decomposed into

u.t/ D eit� u0 C v.t/C w.t/:

In particular,
u.1/ D ei� u0 C v.1/C w.1/:

The term
ei.t�1/� ei� u0 D e

it� u0

has good properties when t > 1. We can also show that

krei.t�1/� v.1/kL1 .
1

t3=2
;

which also has good properties when t > 1. Finally, w.1/ 2 H 1
x and has finite energy.

Making a Gronwall argument shows that

ku.t/ � eit� u0 � e
i.t�1/� v.1/k PH1 ;

is uniformly bounded on Œ1;1/. This is enough to give global well-posedness, but not
scattering.



Defocusing cubic NLS 1091

This result could be compared to the result in [7] for the nonlinear wave equation.
There, the author proved global well-posedness and scattering for the cubic wave equa-
tion with initial radial data in the Besov space B21;1 � B

1
1;1. Here, we do not require radial

symmetry, however, we only prove global well-posedness. We are unable to prove scatter-
ing at this time due to the lack of a scale invariant conformal symmetry.

We prove a local well-posedness result in section two, and a global result in sec-
tion three. This argument could be generalized to many intercritical, defocusing nonlinear
Schrödinger equations.

2. Local well-posedness

The Sobolev embedding theorem implies thatW 7=6;11=7
x .R3/ is embedded into PH 1=2.R3/.

Therefore, (1.1) is locally well-posed, and there exists some T .u0/ > 0 such that (1.1) has
a solution on Œ�T; T � and kukL5t .Œ�T;T ��R3/ D �0, for some �0.ku0k PH1=2/ small. After
rescaling using (1.2), suppose

(2.1) kukL5t;x.Œ�1;1��R3/ D �0:

Since .3; 18=5/ is an admissible pair, Strichartz estimates imply

kjrj
1=2ukL1t L2x\L2tL6x.Œ�1;1��R3/(2.2)

. kjrj1=2u0kL2x.R3/ C kjrj
1=2uk

L3tL
18=5
x .Œ�1;1��R3/

kuk2
L5t;x.Œ�1;1��R3/

:

Therefore,

(2.3) kjrj
1=2ukL1t L2x\L2tL6x.Œ�1;1��R3/ . ku0k PH1=2 :

Also, by Duhamel’s principle, for any t 2 Œ�1; 1�,

(2.4) u.t/ D eit�u0 � i

Z t

0

ei.t��/�F.u.�// d� D ul .t/C unl .t/:

Remark. Recall from (1.1) that F.u/ D juj2u.

We begin with a technical lemma. This lemma allows us to make a Littlewood–Paley
decomposition of unl , treat each Pjunl separately, and then sum up. It also implies
that unl retains all the properties of a solution to the linear Schrödinger equation with
initial data in a Besov space.

Remark. In this section, all implicit constants depend on the norm ku0kW 7=6;11=7 .

Remark. Throughout this section we rely very heavily on the bilinear Strichartz estimate

k.eit�Pju0/.e
it�Pkv0/kL2t;x.R�R3/ . 2�j=2 2k kPju0kL2 kPkv0kL2 :

See [1] for a proof.
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Lemma 2.1. Let Pj be the customary Littlewood–Paley projection operator. Also suppose
that u is a solution to (1.1) satisfying (2.1). Then

(2.5)
X
j

2j=2 kPjF.u/kL1tL2x.Œ�1;1��R3/ . 1:

Proof. Decompose the nonlinearity,

PjF.u/DPjF.P�j�3u/C3Pj ..P�j�3u/
2.P�j�3u//C3Pj ..Pj�3���jC3u/.P�j�3u/

2/:

By Bernstein’s inequality, and (2.2),

2j=2 kPjF.P�j�3u/kL1tL2x.Œ�1;1��R3/(2.6)

. 2j=2kP�j�3uk
3
L3tL

6
x.Œ�1;1��R3/

. 2j=2
� X
l�j�3

2�l=6kjrj1=6PlukL3tL6x

�3
:

Next,

2j=2


Pj ..P�j�3u/2.P�j�3u//

L1tL2x.Œ�1;1��R3/

(2.7)

. 2j=2
� X
l�j�3

2�l=4kjrj1=4PlukL3tL
36=7
x

�2
kukL3tL9x

:

Finally, by the bilinear Strichartz estimate

(2.8) k.eit�Pju0/.e
it�Pl1u0/kL2t;x.R�R3/ . 2�j=2 2l1 kPju0kL2 kPl1u0kL2 ;

combined with the principle of superposition and (2.4),

k.Pju/.Pl1u/kL2t;x
(2.9)

. 2�j=2 2l1 .kPju0kL2 C kPjF.u/kL1tL2x
/ .kPl1u0kL2 C kPl1F.u/kL1tL2x

/;

and the Sobolev embedding properties of Littlewood–Paley projections,

(2.10)

2j=2 k.Pj�3���jC3u/.P�j�3u/
2
kL1tL

2
x.Œ�1;1��R3/

. 2j=2
X

l1�j�3

k.Pl1u/.Pj�3���jC3u/kL2t;x

X
l1�l2�j�3

kPl2ukL2tL1x

. kjrj1=2ukL2tL6x
X

l1�j�3

2l1.j � l1/
�
kPj�3���jC3u0kL2

C kPj�3���jC3F.u/kL1tL2x

�
�
�
kPl1u0kL2 C kPl1F.u/kL1tL2x

�
:

By Strichartz estimates, (2.3), Plancherel’s theorem, and the fractional product rule,X
j

2j kPju0k
2
L2
C

X
j

2j kPjF.u/k
2
L1tL

2
x.Œ�1;1��R3/

. ku0k2PH1=2
C kjrj

1=2F.u/k2
L1tL

2
x

. ku0k2PH1=2
C kjrj

1=2uk2
L3tL

18=5
x

kuk4
L3tL

9
x

. 1:
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Combining (2.6)–(2.10) with the Cauchy–Schwarz inequality implies

(2.11)
X
j

2j=2 kPjF.u/kL1tL2x.Œ�1;1��R3/ . 1;

which proves the lemma.

Next, decompose unl in the following manner:

unl .t/ D �i

Z .1�ı/t

0

ei.t��/�F.u.�// d� � i

Z t

.1�ı/t

ei.t��/�F.u.�// d� D v.t/C w.t/;

for some ı > 0 sufficiently small, to be specified later.

Lemma 2.2. For any t 2 Œ0; 1�,

(2.12) kv.t/kL1 .
1

ı1=2 t1=2
;

and

(2.13) krv.t/kL1 .
1

ıt
�

Proof. By the dispersive estimate, since kukL3 . kuk PH1=2 is uniformly bounded on Œ0; 1�,

kv.t/kL1 .



 Z .1�ı/t

0

ei.t��/�F.u/ d�




L1

.
Z .1�ı/t

0

1

jt � � j3=2
kuk3

L3
d� .

1

ı1=2t1=2
�

To prove (2.13), observe that by the product rule,

rF.u/ D 2juj2ruC u2r Nu:

Interpolating,

(2.14) kjrj
1=2ulkL2 . kjrj1=2u0kL2 . 1;

with

(2.15) t15=14kjrj11=7ulkL7 . kjrj11=7u0kL7=6 . 1;

we have

(2.16) t1=2 krulkL3 . 1:

Making a dispersive estimate and using (2.16),


 Z .1�ı/t

0

ei.t��/�juj2rul .�/ d�




L1

.
Z .1�ı/t

0

1

jt � � j3=2
krul .�/kL3kuk

2
L3
d�

.
Z .1�ı/t

0

1

jt � � j3=2
1

j� j1=2
d� .

1

ıt
�

The same computation may also be made for u2r Nul .
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Next, consider the contribution of juj2runl . By (2.5), we can, without loss of gener-
ality, consider only one Pj Littlewood–Paley multiplier, provided the estimate is uniform
in 2j=2kPjF.u/kL1tL2x :

juj2.rPjunl / D jP�juj
2.rPjunl /C 2Re..P>j Nu/.P�j Nu//.rPjunl /

C jP>juj
2.rPjunl /:

Using the bilinear Strichartz estimate in (2.9), as well as (2.11) and the Cauchy–Schwartz
inequality,

(2.17) kju�j j2.rPjunl /kL2tL1x.Œ0;1��R3/ .
X

j1�j2�j

k.Pj1u/.Pjrunl /kL2t;x
kPj2ukL1t L2x

.
X

j1�j2�j

2j1=2 2�j2=2 2j=2kPjF.u/kL1tL2x

�
kjrj

1=2Pj1u0kL2 C kjrj
1=2Pj1F.u/kL1tL2x

�
�
�
kjrj

1=2Pj2u0kL2 C kjrj
1=2Pj2F.u/kL1tL2x

�
. 1:

Also, by Bernstein’s inequality and Lemma 2.1,

kjrPjunl jjP>juj.jP�juj C jP>juj/kL2tL1x

. kjrj1=2PjunlkL2tL6x kjrj
1=2P>jukL1t L2x

kukL1t L3x
. 1:

Therefore,

(2.18)




 Z .1�ı/t

0

ei.t��/�juj2runl .�/ d�




L1

.
Z .1�ı/t

0

1

jt � � j3=2
kjuj2runlkL1 d�

.
1

ıt
kjuj2runlkL2tL1x

.
1

ıt
�

The same computation can be also be made for u2r Nunl . This completes the proof of
Lemma 2.2.

Lemma 2.3. For any t 2 Œ0; 1�,

(2.19) kjrj
1=2w.t/kL3 .

1

ı1=4t1=4
�

Proof. First observe that by interpolation, Bernstein’s inequality, and (2.16),

(2.20) kjrj1=2eit�u0kL3 . t1=4kreit�P�t�1=2u0kL3C t
�1=4
kP�t�1=2u0k PH1=2 . t�1=4:

Also since eit� is unitary in L2, by (2.1) and (2.2),

(2.21) kv.t/k PH1=2 D kunl ..1 � ı/t/k PH1=2 . kjrj1=2uk
L3tL

18=5
x
kuk2

L5t;x
. �20 :

so interpolating (2.12), (2.13), and (2.21),

(2.22) kjrj
1=2vkL3 . kjrj1=2vk1=3L1 kjrj

1=2vk
2=3

L2
.

�
4=3
0

ı1=4 t1=4
�
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Finally, making a dispersive estimate, for any t 2 Œ0; 1�, by (2.20) and (2.22), if ı1=4� �0,

(2.23)

ı1=4t1=4



 Z t

.1�ı/t

ei.t��/�jrj1=2F.u/ d�




L3

. ı1=4t1=4
Z t

.1�ı/t

1

jt � � j1=2
kjrj

1=2u.�/kL3 ku.�/k
2
L6
d�

.
�

sup
t2Œ0;1�

ı1=4t1=4kjrj1=2ukL3
�3 . �40 C

�
sup
t2Œ0;1�

ı1=4t1=4kjrj1=2wkL3
�3
:

Thus, absorbing the second term on the right-hand side into the left-hand side of (2.23)
proves (2.19):

kjrj
1=2w.t/kL3 .

�40
ı1=4 t1=4

�

Remark. To make the proofs of Lemmas 2.2 and 2.3 completely rigorous, truncate u0
in frequency. Then the bounds (2.12), (2.13), and (2.19) all hold on some open subset of
Œ0; 1� that contains 0. Making the bootstrap argument using the proof of Lemma 2.3 gives
bounds on all of Œ0; 1� that do not depend on the frequency truncation of u0. Standard
perturbation arguments then give the lemmas.

Lemma 2.3 can be strengthened to an estimate on the PH 1 norm of w.

Lemma 2.4. For any t 2 Œ0; 1�,

krw.t/kL2 .
1

ı1=4 t1=4
�

Proof. Once again make use of the bilinear Strichartz estimate. Again by the product rule,

rF.u/ D 2juj2ruC u2r Nu:

First, by Strichartz estimates, (2.16), Lemma 2.3, and the Sobolev embedding theorem,


 Z t

.1�ı/t

ei.t��/�Œ2juj2rul C u
2
r Nul � d�





L2

. k2juj2rul C u2r NulkL2tL6=5x

. ı1=2t1=2krulkL1t L3x.Œ.1�ı/t;t��R3/kukL1t L3x.Œ.1�ı/t;t��R3/kjrj
1=2ukL1t L3x.Œ.1�ı/t;t��R3/

.
ı1=4

t1=4
�

Next, by (2.19), bilinear Strichartz estimates in (2.9), and the Littlewood–Paley theorem,

k2ju�j j
2.rPjunl /C .u�j /

2.rPj Nunl /kL2tL
6=5
x

.
X
k�0

2�k=2



� X

j1�j

2j1CkjPj1Ckuj
2
�1=2� X

j1�j

2�j122j jPj1uj
2
jPjunl j

2
�1=2




L2tL
6=5
x

.
X
k�0

2�k=2kjrj1=2u.t/kL1t L3x.Œ.1�ı/t;t��R3/

�

� X
j1�j

kPj1u0k
2
PH1=2
C kPj1F.u/k

2
L1tL

2
x

�1=2
2j=2kPjF.u/kL1tL2x

.
1

ı1=4t1=4
kjrj

1=2PjF.u/kL1tL2x
:
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Next, by Bernstein’s inequality and (2.19)–(2.21),

.rPjunl /ju�j jjuj

L2tL6=5x
. ı1=4t1=4kjrj1=2uk2

L1t L
3
x.Œ.1�ı/t;t��R3/

kjrj
1=2PjunlkL4tL3x.Œ.1�ı/t;t��R3/

.
1

ı1=4t1=4
kjrj

1=2PjF.u/kL1tL2x.Œ0;1��R3/:

Summing up in j using Lemma 2.1 completes the proof.

Remark. The above arguments would work equally well in the time interval Œ�1; 0�.

3. Global well-posedness

We are ready to prove Theorem 1.4. The proof will use conservation of the energy (1.4).
Decompose

u.1/ D Qv.1/C w.1/;

where

(3.1) Qv.1/ D ul .1/C v.1/;

and w.1/ is the w in the previous section. Let T0 > 1 be a time value for which we know
that (1.1) has a solution on Œ0; T0/. By standard local well-posedness arguments and we
know that such a T0 exists. Then on Œ1; T0/, decompose

u.t/ D Qv.t/C w.t/;

where Qv.t/ is the solution to

(3.2) .i@t C�/ Qv.t/ D 0; Qv.1/ D Qv.1; x/;

and w.t/ is the solution to

(3.3) .i@t C�/w D juj
2u; w.1/ D w.1; x/:

Let E.t/ denote the energy of w,

E.t/ D
1

2

Z
jrwj2 C

1

4

Z
jwj4:

First observe that Lemma 2.4 and kw.1/k PH1=2 . 1 implies that E.1/ <1. The estimate
kw.1/k PH1=2 is a consequence of Lemma 2.1 and the definition of w. To prove The-
orem 1.4, it suffices to prove that for any T0 > 1 such that (1.1) has a solution on Œ0; T0/,

(3.4) sup
t2Œ1;T0/

E.t/ <1:
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Indeed, by interpolation and the Sobolev embedding theorem, E.t/ < 1 implies that
kw.t/kL5 <1. Meanwhile, by (2.14)–(2.16), (2.12), and (2.21), k Qv.t/kL5 is uniformly
bounded on R. Therefore, (3.4) implies

kukL5t;x.Œ0;T0/�R3/ <1:

To estimate the growth of E.t/, compute the derivative in time of the energy. By (3.3),

d

dt
E.t/ D �h�w;wt i C hjwj

2w;wt i D hjwj
2w � juj2u;wt i;

where h�; �i is the inner product

hf; gi D Re
Z
f .x/ Ng.x/ dx:

By the product rule,

(3.5)

hwt ; juj
2u � jwj2wi D

d

dt
hjwj2w; Qvi C

d

dt
hj Qvj2; jwj2i

C
1

2

d

dt
Re
Z
Nw2 Qv2 C

d

dt
hw; j Qvj2 Qvi � 2h Qvt NQv; jwj

2
i

� hjwj2w; Qvt i � Re
Z
w2 NQv NQvt � 2hw; j Qvj

2
Qvt i � hw; Qv

2 NQvt i:

Then define the modified energy,

E.t/ D E.t/ � hjwj2w; Qvi � hj Qvj2; jwj2i �
1

2
Re
Z
w2 NQv2 � hw; j Qvj2 Qvi:

By Hölder’s inequality, and the fact that k QvkL4 .ı 1 for all t 2 Œ1;1/ (again using (2.14)–
(2.16), (2.12), and (2.21)),

hjwj2w; Qvi C hj Qvj2; jwj2i C
1

2
Re
Z
w2 NQv2 C hw; j Qvj2 Qvi . E.t/3=4 CE.t/1=4:

Therefore, when E.t/ is large, E.t/ � E.t/. Since we are attempting to prove a uniform
bound for E.t/, it is enough to uniformly bound E.t/.

Also, by (3.5),

d

dt
E.t/ D �hjwj2w; Qvt i � 2h Qvt NQv; jwj

2
i � Re

Z
w2 NQv NQvt � 2hw; j Qvj

2
Qvt i � hw; Qv

2 NQvt i:

Since Qv solves (3.2), Qvt D i� Qv D i�ul C i�v.
Lemma 2.2 implies that for any t > 1,

(3.6) kv.t/kL1 C krv.t/kL1 D



 Z .1�ı/

0

ei.t��/�hriF.u/ d�




L1

.
1

ı3=2t3=2
�

Therefore,

hjwj2w; i�vi D �hr.jwj2w/; irvi . krvkL1krwkL2kwk2L4 .ı
1

t3=2
E.t/:

Remark. Since ı > 0 is fixed, we will ignore it from now on.



B. Dodson 1098

Also, by Hölder’s inequality and (1.8),

hi�.eit�u0/; jwj
2wi . kjrj11=7ulkL7 krwk

3=7

L2
kwk

18=7

L4
.

1

t15=14
E.t/6=7:

This takes care of the contribution of h Qvt ; jwj2wi.
Next, integrating by parts,

(3.7) 2hi.� Qv/ NQv; jwj2i D �2hi jr Qvj2; jwj2i � 2hi.r Qv/ NQv;rjwj2i D �2hi.r Qv/ NQv;rjwj2i:

Then by Hölder’s inequality and (3.6), since k QvkL4 . 1,

hi.rv/ NQv;rjwj2i . krvkL1k QvkL4kwkL4krwkL2 .
1

t3=2
E.t/3=4:

Also, by Hölder’s inequality and interpolation,

(3.8) hi.rul /.ul /;rjwj
2
i . krulkL1x kulkL4 krwkL2 kwkL4 .

1

t

1

t1=8
E.t/3=4:

Finally, by (3.6), and Lemma 2.1, which by the Sobolev embedding theorem and the defin-
ition of v implies kvkL3 . 1

(3.9) hi.rul /v;rjwj2i . krulkL1x kvk
3=4

L3
kvk

1=4
L1 krwkL2 kwkL4 .

1

t

1

t3=8
E.t/3=4:

In (3.8) and (3.9) we used:

Lemma 3.1. For any t � 0,

(3.10) kulkL4 .
1

t1=8
;

and

(3.11) krulkL1 .
1

t
�

Proof. This is proved by interpolating (2.14)–(2.16). By Bernstein’s inequality, (2.15),
(2.16), and the Sobolev embedding theorem,

(3.12) krP�t�1=2 ulkL1 C krP�t�1=2 ulkL1 .
1

t
�

Also by the Bernstein inequality and the Sobolev embedding theorem, along with (2.16)
and ul 2 PH 1=2,

(3.13) kP�t�1=2 ulkL4 C kP�t�1=2 ulkL4 .
1

t1=8
�

This proves the lemma.
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The contribution of 2Re
R
w2 Nv Nvt may be estimated in a similar manner as the contri-

bution of (3.7), except that there is an additional term to consider,

�2Re
Z
iw2.r NQv/2:

Interpolating (3.11) with (2.16),

�2Re
Z
iw2.r Nul /

2 . krulk2L4kwk
2
L4

.
1

t5=4
E.t/1=2:

Meanwhile, following (2.17) and using Strichartz estimates,

ju�j j2.rPjunl /

L1tL3=2x .Œ0;1��R3/ .
X

j1�j2�j

k.Pj1u/.Pjrunl /kL2t;x
kPj2ukL2tL6x

.
X

j1�j2�j

2j1=22�j2=22j=2kPjF.u/kL1tL2x
.kjrj1=2Pj1u0kL2 C kjrj

1=2Pj1F.u/kL1tL2x
/

� .kjrj1=2Pj2u0kL2 C kjrj
1=2Pj2F.u/kL1tL2x

/ . 1:

Plugging this estimate into (2.18) implies that for t > 1,


r Z .1�ı/

0

ei.t��/�F.u/




L3x

.
1

t1=2
�

Interpolating (3.6) with (3.10),

�2Re
Z
iw2.r NQv/2 . kr Qvk2

L4
kwk2

L4
.

1

t3=2
E.t/1=2:

Now treat

(3.14) 2hw; j Qvj2 Qvt i C hw; Qv
2 NQvt i D 2hw; j Qvj

2.i� Qv/i C hw; Qv2.i� Qv/i:

After integrating by parts, by (2.13) and (3.11),

.3.14/ . hjr Qvj2; jvjjwji C hjr Qvjjrwj; jvj2i

. kr Qvk2
L4
k QvkL4kwkL4CkrwkL2kr QvkL1k Qvk

2
L4

.
1

t5=4
E.t/1=4C

1

t
E.t/1=2k Qv.t/kL4 :

Interpolating (3.6) with kvkL3 . 1 implies kvkL4 . t�3=8. Meanwhile, (3.10) implies
kulkL4 . t�1=8, so therefore, by (3.1), k QvkL4 . 1=t1=8. Therefore, we have proved

(3.15)
d

dt
E.t/ .

1

t15=14
.1C E.t//:

By Gronwall’s inequality, (3.15) implies a uniform bound on E.t/. This implies a uniform
bound on E.t/, since E.t/ � E.t/ when E.t/ is large, which proves Theorem 1.4.
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