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Global well-posedness for the defocusing, cubic nonlinear
Schrodinger equation with initial data in a critical space

Benjamin Dodson

Abstract. In this note we prove global well-posedness for the defocusing, cubic
nonlinear Schrédinger equation with initial data lying in a critical Sobolev space.

1. Introduction

In this note, we discuss the defocusing, cubic, nonlinear Schrodinger equation in three
dimensions,

(1.1) iug + Au = F(u) = |u®u, u(0,x) =uo € H'?[R>).
Equation (1.1) has a scaling symmetry. For any A > 0, if u solves (1.1), then
(1.2) up(t,x) = Au(A?t, Ax),

also solves (1.1). The initial data Aug(Ax) has H'/2(R?) norm that is invariant under the
scaling (1.2).

The local theory for initial data lying in H'/2(IR?) has been completely worked out,
and the scaling symmetry has been shown to control the local well-posedness theory.

Theorem 1.1. Assume ug € H/2(R3), 4ol gr1/2(r3y < A- Then there exists § = §(A)
such that if ||e'"®uq “L?x(lx]R3) < 8, then there exists a unique solution to (1.1) on I x R3

withu € C(I; HI/Z(RS)): and
llullLs  (rxray = 28

Moreover, if ugx — uog in H'2(R3), then the corresponding solutions uy — u in
C(I; H'2(R3)).

This theorem was proved in [3].
From this, it is straightforward to show that local well-posedness holds for (1.1) for any
initial data uo € H'/2(R3). Indeed, by the dominated convergence principle combined
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with Strichartz estimates, for any uy € H'/2(R?),

(1.3) %i{‘no ”eitA”O”Lf,x([—T,T]x]R3) =0.

Since §(A) is decreasing as A ' 400, Strichartz estimates imply that there exists 6o > 0
such that if ||“0||H1/2(R3) < 89, (1.1) has a global solution that scatters. By scattering, we

mean that there exist u(")" , Ug so that
: itA, +
im @) = e s =0,

and
. itA  —
tl}f_noo llu(t) — e ug l g12 = 0.

However, it is important to note that while (1.3) holds for any fixed uo € H'/2(R?),
the convergence is not uniform, even for [uo|| 12 ®3 = A < o0c. Thus, one cannot con-
clude directly from [3] that a uniform bound for [[u(2)]| z1/2 (&) Oon the entire time of the
existence of the solution to (1.1) implies that the solution is global. This result was instead
proved in [9], using concentration compactness methods.

Theorem 1.2. Suppose that u is a solution of (1.1) with initial data ug € H'/?(R?) and a
maximal interval of existence I = (T, Ty ). Also assume that sup,er_ 7., lu(?) ||H1/2(R3)
= A < o00. Then T4+ (ug) = +o00, T—(ug) = —00, and the solution u scatters.

Itis conjectured that (1.1) is globally well-posed and scattering for any ug € HY2(R3),
without the a priori assumption of a universal bound on the H'/2 norm of the solu-
tion u(¢). Partial progress has been made in this direction.

A solution to (1.1) has the conserved quantities mass,

M(u(t)) = / (e, )2 dx = M@ (),

and energy,
1 2 1 4
1.4 E(u(t)) = §/|Vu(t,x)| dx+Z/|u(t,x)| dx.

This fact implies global well-posedness for (1.1) with ug € H}!(R?), where H!(R?) is
the inhomogeneous Sobolev space of order one. In this case, one could also prove bounds
on the scattering size directly, using the interaction Morawetz estimate of [5].

Theorem 1.3. If u is a solution to (1.1), on an interval I, then

(15) ”u”z‘t‘,x(IXRS) S ||u||i?°L)2((IX]R3) ||u||i?°H1/2(IX]R3) 5 E(”)I/ZM(M)3/2'

Interpolating (1.4) and (1.5) then implies

(1.6) Jlu < M(u)¥*E(u)’/4,

17
L3L%(IxR3)
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with bounds independent of / C R. Combining Strichartz estimates and local well-posed-
ness theory, a uniform bound on (1.6) for any / C R directly implies a uniform bound on

||u||Lf’x(1><R3)'

The argument from [3] implies that proving scattering is equivalent to proving
(1.7) lllzs |, rxray < 00

Indeed, assuming that (1.7) is true, the interval R may be partitioned into finitely many
pieces Ji such that

lllzs (e xray <8

Then iterate the argument over the intervals Ji, which proves scattering.
This argument also shows that a solution to (1.1) blowing up at a finite time Ty < co
is equivalent to

llllzs (o, 70)x®3) = 0°-

Remark. Prior to [5], [8] and [10] proved scattering using the standard Morawetz estim-
ate. See [12] for more details on Strichartz estimates.

Many have attempted to lower the regularity needed in order to prove global well-
posedness. For any s > 1/2, the inhomogeneous Sobolev space H:(R?) C H'2(R3).
Therefore, if ug € H; (R3), then it would be conjectured that the solution to (1.1) with
initial data u is global and scatters.

Proving a uniform bound on the H$(R*) norm would be enough, since by interpola-
tion this would guarantee a uniform bound on the H ;/ 2(]1%3) norm. The difficulty is that
there does not exist a conserved quantity at regularity s that controls the H* norm for
1/2<s<1.

Instead, [2] used the Fourier truncation method (see also [1] for the cubic problem in
two dimensions). Decompose the initial data

up = P<yuo + P=Nuo = vo + wo.

Then vy € H'(R3), and ||wo Il 71/2 3y is small. Thus, (1.1) has a global solution for initial
data vo or wy, call them v and w. Since (1.1) is a nonlinear equation, it is necessary
to also estimate the interaction between v and w in the nonlinearity of (1.1). Then, [2]
proved global well-posedness for (1.1) with initial data ug € H$(R3) when s > 11/13.
Moreover, [2] proved that the solution is of the form

e ug 4+ v(t), where v(t) € HI(R?).

The results from the Fourier truncation method for (1.1) were improved using the
I-method. First, [4] improved the regularity necessary for global well-posedness to s>5/6.
Then, [5] improved the necessary regularity to s > 4/5. To the author’s best knowledge,
the best known regularity result is the result of [11], proving global well-posedness and
scattering for regularity s > 5/7. For radial initial data, [6] proved global well-posedness
and scattering for any s > 1/2. This result is almost sharp at high frequencies.
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In this paper, we study the cubic nonlinear Schrédinger equation (1.1) with initial data
lying in the Sobolev space W;/6’11/7(R3). That is,

VI Tugl L7ss gy < oo

Remark. This norm is well-defined using the Littlewood—Paley decomposition. See for
example [13].

This norm is preserved under the scaling (1.2), and is therefore a critical Sobolev norm.
Moreover, W,/ /7 (R3) ¢ H/2(R3), so (1.1) has a local solution for this initial data.
We prove global well-posedness for (1.1) with this initial data.

Theorem 1.4. The cubic nonlinear Schrodinger equation is globally well-posed for initial
data uy € Wx7/6’11/7(R3).

The proof of this theorem will heavily utilize dispersive estimates. Interpolating be-
tween the fact that €2 is a unitary operator,

A
e 2uoll 23y = luollL2ws).

and the dispersive estimate,

. 1
A
lle' 2uo |l Lo w3y S P luoll L1 w3y

gives the estimate

. 1
A
(1.8) e 2 uoll L7 w3y < 15714 o llL7/s(®3)-

This implies that the linear solution e?’2u has very good behavior when ¢ > 1, in fact

itis integrable in time. We then rescale so that 1 has a local solution on an interval [—1, 1].
We prove that this solution may be decomposed into

u(t) = e ug + v(1) + w().
In particular, .
u(l) = e® ug 4+ v(1) + w(l).
The term . . ‘
el(t—l)A ezAuo — ell‘A uo

has good properties when ¢ > 1. We can also show that

Ve P2 v e S 75,

which also has good properties when ¢ > 1. Finally, w(1) € H]} and has finite energy.
Making a Gronwall argument shows that

u(t) — e ® ug — " VA y(1)|| 41,

is uniformly bounded on [1, co). This is enough to give global well-posedness, but not
scattering.
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This result could be compared to the result in [7] for the nonlinear wave equation.
There, the author proved global well-posedness and scattering for the cubic wave equa-
tion with initial radial data in the Besov space B{ ; x B ;. Here, we do not require radial
symmetry, however, we only prove global well-posedness. We are unable to prove scatter-
ing at this time due to the lack of a scale invariant conformal symmetry.

We prove a local well-posedness result in section two, and a global result in sec-
tion three. This argument could be generalized to many intercritical, defocusing nonlinear
Schrodinger equations.

2. Local well-posedness

The Sobolev embedding theorem implies that Wy’ ®11/7(R3) is embedded into H 1/2(R3).
Therefore, (1.1) is locally well-posed, and there exists some 7' (1) > 0 such that (1.1) has
a solution on [—T, T'] and ||u||L§([—T,T]><R3) = €9, for some €qo(||uo]| z1/2) small. After
rescaling using (1.2), suppose

2.1 lllzs | —1,11xr3) = €o0-
Since (3, 18/5) is an admissible pair, Strichartz estimates imply
22) VIV ?ull i r2nr208(-1,11xR%)

SV 2uollaesy + VI 20l g 1wss ey 107 qor,neray

Therefore,

(2.3) ”|V|1/2u||L§’°L§OL%L§([71,1]><R3) < lluoll gi/2-

Also, by Duhamel’s principle, for any ¢ € [—1, 1],
t
(2.4) u(t) = ' ug — i/ ' TOAE(0)) dt = up(t) + un (t).
0

Remark. Recall from (1.1) that F(u) = |u|?u.

We begin with a technical lemma. This lemma allows us to make a Littlewood—Paley
decomposition of u,;, treat each Pju,; separately, and then sum up. It also implies
that u,,; retains all the properties of a solution to the linear Schrédinger equation with
initial data in a Besov space.

Remark. In this section, all implicit constants depend on the norm ||uq || yy7/6,11/7.

Remark. Throughout this section we rely very heavily on the bilinear Strichartz estimate
A A .
12 Pjuo) ("2 Pivo) 12 sy S 27772 2% [ Proll 2 || Pevoll 2.

See [1] for a proof.



B. Dodson 1092

Lemma 2.1. Let P; be the customary Littlewood—Paley projection operator. Also suppose
that u is a solution to (1.1) satisfying (2.1). Then

(2.5) D 2P F@) L 2o aprs) S 1
J

Proof. Decompose the nonlinearity,

PjF(u)=PiF (P j—3u)+3P; (P2 j-3u)*(P<j—31)+3P; (Pj—3z.2j+31) (P<j—3u)?).
By Bernstein’s inequality, and (2.2),

(26) 22| PiF(P=j 311112 -1,11xm5)

‘ 3
S 220 Pyl ey penny < 2722 2NV Pl )

1>j-3
Next,
@.7) 22| Py (P2 j=3)* (P<j=3) | 1 121 1)
S VI Pl ) Tlgg.
1>j-3
Finally, by the bilinear Strichartz estimate
(2.8) (™A P; uo)(e”APlluo)||L2 C®RxR3) S 27 2210 || Pjug |2 | Pryuol 2.

combined with the principle of superposition and (2.4),

@9) (PP,
< 277221 (| Pyuollze + 1P o)l 12) (1P wollzz + | Py FGDIILa2).

and the Sobolev embedding properties of Littlewood—Paley projections,

2712 1(Pj-3<-<j+3u)(P<j—31)*[| 1 12 (1 1,1]xR?)
<22 Z CPru)(Pj—3<<j+31)l 2 Z I Pryullp2z00
h=<j-3 h=<h=<j-3
< |||V|1/2u||L§Lg > 2"G = 1)(IPj=3<<j+3uoll
h<j-3
+ 1Pj—s<<j+3F@)lpiz2) - (1Pyuollz + 1Py F)lipiz2)-

(2.10)

By Strichartz estimates, (2.3), Plancherel’s theorem, and the fractional product rule,
22' 1Psuoll? + 22' 1P; FQOIZ 1 2 1.1y < N0l + NIVIV2EGOI, 2

< lluoll

1/2,.112 4
fve VIR, wsllulizy g S 1.
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Combining (2.6)—(2.10) with the Cauchy—Schwarz inequality implies

(2.11) > V2P F@)llp 2 qor ey S 1

J
which proves the lemma. ]
Next, decompose u,; in the following manner:
(18t t )
Uni (1) = —i/ IR F(u(r)) dr — i/ DA F () dr = v(t) + w(t),
0 (1-6)t
for some § > O sufficiently small, to be specified later.

Lemma 2.2. Foranyt € [0, 1],

1
2.12) lOllL> = 57757
and

1
(2.13) IVo @)z < o

Proof. By the dispersive estimate, since |[u||z3 < |[u| 12 is uniformly bounded on [0, 1],

1-6 1-8
ot < | [ et Fwa] < [ e
~ 0 L= " Jo |t —r|3/2 L3 ~ §1/241/2

To prove (2.13), observe that by the product rule,

VFu) = 2ul*Vu + uVii.

Interpolating,

(2.14) V172 urllz2 S 1VIY?uollz2 < 1.
with

(2.15) ANV Tl S VI gl s S 1
we have

(2.16) V2|V s S 1

Making a dispersive estimate and using (2.16),

=Dt A (-8)t 1 ,
oy, s [ a
[ e upvu@a, s [ g V@l de

/(1—8)’ 1 1 1
~ — s~ dt S —-
0 [t — |32 |7|1/2 8t

The same computation may also be made for u?Vii;.
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Next, consider the contribution of |u|?Vu,;. By (2.5), we can, without loss of gener-

ality, consider only one P; Littlewood-Paley multiplier, provided the estimate is uniform
in 2712 P; F(u)l| 1 2

[u>(V Pjun;) = | P<jul*(V Pjty;) + 2Re((Ps ji1)(P<;i1))(V Pjtty;)
+ |P>ju|2(VPjunl)~

Using the bilinear Strichartz estimate in (2.9), as well as (2.11) and the Cauchy—Schwartz
inequality,

(2.17) |||”§j|2(VPj”nl)||L§L§([0,1]XR3) < Z ||(leu)(PjVunl)||L§,x||Pj2”||L,°°L§

J1Z)25]

< 3 202072002 P F o)l 2 (1YY Pryullze + NIV IY2 P, FGo)l 1y 2)
J12725)

< (V12 Puoliz2 + [IVIV2 P Fo) 11 12) S 1.
Also, by Bernstein’s inequality and Lemma 2.1,
IV Pjunt|| P> jul|(| P<jul + | P>julll 21
S VI Pjunillpzpe NIVIY? P jutll oo [l ooz S 1.
Therefore,

(1-8)r Al (1-8)t 1 )
”/ e O UP Vi (1) dr”Lw 5/0 m”hﬂ Vuy|p1 de
(2.18) 0 -

1 1
< —||Jul*Vu < -
I Vitntllzy S

The same computation can be also be made for u?Vii,;. This completes the proof of
Lemma 2.2. u

Lemma 2.3. Foranyt € [0, 1],

2.19) 91200 % sz

Proof. First observe that by interpolation, Bernstein’s inequality, and (2.16),

(2:20) IIVI"/2e" 2 ugllLs < t4IVe ™™ Pyymizuoll s +1 74| Poymrizuol grun S 1714
Also since ¢?*2 is unitary in L2, by (2.1) and (2.2),

@2 Ol g = lenr (=D oz < WVl 5 s lul]s < ed.

so interpolating (2.12), (2.13), and (2.21),

4/3
1/3 2/3 €
222) 912002 5 1912002 NV 120l S s
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Finally, making a dispersive estimate, for any 7 € [0, 1], by (2.20) and (2.22), if §1/* < €,

t
81/4[1/4H / ei(’_r)A|V|1/2F(u)dt‘
1-8)t

L3
t
1
(2.23) < 51/411/4/ PRy NVIY2u(T) | 15 lu(o))26 dr
1-8) |t — 7|

3 3
< (sup SYAVAIVIV2ulls) S €g + ( sup 8V 4HVAIVIY 2w )
tefo,1] te€fo,1]

Thus, absorbing the second term on the right-hand side into the left-hand side of (2.23)

proves (2.19):
4
€
V12w @) S st .

Remark. To make the proofs of Lemmas 2.2 and 2.3 completely rigorous, truncate uq
in frequency. Then the bounds (2.12), (2.13), and (2.19) all hold on some open subset of
[0, 1] that contains 0. Making the bootstrap argument using the proof of Lemma 2.3 gives
bounds on all of [0, 1] that do not depend on the frequency truncation of ug. Standard
perturbation arguments then give the lemmas.

Lemma 2.3 can be strengthened to an estimate on the H! norm of w.

Lemma 2.4. Foranyt € [0, 1],

1
[Vw@®)llr2 < 51 173

Proof. Once again make use of the bilinear Strichartz estimate. Again by the product rule,
VFu) = 2u|*Vu + uVi.
First, by Strichartz estimates, (2.16), Lemma 2.3, and the Sobolev embedding theorem,

t
H / DAy 2Vu, + u2Vil] dr HLZ < 2Py + Vil s
1-8)t tLx

1/2,1/2 1/2

< 812021Vl oo Ly sy 1 o 3 sy 11V 1Y 20l Lo 3 1 -5ye 1)
81/4

S e

Next, by (2.19), bilinear Strichartz estimates in (2.9), and the Littlewood—Paley theorem,

120 < 12 (V Prunt) + (u<))*(V Pjitns)l| 2 15

) . 1/2
< Y k(3 2 e ) (X 2 Bl B

12185
k>0 1=J J1<J o
—k/2 1/2
< Y 2 PV Pu) ] oo 13 (15y0, xR
k>0

1/2 .
x (20 WPiuolZ o + I1PHFOIZ,2) 2721 P F 0y 2

J1<J

—51/4t1/4 IIVIY2P; F o)l 12
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Next, by Bernstein’s inequality and (2.19)—(2.21),

| (V Pjrtnr) s |ul ”L%L,i/5

1/4.1/4 1/2.,12 1/2
< 8RNV UIE o3 sy apmy IV 2 Prttnt 8 3 -y

1
S sizagiza VY2 P F@) Ly go.11xms)-

Summing up in j using Lemma 2.1 completes the proof. ]

Remark. The above arguments would work equally well in the time interval [—1, 0].

3. Global well-posedness

We are ready to prove Theorem 1.4. The proof will use conservation of the energy (1.4).
Decompose
u(l) = o(1) +w(l),

where
3.D v(l) = u;(1) +v(1),

and w(1) is the w in the previous section. Let Ty > 1 be a time value for which we know
that (1.1) has a solution on [0, Tp). By standard local well-posedness arguments and we
know that such a T} exists. Then on [1, Tp), decompose

u(t) = 5(t) + w(r),
where (1) is the solution to
(3.2) @9, + A)v(r) =0, v(l)=10v(1,x),
and w(¢) is the solution to
(3.3) (i0; + Mw = [u]Pu, w()=w(,x).

Let E(t) denote the energy of w,

1 1
Et)== [ |[Vw]* + - 4,
(t) 2/|w|+4/|w|

First observe that Lemma 2.4 and |w(1)|| 1> < 1 implies that £(1) < oo. The estimate
[w(1) [ g1/2 is a consequence of Lemma 2.1 and the definition of w. To prove The-
orem 1.4, it suffices to prove that for any Ty > 1 such that (1.1) has a solution on [0, Tp),

34 sup E(t) < oo.
te[1,Ty)
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Indeed, by interpolation and the Sobolev embedding theorem, E(t) < oo implies that
lw(t)|zs < co. Meanwhile, by (2.14)—(2.16), (2.12), and (2.21), ||0(¢) |15 is uniformly
bounded on R. Therefore, (3.4) implies

lullzs | (fo,7o)xr3) < 00

To estimate the growth of E(¢), compute the derivative in time of the energy. By (3.3),

d
S B0 =—(Aw,wy) + (wlw, we) = (JwPw —u?u, wy),

where (-, -) is the inner product
(f.g)= Re/ F(xX)g(x)dx.

By the product rule,

d d
20 — wlPw) = — (lwl?w. 5 + — (1512, (w!?
(i P = [w ) = (o, 5) + 5 (52 o)
1d d -
) : R —2~2 ~12 YOI 2
(3 5) + Zdt e/w v dt (w5|v| U) (UtU,lU)l )

Then define the modified energy,
1 -
E@t) = E(1) — (lwlPw, D) — (|5, |w|*) — 5Re/wzf;z — (w, |5[?D).

By Holder’s inequality, and the fact that | 0]+« <s 1 forall 7 € [1, co) (again using (2.14)—
(2.16), (2.12), and (2.21)),

- - 1 = <2~
(lww, 8) + (|07, [w]?) + ERG/ w?8? + (w, [51°8) £ E@)** + E@0)'/*.

Therefore, when E(¢) is large, E(t) ~ &(t). Since we are attempting to prove a uniform
bound for E(¢), it is enough to uniformly bound & ().
Also, by (3.5),

d _ __ _
60 = —{wPw. 5) — 255 [w]) —Re/wzﬁﬁt — 2w, [525,) — (w, 525,).

Since v solves (3.2), v; = i AV = i Au; + i Av.
Lemma 2.2 implies that for any # > 1,

a-s 1
3.6 [v@)lie + [Vo)|lLe = H/O DA (V) F(u) dr HLOO <

§3/243/2°
Therefore,
. . 1
(wlPw.iAv) = —(V(lw[w),iVv) < Vol Vwlle2 w7 <s S E0.

Remark. Since § > 0 is fixed, we will ignore it from now on.
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Also, by Holder’s inequality and (1.8),

. 1
. 3/7 18/7
(i A B uo). [wPw) S IV Tl [Vwl s iy S 5 EO°.

This takes care of the contribution of (¥;, [w|?w).
Next, integrating by parts,

(3.7) 2(i (AD)D, |w|?) = =2(i|VD|?, |[w|?) — 2(i (VD)D, V|w|?) = =2(i (VD)D, V|w|?).

Then by Holder’s inequality and (3.6), since |0+ < 1,

. = - 1
([ (VO)T, VIw?) £ Vvl |8l pslwlze[VwlL2 < WE(I)W.

Also, by Holder’s inequality and interpolation,

. 1
38)  (((Vup)(ur), VIwl) < IVurllzse lurllzs IVwlzz wlgs < ZWE(I)M'

~ | =

Finally, by (3.6), and Lemma 2.1, which by the Sobolev embedding theorem and the defin-
ition of v implies ||v||z3s <1
11

3/4
pPETE E@)”".

(3.9) {i(Vur)v, VIw|?) < [Vauyllzee 0I5 vl VWl 2 wllpe <

In (3.8) and (3.9) we used:

Lemma 3.1. Foranyt > 0,

1
(3.10) Jurlle S 5
and
1
(3.11) [Vurllpe < T

Proof. This is proved by interpolating (2.14)—(2.16). By Bernstein’s inequality, (2.15),
(2.16), and the Sobolev embedding theorem,

(3.12) VP m12up|lLee + [[VPsy12up|Loe S

~ | =

Also by the Bernstein inequality and the Sobolev embedding theorem, along with (2.16)
andu; € H 1/ 2

1

(3.13) 1Pz urllLs + I P<rr2trlize < 7

This proves the lemma. ]
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The contribution of 2Re [ w237, may be estimated in a similar manner as the contri-
bution of (3.7), except that there is an additional term to consider,

—2Re / iw?(V7)2.
Interpolating (3.11) with (2.16),
~2Re [ w2 (Vi? < IVl wle < 5 O
Meanwhile, following (2.17) and using Strichartz estimates,

[<i PO Pjunt) | s 3oy S 2 NP (P; Va2 1 Prull2
J1Z2<)
< Y 2P P F @)l 2 (VY2 Piyuollee + V12 Py Fao)llz2)
J1Z)25]

< (|1V1"2 Ppuoll 2 + V[V P Fa)l1112) S 1.

Plugging this estimate into (2.18) implies that for > 1,

(1—5) 1
v 7
0 t1/2
Interpolating (3.6) with (3.10),
_2Refiw2(v5)2 SIVOIZalwliFe < 13/2 —E@0)V>.
Now treat
(3.14) 2w, [5]%5,) + (w, 5%0,) = 2(w, |3[*( AD)) + (w, 5> (I AD)).

After integrating by parts, by (2.13) and (3.11),
(3.14) S (IVal, ol |w]) + (IVE|[Vw], [v[?)

S IVOIZaltllzellwlLeHIVwlL2 VOl 18]174 < 5/4150)1/4 E(t)l/zllﬁ(t)llu-

Interpolating (3.6) with ||v||zs < 1 implies ||v][ s < r73/8. Meanwhile, (3.10) implies
lugllpe < t~Y/8, so therefore, by (3.1), |34 < 1/t'/8. Therefore, we have proved

d
(3.15) —E0) < 15/14(1 +E(0)).

By Gronwall’s inequality, (3.15) implies a uniform bound on &(¢). This implies a uniform
bound on E(t), since E(t) ~ &(t) when E(¢) is large, which proves Theorem 1.4.
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