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A new hypoelliptic operator
on almost CR manifolds

Raphaël Ponge

Abstract
The aim of this paper is to present the construction, out of the

Kohn-Rossi complex, of a new hypoelliptic operator QL on almost CR
manifolds equipped with a real structure. The operator acts on all
(p, q)-forms, but when restricted to (p, 0)-forms and (p, n)-forms it is
a sum of squares up to sign factor and lower order terms. Therefore,
only a finite type condition condition is needed to have hypoellipticity
on those forms. However, outside these forms QL may fail to be
hypoelliptic, as it is shown in the example of the Heisenberg group H

5.

Introduction

Homogeneity reasons prevent natural operators on CR manifolds to be el-
liptic, but they can be hypoelliptic in various other guises. An important
example is the Kohn Laplacian: under suitable geometric conditions (i.e.,
Y (q)-condition) the Kohn Laplacian is maximal hypoelliptic and hypoellip-
tic with a gain of 1 derivative (see [14, 10, 3]), but in general it may have
rather subtle hypoelliptic properties (see [4, 5, 7, 8, 13, 15, 17]).

The aim of this paper is to present the construction of a new hypoelliptic
operator on almost CR manifolds, that is, manifolds M together with a
subbundle H ⊂ TM which is equipped with an almost complex structure
J ∈ End H , J2 = −1. This construction is partly inspired by the second
order signature operator of Connes-Moscovici [6] and an earlier version on
3-dimensional contact manifolds was presented in [18].

In order to construct our operator it is crucial to further assume that the
horizontal subbundle H admits a real structure, i.e., there exists a subbundle
L ⊂ H so that H = L ⊕ JL.

2000 Mathematics Subject Classification: Primary: 35H10; Secondary: 32W10, 32V35,
32V05, 53D10, 35S05.
Keywords : Hypoelliptic operators, ∂b-operator, finite type condition, CR structures, con-
tact geometry, pseudodifferential operators.



394 R. Ponge

This implies the vanishing of the first Chern class of H , and so an al-
most CR manifold does not admit a real structure in general. However,
as explained in Section 1, there is a handful of interesting examples of CR
manifolds which do admit a real structure. Among these are real hypersur-
faces of Cn+1 that are rigid in the sense of [2], nilpotent Lie groups and CR
nilmanifolds, some CR symmetric spaces in the sense of [12], and contact
manifolds equipped with a Legendrian subbundle, including circle bundles
associated to the geometric quantization of symplectic manifolds.

The existence of a real structure allows us to define a chirality operator
which is analogous to the Hodge �-operator and maps (p, q)-forms to (n−p,
n − q)-forms (where n is the complex dimension of dim H). We then can
define a second order differential operator by letting

QL = (∂̄∗
H ∂̄H − ∂̄H ∂̄∗

H) − γ(∂̄∗
H ∂̄H − ∂̄H ∂̄∗

H)γ,

where ∂H is the horizontal ∂-operator of Kohn-Rossi ([16], [14]). This oper-
ators acts on (p, q)-forms and anticommutes with the chirality operator γ.

When restricted to (p, 0)-forms and (p, n)-forms QL agrees with a sum
of squares up to sign factor and lower order terms (see Proposition 3.2).
Therefore, whenever M has finite type, on these forms QL is maximal hy-
poelliptic, which in this context implies that the operator is hypoelliptic with
gain of one derivative (see Section 4). In fact, it even admits a parametrix
in the class of singular-integral operators of Rotschild-Stein [19] and, when
codim H = 1, it further has a parametrix in the Heisenberg calculus of
Beals-Greiner [3] and Taylor [21]. Notice that in order for all these prop-
erties to hold only the finite type condition is needed. In particular, when
codim H = 1 we may allow (M, H) to be weakly pseudoconvex.

The hypoelliptic properties of QL contrast with that of the Kohn Lapla-
cian. For instance, on strictly pseudoconvex CR manifolds QL is hypoelliptic
precisely in bidegrees where the Kohn Laplacian is not. In particular, in di-
mension 3 the operator QL is hypoelliptic in every bidegree, while the Kohn
Laplacian is hypoelliptic in none. In addition, on weakly pseudoconvex CR
manifolds that are not strictly pseudoconvex QL may be maximal hypoel-
liptic, while the Kohn Laplacian may not.

On the other hand, outside (p, 0)-forms and (n, 0)-forms the operator QL

may fail to be hypoelliptic. This fact is illustrated in Section 5, where we look
at the operator QL on the 5-dimensional Heisenberg group H5. In this setting
we explicitly construct a (0, 1)-form which annihilates QL but is singular at
the origin. This shows that QL is not hypoelliptic on (0, 1)-forms. Similar
arguments also show that QL is not hypoelliptic on (1, 1)-forms or on (2, 1)-
forms either. Therefore, in the case of H

5 this is only on (p, 0)-forms and
(p, n)-forms that QL is hypoelliptic.
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This paper is organized as follows. In Section 1, we present the main
definitions and examples regarding real structures on almost CR manifolds.
In Section 2, we construct the chirality operator γ mentioned above. In Sec-
tion 3, we construct the operator QL and we derive a local expression which
shows that on (p, 0)-forms and (p, n)-forms QL is a sum of squares up to
sign factor and lower order terms. In Section 4, we study the hypoellipticity
properties of QL on (p, 0)-forms and (p, n)-forms. In Section 5, we look at
the operator QL on the Heisenberg group H5 and illustrate on this example
the fact that QL may fail to be hypoelliptic outside forms of bidegree (p, 0)
and (p, n).

Acknowledgements. I am very grateful to Olivier Biquard, Louis Boutet
de Monvel, Alain Connes, Charlie Epstein, Henri Moscovici, Xiang Tang
and Alan Weinstein for helpful and stimulating discussions related to the
subject matter of this paper.

1. Real structures on CR manifolds

Let M be an almost CR manifold, i.e., M is equipped with a subbundle
H ⊂ TM carrying an almost complex structure J ∈ C∞(M, H), J2 = −1.
This gives rise to a CR structure when J is integrable, i.e., the subbundle
T1,0 := ker(J + i) ⊂ TCM is integrable in Froebenius’ sense.

We don’t assume H to have codimension 1, that is, (M, H) need not be
of hypersurface type. In any case n := 1

2
dim H is an integer, called the CR

dimension of M .
In addition, we shall say that M is of finite type, when Hörmander’s

bracket condition is satisfied, i.e., at every point TM is spanned by successive
Lie brackets [X1, [X2, [. . . , Xm] . . .]] of vectors fields with values in H .

Definition 1.1. A real structure on H is given by the datum of a rank n
real subbundle L ⊂ H such that

(1.1) H = L ⊕JL.

If L is real structure on H , then the decomposition (1.1) yields an invo-
lution X → X on the fibers of H defined by

(1.2) X1 + J Y1 = X1 − J Y1 ∀X1, Y1 ∈ C∞(M, L).

Notice that L = ker(. − 1) and JL = ker(. + 1). Conversely, if ι is an
involutive section of EndR H anticommuting with J , then the subbundle
L := ker(ι − 1) defines a real structure on H .

Let us now look at some examples of real structures.
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A. Rigid real hypersurfaces

Let us denote (z1, . . . , zn, w) the complex coordinates on Cn+1. In terms of
real and imaginary parts we shall write zj = xj + iyj, j = 1, . . . , n, and
w = u + iv. Consider a real hypersurface of the form,

(1.3) M = {v = F (z, z̄)},
where F (z, z̄) is some real-valued function. In the terminology of [2] such a
hypersurface is said to be rigid. Examples of such hypersurfaces are given
by the hyperquadrics Q2n+1

p,q := {v =
∑p

j=1 |zj |2 − ∑q
j=p+1 |zj |2}, p + q = n.

We equip M with the CR structure induced by the complex structure
of Cn+1, i.e., the differential J0 of the multiplication by i on TCn+1. There-
fore we have H = TM ∩ J0(TM) and the complex structure of H is just
J = J0|M . Then the CR tangent bundle T1,0 := ker(J − i) agrees with
T 1,0Cn+1 ∩ TCM . In particular, a global frame of T1,0 is given by the vector
fields,

(1.4) Zj =
∂

∂zj
+ i∂zj F (z, z̄)

∂

∂w
j = 1, . . . , n.

For j = 1, . . . , n. set Zj = Xj − iYj , where Xj and Yj denote the real and
imaginary parts of Zj, i.e.,

(1.5) Xj =
∂

∂xj
+ ∂yjF

∂

∂u
+ ∂xjF

∂

∂v
, Yj =

∂

∂yj
− ∂xjF

∂

∂u
+ ∂yj F

∂

∂v
.

Then the vector fields X1, . . . , Xn and Y1, . . . , Yn form a frame of H such
that JXj = Yj. Therefore, if we let L denote the subbundle spanned by
X1, . . . , Xn then H = L ⊕ JL, that is, L defines a real structure on H .

B. Nilpotent Lie groups and CR nilmanifolds

Let H2n+1 denote the (2n + 1)-dimensional Heisenberg group. We realize
H2n+1 as R × R2n equipped with the group law,

(1.6) x.y = (x0 + y0 +
∑

1≤j≤n

(xn+jyj − xjyn+j), x1 + y1, . . . , x2n + y2n).

This group law is homogeneous with respect to the parabolic dilations,

(1.7) t.(x0, x1, . . . , x2n) = (t2x0, tx1, . . . , tx2n) t > 0.

Identifying the Lie algebra h2n+1 of H2n+1 with the Lie algebra of left-
invariant vector fields, a basis for h2n+1 is provided by the left-invariant
vector-fields,

(1.8) X0 =
∂

∂x0
, Xj =

∂

∂xj
+ xn+j ∂

∂x0
, Xn+j =

∂

∂xn+j
− xj ∂

∂x0
,
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where j ranges from 1 to n. In particular, for j, k = 1, . . . , n and k �= j
we have the relations [Xj , Xn+k] = −2δjkX0 and [X0, Xj] = [Xj, Xk] =
[Xn+j, Xn+k] = 0. Notice also that with respect to the dilations (1.7) the
vector fields X0 is homogeneous of degree −2, while X1, . . . , X2n are homo-
geneous of degree −1.

Let H be the subbundle spanned by X1, . . . , X2n. We endow H with
the complex structure J such that JXj = Xn+j and JXn+j = −Xj .
This defines a homogeneous left-invariant CR structure on H2n+1. A left-
invariant real structure on H is then provided by the subbundle L spanned
by X1, . . . , Xn.

More generally, let G be a real nilpotent Lie group which is stratified, in
the sense that its Lie algebra g := T0G admits a grading by vector subspaces,

(1.9) g = h1 ⊕ . . . ⊕ hk,

such that hj := [h1, hj−1], j = 2, . . . , k. Set h = h1 and assume that dimR h is
even, say dimR h = 2n. As a real vector space h is isomorphic to Cn, and so
it admits a complex structure J0. Let H be the subbundle of left-invariant
vector fields such that H|x=0 = h and let J be the almost complex structure
on H such that J|x=0 = J0. Then H and J define a left-invariant almost
CR structure on G.

Let l be an n-dimensional real subspace of h such that h = l ⊕ J0l, and
let L denote the subbundle of left-invariant vector fields such that L|x=0 = l.
Then H =L⊕JL, and so L gives rise to a left-invariant real structure on H .

Let Γ ⊂ G be a lattice, i.e., a discrete cocompact subgroup of G. Then
M := Γ\G is a compact nilmanifold. Since H and J are left-invariant, and Γ
acts on left, they descend to M , and hence define a natural CR structure
on M . Similarly L descends to a vector bundle on M , and thereby gives rise
to a real structure on M .

C. CR symmetric spaces

Let G be a connected Lie group with Lie algebra g and let j ∈ G have
order 4. Let τ be the automorphism τ(x) = jxj−1, x ∈ G, and let Gτ

denote the fixed point group of τ . Set s = j2 and σ = τ 2, so that σ is an
involutive automorphism of G.

Let K be a compact subgroup of Gτ with Lie algebra k and let l be an
Ad(K)-invariant subspace of ker(Ad(s) + 1) such that l ∩ Ad(j)l = {0}.
Set h = l ⊕ Ad(j)l; this is an Ad(K)-invariant subspace. Let a denote
the Lie algebra generated by h and let us further assume that g = k + a. In
addition, since K is compact and h is Ad(K)-invariant, there is a subspace p
of g containing h such that g = k ⊕ p.
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Under these conditions M := G/K is a CR symmetric space in the sense
of Kaup-Zaitsev (see [12, Sect. 6]). Let o ∈ M denote the class of 1. Then
ToM is isomorphic to p and under this identification there are a unique
G-invariant bundle H ⊂ TM and a unique G-invariant almost complex J
structure on H such that Ho = h and Jo = Ad(j)|h. In addition, the
condition g = k + a, where a is the Lie algebra of h, insures us that this CR
structure is of finite type (cf. [12, Prop. 6.2]).

Let L denote the unique G-invariant subbundle of H such that L0 = l,
then we have H =L ⊕ JL. Therefore L defines a G-invariant real structure
on M .

The above construction can be illustrated by the following example. We
take G = SU(n), so that the Lie algebra g = su(n) consists of trace-free
skew-Hermitian matrices. In addition, we let p and q be positive integers so
that n = p+ q. Identifying C

n with C
p⊕C

q we shall write n×n-matrices as

block matrices

(
a b
c d

)
. Set j :=

(
1 0
0 −i

)
. This is a 4th-order element

of SU(n) and we have s := j2 =

(
1 0
0 −1

)
. Thus,

τ

[(
a b
c d

)]
= Ad(j)

(
a b
c d

)
=

(
a ib

−ic d

)
,(1.10)

σ

[(
a b
c d

)]
= Ad(s)

(
a b
c d

)
=

(
a −b
−c d

)
.(1.11)

In particular, we have the splitting su(n) = m+ ⊕ m−, where

m+ := ker(Ad(s) − 1) =

{(
a 0
0 d

)
; a ∈ u(p), d ∈ u(q), Tr a + Tr d = 0

}
,

(1.12)

m− := ker(Ad(s) + 1) =

{(
0 b

−b∗ 0

)}
.(1.13)

Set K := SO(p) × SO(q) =

{(
a 0
0 d

)
; a ∈ SO(p), d ∈ SO(q)

}
. This

is a (compact) subgroup of Gτ . Define l := m− ∩ Mn(R), i.e.,

(1.14) l =

{(
0 b

−bt 0

)
; b ∈ Mp,q(R)

}
.

Then l is an Ad(K)-invariant subspace such that l ∩ Ad(j)l = {0}. In fact,
we have h := l ⊕ Ad(j)l = m− and, using elementary matrices, it is not
difficult to check that [m−, m−] = m+. Therefore g agrees with the Lie
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algebra generated by h. It then follows that SU(n)/(SO(p) × SO(q)) is
a CR symmetric space of finite type with a SU(n)-invariant real structure
defined by l.

D. Contact manifolds, Legendrian subbundles and geometric quan-
tization

Assume that (M2n+1, H) is an orientable contact manifold, i.e., H is the
annihilator of a globally defined contact form θ on M . Let J be an al-
most complex structure on H which is calibrated with respect to dθ|H , i.e.,
gθ,J (X, Y ) := dθ(X,J Y ) is a positive-definite metric on H (since M is
orientable such an almost complex structure always exists). In particular
(H,J ) defines an almost CR structure on M .

Let L be a Legendrian subbundle of H , i.e., L is a maximal isotropic
subbundle of dθ|H . If X and Y are sections of L, then we have

(1.15) gθ,J (X,J Y ) = dθ(X,J 2Y ) = −dθ(X, Y ) = θ([X, Y ]) = 0.

This implies the orthogonal decomposition H = L ⊕ JL, and so L defines
a real structure independently of the choice of J .

Conversely, suppose that L is a subbundle H of rank n such that L
and JL are orthogonal. As in (1.15) if X and Y are sections of L, then

(1.16) dθ(X, Y ) = −θ([X, Y ]) = −gθ,J (X,J Y ) = 0.

Thus L is a Legendrian subbundle of H .
As we shall now recall examples of contact manifolds equipped with

a Legendrian subbundle naturally occur in the context of the geometric
quantization of symplectic manifolds.

Let (X2n, ω) be a symplectic manifold which is prequantizable, i.e., the
cohomology class of 1

2π
ω is integral (see, e.g., [1], [22]). Then there exists

a Hermitian line bundle (L, h) on X with a metric connection ∇L with
curvature F L = −iω. Let L∗ denote the dual line bundle with unit sphere
bundle S∗(L) := {ξ ∈ L∗; h(ξ, ξ) = 1}. Recall that the connection 1-form
of the dual connection ∇L∗

makes sense as a globally defined real 1-form on
the total space M of S(L∗). This can be seen as follows.

Let ξ be a local section of S(L∗). Regarding ξ as a non-zero section
of L∗ it defines a local trivialization of L∗ with respect to which we have
∇L∗

= d + iα, where α := −ih(ξ,∇L∗ξ). Notice that, as ∇L∗
is a metric

connection, α must be a real 1-form. Let λ denote the local fiber coordinate
on M defined by ξ and consider the real 1-form defined by

(1.17) θ := p∗α − iλ−1dλ,

where p : M → X is the fibration of M over X.
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Let ξ′ be another local section of S(L∗) and set α′ := −ih(ξ′,∇L∗ξ′) and
ξ′ = μξ, where μ is an S1-valued function. Then α′ = α− iμ−1dμ. The local
fiber coordinate on M defined by ξ′ is λ′ = (p∗μ)−1λ, so the 1-form (1.17)
corresponding to ξ′ is

(1.18) θ′ = p∗α′ − iλ
′−1dλ

′
= p∗[α − iμ−1dμ] − i[(p∗μ)−1λ]−1d[(p∗μ)−1λ]

= p∗α − iλ−1dλ = θ.

This shows that the 1-form θ in (1.17) does not depend on the choice of the
local section ξ, and so it makes sense globally on M .

Let H = ker θ and let V := ker dp ⊂ TM be the vertical bundle of M .
It follows from (1.17) that H ∩ V = {0}, and so dp induces an isomorphism
from H onto TX. Using (1.17) we also see that locally dθ = p∗dα. By
assumption we have idα = F L∗

= −F L = iω, and so dθ = p∗ω. Since dp in-
duces an isomorphism from H onto TX, it follows that dθ is non-degenerate
on H , i.e., θ is a contact form on H .

Let us further assume that (X, ω) is quantizable in the sense that it
admits a Lagrangian subbundle, i.e., a subbundle Λ ⊂ TX which is maximal
isotropic for ω (see, e.g., [1, Sect. 3.2], [22, Sect. 4.5]). Then the subbundle
L := p∗Λ ∩ H is maximal isotropic for dθ, i.e., L is a Legendrian subbundle
of M . Therefore, we see that the quantization of a symplectic manifold
naturally gives rise to a contact manifold (M, θ) equipped with a Legendrian
subbundle.

2. Real structure and chirality operator

Throughout the rest of the paper we let (M, H) be an almost CR manifold
of CR dimension n. We also assume H to have a real structure L, that is,

(2.1) H = L ⊕JL,

where J denotes the almost complex structure of H .
In addition, we endow L with a Riemannian metric gL. Extending gL to

be zero on JL×H and H ×JL, we endow H with the Riemannian metric,

(2.2) gH := gL(., .) + gL(J .,J .).

With respect to this metric J becomes an isometry and the splitting (1.1)
becomes orthogonal. If (M, H) is of finite type, then we see that (H, gH)
defines a sub-Riemannian structure on M compatible with its almost CR
structure.

We fix a choice of supplement N of H in TM . This allows us to iden-
tify H∗ with the annihilator of N in T ∗M . We also set T1,0 = ker(J + i)
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and T0,1 = ker(J − i). Notice that T1,0 = T0,1. Moreover, extending gH into
a Hermitian metric on TCM we get the orthogonal decomposition,

(2.3) H ⊗ C = T1,0 ⊕ T0,1.

For p, q = 0, . . . , n we let Λp,q := (Λ1,0)p ∧ (Λ0,1)q denote the bundle of
(p, q)-covectors, where Λ1,0 and Λ0,1 are the respective annihilators in T ∗

C
M

of the subbundles T0,1 ⊕ (N ⊗ C) and T1,0 ⊕ (N ⊗ C). We then have the
orthogonal splitting,

(2.4) Λ∗
C
H∗ =

n⊕
p,q=0

Λp,q.

We shall now turn the bundle of (p, q)-covectors into a super-bundle
by equipping it with a suitable chirality operator. To define this operator
we shall make use of the real structure of H . To this end we extend the
involution (1.2) into the antilinear involution on H ⊗ C defined by

(2.5) X + iY = X − iY ∀X, Y ∈ C∞(M, H).

This involution preserves both T1,0 and T0,1. Therefore, by duality it gives
rise to an antilinear involution of Λ∗,∗ preserving the bidegree. As we shall
see the latter property will be crucial in the construction of the operator QL

in the next section.

Let vH(x) be the volume form of gH (seen as a section of Λn,n), and
let g∗

H denote the Hermitian metric on Λ∗,∗ induced by gH . The operator
� : Λ∗,∗ → Λn−∗,n−∗ is uniquely determined by the formula,

(2.6) β ∧ �α = g∗
H(β, α)vH(x) ∀α, β ∈ C∞(M, Λp,q).

Let X1, . . . , Xn be an orthonormal frame of L. Since the splitting H =
L⊕JL is orthogonal we see that {Xj,JXj} is an orthonormal frame of H .
For j = 1, . . . , n we set Zj = 1√

2
(Xj−iJXj) and Zj̄ = 1√

2
(Xj +iJXj). Then

{Zj} and {Zj, Zj̄} are orthonormal frames of T1,0 and H ⊗ C respectively.
Any orthonormal frame of H ⊗C obtained by a similar process is said to be
admissible. Notice that the invariance of L under the involution (1.2) imply
that Zj = Zj and Zj̄ = Zj̄.

Let {θj, θj̄} be the coframe of H∗ ⊗ C dual to {Zj, Zj̄}. For any or-
dered subsets J = {j1, . . . , jp} and K = {k1, . . . , kq} of {1, . . . , n} with
j1 < · · · < jp and k1 < · · · < kq we set θJ,K̄ := θ1 ∧ · · · ∧ θjp ∧ θk̄1 ∧ · · · ∧ θk̄q .
Then {θJ,K̄} is an orthonormal coframe of Λ∗,∗.
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If J = {j1, . . . , jp} is an ordered subset of {1, . . . , n} with ordered com-
plement Jc = {j′1, . . . , j′n−p}, then we let ε(J, Jc) denote the signature of the
permutation

(2.7) (j1, . . . , jp, j
′
1, . . . , j

′
n−p) −→ (1, . . . , n).

Notice that we always have ε(J, Jc)ε(Jc, J) = (−1)p(n−p), for ε(J, Jc)ε(Jc, J)
is the signature of the permutation

(j1, . . . , jp, j
′
1, . . . , j

′
n−p) → (j′1, . . . , j

′
n−p, j1, . . . , jp) .

Lemma 2.1. 1) We have

(2.8) �θJ,K̄ = in(−1)
n(n−1)

2
+q(n−p)ε(J, Jc)ε(K, Kc)θJc,K̄c

.

2) On Λp,q we have

(2.9) �2 = (−1)n+p+q.

Proof. Set θn,n̄ := θ1 ∧ · · ·∧ θn ∧ θ1̄ ∧ · · ·∧ θn̄. Since H is oriented by means
of its almost complex structure, locally we have

(2.10) vH(x) = inθ1 ∧ θ1̄ ∧ · · · ∧ θn ∧ θn̄ = in(−1)
n(n−1)

2 θn,n̄.

Therefore Eq. (2.6) can be rewritten as

(2.11) β ∧ �α = in(−1)
n(n−1)

2 g∗
H(β, α)θn,n̄ ∀α, β ∈ C∞(M, Λp,q).

Let J0 and K0 be ordered subsets of {1, . . . , n} of respective lengths p
and q, and set ω := �θJ0,K̄0 =

∑
λJ,K̄θJ,K̄ . The (n, n)-component of ω∧ΘJ,K̄

is equal to ±λJ,K̄cθn,n̄, and so from (2.11) we see that λJc,K̄c = 0 unless J =

Jc
0 and K = Kc

0, i.e., we have ω = λJc
0 ,K̄c

0
θJc

0 ,K̄c
0 . In particular, from (2.11)

we get

(2.12) in(−1)
n(n−1)

2 θn,n̄ = θJ0,K̄0 ∧ ω = λJc
0 ,K̄c

0
θJ0,K̄0 ∧ θJc

0 ,K̄c
0 .

Next, upon writing θJ0,K̄0 = θJ0,0̄ ∧ θ0,K̄0 and θJc
0 ,K̄c

0 = θJc
0 ,0̄ ∧ θ0,K̄c

0 we get

(2.13) θJ0,K̄0 ∧ θJc
0 ,K̄c

0 = (−1)q(n−p)θJ0,0̄ ∧ θJc
0 ,0̄ ∧ θ0,K̄0 ∧ θ0,K̄c

0

= (−1)q(n−p)ε(J0, J
c
0)ε(K0, K

c
0)θ

n,n̄.

Comparing this with (2.12) yields

λJc
0 ,K̄c

0
= in(−1)

n(n−1)
2

+q(n−p)ε(J0, J
c
0)ε(K0, K

c
0) .



A new hypoelliptic operator on almost CR manifolds 403

Thus,

(2.14) �θJ0,K̄0 = in(−1)
n(n−1)

2
+q(n−p)ε(J0, J

c
0)ε(K0, K

c
0)θ

Jc
0 ,K̄c

0 .

Now, using (2.8) we see that �2θJ0,K̄0 is equal to

(2.15) (−1)n+q(n−p)+(n−q)pε(Jc
0 , J0)ε(K

c
0, K0)ε(J0, J

c
0)ε(K0, K

c
0)θ

J0,K̄0.

Since ε(Jc
0, J0) = (−1)(n−p)pε(J0, J

c
0) and ε(Kc

0, K0) = (−1)(n−q)qε(K0, K
c
0)

we get �2θJ0,K̄c
0 = (−1)n+NθJ0,K̄c

0 , with

(2.16)
N = q(n − p) + (n − q)p + (n − p)p + (n − q)q = (2n − p − q)(p + q)

= (p + q)2 = p + q mod 2,

that is, �2θJ0,K̄0 = (−1)n+p+qθJ0,K̄0. Thus �2 = (−1)n+p+q on Λp,q, proving
the lemma. �

Next, the chirality operator γ : Λ∗,∗ → Λ∗,∗ is defined by

(2.17) γ = in+(p+q)2 � on Λp,q.

Notice that γ maps Λp,q onto Λn−p,n−q.

Lemma 2.2. The operator γ is a Z2-grading, that is, it satisfies

(2.18) γ2 = 1 and γ∗ = γ.

Proof. First, thanks to Lemma 2.1, on Λp,q we have

(2.19) γ2 = i2n+(2n−p−q)2+(p+q)2�2 = i2n+2(p+q)2(−1)n+p+q = 1.

Next, let {θJ,K̄} be the coframe of Λ∗,∗ associated to an admissible frame
{Zj, Zj̄} of H ⊗C, and let J and K be ordered subsets of respective lengths
p and q. Then by (2.8) and (2.17) we have

(2.20) γθJ,K̄ = i(p+q)2(−1)
n(n−1)

2
+q(n−p)ε(J, Jc)ε(K, Kc)θJc,K̄c

.

Since {θJ,K̄} is an orthonormal coframe, this gives

(2.21) γ∗θJc,K̄c
= (−i)(p+q)2(−1)

n(n−1)
2

+q(n−p)ε(J, Jc)ε(K, Kc)θJ,K̄ .

Thus for θJ,K̄ we obtain

(2.22) γ∗θJ,K̄ = (−i)(2n−p−q)2(−1)
n(n−1)

2
+(n−q)pε(Jc, J)ε(Kc, K)θJc,K̄c

,

= (−i)(p+q)2(−1)
n(n−1)

2
+(n−q)p+p(n−p)+q(n−q)ε(J, Jc)ε(K, Kc)θJc,K̄c

.

As by (2.16) we have (−1)(n−q)p+p(n−p)+q(n−q) = (−1)p+q+q(n−p), we get

(2.23) γ∗θJ,K̄ = i(p+q)2(−1)
n(n−1)

2
+q(n−p)ε(J, Jc)ε(K, Kc)θJc,K̄c

= γθJ,K̄ ,

that is, γ∗ = γ. The lemma is thus proved. �
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3. The operator QL

We shall now construct a differential operator QL acting on the sections
of Λ∗,∗ which is supersymmetric in the sense that it anticommutes with the
chirality operator γ. Furthermore, in suitable bidegree this operator will be
hypoelliptic under the finite type condition alluded to in Section 1.

First, recall that the tangential ∂-operator of Kohn-Rossi ([16], [14]) can
be defined as follows. For any η ∈ C∞(M, Λp,q) its differential uniquely
decomposes as

(3.1) dη = ∂Hη + ∂Hη + θ ∧ LX0η,

where ∂Hη (resp. ∂Hη) is a section of Λp,q+1 (resp. Λp+1,q). Moreover,

when T1,0 is integrable ∂
2

H vanishes on (0, q)-forms, and so that we then
get a cochain complex ∂H : C∞(M, Λ0,∗) → C∞(M, Λ0,∗+1).

The operator QL is defined by

(3.2) QL = (∂̄∗
H ∂̄H − ∂̄H ∂̄∗

H) − γ(∂̄∗
H ∂̄H − ∂̄H ∂̄∗

H)γ.

In order to determine the local expression of QL, let {Zj, Zj̄} be an ad-

missible orthonormal frame of H⊗C, and let {θj , θj̄} be the associated dual
coframe of H∗ ⊗ C. In addition, we let ε(θj̄) denote the exterior multiplica-
tion by θj̄ and let ι(θj) denote the interior product by θj (i.e., ι(θj) is the
contraction of forms by the vector field Zj̄).

Lemma 3.1. For j, k = 1, . . . , n we have

γε(θj̄)γ = iι(θj), γι(θj)γ = −iε(θj̄),(3.3)

γε(θj̄)ι(θk)γ = ι(θj)ε(θk̄), γι(θj)ε(θk̄)γ = ε(θj̄)ι(θk).(3.4)

Proof. First, since γ2 = 1 the equalities γε(θj̄)γ = iι(θj) and γι(θj)γ =
−iε(θj̄) are equivalent to each other. Moreover, we can deduce from them
the equalities (3.4). Therefore, we only have to prove that γε(θj̄)γ = iι(θj).

If J = {j1, . . . , jp} is an ordered subset of {1, . . . , n} and j is an element
of Jc such that jk < j < jk+1 we let ε̃(j, J) = (−1)k, so that ε̃(j, J) is
the signature of the permutation (j, j1, . . . , jp) → (j1, . . . , jk, j, jk+1, . . . , jp).
Then

(3.5) ε(θj̄)θJ,K̄ =

{
ε̃(j, K)θJ,K∪{j} if J �∈ K,

0 otherwise.

Similarly, we have

(3.6) ι(θj̄)θJ,K̄ =

{
ε̃(j, K \ {j})θJ,K\{j} if J ∈ K,

0 otherwise.
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Let J and K be ordered subsets of {1, . . . , n} of respective lengths p
and q. Using (2.20) we get

(3.7) γε(θj̄)γθJ,K̄ = i(p+q)2(−1)
n(n−1)

2
+q(n−p)ε(J, Jc)ε(K, Kc)γε(θj̄)θJc,K̄c

.

In particular, we see that γε(θj̄)γθJ,K̄ = 0 if j �∈ K.

Assume now that j is in K. Then using (2.20), (3.5) and (3.7) we get

γε(θj̄)γθJ,K̄ = i(p+q)2(−1)
n(n−1)

2
+q(n−p)ε(J, Jc)ε(K, Kc)ε̃(j, Kc)γθJc,Kc∪{j}

= λ1λ2λ3θ
J,K\{j},(3.8)

where we have let

λ1 = i(p+q)2+(2n−p−q+1)2 , λ2 = (−1)q(n−p)+(n−q+1)pε(J, Jc)ε(J, Jc),(3.9)

λ3 = ε(K, Kc)ε(Kc ∪ {j}, K \ {j})ε̃(j, Kc).(3.10)

Recall that given any integer m the difference m2 − m = m(m − 1) is
always an even number. Thus,

(3.11) λ1 = i(p+q)2+(p+q−1)2 = i2[(p+q)2−(p+q)]+1 = i.

Moreover, as ε(J, Jc)ε(J, Jc) = (−1)p(n−p) we have

(3.12) λ2 = (−1)q(n−p)+(n−q)p+p+p(n−p) = (−1)nq−2pq+2np+p−p2

= (−1)nq.

Next, set K = {k1, . . . , kq} and Kc ∪ {j} = {k′
1, . . . , k

′
n−q+1}. Then we

have j = kl = k′
l′ for some indices l and l′. By definition ε(K, Kc) is the

signature of the permutation

(k1, . . . , kq, k
′
1, . . . , k̂

′
l′ , . . . , k

′
n−q+1) → (1, . . . , n).

This permutation can also be seen as the composition of the following per-
mutations,

(3.13) (k1, . . . , kq, k
′
1, . . . , k̂

′
l′, . . . , k

′
n−q+1)

→ (j, k1, . . . , k̂l, . . . , kq, k
′
1, . . . , k̂

′
l′ , . . . , k

′
n−q+1)

→ (k1, . . . , k̂l, . . . , kq, j, k
′
1, . . . , k̂

′
l′ , . . . , k

′
n−q+1)

→ (k1, . . . , k̂l, . . . , kq, k
′
1, . . . , k

′
n−q+1) → (1, . . . , n).

The respective signatures of these permutations are

ε̃(j, K \ {j}), (−1)q−1, ε̃(j, Kc),(3.14)

ε(K \ {j}, Kc ∪ {j}) = (−1)(q−1)(n−q+1)ε(Kc ∪ {j}, K \ {j}).(3.15)
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As

(−1)q−1(−1)(q−1)(n−q+1) = (−1)(q−1)(n−q) = (−1)nq−q2−n+q = (−1)n+nq

we deduce that

ε(K, Kc) = (−1)(q−1)(n−q)+ε̃(j, K \ {j})ε̃(j, Kc)ε(Kc ∪ {j}, K \ {j}).

Thus,

(3.16) λ3 = (−1)n+nqε(j, K \ {j}).

Now, combining (3.8) with (3.11), (3.12) and (3.16) gives

(3.17) γε(θj̄)γθJ,K̄ = i(−1)nε̃(j, K \ {j})θJ,K\{j},

so using (3.6) we get

(3.18) γε(θj̄)γθJ,K̄ = i(−1)nι(θj̄)θJ,K̄ .

Since ι(θj̄)θJ,K̄ = 0 when j �∈ K, this shows that

γε(θj̄)γ = i(−1)nι(θj̄),

completing the proof. �
In the sequel we let OH(0) denote a general zeroth order differential

operator and we let OH(1) denote a first order differential operator involving
only differentiations along H⊗C. For instance, seen as differential operators,
Zj and Zj̄ both are OH(1), but X0 is not. Bearing this in mind the following
holds.

Proposition 3.2. In the local trivialization of Λ∗,∗ defined by the orthonor-
mal coframe {θJ,K̄} we have

(3.19) QL =
n∑

j,k=1

(
ε(θj̄)ι(θk) − ι(θj)ε(θk̄)

)
(Zj̄Zk + ZjZk̄) + OH(1).

In particular, in the local trivialization of Λ∗,0 ⊕ Λ∗,n we have

(3.20) QL = ±
n∑

j=1

(ZjZj̄ + Zj̄Zj) + OH(1),

where the sign ± is − on Λ∗,0 and + on Λ∗,n.
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Proof. Set
Q′

L := ∂̄∗
H ∂̄H − ∂̄H ∂̄∗

H .

One can check (see, e.g, [3]) that in the trivialization of Λ∗,∗ defined by
{θJ,K̄} we have

(3.21) ∂H =

n∑
j=1

ε(θj̄)Zj̄ and ∂
∗
H = −

n∑
j=1

ι(θj)Zj + OH(0).

Therefore,

Q′
L = −

n∑
j,k=1

ι(θj)ε(θk̄)ZjZk̄ +
n∑

j,k=1

ε(θj̄)ι(θk)Zj̄Zk + OH(1)

=
n∑

j,k=1

(
ε(θj̄)ι(θk)Zj̄Zk − ι(θj)ε(θk̄)ZjZk̄

)
+ OH(1).(3.22)

Using Lemma 3.1 we get

γQ′
Lγ =

n∑
j,k=1

(
γε(θj̄)ι(θk)γZj̄Zk − γι(θj)ε(θk̄)γZjZk̄

)
+ OH(1)

=

n∑
j,k=1

(
ι(θj)ε(θk̄)Zj̄Zk − ε(θj̄)ι(θk)ZjZk̄

)
+ OH(1).(3.23)

Combining this with (3.22) then shows that modulo OH(1)-terms we have

QL = Q′
L − γQ′

Lγ =

=
n∑

j,k=1

(
ε(θj̄)ι(θk)Zj̄Zk − ι(θj)ε(θk̄)ZjZk̄ − ι(θj)ε(θk̄)Zj̄Zk + ε(θj̄)ι(θk)ZjZk̄

)

=

n∑
j,k=1

(
ε(θj̄)ι(θk) − ι(θj)ε(θk̄)

)
(Zj̄Zk + ZjZk̄).

Now, on Λp,0 we have ε(θj̄)ι(θk) = 0 and ι(θj)ε(θk̄) = δj̄k. Therefore, on
(p, 0)-forms we have

QL =
n∑

j,k=1

(−δj̄k)
(
Zj̄Zk + ZjZk̄

)
+ OH(1)

= −
n∑

j=1

(Zj̄Zj + ZjZj̄) + OH(1).(3.24)

Similarly, as on Λp,n we have ε(θj̄)ι(θk) = δj̄k and ι(θj)ε(θk̄) = 0, we see that
on (p, n)-forms QL =

∑n
j=1(Zj̄Zj + ZjZj̄)+OH(1). The proof is complete.�
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4. Hypoelliptic properties of QL

From now on we assume that M is compact. This assumption is not es-
sential, but it will simplify the exposition of what follows. In fact, all the
following results can be localized and, as such, they continue to hold in the
non-compact case.

As {Zj} is an admissible frame, we can write Zj = 1√
2
(Xj − iXn+j),

where {Xj} is a local orthonormal frame of L and Xn+j := JXj . Then
using (3.19) we can check that on (p, 0)-forms and (p, n)-forms we have

(4.1) QL = ±(X2
1 + . . . + X2

2n) + OH(1).

This means that, up to sign factor and to an OH(1)-term, on these forms QL

is a sum of squares. A well-known result of Hörmander [11] then insures us
that when (M, H) has finite type such an operator is hypoelliptic with gain
of 2/r derivatives, where r denotes the minimal number of Lie brackets of
vector fields with values of H that are needed to span TM . In other words,
for all s ∈ R, we have

(4.2) QLu ∈ L2
s =⇒ u ∈ L2

s+ 2
r
.

Given vector fields X1, . . . , Xm spanning H at every point, Folland-
Stein [10] and Rothschild-Stein [19] introduced suitable functional spaces
to study sums of squares. Namely, for k = 0, 1, 2, . . . they defined

(4.3) S2
k(M) :=

⋂
1≤l≤k

{u ∈ L2; Xi1 . . .Xilu ∈ L2 ∀ij ∈ {1, . . . , m}},

which is a Hilbert space when endowed with the Hilbert norm,

(4.4) ‖u‖S2
k

:=
( ∑

1≤l≤k

∑
i1,...,il

‖Xi1 . . .Xilu‖2
) 1

2
, u ∈ S2

k(M).

These definitions also makes sense for sections of any vector bundle over M .
If P is a differential operator of order m on M , we say that P is maximal

hypoelliptic if, for all k ∈ N,

(4.5) Pu ∈ S2
k =⇒ u ∈ S2

k+m.

Rothschild-Stein [19] proved that if (M, H) has finite type, then a sum of
squares is maximal hypoelliptic and we have a continuous inclusion S2

k ⊂ L2
k
r

.

Incidentally, maximal hypoellipticity implies hypoellipticity with gain of 2
r
-

derivatives.
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In fact, Rothschild-Stein [19] and Rothschild-Tartakoff [20] even con-
structed parametrices for sum of squares in a suitable class of singular-
integral operators. These operators enjoy various regularity properties, in-
cluding mapping continuously S2

k to S2
k+2. We refer to [19] for a thorough

account on these properties.
Summarizing all this we obtain

Proposition 4.1. Assume that (M, H) is of finite type. Then on (p, 0)-
forms and (p, n)-forms QL is maximal hypoelliptic and admits a parametrix
in the class of singular-integral operators of Rothschild-Stein.

Suppose now that (M, H) is of hypersurface type, i.e., codim H = 1. The
Levi form of (M, H) is then defined as the Hermitian form,

(4.6) L : T1,0 × T1,0 −→ TCM/(H ⊗ C)

such that, for all sections Z and W of T1,0 and for all x ∈ M , we have

(4.7) Lx(Z(x), W (x)) = [Z, W ](x) mod Hx ⊗ C.

It is not difficult to check that (M, H) is of finite type if and only if L does
not vanish anywhere.

On the other hand, when codim H = 1 Beals-Greiner [3] (see also [21])
constructed a pseudodifferential calculus, the so-called Heisenberg calculus,
containing a full symbolic calculus allowing us to explicitly construct para-
metrices for sums of squares, as well as for the Kohn Laplacian under the
so-called condition Y (q) (see [3]). Therefore, we obtain

Proposition 4.2. 1) If codim H = 1 and L is non-vanishing, then on (p, 0)-
forms and (p, n)-forms QL admits a parametrix in the Heisenberg calculus.

2) If dim M = 3 and L is non-vanishing, then in every bidegree QL is
hypoelliptic and admits a parametrix in the Heisenberg calculus.

The hypoellipticity properties of QL show a new phenomenon with re-
spect to what happens for the Kohn Laplacian, i.e., the Laplacian of the
∂H-complex,

(4.8) �H := ∂
∗
H∂H + ∂H∂

∗
H .

For CR manifolds of hypersurface type the invertibility in the Heisenberg
calculus’ sense of the principal symbol of �H on (p, q)-forms is equivalent to
the Y (q)-condition of Kohn [14] (see [3]).

When the CR manifold (M, H) is strictly pseudoconvex the condition
Y (q) means that we must have 0 < q < n. In particular, this excludes all
the (p, q)-forms in dimension 3. Thus, in the strictly pseudoconvex case, the
operator QL has an invertible principal symbol precisely on forms where the
Kohn Laplacian has not an invertible principal symbol.
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When (M, H) is not strictly pseudoconvex, but is weakly pseudoconvex,
then the Y (q)-condition always fails. However, if (M, H) has finite type
and the Levi form has comparable eigenvalues then the Kohn Laplacian is
hypoelliptic (see [13] and the references therein). There also are examples of
CR manifolds whose Levi form does not have comparable eigenvalues and
for which the Kohn Laplacian still enjoys nice regularity properties (see,
e.g., [8], [17]).

In contrast, the hypoellipticity of QL on (p, 0)-forms and (p, n)-forms
is independent of any convexity property of the Levi form, since the sole
non-vanishing of L is enough to have maximal hypoellipticity.

5. Failure of hypoellipticity on H5

In the previous section we saw that when restricted to (p, 0)-forms and
(p, n)-forms QL is maximal hypoelliptic. In this section we would like to
explain that that when restricted to other forms the operator QL may fail
to be hypoelliptic. To this end we shall look at the example of QL on
the 5-dimensional Heisenberg group H5 acting on (0, 1)-forms.

Notice that the (localized versions) of the notions of hypoellipticity allud-
ed to in the previous section all imply the following usual notion of hypo-
ellipticity

(5.1) QLu ∈ C∞ =⇒ u ∈ C∞.

For homogeneous left-invariant differential operators on H5 (and more gen-
erally on nilpotent graded Lie groups) this can be shown to be equivalent
to maximal hypoellipticity (see [9]). In this section we shall exhibit a (0, 1)-
form on H5 which is singular at the origin and annihilates QL. This will
prove that QL is not hypoelliptic on (0, 1)-forms.

Throughout this section we will keep on using the notation introduced
in Example B of Section 1 to describe the Heisenberg group. Thus H5 is
R × R4 equipped with the group law (1.6). We let X0, . . . , X4 be the left-
invariant vector fields defined by (1.8). In this context H is the vector bundle
spanned by X1, . . . , X4, it complex structure J is such that JXj = X2+j

and JX2+j = −Xj for j = 1, 2, and L is the vector bundle spanned by X1

and X2. In addition, we equip H5 with its Levi metric g := θ2 + dθ(.,J .),
where

θ = dx0 +
2∑

j=1

(xjdx2+j − x2+jdxj)

is the standard contact form of H
5. With respect to this metric X0, . . . , X4

form an orthonormal frame of TH5.
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In the sequel it will be convenient to introduce for j = 1, 2 the complex
coordinates zj = xj + ix2+j and zj̄ = xj − ix2+j , as well as the vector fields,

Zj =
1√
2
(Xj − iX2+j) =

1√
2
(

∂

∂zj
+ izj̄ ∂

∂x0
),(5.2)

Zj̄ = Zj =
1√
2
(

∂

∂zj̄
− izj ∂

∂x0
).(5.3)

Then {Z1, Z2, Z1̄, Z2̄} is a left-invariant orthonormal frame of H⊗C. Because
of the way the CR and real structures are defined in terms of the vector
fields X1, . . . , X4, this orthonormal frame is admissible in the sense used in
the previous section.

Let {θ1, θ2, θ1̄, θ2̄} be the dual coframe of {Z1, Z2, Z1̄, Z2̄}. In fact, we can
check that θj =

√
2dzj and θj̄ =

√
2dzj̄ for j = 1, 2. Since {Z1, Z2, Z1̄, Z2̄} is

an admissible orthonormal frame Eq. (3.19) holds. It actually holds without
a OH(1) remainder term. Indeed, as ∂H =

√
2
∑

ε(dzj̄)Zj̄ we can check

that ∂
∗
H = − 1√

2

∑
ι(dzj)Zj, where ι(dzj) denotes the contraction by d

dzj̄ (it

agrees with that by
√

2Zj̄ on H∗ ⊗ C). Following the lines of the proof of
Proposition 3.2 we then see that no remainder terms are involved anymore.
Thus,

(5.4) QL =
∑

j,k=1,2

(
ε(dzj̄)ι(dzk) − ι(dzj)ε(dzk̄)

)
(Zj̄Zk + ZjZk̄).

Next, observe that
(5.5)

ε(dzj̄)ι(dzk)dz l̄ = δkl̄dzj̄ and ι(dzj)ε(dzk̄) = (1 − δkl̄)(δjk̄dz l̄ − δjl̄dzk̄).

Using this we can check that, with respect to the frame {dz1̄, dz2̄}, on (0, 1)-
forms QL takes the form,

(5.6) QL =

(
Δ1 − Δ2 T

T Δ2 − Δ1

)
,

where we have set Δj := Zj̄Zj + ZjZj̄, j = 1, 2, and T := 2(Z1̄Z2 + Z1Z2̄),
and we also have used the fact that [Z1, Z2̄] = [Z2, Z1̄] = 0.

Let F0u :=
∫ ∞
−∞ e−ix0.ξ0udx0 denote the Fourier transform with respect

to the variable x0 on S ′. We shall now look at QL under F0. Notice this
is merely the same as looking at QL under the irreducible representations
of H5. To this end we shall use the symbol ˆ to denote the conjugation by F0.
We have

Ẑj =
1√
2
F0

( ∂

∂zj
+ izj̄ ∂

∂x0

)
F−1

0 =
1√
2

( ∂

∂zj
− zj̄ξ0

)
,(5.7)

Ẑj̄ =
1√
2
F0

( ∂

∂zj̄
− izj ∂

∂x0

)
F−1

0 =
1√
2

( ∂

∂zj̄
+ zjξ0

)
.(5.8)
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Using this we can check that 2Ẑj̄Ẑj is equal to

( ∂

∂zj̄
+ zjξ0

)( ∂

∂zj
− zj̄ξ0

)
=

=
∂2

∂zj̄∂zj
+ ξ0

(
− ∂

∂zj̄
zj̄ + zj ∂

∂zj

)
− zjzj̄ξ2

0 = Hj + ξ0Rj − ξ0,(5.9)

where we have set Hj := ∂2

∂zj̄∂zj − |zj |2ξ2
0 and Rj := zj ∂

∂zj − zj̄ ∂
∂zj̄ . Similarly,

(5.10) 2ẐjẐj̄ = Hj + ξ0Rj + ξ0.

We also have

(5.11) T̂ =
( ∂

∂z1̄
+ z1ξ0

)( ∂

∂z2
− z2̄ξ0

)
+

( ∂

∂z1
− z1̄ξ0

)( ∂

∂z2̄
+ z2ξ0

)
.

Therefore, on (0, 1)-forms we have

(5.12) QL =

(
H1 − H2 + ξ0(R1 − R2) T̂

T̂ H2 − H1 + ξ0(R2 − R1)

)
,

with T̂ given by (5.11).
In the sequel we set z = (z1, z2) and we consider the (0, 1)-form,

(5.13) ω̂ := ûdz1̄, û(ξ0, z) := exp
(−|ξ0||z|2

)
.

Notice that û is a ground state for the harmonic oscillators Hj and annihi-
lates the rotation generators Rj , namely,

(5.14) H1û = H2û = |ξ0|û and R1û = R2û = 0.

In addition û also annihilates ( ∂
∂zj − zj̄ξ0)û for ξ0 ≥ 0 and ( ∂

∂zj̄ + zjξ0)û = 0
for ξ0 ≤ 0, and so using 5.11 we see that

(5.15) T̂ û = 0.

Combining all this with (5.12) we get

(5.16) Q̂Lω̂ = (H1 − H2 + ξ0(R1 − R2)) ûdz1̄ + T̂ ûdz2̄ = 0.

Next, the inverse transform u := F−1
0 û is equal to

1

2π

∫ ∞

−∞
eix0.ξ0e−|z|2|ξ0|dξ0 =

1

2π

(∫ ∞

0

eix0.ξ0e−|z|2ξ0dξ0 +

∫ ∞

0

e−ix0.ξ0e−|z|2ξ0dξ0

)

=
1

2π

(
1

ix0 − |z|2 +
1

−ix0 − |z|2
)

=
−1

π

|z|2
|x0|2 + |z|4 .

Notice that u is homogeneous of degree −2 with respect to the dilations (1.7).
In particular u is singular at the origin.
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Set ω = F−1
0 ω̂ = udz1̄. In view of (5.16) we have

(5.17) QLω = F−1
0 Q̂Lω̂ = 0.

Therefore, we see that, although ω is not smooth at the origin, QLω is
smooth everywhere. This shows that QL is not hypoelliptic on (0, 1)-forms.

In fact, the same arguments as above also show that the forms udz1∧dz1̄

and udz1 ∧ dz2 ∧ dz1̄ too annihilate QL. Therefore QL is not hypoelliptic on
(1, 1)-forms or (2, 1)-forms. This shows that it is only on (p, 0)-forms and
(p, 2)-forms that QL is hypoelliptic.
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