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Extendable self-avoiding walks

Geoffrey R. Grimmett, Alexander E. Holroyd, and Yuval Peres

Abstract. The connective constant � of a graph is the exponential growth rate of the number
of n-step self-avoiding walks starting at a given vertex. A self-avoiding walk is said to be
forward (respectively, backward) extendable if it may be extended forwards (respectively,
backwards) to a singly infinite self-avoiding walk. It is called doubly extendable if it may be
extended in both directions simultaneously to a doubly infinite self-avoiding walk. We prove
that the connective constants for forward, backward, and doubly extendable self-avoiding
walks, denoted respectively by �F, �B, �FB, exist and satisfy � D �F D �B D �FB for every
infinite, locally finite, strongly connected, quasi-transitive directed graph. The proofs rely on
a 1967 result of Furstenberg on dimension, and involve two different arguments depending on
whether or not the graph is unimodular.

Mathematics Subject Classification (2010). 05C30, 82B20, 60K35.

Keywords. Self-avoiding walk, connective constant, transitive graph, quasi-transitive graph,
unimodular graph, growth, branching number.

1. Introduction

Let G D .V; E/ be an infinite, strongly connected, locally finite, directed graph (pos-
sibly with parallel edges), and let �n.v/ be the number of n-step self-avoiding walks
(SAWs) on G starting at the vertex v 2 V and directed away from v. Hammersley
proved in 1957 [5] that the limit

�
defD lim

n!1.sup
v2V

�n.v//1=n (1.1)

exists, and that if G is quasi-transitive then

lim
n!1 �n.v/1=n D � for all v 2 V: (1.2)

The constant � D �.G/ is called the connective constant of G. Note that (1.1)
is not necessarily the natural definition of connective constant for a general graph;
see [4] and [8]. There is no loss of generality in restricting attention to directed
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graphs, since each edge of an undirected graph may be interpreted as a pair of edges
with opposite orientations.

The purpose of this article is to study the growth rates of the numbers of n-step
SAWs from v that are extendable to infinite SAWs at one or both of their ends.

Let w be an n-step directed SAW starting at a vertex v. We call w forward
extendable if it is an initial segment of some singly infinite directed SAW from v.
We call w doubly extendable if it is a sub-walk of some doubly infinite directed
SAW passing through v. We call w backward extendable if it is the final segment of
some singly infinite directed SAW from infinity, passing through v and ending at the
other endpoint of w. Let �F

n .v/, �B
n .v/, and �FB

n .v/ denote the numbers of forward,
backward, and doubly extendable n-step SAWs from v, respectively. We define �F,
�B, and �FB analogously to (1.1) whenever the limits exist.

Theorem 1. Let G be an infinite, locally finite, strongly connected, quasi-transitive
directed graph.

(i) The limits �F, �B, �FB exist and satisfy � D �F D �B D �FB.

(ii) We have

lim
n!1 �F

n .v/1=n D �F; v 2 V: (1.3)

The analogue of (1.3) does not hold in general for backward or doubly extendable
walks. For example, if v has only one neighbour (joined to it by edges in both
directions) then �B

n .v/ and �FB
n .v/ are both 0 for n � 1.

A principal ingredient of the proof of Theorem 1 is a result of Furstenberg [3],
Proposition III.1, from 1967; a recent exposition appears in [10], Section 3.3. The
same method provides an alternative proof of Hammersley’s result (1.2).

Theorem 1(i) states that the exponential growth rates of counts of SAWs coincide
for the four types of SAW under consideration. One may ask also about more refined
asymptotic properties. Suppose G satisfies the conditions of Theorem 1, and is
for simplicity vertex-transitive. The sub-multiplicativity of SAW-counts (see the
proof of Lemma 5 below) gives that ��

n � .��/n for each of � 2 f ; F; B; FBg.
Therefore, whenever it is known that �n � A�n for some A < 1, it follows that
A�1 � ��

n=�n � 1. This is indeed the situation for the (undirected) integer lattice
Zd with d � 5, by [7], Theorem 1.1(a). We do not know whether ��

n and �n agree
up to a multiplicative constant for every G satisfying the conditions of Theorem 1.
The square lattice Z2 is a particularly interesting case.

In the case G D Zd with d � 2, the method of ‘bridges’ developed by Ham-
mersley and Welsh [6] immediately gives the results of Theorem 1, and furthermore
shows that ��

n=�n � exp.�c
p

n/ for some c D c.d/ > 0. An interesting related
notion of ‘endless SAWs’ is studied in [2].
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The proof of Theorem 1 is divided into several parts. The proofs of the equalities
� D �F and �B D �FB of part (i) use a result of Furstenberg, namely that a subpe-
riodic tree has growth rate equal to its branching number. This is applied to certain
trees constructed from the sets of SAWs (of the various types) from a given vertex,
and it is argued that the branching numbers of the appropriate pairs of trees coincide.
See Section 3. A related argument gives part (ii). The remaining equality is proved
by two different arguments depending on whether or not G is unimodular. In the
unimodular case, a mass-transport argument yields �F D �B (Section 4), while in
the non-unimodular case (Section 5) we show the existence of a “quasi-geodesic” of
a certain type, and employ a counting argument related to Hammersley’s methods
of [5] to obtain � D �B. In Section 2 below we define the various concepts referred to
above. Many of our arguments can be simplified if G is undirected and/or transitive,
and we indicate such simplifications where appropriate.

Acknowledgements. This work was supported in part by the Engineering and Phys-
ical Sciences Research Council under grant EP/103372X/1. It was begun during a
visit by GRG to the Theory Group at Microsoft Research, where the question of
forward extendability was posed by the audience at a lunchtime seminar devoted to
the results of [4]. We thank Russell Lyons for many valuable discussions, and Alan
Hammond and Gordon Slade for pointing out relevant references.

2. Preliminaries

In this section we introduce terminology and our main tools. Let G D .V; E/ be a
directed graph, possibly with parallel edges. We call G locally finite if each vertex
has finite in-degree and out-degree.

An automorphism is a bijection � W V ! V such that, for all v; w 2 V , the
number of edges that are directed from v to w equals the number that are directed
from �.v/ to �.w/. The automorphisms of G form the automorphism group Aut.G/.
The orbits of V under Aut.G/ are called transitivity classes, and G is transitive if it
has only one transitivity class, or quasi-transitive if it has finitely many transitivity
classes.

A walk w consists of a sequence of vertices .vi /m<i<n together with edges
.ei/m<i<iC1<n, where ei is a directed edge from vi to viC1, and where �1 �
m � n � 1. The length jwj of w is the number of its edges. The walk is singly
infinite if either m 2 Z and n D 1 or m D �1 and n 2 Z, and doubly infinite if
m D �1 and n D 1. A graph G is strongly connected if for every pair u; v 2 V

there exist finite walks from u to v and from v to u.
A self-avoiding walk (SAW) on G is a walk all of whose vertices are distinct.

SAWs may be finite, singly infinite, or doubly infinite. Let

�n.v/ D �n.v; G/
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be the number of length-n SAWs starting at v 2 V . In the presence of parallel
edges, two SAWs with identical vertex-sequences but different edge-sequences are
considered distinct. We write

�n D �n.G/
defD sup

v2V

�n.v/;

and denote

� D �.G/
defD lim

n!1 �1=n
n ;

whenever the limit exists. Forward, backward, and doubly extendable SAWs are
defined as in the introduction, and the quantities �F

n.v/, �F
n , �F, etc., are defined

analogously.
We turn now to certain elements in the study of trees, for which we follow [10],

Chapter 3. Let T D .W; F / be an infinite, locally finite, undirected tree with root o.
For v 2 W , the distance between v and o is written jvj. For e D hv1; v2i 2 F , let
jej D maxfjv1j; jv2jg. Let Wn D fv 2 W W jvj D ng be the set of vertices at level
n. A cutset is a minimal set of edges whose removal leaves o in a finite component.
Since T is assumed locally finite, cutsets are finite.

There are two natural notions of dimension of a tree T . The growth is given by

gr.T /
defD lim

n!1 jWnj1=n;

whenever this limit exists. In any case, the lower growth and upper growth are given
respectively by

gr.T /
defD lim inf

n!1 jWnj1=n and gr.T /
defD lim sup

n!1
jWnj1=n:

A more refined notion is the branching number

br.T /
defD sup

°
� W inf

…

X
e2…

��jej > 0
±
; (2.1)

where the infimum is over all cutsets … of T . One interesting property, which is some-
times helpful for intuition, is that the critical probability pc.T / of bond percolation
on T satisfies

pc.T / D 1=br.T /: (2.2)

See [9], Theorem 6.2, or [10], Theorem 5.15.
The growth and branching number of a general tree need not be equal (and indeed

the growth need not exist). However, we have the following inequality [10], eq. (1.1).
We include a proof for the reader’s convenience.
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Lemma 2. For any locally finite, infinite rooted tree, br.T / � gr.T /.

Proof. Let � > gr.T /. Taking … as the set of edges joining Wn�1 and Wn, we have
that

inf
…

X
e2…

��jej � jWnj��n:

There exists a subsequence .ni / along which the last term tends to zero.

Furstenberg [3] gave a condition under which branching number and growth do
coincide. For w 2 W , denote by T w the sub-tree of T comprising w and its de-
scendants, considered as a rooted tree with root w. Let N � 0. The tree T is called
N -subperiodic if, for all w 2 W , there exists w0 with jw0j � N such that there
is an injective graph homomorphism from T w to T w 0 mapping w to w0. If T is
N -subperiodic for some N , we call T subperiodic.

Theorem 3 (Furstenberg [3]). Let T be an infinite, locally finite, rooted tree. If T is
subperiodic then gr.T / exists and equals br.T /.

For a proof see [3], Proposition III.1, or [10], Section 3.3.

Finally in this section we introduce the notions of unimodularity and the mass-
transport principle on graphs; more details may be found in [1] and [10], Chapter 8.
Let G be an infinite, locally finite, strongly connected, quasi-transitive directed graph.
The stabiliser Stab.u/ of a vertex u is the set of automorphisms that preserve u, and
Stab.u/v denotes the orbit of a vertex v under this set. We may define a positive
weight function M W V ! .0; 1/ via

M.u/

M.v/
D j Stab.u/vj

j Stab.v/uj ; u; v 2 V; (2.3)

where j�j denotes cardinality. The function M is uniquely defined up to multiplication
by a constant, and is automorphism-invariant up to multiplication by a constant. The
graph G is called unimodular if M is constant on each transitivity class. The following
fact is very useful.

Theorem 4 (Mass-transport principle). Let G D .V; E/ be an infinite, locally finite,
strongly connected, quasi-transitive directed graph with weight function M . Suppose
that G is unimodular, and let S be a set comprising a representative from each
transitivity class of G. If m W V � V ! Œ0; 1� satisfies m.�u; �v/ D m.u; v/ for all
u; v 2 V and every automorphism � of G, thenX

s2S;
v2V

M.s/�1m.s; v/ D
X
s2S;
v2V

M.s/�1m.v; s/:
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For proofs of Theorem 4 and the immediately preceding assertions see e.g. [10],
Theorem 8.10 and Corollary 8.11. To obtain the above formulation, the results of [10]
are applied to the undirected graph G0 obtained from G by ignoring edge orientations,
with the automorphism group of the directed graph G. Thus the assumption (in
Theorem 4) of strong connectivity of G may be weakened to that of connectivity of
G0, in which case we say that G is weakly connected.

3. SAW trees

The proof of Theorem 1 is divided into several parts. We start by establishing two of
the inequalities required for part (i).

Lemma 5. Under the assumptions of Theorem 1, the limits �F, �B, �FB exist and
satisfy � D �F and �B D �FB.

Proof. It is standard that �n satisfies the submultiplicative inequality

�mCn � �m�n;

and it is easy to see that the sequences �F
n , �B

n , �FB
n satisfy the same inequality. The

existence of the constants �F, �B, �FB follows by the subadditive limit theorem (see,
for instance, [10], Example 3.9).

Fix v 2 V . From G we construct the rooted SAW tree T .v/ as follows. The
vertices of T .v/ are the finite SAWs from v, with the trivial walk of length 0 being
the root. Two vertices of T .v/ are declared adjacent if one walk is an extension of
the other by exactly one step.

Let S be a set of vertices comprising one representative of each transitivity class
of G, and let

T
defD
_
s2S

T .s/

be the rooted tree obtained from disjoint copies of the trees T .s/ by joining their roots
to one additional vertex o, which is designated the root of the resulting tree. (In the
case of transitive G, the argument may be simplified by instead taking T D T .v/ for
any fixed v.) The level set Wn of T has size

jWnj D
X
s2S

�n�1.s/;

and hence,

� D lim inf
n!1 �

1=n
n�1 � gr.T / � gr.T / � lim sup

n!1
.jS j�n/1=n D �

so that gr.T / D �.
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Define T F.v/ to be the forward SAW tree constructed in an identical manner to
T .v/ from all forward-extendable SAWs on G from v. Observe that T F.v/ is precisely
the tree obtained from T .v/ by removing all finite bushes, i.e., removing (together with
its incident edges) each vertex w whose rooted subtree T .v/w is finite. We similarly
define T F D W

s2S T F.s/, and note that by the above argument, gr.T F/ D �F.
Since both T and T F are 1-subperiodic, Theorem 3 applies to give

br.T / D gr.T / and br.T F/ D gr.T F/:

On the other hand, since branching number is unaffected by the removal of finite
bushes (by the definition of branching number or by (2.2)), we have br.T / D br.T F/.
Thus � D �F.

An identical argument gives the equality �B D �FB: removing all finite bushes
from the backward SAW tree gives precisely the doubly extendable SAW tree (where
these objects are defined by obvious analogy with the previous cases). Thus the
two trees have equal branching numbers, whence by Theorem 3 they have equal
growths.

Our next proof employs similar methods.

Proof of Theorem 1(ii). As in the proof of Lemma 5 above, let T F defD W
s2S T F.s/,

where T F.v/ is the forward SAW tree from v and S is a set of representatives of
the transitivity classes of G. As argued in the previous proof we have br.T F/ D
gr.T F/ D �F. By the definition of branching number (or (2.2)),

br.T F/ D max
s2S

br.T F.s//: (3.1)

Therefore there exists t 2 S such that br.T F.t // D �F.
For every vertex v of G we have br.T F.v// � �F. Call v good if equality holds,

or bad if the inequality is strict. We showed above that good vertices exist. We will
see that in fact there are no bad vertices.

For any good vertex u, construct the “pruned” tree yT F.u/ from T F.u/ by removing
the subtree T F.u/w rooted at each vertex w of T F.u/ that corresponds to a bad vertex
of G (i.e., that represents a walk from u ending at a bad vertex). Since each removed
subtree has branching number less than �F � � for some fixed � > 0 depending only
on the graph, we have (by the definition of branching number or (2.2)) that

br. yT F.u// D br.T F.u// D �F:

By Lemma 2,
gr. yT F.u// � br. yT F.u// D �F: (3.2)

Let yG be the subgraph of G induced by the set of all good vertices, and observe
that yT F.u/ is precisely the forward SAW tree from u on yG. Thus (3.2) gives that for
any good u,

lim inf
n!1 �F

n .u; yG/1=n � �F: (3.3)
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Finally, from any vertex v of G there exists a finite directed walk to some good
vertex. Take such a walk of minimum length, say length d and ending at u. Then

�F
n.v; G/ � �F

n�d .u; yG/;

so by (3.3) we have lim inf �F
n.v/1=n � �F. Since by definition of �F we have

lim sup �F
n.v/1=n � �F, the result follows.

Alternative proof of Hammersley’s result (1.2). The above proof goes through with
each T F.s/ replaced by the ordinary SAW tree T .s/, and with �F replaced by �.

4. The unimodular case

The proof of the remaining equality of Theorem 1(i) is further divided into two cases
according to whether or not the graph is unimodular. In the former case, a stronger

statement holds. Let
 

G be the directed graph obtained by reversing all edges of G.
Recall that �F

n .G/
defD supv2V �F

n.v; G/, and similarly for �B
n .

Lemma 6. Under the assumptions of Theorem 1, suppose in addition that G is
unimodular. There exists C D C.G/ � 1 such that

C �1 � �F
n.G/

�B
n .
 

G/
� C; n � 0:

If in addition G is transitive then we may take C D 1.

Proof. Let S be a set of representatives of the transitivity classes of G, and let M be
the weight function as in (2.3). There exists c � 1 such that c�1 � M.s/=M.s0/ � c

for all s; s0 2 S , with c D 1 in the transitive case. By Theorem 4 with m.u; v/ defined
to be the number of length-n forward-extendable walks from u to v on G,X

s2S

M.s/�1�F
n.s; G/ D

X
s2S

M.s/�1�B
n .s;

 

G/:

We deduce the claimed inequalities with C D cjS j.
If G is an undirected unimodular graph (where as usual we interpret an undirected

edge as a pair of edges with opposite orientations), then
 

G and G are isomorphic, so
Lemma 6 immediately gives �B D �F, establishing Theorem 1 in this case.

A directed graph G need not be isomorphic to
 

G: an infinite, transitive, unimodular
counterexample is given in Figure 1. (A finite counterexample may be obtained by
orienting the snub cube in a similar manner.) Nonetheless, we obtain a simple proof
of Theorem 1 in the unimodular case, as follows.
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Figure 1. An infinite, transitive, directed graph G that is not isomorphic to its edge-reversal
 

G. An undirected edge is interpreted as a pair of edges with opposite orientations.

Proof of Theorem 1(i), unimodular case. Suppose G is a unimodular graph. We
have, by Lemma 6,

�F.G/ D �B.
 

G/;

so, by Lemma 5,

�B.G/ � �.G/ D �F.G/ D �B.
 

G/:

We apply the same argument to
 

G, noting that
 
 

G D G, to obtain �B.
 

G/ � �B.G/,
so that equality holds throughout. Combined with Lemma 5, this concludes the
proof.

Remarks. The assumption of strong connectivity is optional for a unimodular graph
G. The above proof of Theorem 1(i) is valid if G is weakly connected in the sense
explained after the statement of Theorem 4. If G is not even weakly connected, the
same conclusion holds for each weakly connected component of G, and hence for
G also. We remark also that for any transitive G that is weakly connected but not
strongly connected, a simple argument shows that all SAWs are doubly extendable,
so that the claims of Theorem 1 hold trivially in this case.
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5. Geodesics

By Lemma 5, � D �F and �B D �FB, and all that remains is to prove the missing
equality in the non-unimodular case. Before doing this we present a proof in the
simpler case when G is undirected. This proof applies to both unimodular and non-
unimodular undirected graphs, but the subsequent proof for the directed case requires
non-unimodularity.

In an undirected graph G, a singly infinite walk with vertex sequence .vi /i�0 is
called a geodesic if for all i; j � 0, the graph-distance between vi and vj is ji � j j.
By a standard compactness argument (see, for example, [11], Theorem 3.1), in any
infinite, locally finite, connected, undirected graph there is a geodesic starting from
any given vertex.

Proof of Theorem 1(i) for undirected graphs. Let G be an undirected graph, and let
v 2 V . Fix a geodesic � D .vi /i�0 started at v. For a SAW w of length n from v, let
L be the largest integer for which vL lies on w. Let w� and wC be the portions of w

from vL to v (reversed), and from vL to the endpoint of w, respectively. See Figure 2.
Both w� and wC are backward extendable via the sub-walk .vL; vLC1; : : : / of � .
Since � is a geodesic, we have that L � jw�j � n. Therefore,

�n.v/ �
nX

LD0

nX
kDL

�B
k .vL/�B

n�k.vL/;

where k represents jw�j. By the definition of �B, for every � > 0 there exists
C D C.�/ < 1 such that �B

n � C.�B C �/n, and therefore

�n.v/ � C 2.n C 1/2.�B C �/n; n � 1;

so that � � �B. Clearly �B � �, so combining with Lemma 5 gives the result.

v vL �

w�

wC

Figure 2. The proof of � � �B for undirected graphs: both portions w�; wC of the walk w

(solid) are backward extendable via the geodesic � (dashed).
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Returning to the directed case, we will use the following concept. For ˛ > 0,
an ˛-quasi-geodesic of a directed graph G is a doubly infinite sequence of vertices
.vi/ D .vi /i2Z satisfying

dG.vi ; vj / � ˛ji � j j; i; j 2 Z;

where dG denotes undirected graph-distance on G (that is, the length of a shortest
path with edges directed arbitrarily). Note that an ˛-quasi-geodesic is necessarily
self-avoiding. A sequence .vi/i2Z is a quasi-geodesic if it is an ˛-quasi-geodesic for
some ˛ > 0.

Lemma 7. Suppose the assumptions of Theorem 1 hold and in addition G is not
unimodular. There exists a quasi-geodesic .vi /i2Z such that there are directed edges
from viC1 to vi and from v�i�1 to v�i for each i � 0.

Proof of Lemma 7. We prove first that there exists C � 1 such that the weight func-
tion M satisfies

C �1 � M.u/

M.v/
� C; hu; vi 2 E: (5.1)

Let v1; v2; : : : ; vk be representatives of the orbits ofAut.G/, and denote by fwij W 1 �
j � di g the final endpoints of directed edges emanating from vi . Let hu; vi 2 E

be directed from u to v. Since G is quasi-transitive, there exists � 2 Aut.G/ and
1 � i � k, 1 � j � di such that �.v/ D vi and �.w/ D wij . Equation (5.1)
follows for some C � 1 since M is positive and automorphism-invariant up to a
multiplicative constant.

Since G is non-unimodular, we may find two vertices u0 ; u1 in the same transitivity
class with unequal weights. Assume without loss of generality that M.u0/ D 1, and
that c

defD M.u1/ satisfies c > 1. Let � be an automorphism mapping u0 to u1,
and define ui D �i .u0/ for i 2 Z. Since M is automorphism-invariant up to a
multiplicative constant,

M.ui / D ci ; i 2 Z: (5.2)

Let 	 be the vertex-sequence of a shortest directed walk from u1 to u0 (which exists
since G is assumed strongly connected), and let 
 be the vertex-sequence of a shortest
directed walk from u�1 to u0. Let N	 denote the sequence 	 in reverse order. Let
w D .wi/i2Z be the doubly infinite sequence of vertices obtained by concatenating
the sequences

: : : ; ��2
; ��1
; 
; N	; �1 N	; �2 N	; : : :

in this order (indexed so that w0 D u0, and omitting the duplicate vertex where
two concatenated sequences meet). Then w forms a doubly infinite path with its
edges directed towards w0, as required for the claimed quasi-geodesic, but it is not
necessarily self-avoiding. By (5.1) and (5.2) and the fact that the concatenated walks
are bounded in length, there exist ˇ; � > 0 such that

dG.wi ; wj / � ˇji � j j � �; i; j 2 Z: (5.3)
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We now erase loops from w until we obtain a self-avoiding sequence. More pre-
cisely, if there exist a < b with wa D wb , then choose such a, b with jaj C jbj
minimal (say), and remove waC1; : : : ; wb�1; wb from the sequence. Iterate this in-
definitely. Since initially w visited each vertex only finitely many times, the sequence
.vi/i2Z of vertices that are never removed is a self-avoiding sequence. This sequence
may furthermore be indexed so that it still has edges directed towards v0. (We re-
index after each loop-erasure: if the chosen loop wa; : : : ; wb does not contain w0,
we preserve the index of w0; if the loop contains w0, we re-index so that the old wa

becomes the new w0.) Since loop-erasure does not increase distances along the walk
among the vertices that remain, (5.3) holds with .vi / in place of .wi / and the same ˇ,
� . Since .vi /i2Z is self-avoiding we may now adjust ˇ so that this inequality holds
with � D 0.

Proof of Theorem 1(i), non-unimodular case. Let G be non-unimodular. We observe
that, by Lemma 5, it suffices to prove � D �B, and obviously we have �B � �. Fix
an ˛-quasi-geodesic .vi /i2Z as in Lemma 7 for some ˛ > 0. Let w D .w0; : : : ; wn/

be the vertex-sequence of an n-step directed SAW starting at w0 D v0. We will bound
the number of such walks above in terms of �B by considering various cases. Let SC
be the set of intersections of w with fvi W i � 0g, and S� the set of intersections of w

with fvi W i � 0g. Note that, if vi 2 SC [ S� then ji j � n=˛.
Let ı 2 .0; 1

2
/. First suppose that jSCj � ın. Decompose the walk w into

minimal segments starting and ending with an element of SC, together with (possibly)
a final segment starting in SC. For each such segment wa; : : : ; wb , its truncation
wa; : : : ; wb�1 is backward extendable via the SAW : : : ; viC2; viC1; vi , where vi D
wa. See Figure 3(i).

v0

v0

wawb

Figure 3. Two cases in the proof of � � �B for undirected non-unimodular graphs: (i) the
walk w (solid) in the upper figure has few intersections with the right half of the quasi-
geodesic (dashed); (ii) in the lower figure, w has many intersections with both halves of the
quasi-geodesic. In both cases, each thickened portion of w is backward extendable.
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If jS�j � ın then the walk may similarly be decomposed to give at most ın

backward-extendable segments.
Now suppose that jSCj; jS�j > ın. Let

IC D maxfi W vi 2 SCg
and

I� D maxfi W v�i 2 S�g;

and observe that IC; I� > ın. Thus, if we write

vIC D wa and v�I� D wb;

then

ja � bj � ˛.IC C I�/ > 2˛ın;

since .vi / is an ˛-quasi-geodesic. Writing

m D minfa; bg;

we deduce that wm; wmC1; : : : ; wn is a backward-extendable SAW of length greater
than 2˛ın. See Figure 3(ii).

Combining the various cases, we obtain

�n.v0/ � 2
X

k2Œ0;ın�

 
bn=˛c

k

!
.2�/k

X
j1;:::;jk�1 W
j1C���CjkDn

�B
j1�1 � � � �B

jk�1

C 2bn=˛c
X

j 2Œ2˛ın;n�

�B
j �n�j ;

(5.4)

where � denotes the maximum degree of G. Here the first factor of 2 reflects the two
cases jSCj � ın and jS�j � ın, the integer k is jSCj or jS�j, the binomial coefficient
gives the number of choices for SC or S� as a subset of the quasi-geodesic, and the
factor .2�/k accounts for the choices of directions of segments along the geodesic
and of the omitted edges hwb�1; wbi. In the second term, the factor 2bn=˛c bounds
the possible choices of the vertex wm, and j D n � m.

Inequality (5.4) implies that � � �B, as required. To check this, assume on the
contrary that �B < �. For any � > 0, there exists C D C.�/ > 0 such that

�B
n � C.�B C �/n and �n � C.� C �/n:
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Substituting this into (5.4), we obtain that

�n.v0/ � C 0n
�

n=˛

ın

��
n

ın

��
.�B C �/.2�/ı

�n C C 00n
�
.�B C �/2˛ı.� C �/1�2˛ı

�n
where C 0; C 00 may depend on ˛ and �, and the integer-part symbols in the binomial
coefficients have been suppressed to simplify the notation. Therefore, by (1.2),

� � max
n
.�B C �/f .ı/; .�B C �/2˛ı.� C �/1�2˛ı

o
;

for some f .ı/ satisfying f .ı/ # 1 as ı # 0. Let � # 0. Since �=�B > 1 by
assumption, this is a contradiction for small positive ı.
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