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Noncommutative determinants, Cauchy–Binet formulæ
and Capelli-type identities

II. Grassmann and quantum oscillator algebra representation

Sergio Caracciolo and Andrea Sportiello

Abstract. We prove that, for X , Y , A and B matrices with entries in a non-commutative ring
such that

ŒXij ; Yk`� D �Ai`Bkj ;

satisfying suitable commutation relations (in particular, X is a Manin matrix), the following
identity holds:

col-detX col-det Y D h0 j col-det.aACX.I � a�B/�1Y / j 0i:

Furthermore, if also Y is a Manin matrix,

col-detX col-det Y D
Z

D. ; N / exp
� X

k�0

. N A /k
k C 1

. N XBkY /
�
:

Here h0 j and j 0i, are respectively the bra and the ket of the ground state, a� and a the
creation and annihilation operators of a quantum harmonic oscillator, while N i and  i are
Grassmann variables in a Berezin integral. These results should be seen as a generalization
of the classical Cauchy–Binet formula, in which A and B are null matrices, and of the non-
commutative generalization, the Capelli identity, in which A and B are identity matrices and
ŒXij ; Xk`� D ŒYij ; Yk`� D 0.
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1. Introduction

1.1. The Cauchy–Binet theorem. Let R be a commutative ring, and let M D
.Mij /

n
i;j D1 be a n � n matrix with elements in R. The determinant of the matrix M

can be defined as

detM
defD

X
�2�n

sgn.�/M�.1/1M�.2/2 : : :M�.n/n; (1)

where �n is the permutation group of the set Œn� D f1; 2; : : : ; ng and sgn.�/ is the
sign of the permutation � .

LetX be a n�mmatrix and Y am� nmatrix with elements in the commutative
ring R. For each subset I � Œm� let be XŒn�;I the minor of X with columns in I and
similarly YI;Œn� the minor of Y with rows in I . The classical Cauchy–Binet formula
relates the product of the determinant of these matrices to the determinant of the
product. More precisely

X
L�Œm�

jLjDn

detXŒn�;L det YL;Œn� D det.XY /: (2)

In order to generalize the definition (1) to matrices with elements in a noncommutative
ring R, the first problem encountered is that it is ambiguous without an ordering
prescription for the product. Rather, numerous alternative “determinants” can be
defined: for instance, the column-determinant

col-detM
defD

X
�2�n

sgn.�/
nY

iD1

M�.i/ i (3)
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and the row-determinant

row-detM
defD

X
�2�n

sgn.�/
nY

iD1

Mi�.i/: (4)

(Note that col-detM D row-detM T.) It is intended above that, when dealing with
non-commuting quantities having indices depending on a single integer, the product
symbol … denotes an “ordered product”, i.e.

kCỲ
iDk

fi
defD fkfkC1 : : : fkC`:

In [1] we have proven, in collaboration with A. D. Sokal, non-commutative general-
izations of the Cauchy–Binet formula. In order to express our result, we called the
matrix M column-pseudo-commutative in the case

ŒMij ;Mk`� D ŒMi`;Mkj �; for all i; j; k; ` (5)

and
ŒMij ;Mi`� D 0; for all i; j; `: (6)

(Similarly, we said a matrixM to be row-pseudo-commutative in caseM T is column-
pseudo-commutative).1 Furthermore, we said that M has weakly column-symmetric
(and row-antisymmetric) commutators if (5) holds for i ¤ k (and (6) not necessarily
holds).

We proved (see [1], Proposition 1.2) the following result.2

Proposition 1.1 (noncommutative Cauchy–Binet). Let R be a ring, and let X be a
n �m matrix and Y a m � n matrix with elements in R. Suppose that

ŒXij ; Yk`� D �Ai`ıkj ; for all i; j; k; `;

with A a n � n matrix. Then

(a) if X is row-pseudo-commutative, thenX
L�Œm�

jLjDn

col-detXŒn�;L col-det YL;Œn� D col-det.XY CQcol/ (7)

where
Qcol

ij

defD Aij .n � j /;
1Note that (5) implies 2ŒMij ; Mi`� D 0, i.e. twice equation (6), a subtlety, of relevance only when

the field K over which the ring R is defined is of characteristic 2, that will appear several times along the
paper.

2Here we perform a change of notation for future convenience .AT ! X; B ! Y; h ! A/ and
consider only the case r D n.
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(b) if Y is column-pseudo-commutative, then

X
L�Œm�

jLjDn

row-detXŒn�;L row-det YL;Œn� D row-det.XY CQrow/

where

Qrow
ij

defD Aij .i � 1/;

(c) in particular, if ŒXj i ; X`k� D 0 and ŒYij ; Yk`� D 0 whenever j ¤ `, then

X
L�Œm�

jLjDn

detXŒn�;L det YL;Œn� D col-det.XY CQcol/

D row-det.XY CQrow/:

With respect to the commutative case (2), the determinants are replaced by one
of its non-commutative generalizations, but the left-hand side keeps the same form,
while on the right-hand side the product XY requires an additive correction.

An example of a non-commutative ring R is the Weyl algebra Am�n.K/ over
some field K of characteristic 0 (e.g. Q, R or C) generated by a m � n collection
Z D .zij / of commuting indeterminates (“positions”) and the corresponding col-
lection @ D .@=@zij / of differential operators (proportional to “momenta”); so that

h
zij ;

@

@zk`

i
D �ıikıj` (8a)

and

Œzij ; zk`� D
h @

@zij

;
@

@zk`

i
D 0: (8b)

If we setm D n, X D ZT and Y D @, we soon get Aij D ıij for each i; j 2 Œn� and

detX det @ D col-detŒXT@C diag.n � 1; n� 2; : : : ; 0/�
D row-detŒXT@C diag.0; 1; : : : ; n� 1/�

which are the Capelli identities [2], [3], [4], and [5] of classical invariant theory [6],
[7], and [8], a field of research that, in more than a century, has remained active up
to recent days (a forcedly incomplete selection of papers on the subject includes [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], and [24]).
Because of this example, the correction term due to the presence of the matrixQ which
appears in the non-commutative case is sometimes called the “quantum” correction
with respect to the formula in the commutative case (2).
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Chervov, Falqui, and Rubtsov give in [29] an extremely interesting survey of the
algebraic properties of row-pseudo-commutative matrices (which they call “Manin
matrices”, because a similar notion has proven fruitful in the context of quantum
groups, where it arose already two decades ago in Manin’s work [25], [26], [27],
and [28]), when the ring R is an associative algebra over a field of characteristic
¤ 2. In particular, [29], Section 6, contains an interesting generalization of our
result. Another recent interesting survey, on combinatorial methods in the study of
non-commutative determinants, is the Ph.D. Thesis of M. Konvalinka [30].

In this paper we will investigate a stronger version of Proposition 1.1. In particular
we relax the condition that for all i; j; k; `

ŒXij ; Yk`� D �Ai`ıkj (9)

to

ŒXij ; Yk`� D �Ai`Bkj (10)

whereB is am�mmatrix whose elements are supposed to commute with everything.
Remark that, whenever B is invertible,3 from (10) by multiplication of B�1

js and
sum over j we get

Œ.XB�1/is; Yk`� D �Ai`ıks

which is of the form (9), and similarly by multiplication of B�1
sk

and sum over k

ŒXij ; .B
�1Y /s`� D �Ai`ısj

and, as if X is row-pseudo-commutative also XB�1 is such, while if Y is column-
pseudo-commutative also B�1Y is such. Thus, quite trivially, Proposition 1.1 can be
used to express, for example in the case (a)

X
I;L�Œm�

jLjDjI jDn

col-detXŒn�;I detB�1
IL col-det YL;Œn� D col-det.XB�1Y CQcol/:

In agreement with the philosophy of the original Capelli identity, our goal in this
paper is in another direction: we want to find generalizations of Proposition 1.1,
under the more general (10), in which the left-hand side of (7) (and variants) is kept
exactly in this form (with no dependence from B whatsoever), and investigate for a
generalized “quantum correction” on the right-hand side.

3Recall that, in our case, this is not just a matter of the matrix being non-singular: as the entries Bij are
valued in a ring, not even the single entries, even when non-zero, are guaranteed to have a multiplicative
inverse, i.e. not even the case n D 1 is easy.
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We have not been able to reach an expression as simple as we got previously
in Proposition 1.1, (not even in the case when B is invertible). However, we have
found closed formulas with the help of the algebra and the Hilbert space of a single
“bosonic quantum oscillator” (also known as Weyl–Heisenberg algebra), and, also,
as a Berezin integral in Grassmann algebra, corresponding to “fermionic quantum
oscillators” (see respectively the following Propositions 1.2 and 1.4, which are the
main results of the paper).

We point out here a possible source of confusion. While, at the foundations of
invariant theory, Capelli identities have been discovered within their explicit realiza-
tion in Weyl algebra (the example of (8)), it is nowadays clear, and along the lines
e.g. of [1], [29], and several other papers, that the appropriate context of this family
of identities is the identification of sufficient conditions on the commutation rules for
the elements of the involved matrices, regardless from the presentation of rings R,
and matrices valued in R, realizing these rules. To characterize and classify these re-
alizations (or, even, to determine their existence) is a problem that we find important,
but of separate interest, and we do not treat it here. The role of the Weyl–Heisenberg
and Grassmann algebras mentioned above is not at the level of the explicit realization
of the matrices. It consists instead of an auxiliary structure, implementing certain
combinatorial relations at the level of manipulation of commutators, that arise along
the lines of the proof.

We annotate here an interesting paper, by Blasiak and Flajolet [31], presenting a
collection of classical and new facts on the role of the Weyl–Heisenberg algebra in
combinatorics, in the spirit of the discussion above.

1.2. The bosonic quantum oscillator. Following the classical treatment of the
quantum oscillator by Dirac [33], Chapter 6, let us introduce the operator a and its
adjoint a�, called respectively annihilation and creation operator, and the Hermitian
number operator N D a�a.

They satisfy the commutation relations of the Weyl–Heisenberg algebra

Œa; a�� D 1; ŒN; a� D �a; ŒN; a�� D a�: (11)

Let j ni with n 2 N be the eigenstate of N corresponding to the eigenvalue n, that is

N j ni D n j ni:

In particular the lowest eigenstate of N , j 0i, is annihilated by a

a j 0i D 0:

Without loss of generality, we assume it to be of unit norm, h0 j 0i D 1. Our first
generalization of the Capelli identity is stated within this framework.
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Proposition 1.2. LetR be a ring, and letX be a n�m matrix and Y am�n matrix
with elements in R. Suppose that

ŒXij ; Yk`� D �Ai`Bkj for all i; j; k; `

with A a n � n, and B a m � m matrix whose elements commute with everything.
Then

(a) if X is row-pseudo-commutative, and

ŒXij ; Ak`�� ŒXkj ; Ai`� D 0 for all i; j; k; ` (12)

then

X
L�Œm�

jLjDn

col-detXŒn�;L col-det YL;Œn�

D h0 j col-detŒaACX.1 � a� B/�1Y � j 0i;

(b) if Y is column-pseudo-commutative, and

ŒYij ; Ak`�� ŒYi`; Akj � D 0 for all i; j; k; ` (13)

then

X
L�Œm�

jLjDn

row-detXŒn�;L row-det YL;Œn�

D h0 j row-detŒa�ACX.1� aB/�1Y � j 0i;

(c) in particular, if ŒXj i ; X`k� D 0 and ŒYij ; Yk`� D 0 whenever j ¤ `, then

X
L�Œm�

jLjDn

detXŒn�;L det YL;Œn� Dh0 j col-detŒa ACX.1 � a�B/�1Y � j 0i

Dh0 j row-detŒa�ACX.1� a B/�1Y � j 0i:

The further commutation condition (12) (and the counterpart (13) for case (b))
appears as a subtle technicality, that we did not succeed to avoid. Note however that,
as shown in Lemmata 3.6 and 3.7 through an analysis of the consequences of the
Jacobi Identity, it is implied by a very mild condition on B , (informally, that two
vectors Eu; Ev 2 Rm exist such that the scalar product .Eu; B Ev/ is a regular element of
the ring, i.e., it is not zero, and not a divisor of zero). In particular, this is obviously
the case under the circumstances originally treated in [1], where B D I .
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As an example, let the non-commutative ring R be the Weyl algebra Am�s.K/

over some field K of characteristic 0 (e.g. Q, R or C) generated by an m � s col-
lection Z D .za

i / with i 2 Œn� and a 2 Œs� of commuting indeterminates and the
corresponding collection @ D .@=@za

i / of differential operators; so that

h
za

i ;
@

@zb
j

i
D �ıij ı

abI

and

Œza
i ; z

b
j � D

h @

@za
i

;
@

@zb
j

i
D 0:

Let

Xij D
sX

aD1

za
i ˛

a
j and Yk` D

sX
aD1

ˇa
k

@

@za
`

;

with ˛a
j ; ˇ

a
k

commuting with everything, so that for all i; ` 2 Œn� and j; k 2 Œm�

ŒXij ; Xk`� D ŒYij ; Yk`� D 0

and

ŒXij ; Yk`� D �ıi`

sX
aD1

ˇa
k˛

a
j

which, in our notation means that

Ai` D ıi` and Bkj D
sX

aD1

ˇa
k˛

a
j :

Remark that the rank of them�mmatrix B is min.m; s/, in particular, when s < m,
B is not invertible.

In the particular case in whichBij D ıij for each i; j 2 Œm�, both Proposition 1.1
and 1.2 apply. As a consequence, the right hand sides must be equal and, for example,
if X is row-pseudo-commutative, then

col-det.XY CQcol/ D h0 j col-detŒa AC .1� a�/�1XY � j 0i;

while, if Y is column-pseudo-commutative, then

row-det.XY CQrow/ D h0 j row-detŒa�AC .1� a/�1XY � j 0i:
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These relations are indeed valid regardless from the fact that A is related to the
commutator of X and Y , i.e. they are a consequence of a stronger fact

Proposition 1.3. Let R be a ring and U and V be two n� n matrices with elements
in R. Then

col-det.U CQcol/ D h0 j col-det.aV C .1� a�/�1U/ j 0i
where

Qcol
ij

defD Vij .n � j /;
and

row-det.U CQrow/ D h0 j row-det.a�V C .1� a/�1U/ j 0i (14)

where
Qrow

ij

defD Vij .i � 1/:

This fact, together with a generalization, is proven in Section 2.

1.3. The Grassmann algebra. The determinant of a n�nmatrixM with elements
in a commutative ring can be represented as a Berezin integral over the Grassmann
algebra generated by the 2n anti-commuting variables f i ; N igi2Œn� (for an introduc-
tion to such a topic we invite the interested reader to refer to [34], Appendix B). More
precisely:

detM D
Z

D. ; N / exp. N M /; (15)

where

D. ; N / defD
nY

iD1

d i d N i :

Therefore the Cauchy–Binet theorem can also be written as the identity

X
L�Œm�

jLjDn

detXŒn�;L det YL;Œn� D
Z

D. ; N / exp. N XY /:

We have obtained the following generalization.

Proposition 1.4. Let R be a ring containing the rationals, and let X be a n � m

matrix and Y a m � n matrix with elements in R. Suppose that

ŒXij ; Yk`� D �Ai`Bkj for all i; j; k; `

withA a n�n, and B am�mmatrix whose elements commute with everything. Let
Im the m �m identity matrix. Assume that
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ŒXij ; Ak`�� ŒXkj ; Ai`� D 0 for all i; j; k; ` (16)

and

ŒYij ; Ak`�� ŒYi`; Akj � D 0 for all i; j; k; `: (17)

Then

(a) if X and Y are row-pseudo-commutative, then

X
L�Œm�

jLjDn

col-detXŒn�;L col-det YL;Œn�

D
Z

D. ; N / exp
� X

k�0

. N A /k
k C 1

. N XBkY /
�

D
Z

D. ; N / exp
�

� N X ln.1� . N A /B/
. N A /B Y 

�
;

(18)

(b) if X and Y are column-pseudo-commutative, then

X
L�Œm�

jLjDn

row-detXŒn�;L row-det YL;Œn�

D
Z

D. ; N / exp
� X

k�0

. N XBkY /
. N A /k
k C 1

�

D
Z

D. ; N / exp
�

� N X ln.1� . N A /B/
. N A /B Y 

�
:

The commutation condition (16) in the hypotheses above is identical to the con-
dition (12) in Proposition 1.2. Thus, as stated earlier, the following Lemmata 3.6
and 3.7 discuss mild conditions on B that would imply it.

However we are not aware of equally satisfactory conditions under which the
hypothesis (17) holds. In particular, the hypothesis that Y is row-commutative would
have rather suggested to interchange indices i and k in the second summand, instead
of j and `. A sufficient condition would be that Y is both row- and column-pseudo-
commutative, i.e., that it is tout-court commutative, as in this situation the column-
analogue of Lemmata 3.6 and 3.7 would apply (note, with the hypotheses of the
lemmas now being on BT). We are not aware of any set of matrices realizing the
hypotheses of the proposition above and in which Y is not commutative, nor we have
a proof that such a realization cannot exist (see the discussion at the end of Section 3).
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We will prove Proposition 1.3 in Section 2. Then in Section 3 we recall some
basic facts which were useful in our proof of Proposition 1.1, and will also be needed
in the following. This section includes also a discussion on the conditions on the
commutation of X and A. Section 4 is of combinatorial nature. It presents a lemma
on the weighted enumeration of a family of lattice paths (of Łukasiewicz type), that
is used later on in our proofs of Capelli-like identities. Section 5 presents the proof
of Proposition 1.2, the non-commutative Cauchy–Binet formula in Quantum oscil-
lator algebra representation. Section 6 presents a small variant of this formula, in
which coherent states of the quantum oscillator are used. In Section 7 we derive a
useful specialization of the Campbell–Baker–Hausdorff formula, which we use in
Section 8 to give a proof of Proposition 1.4, the non-commutative Cauchy–Binet
formula in Grassmann algebra representation. In Section 9 we give a short proof of
Proposition 1.4, for the case B D I .

Acknowledgments. This work is a continuation of a previous work, done in collab-
oration with A. D. Sokal. As always in these cases, it is hard to “trace a boundary”
on authorship. It is clear that the many discussions together had a prominent role in
the genesis of the present paper.

We thank the Isaac Newton Institute for Mathematical Sciences, University of
Cambridge, for support during the programme on Combinatorics and Statistical Me-
chanics (January–June 2008), where a large fraction of this work has been done.

S. Caracciolo thanks the Université Paris Nord for the support offered to visit
LIPN where this work has been finished.

2. The bosonic oscillator and multilinear non-commutative functions

At the beginning of Section 1.2, we set some notations for the bosonic oscillator.
Among other things, we fixed the normalization of the state j 0i. There exists a
residual freedom in choosing the relative norm of states j ni, that we fix here, by
setting for each m; n 2 N

.a�/n j mi D j mC ni (19a)

and

hm j an D hmC n j; (19b)

from which it follows

an j mi D mŠ

.m � n/Š j m � ni; (20a)

and

hm j .a�/n D hm � n j mŠ

.m � n/Š ; (20b)
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and
hn j mi D nŠ ınm:

As, for m 2 N, the states jmi form a complete set, we have

1 D
X
m�0

j mi 1
mŠ

hm j; (21)

as operators acting on the Hilbert space.
In this section we prove Proposition 1.3. The two cases are analogous, and we

study the ‘row’ case, that is we choose to prove identity (14). We shall in fact prove
a more general result, for a family of multilinear non-commutative functions. Both
results are statements on the fact that, taking scalar products, implement substitutional
rules on suitable polynomials in the algebra of the quantum oscillator, in a way non
dissimilar to the content of ‘modern’ umbral calculus à la Rota.

Proposition 2.1. Let R be a ring, k, n and fm.i/g1�i�n integers, and fx.h/
ij g a

collection of expressions in R, for 0 � h � k, i 2 Œn� and j 2 Œm.i/�. Consider also
a Weyl–Heisenberg algebra as in (11), with operators commuting with the x’s. Take
f .a/ a formal power series in a, such that f .0/ D 1 and f 0.0/ ¤ 0, so that both
f .a/ and f 0.a/ are invertible. Consider a further indeterminate s, and let g.a; s/ be
the formal power series in a and s defined as

g.a; s/
defD s

h @
@a
f .a/�s

i�1 D �Œf 0.a/��1f .a/sC1: (22)

Then, introduce the operators

�h.a; a
�/

defD 1

hŠ
.a�g.a; s//hf .a/�sh�1:

Let

yij
defD

kX
hD0

�
i � 1
h

�
s

x
.h/
ij ;

with

�
`

h

�
s

defD 1

hŠ
`.`� s/ : : : .` � .h � 1/s/ D

8̂̂
<
ˆ̂:
sh

�
`=s

h

�
; s ¤ 0;

`h

hŠ
; s D 0:

Define

zij .a; a
�/

defD
kX

hD0

�h.a; a
�/x

.h/
ij :
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Then, for any polynomial � of the N variables fyij g in the ring R, homogeneous of
degree n, and with monomials of the form

Qn
iD1 yij.i/ (with the product in order),4

the following representation holds

�.fyij g/ D h0 j �.fzij .a; a
�/g/ j 0i: (23)

We recognize the identity (14) as a special case, with k D 1, x.0/
ij D Uij ,

x
.1/
ij D Vij , and f .a/ D 1 � a. (Thus in particular, �0 D .1 � a/�1 and �1 D a�.)

The polynomial � is chosen to be �.y/ D row-det Y , for Y the matrix with entries
yij D Uij C .i � 1/Vij . This correspondence is valid regardless of s, as s appears
explicitly only for k � 2.

Towards the end of the proof of this theorem we will need a lemma in quantum
oscillator algebra, which we prove immediately.

Lemma 2.2. For any indeterminates ` and s, f .a/ and g.a; s/ as above, and any h
and m in N,

C`;h;m
defD 1

hŠ
h0 j f .a/�`.a�g.a; s//hf .a/`�hs j mi

D
�
`

h

�
s

ım;0:

Proof. Indeed, if h D 0 we trivially have

C`;0;m D h0 j mi D ım;0;

while if h > 0 we can write

C`;h;m D 1

hŠ
h0 j f .a/�`a�g.a; s/.a�g.a; s//h�1f .a/`�hs j mi

D 1

hŠ
h0 j .a�f .a/�` C Œf .a/�`; a��/g.a; s/.a�g.a; s//h�1f .a/`�hs j mi

D `

hŠ
h0 j f .a/�`�1.�f 0.a/g.a; s//.a�g.a; s//h�1f .a/`�hs j mi

D `

hŠ
h0 j f .a/�.`�s/.a�g.a; s//h�1f .a/.`�s/�.h�1/s j mi

D `

h
C`�s;h�1;m;

where we used the fact that h0 j a� D 0, and definition (22). So we get the result by
induction in h.

4This means that � is multilinear in each set Yi D fyij gj 2Œm.i/�.
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Proof of Proposition 2.1. A generic monomial of � can be labeled by a vector J D
.j.1/; : : : ; j.n// 2 Œm.1/� � � � � � Œm.n/�, thus � has the form

�.fyikg/ D
X

J D.j.1/;:::;j.n//

cJ

nY
iD1

yij.i/:

Both yij ’s and zij .a; a
�/’s are defined as a sum of k C 1 terms. Perform the

corresponding expansion on both sides of (23), and label each term by a vector
� 2 f0; : : : ; kgn. For the expression on the left hand side we have

�.fyikg/ D
X
J; �

cJ

� nY
iD1

�
i � 1
�.i/

�
s

� Y
iD1;:::;n

x
.�.i//

ij.i/
;

while for the one on the right hand side we have

h0 j �.fzik.a; a
�/g/ j 0i D

X
J; �

cJ h0 j
Y

iD1;:::;n

��.i/ j 0i
Y

iD1;:::;n

x
.�.i//

ij.i/
:

As thex.h/
ij are arbitrary non-commuting indeterminates, and� is arbitrary, the identity

must hold separately for each summand labeled by a pair .J; �/, i.e. that for any
vector � we have to prove that

Y
`2Œn�

�.`/¤0

�
` � 1
�.`/

�
s

D h0 j
Y

iD1;:::;n

��.i/ j 0i:

Let .`1; : : : ; `k/ be the ordered list of indices i such that �.i/ ¤ 0, so that
Y

iD1;:::;n

��.i/ D �
`1�1
0 ��.`1/�

`2�`1�1
0 ��.`2/�

`3�`2�1
0 ��.`3/ : : : ��.`k/�

n�`k

0 ;

where all the powers are non-negative integers, and all �. j̀ /’s are in the range
f1; : : : ; kg. The expression ��1

0 D f .a/ is defined as a formal power series, and we
can write Y

iD1;:::;n

��.i/ D
� Y

˛D1;:::;k

�
`˛�1
0 ��.`˛/�

�`˛

0

�
�n

0:

Let
yO`;h

defD �`�1
0 �h�

�`
0 :

We need to prove that, for any k-uple `1 < � � � < `k ,

kY
˛D1

�
`˛ � 1

�.`˛/

�
s

D h0 j
� Y

˛D1;:::;k

yO`˛;�.`˛/

�
f .a/�n j 0i:
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First of all realize that f .a/�n j 0i Dj 0i. Then, because of Lemma 2.2,

h0 j yO`1;�.`1/ j mi D ım;0

�
`1 � 1
�.`1/

�
s

so that by introducing a resolution of the identity, equation (21), we get a recursion
in ˛

h0 j
Y

˛D1;:::;k

yO`˛;�.`˛/ j 0i D
X
m�0

h0 j yO`1;�.`1/ j mi 1
mŠ

hm j
Y

˛D2;:::;k

yO`˛;�.`˛/ j 0i

D
X
m�0

ım;0

mŠ

�
`1 � 1
�.`1/

�
s

hm j
Y

˛D2;:::;k

yO`˛;�.`˛/ j 0i

D
�
`1 � 1

�.`1/

�
s

h0 j
Y

˛D2;:::;k

yO`˛;�.`˛/ j 0i;

which proves the statement of the theorem.

3. Some properties of commutators

Let us begin by recalling two elementary facts [1], Lemmata 2.1 and 2.2, that we used
repeatedly and shall use in this paper.

Lemma 3.1 (Translation lemma). Let A be an abelian group, and let f W �n ! A.
Then, for any � 2 �n, we haveX

�2�n

sgn.�/f .�/ D sgn.�/
X

�2�n

sgn.�/f .� B �/:

Proof. Just note that both sides equalX
�2�n

sgn.� B �/f .� B �/:

Lemma 3.2 (Involution lemma). Let A be an abelian group, and let f W �n ! A.
Suppose that there exists a pair of distinct elements i; j 2 Œn� such that

f .�/ D f .� B .ij //
for all � 2 �n (where .ij / denotes the transposition interchanging i with j ). ThenX

�2�n

sgn.�/f .�/ D 0:
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Proof. We have

X
�2�n

sgn.�/f .�/ D
X

� W �.i/<�.j /

sgn.�/f .�/C
X

� W �.i/>�.j /

sgn.�/f .�/

D
X

� W �.i/<�.j /

sgn.�/f .�/�
X

� 0 W � 0.i/<� 0.j /

sgn.� 0/f .� 0 B .ij //

D 0;

where in the second line we made the change of variables � 0 D � B .ij / and used
sgn.� 0/ D � sgn.�/ (or equivalently used the translation lemma).

In the following we shall need of a less restrictive notion than the pseudo-commu-
tative matrix. Let us begin by observing that

�ijkl
defD ŒMij ;Mkl �

is manifestly antisymmetric under the simultaneous interchange i $ k, j $ l .
So symmetry under one of these interchanges is equivalent to antisymmetry under
the other. Let us therefore say that a matrix M has row-symmetric (and column-
antisymmetric) commutators if

ŒMij ;Mkl � D ŒMkj ;Mil � for all i; j; k; l (24)

and column-symmetric (and row-antisymmetric) commutators if

ŒMij ;Mkl � D ŒMil ;Mkj � for all i; j; k; l .

Then we shall need the following two lemmata.

Lemma 3.3. For a n-dimensional matrix M with row-symmetric commutators, that
is satisfying (24), any vector .`1; : : : ; `n/, and any permutation � 2 �n, we have

X
�2�n

sgn.�/
nY

iD1

M�.i/ `i
D

X
�2�n

sgn.�/
nY

iD1

M��.i/ `�.i/
:

Proof. It suffices to prove the lemma for a single transposition of elements, consec-
utive after the permutation � , namely � D .�.i/ �.i C 1//. We denote as L� and
R� the factors on left and on the right (note that they do not depend from �.i/ and
�.i C 1/). We can write the statement as

X
�2�n

sgn.�/L�M�.i/`i
M�.iC1/`iC1

R� D
X

�2�n

sgn.�/L�M�.iC1/`iC1
M�.i/`i

R� :
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The difference of the two expressions is, by definition,X
�2�n

sgn.�/L� ŒM�.i/`i
;M�.iC1/`iC1

�R�

which vanishes because the hypothesis (24) allows the application of the involution
lemma.

Now we have a sequence of lemmas exploring the consequences of the Jacobi
identity.

Lemma 3.4. Let R be a ring, and let X and Y be matrices with elements in R.

(a) If X is row-pseudo-commutative then, at fixed Yef , for all a; b; c; d the antisym-
metric part of ŒXab ; ŒXcd ; Yef �� in the exchange of a with c is symmetric in the
exchange of b and d , that is

ŒXab ; ŒXcb; Yef ��� ŒXcb ; ŒXab ; Yef �� D 0 (25)

and

ŒXab ; ŒXcd ; Yef ��� ŒXcb ; ŒXad ; Yef ��

C ŒXad ; ŒXcb ; Yef ��� ŒXcd ; ŒXab; Yef �� D 0I (26)

(b) if Y is column-pseudo-commutative then, at fixed Xef , for all a; b; c; d the anti-
symmetric part of ŒYab; ŒYcd ; Xef �� in the exchange of b with d is symmetric in
the exchange of a and c, that is

ŒYab; ŒYad ; Xef ��� ŒYad ; ŒYab; Xef �� D 0

and

ŒYab; ŒYcd ; Xef �� � ŒYad ; ŒYcb; Xef ��

C ŒYcb; ŒYad ; Xef ��� ŒYcd ; ŒYab; Xef �� D 0:

Proof. (a) Start from the Jacobi Identity applied to the triplet .Xab ; Xcd ; Yef /,

ŒXab ; ŒXcd ; Yef ��C ŒYef ; ŒXab ; Xcd ��C ŒXcd ; ŒYef ; Xab �� D 0:

If we set d D b, as X is row-pseudo-commutative, ŒXab ; Xcb � D 0 so that (25)
follows. For (26), consider also the Jacobi identity for the triplet .Xcb ; Xad ; Yef / to
obtain

ŒXcb ; ŒXad ; Yef ��C ŒYef ; ŒXcb ; Xad ��C ŒXad ; ŒYef ; Xcb �� D 0

so that, by subtraction and the hypothesis that X is row-pseudo-commutative then

ŒXab ; ŒXcd ; Yef ��� ŒXcb ; ŒXad ; Yef ��C ŒXad ; ŒXcb ; Yef ��� ŒXcd ; ŒXab; Yef �� D 0:

The proof of (b) is similar.
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This lemma implies the following result.

Corollary 3.5. If X and Y are as in case (a) of the lemma above, and furthermore
they satisfy the commutation relation (10), ŒXij ; Yk`� D �Ai`Bkj , then, for every a,
b, c, e, and f,

.ŒXab ; Acf �� ŒXcb ; Aaf �/Beb D 0 (27)

and, for every a; b; c; d; e, and f ,

.ŒXab ; Acf �� ŒXcb ; Aaf �/Bed C .b $ d/ D 0: (28)

We are now ready to state sufficient conditions on B , for having the commutation
relation (12), ŒXij ; Ak`� � ŒXkj ; Ai`� D 0.

Recall that, in a ring R, a nonzero element x is a left zero divisor if there exists a
nonzero y such that xy D 0. Right zero divisors are analogously defined. A nonzero
element of a ring that is not a left zero divisor is called left-regular (and analogously
for right). Then we have the following lemma.

Lemma 3.6. Let X , A and B as in Corollary 3.5, of sizes respectively n �m, n � n
andm�m, and Bij commuting with every other matrix element. Suppose that there
exist an index d 2 Œm�, and a vector Eu 2 Rm, such that .EuB/d is left-regular. Then

ŒXij ; Ak`�� ŒXkj ; Ai`� D 0 for all i; j; k; `.

Proof. Equations (27) and (28) are valid with B written on the left or on the right, as
it commutes with everything. Consider equation (27), with arbitrary a; c; f , setting
b D d , and summing over e, after multiplying on the left by ue . This gives

� X
e

ueBed

�
.ŒXad ; Acf � � ŒXcd ; Aaf �/ D 0:

As .EuB/d is left-regular, we obtain ŒXad ; Acf � � ŒXcd ; Aaf � D 0. Now consider
any other index b ¤ d , and equation (28), again summing over e, after multiplying
on the left by ue . We obtain

� X
e

ueBed

�
.ŒXab ; Acf � � ŒXcb ; Aaf �/

D �
� X

e

ueBeb

�
.ŒXad ; Acf � � ŒXcd ; Aaf �/:

As the right-most factor on the right hand side is zero, the whole right hand side
vanishes. As the left-most factor on the left hand side is left-regular, we have that
ŒXab ; Acf � � ŒXcb ; Aaf � D 0, thus completing the proof.
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Furthermore, we can also state the following lemma.

Lemma 3.7. Let X , A and B as in Corollary 3.5, of sizes respectively n �m, n � n
andm�m, and Bij commuting with every other matrix element. Suppose that there
exist a vector Eu 2 Rm, and a vector Ev 2 Rm, with vi ’s commuting with X , A and B
elements and among themselves, such that the scalar product 2.Eu; B Ev/ is left-regular.
Then

ŒXij ; Ak`�� ŒXkj ; Ai`� D 0 for all i; j; k; `.

Proof. Remark that, except for the annoying factor 2, this lemma is a generalization
of Lemma 3.6, to which it (almost) reduces for Evi D ıi;d .

Analogously to Lemma 3.6, consider equation (28), with arbitrary a; c; f , sum-
ming over e; b; d , after multiplying on the left by uevbvd . This gives

� X
e;d

ueBedvd

� X
b

.ŒXabvb; Acf �� ŒXcbvb; Aaf �/

C
� X

e;b

ueBebvb

� X
d

.ŒXadvd ; Acf � � ŒXcdvd ; Aaf �/ D 0:

Performing the sums shows that the two terms are identical. As 2.Eu; B Ev/ is left-
regular, we obtain Œ.X Ev/a; Acf � � Œ.X Ev/c ; Aaf � D 0. Now take any index b, and
consider again equation (28), but summing only over e and d , after multiplying on
the left by uevd . We obtain

� X
e

ueBedvd

�
.ŒXab ; Acf �� ŒXcb ; Aaf �/

D �
� X

e

ueBeb

�
.Œ.X Ev/a; Acf � � Œ.X Ev/c ; Aaf �/:

As the right-most factor on the right hand side is zero, the whole right hand side
vanishes. As the left-most factor on the left hand side is left-regular, we have that
ŒXab ; Acf � � ŒXcb ; Aaf � D 0, thus completing the proof.

An analysis similar to the one of Corollary 3.5, performed on matrix Y assumed
to be row-pseudo-commutative (remark that Lemma 3.4(a) exchangingX and Y is a
valid starting point at this aim), gives

ŒYab; Aeb�Bcf D ŒYcb; Aeb�Baf

and

ŒYab ; Aed �Bcf C .b $ d/ D ŒYcb ; Aed �Baf C .b $ d/:
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These equations are comparatively weaker w.r.t. equations (27) and (28), at the aim
of establishing sufficient conditions on B for the hypothesis (17) in Proposition 1.4
to hold. Indeed, while in the previous case we have already the appropriate exchange
structure, mixed to further exchanges, in this new case the exchange of indices has
nothing in common with (17).

A simple sufficient condition is that Y is in fact commutative, ŒYij ; Yk`� D 0 for
all i; j; k; `, as this would imply in particular that it is column-pseudo-commutative,
and the validity follows from the cases (b) of the lemmas above. Another case leading
to interesting simplifications is when B is the identity matrix, and m � 2. In this
case, taking f D c ¤ a gives

ŒYab; Aeb� D 0

and

ŒYab ; Aed �C .b $ d/ D 0:

Thus we see that, in this case, either the field has characteristic 2, or the only possibility
for (17) to hold is that ŒYij ; Ak`� D 0 for all i , k and j ¤ `.

4. A weighted enumeration of Łukasiewicz paths

Let n an integer. For 0 � t � n, consider the “symbols”

E	t D .	1; : : : ; 	t j 	tC1; : : : ; 	n/;

n-uples of integers with 	i � �1 for i � t and 	i � 0 for i > t . These symbols
are intended as formal indeterminates generating a linear space over Z. Consider the
quotient given by the relations

.	1; : : : ; 	t�1 j 	t ; : : : ; 	n/

D .	1; : : : ; 	t�1; 	t j 	tC1; : : : ; 	n/

C
nX

kDtC1

.	1; : : : ; 	t�1;�1 j 	tC1; : : : ; 	k C 	t C 1„ ƒ‚ …
k-th

; : : : ; 	n/:

(29)

Remark that the sum jE	t j D 	1 C � � � C 	n, that we call the norm of the symbol, is
homogeneous in all the terms of the relation, and that, if the left hand side of (29)
satisfies the bounds above on the	i ’s, the bounds are satisfied also by all the summands
on the right hand side.
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Let us call height of .	1; : : : ; 	t j 	tC1; : : : ; 	n/ the integerH D 	tC1 C� � �C	n.
Then the other combination 	1 C � � � C 	t is just the norm minus the height. We shall
call t the level of .	1; : : : ; 	t j 	tC1; : : : ; 	n/. We define Vt;s as the space of all
symbols with level t and norm s.

Consider any triplet .t; t 0; s/ with 0 � t � t 0 � n and s � �t . Relation (29) can
be seen as a recursion, allowing to write any symbol E	t 2 Vt;s as a linear combination
of symbols E	0

t 0 2 Vt 0;s. We will restrict our attention to the symbols with zero norm.
For t D 0, we have a unique possible symbol in V0;0, that is, E	0 D .j 0 : : : 0/. As a
consequence, and from the closure property above, for each 0 � t � n there exists a
set of integers c.E	t / such that

E	0 D
X

E�t 2Vt;0

c.E	t / E	t : (30)

In the following Lemma 4.1 we determine a formula for c.E	t /, which is the main
result of the section. Before going to the lemma, it is useful to introduce a graphical
interpretation for these symbols.

Symbols of maximal level, E	n D .	1; : : : 	n j/, are in bijection with paths 
 on the
half-line, that is, if represented as a ‘time trajectory’ in two dimensions, paths with
height remaining always non-negative, starting at .0; 0/ and arriving at .n; 0/, and
with steps of the form .1; s/. The bijection just consists in performing a jump of �	i

at the i -th step. Thus, in our problem we have only steps s � 1. Paths with exactly
this set of allowed steps are known as Łukasiewicz paths (see [35], p. 71, or [36],
Example 3, p. 14). An example of symbol-path correspondence is

.�1;�1; 0;�1; 2; 0;�1;�1; 1; 2 j/
��

��
���

�� ��
����

�
���

�

� �

�

� �

�

�

�

�
:

More generally, symbols of level t and height H are in bijection with pairs .
; �/,
where 
 is a path as above, terminating at .t; H/, and � is a partition of H ‘stones’
into n� t boxes (that we represent graphically as the columns with indices from tC1

to n, following the path). For example

.�1;�1; 0;�1; 2;�1;�1 j 1; 0; 2/
��

��
���

����
��

�

�

� �

�

�

�

�

� � � �
� �

�

:

Paths in one dimension can be described equivalently, either by the sequence of
jumps �	i , as above, or by the height profile hi D Pi

j D1.�	j /. Both notations will
be useful in the following.
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One easily sees that a necessary condition for c.E	t / ¤ 0 is that the corresponding
path never goes below the horizontal axis. Indeed, the recursion is such that, if the
left hand side of (29) has non-negative height H , then this is true also for all the
summands on the right hand side. Another way of seeing this property is to realize
that our graphical structures .
; �/ form a family which is stable under the recursion,
and H , which is both the final height in the path and the number of stones, must
remain always non-negative.

Our lemma states the following result.

Lemma 4.1. For E	t D .
; �/, the function c.E	t / depends only on 
 (and not on �),
and is given by

c.
/ D ht Š
Y
i2Œt�

hi �hi�1

hi�1Š

hi Š
:

In particular, when t D n, the path must have hn D 0 and therefore

c.
/ D
Y

i2Œn�

hi �hi�1

hi�1Š

hi Š
: (31)

Proof. Consider equation (29) to derive a recursion for the coefficients. For the
symbol E	t D .	1; : : : ; 	t j 	tC1; : : : ; 	n/ we have

c.E	t /

D

8̂̂
<̂
ˆ̂̂:

c..	1; : : : ; 	t�1 j 	t ; : : : ; 	n// if 	t � 0I
nX

kDtC1

�kX
�0D1

c..	1; : : : ; 	t�1 j 	0 � 1; 	tC1; : : : ; 	k � 	0„ ƒ‚ …
k-th

; : : : ; 	n// if 	t D �1:

We proceed by induction in t , starting from the trivial unique solution c.E	0/ of (30)
for t D 0. Assuming the formula for c.E	t / valid up to t � 1, we have

c.E	t / D

8̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂:

ht�1Š
Y

i2Œt�1�

hi �hi�1

hi�1Š

hi Š
if 	t � 0I

ht�1Š
Y

i2Œt�1�

hi �hi�1

hi�1Š

hi Š

nX
kDtC1

�kX
�0D1

1 if 	t D �1:

In the case 	t � 0, we have ht � ht�1 and therefore

ht�1Š
Y

i2Œt�1�

hi �hi�1

hi�1Š

hi Š
D ht Š

Y
i2Œt�

hi �hi�1

hi�1Š

hi Š
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as required. If 	t D �1, remark that

nX
kDtC1

�kX
�0D1

1 D
nX

kDtC1

	k D ht ;

then, as ht D ht�1 C 1 > ht�1, we soon get that

ht ht�1Š
Y

i2Œt�1�

hi �hi�1

hi�1Š

hi Š
D ht Š

Y
i2Œt�1�

hi �hi�1

hi�1Š

hi Š
D ht Š

Y
i2Œt�

hi �hi�1

hi�1Š

hi Š
;

which completes the proof.

Now, for symbols of maximal level, .	1; : : : 	n j/, we give a representation in
quantum oscillator algebra of the combinatorial formula for the coefficients c.E	t /

Lemma 4.2. For 	 � �1, define the operator in the Weyl–Heisenberg algebra

�.	/ D
8<
:
.a�/� if 	 � 0I
a if 	 D �1:

Then, when the symbol E	n D .	1; : : : 	n j/ corresponds to a path 
 as described
above,

h0 j �.	1/ : : : �.	n/ j 0i D c.E	n/ D
Y

i2Œn�

hi �hi�1

hi�1Š

hi Š
;

while otherwise

h0 j �.	1/ : : : �.	n/ j 0i D 0:

Proof. We proceed by induction. Assume that, for a sequence 	1; : : : ; 	t such that
the corresponding path remains positive,

h0 j �.	1/ : : : �.	t / D hht j
Y
i2Œt�

hi �hi�1

hi�1Š

hi Š
:
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Then, we analyze the application of the operator �.	tC1/ to the right. If 	tC1 D �1,
because of (19), the application of a consistently brings hht j to hht C 1 jD hhtC1 j.
If 	tC1 � 0, because of (20), the application of .a�/� brings hht j to hht � 	 j, with
an extra factor ht Š=.ht � 	/Š (which, in particular, is zero if the path goes below the
horizontal axis). Taking finally the scalar product with j 0i ensures that the path ends
at height zero.

5. The Capelli identity in Weyl–Heisenberg algebra

We are now ready to prove Proposition 1.2.

Proof of Proposition 1.2. (a) As a first step, by simply using the fact that X is row-
pseudo-commutative, in [1], Section 3, we get that

X
L�Œm�

jLjDn

col-detXŒn�;L col-det YL;Œn�

D
X

�2�n

sgn.�/
X

l1;:::;ln2Œm�

� nY
iD1

X�.i/li

� nY
j D1

Ylj j ;

because only li ’s which are permutations in �n have non-vanishing contribution in
the sum. This remark would be already enough to set the Cauchy–Binet theorem in
the simple case in which X commutes with Y [1], Proposition 3.1.

The second step of the proof comes from analyzing which terms do arise from
commuting the factor Yl11 to the position between X�.1/l1

and X�.2/l2
, and so on

recursively, by using the general formula

x1Œx2 : : : xr ; y� D x1

rX
sD2

x2 : : : xs�1Œxs; y�xsC1 : : : xr :

As an illustration, we consider the first application of this procedure:

� nY
iD1

X�.i/li

�� nY
j D1

Ylj j

�

D X�.1/l1
Yl11

� nY
iD2

X�.i/li

� nY
j D2

Ylj j

C
nX

kD2

� k�1Y
rD1

X�.r/lr

�
ŒX�.k/lk

; Yl11�
� nY

iDkC1

X�.i/li

� nY
j D2

Ylj j :
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Then

X
�2�n

sgn.�/
X

l1;:::;ln2Œm�

� nY
iD1

X�.i/li

� nY
j D1

Ylj j

D
X

�2�n

sgn.�/
h
.XY /�.1/1

X
l2;:::;ln2Œm�

� nY
iD2

X�.i/li

� nY
j D2

Ylj j

�
mX

kD2

X
l1;:::;ln2Œm�

� k�1Y
rD1

X�.r/lr

�
A�.k/1Bl1lk

� nY
iDkC1

X�.i/li

� nY
j D2

Ylj j

i
:

(32)

Consider the summands for each k in the second row on the right hand side of (32).
First of all, consider Lemma 3.3 applied to a matrixX 0, defined asX 0

ij D Xij if i ¤ k

and Aij if i D k. We are in the hypothesis of the lemma because X is row-pseudo-
commutative and satisfies the condition (12). One can then write those summands
as

�
X

�2�n

sgn.�/
X

l1;:::;ln2Œm�

A�.k/1

� k�1Y
rD2

X�.r/lr

�
X�.1/l1

Bl1lk

� nY
iDkC1

X�.i/li

� nY
j D2

Ylj j :

Then, using the translation lemma for � ! � B .1 k/, and performing the sum over l1

C
X

�2�n

sgn.�/
X

l2;:::;ln2Œm�

A�.1/1

� k�1Y
rD2

X�.r/lr

�
.XB/�.k/lk

� nY
iDkC1

X�.i/li

� nY
j D2

Ylj j :

When Bij D ıij the product of matrices X becomes of the same form of the first
term of the right hand side of (32). This procedure can be repeated iteratively and,
ultimately, was enough to prove Proposition 1.1.

However, as the commutation ofX’s and Y ’s now produces extra matrices B , we
have to deal with an induction expression of a more general form. One easily sees
that, at all steps, matrices B will only act on X’s from the right, so, in order to deal
with the generic step t of the procedure (beside t D 1 seen in detail above), we will
consider expressions of the form

X
�2�n

sgn.�/L.�/
X

lt2Œm�

� nY
iDt

.XB�.i//�.i/li

� nY
j Dt

Ylj j
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where L.�/ depend only from �1; : : : �t�1 and 	.i/ are non-negative integers. This
form includes the initial situation at t D 0, and, as we see in a moment, is stable when
t is increased. Indeed we have

X
�2�n

sgn.�/L.�/
X

lt2Œm�

� nY
iDt

.XB�.i//�.i/li

� nY
j Dt

Ylj j

D
X

�2�n

sgn.�/L.�/.XB�.t/Y /�.t/t

� nY
iDtC1

.XB�.i//�.i/li

� nY
j DtC1

Ylj j

C
nX

kDtC1

X
�2�n

sgn.�/L.�/
X

lt2Œm�

� k�1Y
rDt

.XB�.r//�.r/lr

�

� A�.k/t .B
�.k/C1/lt lk

� nY
iDkC1

.XB�.i//�.i/li

� nY
j DtC1

Ylj j :

In the last summands, we would like to commute the term A�.k/t in front of all
X’s, as it carries the smallest column-index. This is indeed possible, at the light of
Lemma 3.3. Consider this lemma applied to a matrix X 0, defined as

X 0
ij D

8<
:
.XB�.j //ij if i ¤ k;

Aij if i D k.

We are in the hypothesis of the lemma because X is row-pseudo-commutative and
satisfies the condition (12), and therefore the same is true when replacing X with
XB�.j / because B�.j / acts on the column indices. Then apply the involution lemma
with .t k/, and sum over lt where appropriate. We can thus write

X
�2�n

sgn.�/L.�/
X

lt2Œm�

� nY
iDt

.XB�.i//�.i/li

� nY
j Dt

Ylj j

D
X

�2�n

sgn.�/L.�/ .XB�.t/Y /�.t/t

� nY
iDtC1

.XB�.i//�.i/li

� nY
j DtC1

Ylj j

C
nX

kDtC1

X
�2�n

sgn.�/L.�/A�.t/t

� k�1Y
rDtC1

.XB�.r//�.r/lr

�

� .XB�.k/C�.t/C1/�.k/k

� nY
iDkC1

.XB�.i//�.i/li

� nY
j DtC1

Ylj j :

(33)
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The relevant point in this expression is that all of the n � t C 1 summands are of
the same form of the original left hand side, with one less matrix Y to be reordered.
However, while in the simpler case Bij D ıij the various terms were identical up to
the prefactor, and could be collected together in a simple induction, here they differ
in the set of exponents f	.i/g. Not accidentally, the combinatorics of these lists of
exponents has already been discussed in Section 4. Indeed we can identify

.	1; : : : ; 	t�1 j 	t ; : : : ; 	n/

defD
X

�2�n

sgn.�/
� t�1Y

iD1

M
.�i /

�.i/i

� X
lt ;:::;ln2Œm�

� nY
j Dt

.XB�j /�.j /lj

� nY
rDt

Ylr r ;

where parameters 	i have to be integers, and 	i � �1 for i D 1; : : : ; t � 1, while

	i � 0 for i D t; : : : ; n. The matrix elements M
.�j /

ij are Aij if 	j D �1 and
.XB�jY /ij if 	j is non-negative. In particular

E	0 D .j 0 : : : 0„ƒ‚…
n

/ D
X

�2�n

sgn.�/
X

l1;:::;ln2Œm�

� nY
iD1

X�.i/li

� nY
j D1

Ylj j :

Our rule (33) coincides with (29) under this identification. We can apply Lemma 4.1
to get

X
L�Œm�

jLjDn

col-detXŒn�;L col-det YL;Œn� D
X

	

c.
/
X

�2�n

sgn.�/
� nY

iD1

M
.�i .	//

�.i/i

�
;

where notations are as in Section 4, i.e. 
 is a directed path in the upper half-plane
starting from the origin, the heights .h0; : : : ; ht�1/, are given by hiC1 � hi D �	i ,
each 	i is in the set f�1; 0; 1; 2; : : :g, and the coefficients c.
/ are given by (31).

Now we can use Lemma 4.2 to obtainX
L�Œm�

jLjDn

col-detXŒn�;L col-det YL;Œn�

D
X
E�n

h0 j
X

�2�n

sgn.�/
� nY

iD1

�.	i /M
.�i /

�.i/i

�
j 0i

D h0 j
X

�2�n

sgn.�/
nY

iD1

� 1X
�i D�1

�.	i/M
.�i /

�
�.i/i

j 0i

D h0 j col-det
� 1X

�D�1

�.	/M .�/
�

j 0i;

(34)
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but

1X
�D�1

�.	/M .�/ D aM .�1/ C
1X

�D0

.a�/�M .�/

D aACX

1X
�D0

.a�B/�Y

D aACX.I � a�B/�1Y;

so we got our thesis.

6. Holomorphic representation

The results of Proposition 1.2 can also be expressed as a multiple integral in the
complex plane, a structure that, within the language of the quantum oscillator, is
called a holomorphic representation. We shall use the coherent states of the quantum
oscillator, which are the states j zi defined as

j zi defD exp.za�/ j 0i

with z 2 C a complex number. From the commutation relations (11) it soon follows
the fundamental property of these states

a j zi D z j zi

that is, it is an eigenstate of the annihilation operator. And, of course

hz j defD h0 j exp. Nza/ and hz j a� D hz j Nz;

where Nz is the complex-conjugate of z. One easily verifies that two different coherent
states are not orthogonal

hz j z0i D exp. Nzz0/:

However, since coherent states obey a closure relation, any state can be decomposed
on the set of coherent states. They hence form an overcomplete basis. This closure
relation can be expressed by the resolution of the identity

Z
dz d Nz
i�

exp.�jzj2/ j zihz jD 1:
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Let us consider the evaluation of

h0 j .f1.a
�/C g1.a// : : : .fn.a

�/C gn.a// j 0i;

where ff˛; g˛g1�˛�n are 2n generic expressions in a ring R, for which we have a
priori no knowledge on the commutators.5 We are ultimately interested in the case,
corresponding to Proposition 1.2,

h0 j col-det.F.a�/CG.a// j 0i

D
X

�2�n

sgn.�/h0 j
nY

j D1

.F�.j /j .a
�/C G�.j /j .a// j 0i

(the product is ordered), with

F.a�/ D X.1 � a�B/�1Y and G.a/ D aA:

Let z0 D zn D 0, and introduce n � 1 intermediate coherent states, with parameters
z1; : : : ; zn�1, to get (with no more need of ordered products on the right hand side)

h0 j
nY

j D1

.fj .a
�/C gj .a// j 0i

D
Z n�1Y

j D1

dzj d Nzj
i�

e�jzj j2
nY

j D1

hzj �1 j fj .a
�/C gj .a/ j zj i:

Each scalar product is easily evaluated according to

hu j f .a�/C g.a/ j vi D .f . Nu/C g.v//e Nuv;

so that

h0 j
nY

j D1

.fj .a
�/C gj .a// j 0i

D
Z n�1Y

j D1

dzjd Nzj
i�

e� Pn
j D1 Nzj .zj �zj C1/

nY
j D1

.fj . Nzj �1/C gj .zj //;

5We mean here that, for f .a�/ D P
i .a�/i fi , g.a/ D P

j aj gj , with fi ’s and gj ’s in a commu-
tative ring, Œf .a�/; g.a/� D P

i;j fi gj Œ.a�/i ; aj �, and the commutators are known, although compli-
cated in general. However, if the coefficients fi ’s and gj ’s are valued in a generic non-commutative ring,
even if commuting with the Weyl–Heisenberg algebra, we have unknown extra terms of type Œfi ; gj �,
namely: Œf .a�/; g.a/� D P

i;j .gj fi Œ.a�/i ; aj � C .a�/i aj Œfi ; gj �/.
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and in particular

h0 j col-det.aACX.1� a�B/�1Y / j 0i

D
Z n�1Y

j D1

dzj d Nzj
i�

e� Pn
j D1 Nzj .zj �zj C1/ col-detM.z/

and

Mij .z/ D Aij zj C .X.1 � Nzj �1B/
�1Y /ij :

The equation above, jointly with Proposition 1.2, provides a representation of the non-
commutative Cauchy–Binet expression in terms of an integral over n (commuting)
complex variables. This result is somewhat implicit in Proposition 1.2, and the
standard general facts on the holomorphic representation of the quantum oscillator.

Let us however observe that, in Section 5, we could have derived directly the
holomorphic representation, from the Cauchy–Binet left hand side, instead of the
representation in terms of creation and annihilation operators. We only need to follow
a different track at the very final step of the proof, where, in equation (34), we use
the combinatorial Lemma 4.2.

The equivalent lemma for coherent states is based on the formula6

Z
dz d Nz
i�

zp Nzq exp.�Nz.z � �// D pŠ

.p � q/Š
�p�q ; (35)

and reads (using notations as described in Section 4 for paths 
 , symbols E	n, coeffi-
cients c.E	n/, and conversion between 	i ’s and hi ’s)

Lemma 6.1. For 	 � �1, define the monomials

�i .	/ D
8<
:

Nz�
i�1; 	 � 0I
zi ; 	 D �1:

6Which is easily proven, e.g. in generating function,

X
p;q


p�q

pŠqŠ

Z
dz d Nz

i�
zp Nzq exp.�Nz.z � �//

D
Z

dz d Nz
i�

exp.�Nz.z � �/ C Nz� C 
z/ D exp.
.� C �//;

while X
p;q


p�q

pŠqŠ

pŠ

.p � q/Š
�p�q D X

p;q


p

pŠ
.� C �/p D exp.
.� C �//:
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Then, when the symbol E	n D .	1; : : : 	nj / corresponds to a path 
 , setting z0 D
zn D 0,

Z n�1Y
j D1

dzj d Nzj
i�

e� Pn�1
j D1 Nzj .zj �zj C1/�1.	1/ : : : �n.	n/ D c.E	n/ D

Y
i2Œn�

hi �hi�1

hi�1Š

hi Š
;

while otherwise the integral above is zero.

Proof. We try to follow as closely as possible the reasoning in the proof of Lemma 4.2.
We proceed by induction. Assume that, for a sequence 	1; : : : ; 	t such that the
corresponding path remains positive,

Z t�1Y
j D1

dzjd Nzj
i�

e� Pt�1
j D1 Nzj .zj �zj C1/�1.	1/ : : : �t .	t / D z

ht
t

Y
i2Œt�

hi �hi�1

hi�1Š

hi Š
:

This is indeed the case for t D 0 (where, as customary for products over empty sets, we
have 1 D 1), and in the more convincing case t D 1 (where we have no integrations
to perform, and, as z0 D 0, �1.	1/ D z1, 1 and 0 respectively if 	1 D �1, 0, or
strictly positive).

Then, we analyze the consequence of increasing t on both sides of the equation.
On the left hand side, we should multiply by e�Nzt .zt �ztC1/�tC1.	tC1/, and then
integrate over dzt d Nzt . If 	tC1 D �1, �tC1.	tC1/ D ztC1 and htC1 D ht C 1,
while if 	tC1 � 0, �tC1.	tC1/ D Nz�tC1

t and htC1 D ht � 	tC1. In both cases, the
integral is of the form (35), and we get

Z
dztd Nzt

i�
e�Nzt.zt �ztC1/z

ht
t ztC1 D z

ht C1
tC1 D z

htC1

tC1

and

Z
dztd Nzt

i�
e�Nzt.zt �ztC1/z

ht
t Nz�tC1

t D ht Š

.ht � 	tC1/Š
z

ht ��tC1

tC1 D ht Š

htC1Š
z

htC1

tC1 :

In the two cases, the integration produces the appropriate relative factor, which, in
particular, is zero if the path goes below the horizontal axis (because of a 1=kŠ factor,
with k < 0). At the last step, we remain with a factor zhn

n . As zn D 0, we select only
the paths terminating at height zero.
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7. A lemma on the Campbell–Baker–Hausdorff formula

The goal of this section is to prove the following relation, which is a preparatory lemma
to our Capelli identity in Grassmann representation, proven in the next section.

Proposition 7.1. Let a and a� be the generators of a Weyl–Heisenberg algebra, i.e.
Œa; a�� D 1, and f .x/ a formal power series. Then, at the level of formal power
series, we have

exp.a� C f .a// D exp.a�/ exp
� X

k�0

1

.k C 1/Š
.@kf /.a/

�

D exp.a�/ exp
�exp.@/ � 1

@
f .a/

�
:

(36)

The proposition above is a special case of the Campbell–Baker–Hausdorff (CBH)
formula [37], [38], [39], and [40]. We give here a proof that makes use only of the
existence of a CBH formula (and not the explicit expressions known in the literature).
Furthermore, an additional argument provides a slightly longer variant, which instead
is completely self-contained.

We recall that, given two elements x and y in a non-commutative ring, the
Campbell–Baker–Hausdorff formula is an expression for ln.exp.x/ exp.y// as a for-
mal infinite sum of elements of the Lie algebra generated by x and y:

exp.x/ exp.y/ D exp.x C y C z/ and z D S.x; y/:

The first few terms read

S.yI x/ D 1

2
Œx; y�C 1

12
Œx � y; Œx; y��C � � � ;

and the generic summand in this series has the form

Œzs.1/; Œzs.2/; : : : Œzs.k�1/; zs.k/� : : : ��

for some integer k � 2, .s.1/; : : : ; s.k// 2 f0; 1gk, and the identification z0 D
x, z1 D y. Of course, terms with s.k/ D s.k � 1/ vanish in any Lie algebra,
and many other strings are redundant, e.g., besides the trivial Œ: : : ; Œx; y� : : : � D
�Œ: : : ; Œy; x� : : : �, a first non-trivial relation is Œx; Œy; Œx; y��� D Œy; Œx; Œx; y���.

The existence statement is relatively easy to obtain. The full expression at all
orders with coefficients in closed form is complicated, but redundant forms (in the
sense above) are well-known in the literature; see e.g. [32], pp. 134 and 135.
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Formal inversion (that is, solving with respect to y, leaving z as an indeterminate)
is easily achieved. Define the inverse problem as

exp.x C z/ D exp.x/ exp.z C y/ and y D zS.xI z/I (37)

then, multiplying both sides by e�x from the left, one obtains

zS.xI z/ D S.�x; x C z/:

The existence result for zS follows from existence for S and the relation above.

Proof of Proposition 7.1. Our proposition corresponds to the solution of the inverse
problem (37), finding an expression for zS.xI z/, in the special case of x D a� and
z D f .a/.

In this case many commutators vanish. We have

Œa�; Œa�; : : : Œa�„ ƒ‚ …
k

; f .a/� : : : �� D .�@/kf .a/

where @kf denotes the k-th derivative of f (as a power series). So, all the expressions
above do commute with f .a/ and we see that in our case all non-vanishing strings are
the ones of the form .0; 0; : : : ; 0; 1/ (the ones .0; 0; : : : ; 0; 1; 0/ are also non-vanishing
but clearly redundant). In other terms, writing for a generic Lie algebra

zS.xI z/ D
X
k�1

ck Œx; Œx; : : : Œx„ ƒ‚ …
k

; z� : : : �� C O.z2/

(where O.�/ is in the sense of polynomials in the enveloping algebra), we get in our
case

zS.a�I f .a// D
X
k�1

ck Œa
�; Œa�; : : : Œa�„ ƒ‚ …

k

; f .a/� : : : �� D
X

k

ck .�@/kf .a/: (38)

Observe that, again in the enveloping algebra,

Œx; Œx; : : : Œx„ ƒ‚ …
k

; z� : : : �� D
kX

hD0

.�1/h
�
k

h

�
xk�hzxh

and that

exp.x C z/ D exp.x/C
X
k�0

kX
hD0

1

.k C 1/Š
xk�hzxh C O.z2/:
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Appealing to the existence of a solution, we can determine the ck’s by matching the
coefficient of zxk on the two sides of (37), using (38) and (7), obtaining

ck D 1

.k C 1/Š

that, with the fact
P

k�0 x
k=.kC 1/Š D .ex � 1/=x (used here at the level of formal

power series), gives our statement.
Avoiding to appeal to the existence statement requires to match all possible other

linear monomials, of the kind xhzxk�h. Then, the consistency of the assignment of
ck’s boils down to the following relation: for each k and h positive integers,

hX
iD0

.�1/h�i

�
k C 1

i

��
k � i
h � i

�
D 1:

This is proven by observing that

�
k � i
h � i

�
D .�1/h�i

�
h � k � 1
h � i

�
;

and, using Chu–Vandermonde convolution,

X
i

�
n

i

��
m

k � i
�

D
�
nCm

k

�
:

If instead of a� we have ca�, with c some commuting quantity, the same reason-
ing can be done, and a simple scaling applies to all formulas. The corresponding
generalization of (36) is

exp
�
ca� C f .a/

�
D exp.c a�/ exp

� X
k�0

ck

.k C 1/Š
.@kf /.a/

�

D exp.ca�/ exp
�exp.c@/ � 1

c@
f .a/

�
:

(39)

We shall need also the identity obtained by Hermitian conjugation

exp
�
caC f .a�/

�
D exp

� X
k�0

ck

.k C 1/Š
.@kf /.a�/

�
exp.ca/

D exp
�exp.c@/ � 1

c @
f .a�/

�
exp.ca/:

(40)
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8. The Capelli identity in Grassmann algebra

Besides column- and row-determinants, defined in (3) and (4) respectively, another
possible non-commutative generalization of the determinant is the symmetric-deter-
minant:

sym-detM
defD 1

nŠ

X
�;
2�

sgn.�/ sgn.�/
nY

iD1

M�.i/
.i/: (41)

In contrast to the cases of the column- and row-determinant, the definition (41) de-
mands in general the inclusion of rational numbers in the fieldK over which the ring
R is defined.

For any permutation � 2 �n let us denote M 
 the matrix with entries .M 
 /ij D
Mi
.j /, and 
M the matrix with entries .
M/ij D M
.i/j . We clearly have, for any
matrix M ,

col-det 
M D sgn.�/ col-detM and row-detM 
 D sgn.�/ row-detM;

while in general the action of the symmetric group on columns and rows, respectively
for the two cases, is not simple.

Indeed, the symmetric-determinant reads

sym-detM D 1

nŠ

X

2�n

sgn.�/ col-detM 
 D 1

nŠ

X

2�n

sgn.�/ row-det 
M (42)

and no relevant further simplifications are possible in general.
However, for a n-dimensional matrix M with weakly row-symmetric commuta-

tors, (and thus in particular ifM is row-pseudo-commutative), in [1], Lemma 2.6(a),
we proved that both actions of the symmetric group are simple, i.e. also

col-detM 
 D sgn.�/ col-detM (43)

(and similarly for the row-determinant, ifM has weakly column-symmetric commu-
tators), and therefore for such a matrix the expression (42) simplifies (in particular,
rationals are not necessary)

Corollary 8.1. For a n-dimensional matrix M with weakly row-symmetric commu-
tators

sym-detM D col-detM:

Our interest in the symmetric-determinant follows from the remark that it provides
the generalization of the Berezin integral representation (15) for the determinant of a
matrix with commuting elements. Indeed, forM an�nmatrix with elements in a non-
commutative ring R, if R contain the rationals (or M is row-pseudo-commutative),
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and f N i ;  igi2Œn� a set of 2n Grassmann variables commuting with the entries Mij ,
we have Z

D. ; N / exp. N M / D sym-detM: (44)

Comparatively, the Grassmann formulas for the column- and row-determinant are
more cumbersome, as they require an ordering of the n factorsZ

d n : : : d 1 . M/1 : : : . M/n D col-detM (45)

and Z
d n : : : d 1.M /1 : : : .M /n D row-detM:

Grassmann indeterminates present the advantage of encoding our commutation rela-
tions in a simple way. For example, we have the following result.

Lemma 8.2. LetR be a ring, andA an�nmatrix with elements inR. Let the f igi2Œn�

be nilpotent Grassmann indeterminates, that is  2
i D 0 and their anti-commutators

f i ;  j g D 0 vanish.

(a) Let X be a n �m matrix with elements in R such that

ŒXij ; Ak`�� ŒXkj ; Ai`� D 0 for all i; j; k; `: (46)

Then
f. X/j ; . A/`g defD

X
i2Œn�

X
k2Œn�

f iXij ;  kAk`g D 0:

(b) Let Y be a m � n matrix with elements in R such that

ŒYij ; Ak`�� ŒYi`; Akj � D 0 for all i; j; k; `:

Then
f.Y /i ; .A /kg defD

X
j 2Œn�

X
`2Œn�

fYij j ; Ak` `g D 0:

Proof. (a) We have that

f. X/j ; . A/`g D
X

i;k2Œn�

. iXij kAk` C  kAk` iXij /

D
X

i;k2Œn�

 i kŒXij ; Ak`�

D
X

1�i<k�n

 i k.ŒXij ; Ak`�� ŒXkj ; Ai`�/;
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where we have taken into account that i ¤ k because the  ’s are nilpotent and we
have put together the terms in which both  i and  k appears. But now each term in
the sum vanish by the hypothesis (46). The case (b) is identical.

This result is used to prove the following lemma.

Lemma 8.3. Let R be a ring, and X a n � m, Y a m � n, A a n � n and B a
m � m matrix with elements in R. Let the f N i ;  igi2Œn� be nilpotent Grassmann
indeterminates commuting with R, that is N 2

i D  2
i D 0 and their anti-commutators

f N i ; N j g D f N i ;  j g D f i ;  j g D 0 vanish. If

ŒXij ; Ak`�� ŒXkj ; Ai`� D ŒYij ; Ak`�� ŒYi`; Akj � D 0 for all i; j; k; `

and the elements of B commute with the ones of A, then for each integer s

Œ N XBsY ; N A � D 0:

Proof. Indeed, as Bij ’s and Ak`’s do commute, we can write the commutator as

Œ N XBsY ; N A �

D
X
r2Œn�

. N XBs/r Œ.Y /r ; N A �C Œ. N X/r ; N A � .BsY /r :

Consider separately each of the resulting commutators:

Œ. N X/r ; N A � D
X

k2Œn�

f. N X/r ; . N A/kg k D 0 (47a)

and

Œ.Y /r ; N A � D
X

k2Œn�

N kf.Y /r ; .A /kg D 0; (47b)

where we used Lemma 8.2.

We have now all the ingredients to prove Proposition 1.4.

Proof of Proposition 1.4. (a) As Y is row-pseudo-commutative, and we assumed that
our ring contains the rationals, using (43), we can rewrite the left hand side of (18) asX

L�Œm�

jLjDn

col-detXŒn�;L col-det YL;Œn�

D 1

nŠ

X

2�n

sgn.�/
X

L�Œm�

jLjDn

col-detXŒn�;L col-det.Y 
 /L;Œn�:

(48)
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From the hypotheses we soon have that, for any permutation � 2 �n, the matrices
X; Y 
 ; A
 ; B satisfy the hypothesis of Proposition 1.2(a) and, therefore, as X is
row-pseudo-commutative, we have that

X
L�Œm�

jLjDn

col-detXŒn�;L col-det.Y 
 /L;Œn� D h0 j col-det.aA
 C X.1� a�B/�1Y 
 / j 0i:

Note that, on the right hand side, the permutation � has exactly the action from the
right on the matrix M D aA C X.1 � a�B/�1Y . Thus, the combination in (48)
corresponds to the definition (42) of the symmetric-determinant,

1

nŠ

X

2�n

sgn.�/ col-det.aA
 CX.1�a�B/�1Y 
 / D sym-det.aACX.1�a�B/�1Y /:

We can use the Grassmann representation, (44), for the expression above, to conclude
that

X
L�Œm�

jLjDn

col-detXŒn�;L col-det YL;Œn�

D
Z

D. ; N /h0 j exp. N A a C N X.1� a�B/�1Y / j 0i:

Now we use the result in (40) by posing c D N A and f .a�/ D N X.1�a�B/�1Y .
Using the hypotheses (16) and (17) of the proposition, we can verify the hypothesis
of Lemma 8.3, therefore our quantities c and f .a�/ commute (as required for (40) to
apply), and we get

exp. N A aC N X.1 � a�B/�1Y / D exp.g.a�// exp. N A a/ (49)

with g.a�/ determined according to (40),7

g.a�/ D
X
k�0

. N A /k
k C 1

. N XBk.1� a�B/�k�1Y /:

Note that, in the sum, k cannot become larger that n � 1, because of the nilpotency
of the Grassmann indeterminates.

7Note at this aim that, if ŒMij ; Mk`� D 0, @
@�

.Eu; .I � �M /�s Ev/ D s.EuM; .I � �M /�s�1 Ev/.
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In (49) the creation and annihilation operators are ordered into a polynomial with
monomials of the form .a�/kah (i.e., they are antinormal–, or anti-Wick–ordered),
and the whole expression is drastically simplified because

exp.a N A / j 0i D j 0i

and

h0 j exp.g.a�// D h0 j exp.g.0// D h0 j exp
� X

k�0

. N A /k
k C 1

. N XBkY /
�
:

As there are no more creation and annihilation operators, we can just drop the factor
h0 j 0i D 1, to obtain the purely fermionic representation

X
L�Œm�

jLjDn

col-detXŒn�;L col-det YL;Œn� D
Z

D. ; N / exp
� X

k�0

. N A /k
k C 1

. N XBkY /
�
;

or, by summing over k, intending ln.I �M/ D P
k�1

1
k
M k as a polynomial, trun-

cated by the nilpotence of N A , and using Œ. N X/r ; N A � D 0 for every r (valid
because of Lemma 8.2, see equation (47)),

X
L�Œm�

jLjDn

col-detXŒn�;L col-det YL;Œn�

D
Z

D. ; N / exp
�

� N X ln.1 � . N A /B/
. N A /B Y 

�
;

as announced.
For the case (b), consider now the matrices 
X; Y; 
A;B which satisfy the hypoth-

esis of Proposition 1.2(b) and therefore, asX andY are column-pseudo-commutative,
following the procedure above,

X
L�Œm�

jLjDn

row-detXŒn�;L row-det YL;Œn�

D
Z

D. ; N /h0 j exp.a� N A C N X.1 � aB/�1Y / j 0i

and, to conclude, we proceed as in the previous case, except that we use the iden-
tity (39) instead of (40).
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9. Direct proof of the Grassmann representation for B D I

We have proven a Grassmann version of the non-commutative Cauchy–Binet formula
as a consequence of the Weyl–Heisenberg version. Considering also the necessary
analysis of combinatorics of Łukasiewicz paths, for the latter, and of Campbell–
Baker–Hausdorff formula, for the former, the proof is quite composite. It is conceiv-
able that a more direct proof may exist.

In this section we give such a proof, in the simplified situation in which, besides
the hypotheses in Proposition 1.4, we have that B is the identity matrix. Indeed,
in this case, the version of non-commutative Cauchy–Binet formula obtained in [1]
(and reported here as Proposition 1.1(a)), and the Grassmann algebra representation
of Proposition 1.4(a), hold simultaneously. We produce here a short proof of the
specialized Proposition 1.4(a), taking Proposition 1.1(a) as the starting point.

Actually, just like in Proposition 1.3, we will end up proving that this relation
between the right hand sides of (7) and (18) is in fact valid regardless from the fact
that A is related to the commutator of X and Y , i.e. they are a consequence of the
following stronger fact.

Proposition 9.1. Let R be a ring containing the rationals, and U and V be two
n � n matrices with elements in R. Let N i ,  i , with 1 � i � n, be Grassmann
indeterminates. Define

.Qcol.V //ij
defD Vij .n � j /: (50)

Assume that
Œ N U ; N V � D 0 (51)

and that, for any permutation � ,

sgn.�/ col-det.U 
 CQcol.V 
 // D col-det.U CQcol.V //: (52)

Then

col-det.U CQcol.V // D
Z

D. ; N / exp
� X

k�0

. N V /k
k C 1

. N U /
�
: (53)

Proof. Remark that, for s and t commuting indeterminates, at the level of power
series,

exp
�
s

X
k�0

tkC1

k C 1

�
D .1 � t /�s D

X
n�0

tn

nŠ
.s C .n � 1//.s C .n� 2// : : : s:

With the choice t ! tv and s ! u=.tv/, with u, v and t commuting, we get that

exp
�
t u

X
k�0

.t v/k

k C 1

�
D

X
n�0

tn

nŠ
.uC .n� 1/v/.uC .n � 2/v/ : : : u:
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We apply this formula to the right hand side of (53), with u D N U , v D N V , and
t a formal indeterminate that counts the degree in Grassmann variables (the coefficient
of order tk has k factors N i ’s and k  j ’s). In particular, Grassmann integration selects
only the term tn, and we get

Z
D. ; N / exp

� X
k�0

. N V /k
k C 1

. N U /
�

D 1

nŠ

Z
D. ; N /. N .U C V.n � 1// /. N .U C V.n� 2// / : : : . N U /:

(54)

The left hand side of (53), using (45), readsZ
d N n : : : d N 1. N .U CQcol//1 : : : . N .U CQcol//n;

that is, given the expression (50) for Qcol,Z
d N n : : : d N 1. N .U C V.n � 1///1. N .U C V.n� 2///2 : : : . N U/n: (55)

We can introduce a trivial factor 1 D R
d n : : : d 1 1 : : :  n, and reorder the Grass-

mann variables, and terms in the integration measure, to rewrite (55) asZ
D. ; N /. N .U C A.n� 1///1. N .U C A.n� 2///2 : : : . N U/n n : : :  1:

We can exploit the invariance in the hypothesis (52), and the fact that our ring contains
the rationals, to replace the expression above by its symmetrization

1

nŠ

X



sgn.�/
Z

D. ; N /. N .U 
 C A
 .n� 1///1 : : : . N U 
 /n n : : :  1:

As .M 
 /ij D Mi
.j /, we just have

1

nŠ

X



sgn.�/
Z

D. ; N /. N .U C A.n� 1///
.1/ : : : . N U/
.n/ n : : :  1:

Note that the factors .n� j /, multiplying the matrix entries of A, remain unchanged
in their ordering, and in particular the values of j are distinct from the indices, now
�.j /, in the corresponding product. Reorder the factors  i ’s so to compensate for
the signature of the permutation

1

nŠ

X



Z
D. ; N /. N .U C A.n� 1///
.1/ : : : . N U/
.n/ 
.n/ : : :  
.1/;
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and extend the sum to all n-uples of integers

1

nŠ

X
i1;:::;in2Œn�

Z
D. ; N /. N .U C A.n� 1///i1

. N .U C A.n� 2///i2 : : : .
N U/in in : : :  i1

(this is possible because repeated indices give zero, from the nilpotence of  i vari-
ables). Reordering the  i ’s next to the factors with the corresponding indices, and
performing the sum over indices i˛’s, gives

1

nŠ

Z
D. ; N /. N .U C A.n � 1// /. N .U C A.n� 2// / : : : . N U /;

which coincides with (54), as was to be proven.

Our case of interest is recovered by setting U D XY and V D A. The hypoth-
esis (51) holds, as a consequence of Lemma 8.3 specialized to B D I (of which,
because of Lemma 3.6, the hypotheses are satisfied), while the hypothesis (52) is
verified by observing that, for any permutation � , the three matrices X , Y 
 and A


satisfy the hypotheses of Proposition 1.1(a), and by applying (43) to the left hand
side of the proposition statement (we use at this aim the fact that Y has weakly
row-symmetric commutators, as implied by the hypotheses of Proposition 1.4(a)).
Conversely, equations (43) and (52) are not immediately related, as, because of the
factors n� j in Qcol, the matrix on the left hand side of (52) does not correspond to
the action of � from the right.

Remark that, with respect to Proposition 1.3, the level of generality of this propo-
sition in comparison to the specialization pertinent to Capelli-like identities is less
pronounced. This is mainly due to the fact that the hypothesis (52) is in fact very
demanding. Indeed, it implies in particular that, for any permutation � and any
transposition .j j C 1/ of consecutive elements,

col-det.U 
 CQcol.V 
 //C col-det.U 
B.j j C1/ CQcol.V 
B.j j C1/// D 0:

Using the representation (45) of column-determinants, givesZ
d n : : : d 1LŒ. .U C V.n� j ///r. .U CV.n� j � 1///s C .r $ s/�R D 0;

where L and R are appropriate factors, corresponding, i ¤ j; j C 1, to the prod-
uct of . .U CQcol//i . A sufficient condition for the integral to vanish is that the
combination in square brackets is zero. Strictly speaking, this is not also necessary,
but it is hard to imagine a different mechanism for the quantity above to vanish, and
still the original column-determinant being non-trivial. So we keep on investigating
under which conditions on U and V we have, for every r , s and j ,

. .U C V.n � j ///r. .U C V.n � j � 1///s C .r $ s/ D 0:
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Matching the terms with different degree in j gives

f. V /r ; . V /sg D 0;

f. U /r ; . V /sg D �f. U /s; . V /rg (56)

and

f. U /r ; . U /sg D . U /r. V /s C . U /s. V /r :

Incidentally, equation (56) implies (51), thus the three equations above are sufficient
for Proposition 9.1 to apply.
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