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Counting tensor model observables
and branched covers of the 2-sphere

Joseph Ben Geloun and Sanjaye Ramgoolam1

Abstract. Lattice gauge theories of permutation groups with a simple topological action
(henceforth permutation-TFTs) have recently found several applications in the combinatorics
of quantum field theories (QFTs). They have been used to solve counting problems of Feynman
graphs in QFTs and ribbon graphs of large N , often revealing inter-relations between different
counting problems. In another recent development, tensor theories generalizing matrix theories
have been actively developed as models of random geometry in three or more dimensions. Here,
we apply permutation-TFT methods to count gauge invariants for tensor models,colored as well
as non-colored. For the colored case, we exhibit a relationship with the counting of branched
covers of the 2-sphere, where the rank d of the tensor gets related to a number of branch points.
We give explicit generating functions for the relevant countings and describe algorithms for the
enumeration of the invariants. While the counting of colored tensor invariants is related to the
classic counting of Hurwitz equivalence classes of branched covers with fixed branch points,
collecting these under a further equivalence of permuting the branch points is relevant to the
color-symmetrized tensor invariant counting. We also apply the permutation-TFT methods to
obtain some formulae for correlators of the tensor model invariants.
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1. Introduction

Motivated by the problem of understanding the precise dictionary between observ-
ables in string theory and in gauge theory, in the context of gauge-string duality
(see [1] and [2]), permutation group techniques have recently been used to solve a
variety of problems in the combinatorics of single- and multi-matrix models; see [3],
[5], [6], [7], [8], [9], [10], [11], and [12].

While the matrix models often arise from the study of particular sectors of four
dimensional N D 4 super-Yang–Mills theory, or other four dimensional gauge the-
ories, it has been fruitful to revisit, with these permutation techniques, the study of
matrix models as mathematical models of gauge-string duality in their own right [13],
[14], [15], and [16]. This line of research draws key ideas from the discovery that the
large N expansion of two dimensionalYang–Mills (YM) theory, can be reformulated
as a string theory, a link where permutations play a crucial role; see [17], [18], [19],
[20], and [21]. The exact partition function of U.N / 2dYM on a Riemann surface
†g ; see [22] can be expanded in 1=N and the coefficients in the expansion were
recognized as counting holomorphic maps between Riemann surfaces †h ! †g .
The power of N is related to the genus of the covering space †h, which is interpreted
as the string worldsheet.

There are three main elements to this YM-string connection. The first is the
mathematical fact of Schur–Weyl duality which relates the world of unitary groups,
more generally classical groups, to the world of permutations. The second is two
dimensional topological field theory of permutations (permutation-TFT), a simple
physical construction based on lattice gauge theory, with symmetric groups as gauge
groups, where edges variables take values in a symmetric group. The plaquette weight
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of the lattice theory is a simple delta function which gives one when the edge variables
around the plaquette multiply to one, and gives zero otherwise. The third is the link
between permutations and covering spaces, a basic fact of algebraic topology. Now
in two dimensions, branched covers are equivalently holomorphic maps, leading to
deep links between combinatorics and complex geometry in the form of the Riemann
existence theorem. Combining these ingredients leads to an interpretation of the
permutation sums that appear in the large N expansion of 2dYM in terms of spaces
of branched covers, equivalently holomorphic maps, called Hurwitz spaces.

The link between permutations and strings – at a topological level – is of course
rather simple, and deep in this simplicity: strings winding around a circle have a
winding number. For a fixed total winding number n, multi-string configurations
contain a configuration for every partition of n. This has motivated the investigation
of Feynman graph counting problems in QFT in terms of permutations, including
situations without large N ; see [23]. The structure of a graph can be coded using
numbers to give labeled structures, in such a way that there is an action of permutation
groups (of re-arrangements of the numbers) on the labeled structures, and the counting
of the graphs involves modding out by certain permutation equivalences. This leads to
the combinatoric description of graphs in terms of double cosets, which was heavily
exploited in [23]. Problems of refined graph counting, in this case of graphs embedded
in Riemann surfaces, were studied in [24] using further techniques such as graph
quotients. The central role of permutation-TFTs continues to persist in these cases.
As a unifying description of diverse counting problems, the permutation-TFTs often
reveal surprising connections, a notable one being the link between the counting of
vacuum graphs in Quantum Electrodynamics and that of ribbon graphs, which are
normally encountered in a large N context. The cyclic orientation provided by the
electron circulating in loops, can be mapped to a problem of graphs with vertices
equipped with cyclic orientation, which are precisely ribbon graphs. While this is a
good way to understand the surprising link in retrospect, it is easier to derive it by
manipulating some delta functions over symmetric groups.

In this paper, we will undertake some counting problems motivated by tensor
models, using the framework of permutation-TFTs, and we will find that this frame-
work continues to be a source of non-trivial links between apparently very different
counting problems. Let us review a little more explicitly some concepts from [23],
which will set the stage for our current investigations. A Feynman graph can be coded
in terms of labeled combinatoric data, by first introducing in the middle of all the
existing edges a new type of vertex to get a new graph. We can call the formerly
existing vertices - black vertices, and the newly introduced bivalent vertices - white
vertices. Now label the edges of the new graph with integers f1; 2; : : : ; 2dg, where
d is the number of edges of the original graph. Next, cut along all these 2d edges.
All graphs with a fixed vertex structure can be obtained by re-connecting these cuts.
The different reconnections can be parametrized by a permutation � 2 S2d . This is
illustrated in Figure 1 for the case where we have v 4-valent vertices in the original
graph and d D 4v. Different permutations can give the same graph if they are re-
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lated by equations of the form � 0 D �1��2. The �1; �2 live in subgroups H1; H2 of
S2d related to the symmetries of the black vertices and of the white vertices, respec-
tively. This allows us to count Feynman graphs by counting points in double cosets
of permutation groups.

1 2 3 4 4v � 1 4v

�

: : :

: : :

1 2 3 4 5 6 7 8 4v � 3 4v � 2 4v � 1 4v

Figure 1. Double coset connection.

Burnside’s lemma leads to formulae for counting these equivalence classes as sums
of some delta functions over symmetric groups. These can in turn be recognized as
the partition functions of permutation-TFT on a cylinder, with S2d gauge group, and
with boundary observables related to H1; H2. The above framework for relating
graph counting to permutation groups and in particular permutation-TFTs is rather
general.

Graph counting has also come into the centre of attention from a completely
different perspective, namely random tensor models. Graphs are related (see for
example [25]) to the counting of tensor invariants a problem with classical origins;
see [26] and [27]. Tensor models have been proposed as a way to understand higher
dimensional random geometry (see [28], [29], [30], and [31]), generalizing the pow-
erful results connecting matrix models to two dimensional quantum gravity from the
eighties/nineties; see [32]. A tensor model is defined via a field which is a rank d

tensor over an abstract multi-dimensional representation space. In a dual space, a
rank d tensor is viewed as a .d � 1/-simplex. The interaction in such models is
dually described by a d -simplex and is formed by the gluing of .d � 1/-basic sim-
plices along their .d � 2/-boundary simplex. For example, if d D 2, the field can
be a real matrix M representing a 1-simplex or a segment; the simplest interaction is
of the form of an invariant TrŒM 3� and represent a triangle formed by the gluing of
1-simplices along their 0-simplex boundaries. This is the simplest non trivial matrix
model. The simplest higher rank extension of this model, is a rank 3 tensor model.
Here, the field is a rank 3 tensor representing a 2-simplex or triangle. The interaction
is obtained by a specific contraction of tensor fields and represents a 3-simplex or
tetrahedron formed by the gluing of triangles along their 1-simplex or boundary seg-
ments. Generally, in a rank d model, a Feynman graph corresponds to a simplicial
complex obtained from the gluing of d -simplexes along their .d � 1/-boundary.
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Recent works have focused on colored tensor models; see [33] and [34], where the
1=N expansion has been developed in [35], [36], [37], and [38]. This has triggered
a plethora of new results on higher dimensional statistical mechanics and renormal-
izability of tensor models; see [39], [40], [41], [42], [43], [44], [45], [46], [47],
[48], and [49]. “Melonic graphs,” which can be counted by mapping to a tree count-
ing problem, with counting functions given by generalized Catalan numbers have
played a central role, notably in connection with solving Schwinger–Dyson equa-
tions; see [43]. Specific types of melonic tensor invariants have been used in QFT to
determine renormalizable actions; see [47] and [49].

In this paper, we will consider tensor models where the basic fields are ˆi1;:::;id

and x̂j1;:::jd
. The indices i1; : : : id transform as˝n

aD1Va of U.Na/�d , while j1 : : : jd

transform as xV ˝n
a , with Va being the fundamental of U.Na/ and xVa the anti-funda-

mental. The emphasis will be on the complete enumeration of tensor invariants, given
specified gauge invariance constraints. We will concentrate our attention on the case
d D 3; 4, and take n to be the number of ˆ’s, which has to be equal to the number
of x̂ ’s. Based on the expectations from [23] and [24], we find that these counting
problems can be expressed neatly in terms of permutation-TFTs. And we find that
these problems, for any d , can be mapped to the counting of branched covers of the
2-sphere. The parameter d appears as the number of branch points on the 2-sphere.

These formulations in terms of TFTs and branched covers allow the expression of
the counting in terms of extracting coefficients of certain multi-variable generating
functions. These expressions can be evaluated to high orders with the help of Math-
ematica, where the enumeration of the tensor invariants by hand becomes hopeless.
Another useful piece of software is GAP [50], which gives not only the numbers of
invariants, but can also store the detailed information about the structure of the invari-
ant in the form of some permutation data, once the correct permutation formulation
of the tensor counting problem has been found.

The plan of the paper is as follows. The next section reviews the definition of
unitary tensor invariants (sometimes referred to, simply as tensor invariants or even
trace invariants) and tensor models. Section 3 deals with the counting of invariants
that can be built from d -index tensors ˆi1;:::;id ; x̂j1;:::;jd

, when we have n copies
of ˆ and x̂ . We first formulate the problem in terms of counting invariants of an
action of U.N /�d on a certain symmetrized tensor product of fundamental repre-
sentations. This is mapped to a counting of a d -tuple of permutations subject to
certain constraints, which are themselves given by the action of two permutations.
These two permutations correspond to the symmetries of re-ordering the ˆ’s and x̂ ’s
respectively. This problem is expressed in terms of sums over delta functions over
symmetric groups, which are then simplified to yield a problem of counting a sequence
of just .d � 1/ permutations, subject to an equivalence given by one permutation.
This leads to a solution of the counting in the form of sums over partitions, weighted
by powers of the symmetry factors of the partitions (see eq. (11)). We distinguish
connected and disconnected invariant countings, which are related by the plethystic
logarithm function. Section 4 interprets the symmetric group delta functions arising
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in the solution above in terms of topological lattice gauge theory on a certain com-
plex. The simplification is shown to be related to a coarsening of the complex, which
leaves the answer invariant because of the topological invariance of the lattice theory.
The final permutation problem involving .d � 1/ permutations with one conjugation
constraint is explained, using the classic Riemann existence theorem, to be related
to the counting of branched covers of the sphere, equivalently to holomorphic maps
from Riemann surfaces to the sphere.

Section 5 describes a color symmetrized version of the counting problem of
Section 3. This is based on the fact that the counting of colored tensor invariants for
rank d admits an Sd permutation symmetry of renaming the colors, so it is natural to
count equivalence classes under this symmetry. This problem is expressed in precise
form in terms of U.N /�d invariants in an appropriate vector space. Again, since
U.N / invariants are generated by products of ıij , we can count them by parametrizing
the possible ways the i ’s go with the j ’s, which is given by permutations �a (for a

going from 1 to d ). The color-symmetrized counting involves imposing a further
equivalence of permuting the �a. We solve this using the permutation group algebra
techniques, the upshot being simple elegant formulae in terms of delta functions
over symmetric groups, leading to generating functions involving multiple variables.
There is a subtlety in the relation between connected and disconnected case, so that
the connected counting is no longer given by taking a plethystic log. This subtlety is
explained.

Section 6 turns to the counting of general tensor invariants where contraction
between the different i -indices on ˆ can occur with j indices on x̂ , irrespective of
the positions of these indices. This distinguishes the counting from the “colored-
case” where the different slots along the ˆ and x̂ are distinguished, so we may call
this “non-colored counting.” This is a problem in invariants of U.N / acting on an
appropriate vector space, rather than U.N /�d . A variation where the tensors ˆ and
x̂ are symmetric is also solved. Section 7 gives some formulae for correlators related
to the counting of Section 3.

Section 8 gives a summary of our results and avenues for future research. The
discussion includes, as well, some observations on the relations between color-
symmetrized counting of invariants and the counting of braid orbits of branched
covers, a subject that is studied from completely different motivations by pure group
theorists. Appendix A gives a short review on group actions, including Burnside’s
lemma and some key facts about the symmetric group. Appendix B proves some
formulae stated in the main text. Appendix C provides details about derivations of
formulae for correlators in Gaussian tensor models given in Section 7. Appendix D
contains some GAP and Mathematica codes used to obtain the explicit counting se-
quences.1 Some of these are identified with known ones in OEIS (see [51]); others
are not in OEIS.

1These can certainly be improved in efficiency but are included for illustrations.

http://oeis.org/
http://oeis.org/
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2. Tensor model invariants: a review

In this section, we review the construction of unitary tensor invariants and their
graphical representation. The results presented here are largely based on [42]. We
also discuss the simplest way to introduce tensor models and their Feynman graphs.

2.1. Tensor invariants. Let V1, V2, …, Vd be some complex vector spaces of respec-
tive dimensions N1, N2, …Nd . Consider rank d � 2 covariant tensors ˆ with com-
ponents ˆi1;:::;id transforming as ˝d

aD1Va with ia 2 f1; : : : ; Nag, a D 1; 2; : : : ; d ,
with no symmetry assumed under permutation of their indices. These tensors trans-
form under the action of the tensor product of fundamental representations of unitary
groups˝d

aD1U.Na/ where each unitary group U.Na/ acts on a tensor index ia inde-
pendently. The complex conjugate of ˆi1i2:::id is a contravariant tensor of the same
rank and is given by x̂ i1i2:::id . We have the following transformation:

ˆi1i2:::id D
X

j1;:::;jd

U
.1/
i1j1

U
.2/
i2j2

: : : U
.d/
id jd

ĵ1j2:::jd
(1a)

and

x̂
i1i2:::id D

X
j1;:::;jd

xU .1/
i1j1

xU .2/
i2j2

: : : xU .d/
id jd

x̂
j1j2:::jd

; (1b)

where U .a/ 2 U.Na/ and may be very well all distinct. In the next discussion, we
will be primarily interested in d � 3.

Invariants with respect to the unitary action (1) built on tensors can be obtained
by contracting, in all possible ways, pairs of covariant and contravariants tensors. It
turns out that these contractions are in bijection with closed d–colored graphs that
we must now introduce.

A bi-partite closed d -colored graph is a graph

B D .V.B/; E.B//

that is a collection V.B/ of vertices with fixed valence (or degree or coordination) d

and set E.B/ of edges, with incidence relation between edges and vertices, such that

� V.B/ can be partitioned into two disjoint sets VC and V�, of equal size, such
that each edge e is may only connect a vertex vC 2 VC and a vertex v� 2 V�
(this is the bi-partite property);

� the graph has a d -line coloring ˛, that is an assignment of a color to each edge,

˛ W E.B/ �! f1; 2; : : : ; dg;
such that two adjacent edges cannot have the same color (two edges are called
adjacent if they are incident to a same vertex). Note that ˛�1.i/ is the subset of
lines of color i .
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The fact that the graph is closed simply implies that the number of edges in the
graph fully saturates the valence of the vertices 2jE.B/j D d jV.B/j.

One can construct the graph associated with a tensor invariant built from the
contraction of some tensors in the following way. Consider ˆi1:::id (respectively,
x̂

i1:::id ) and assign it to a vertex vC 2 VC (respectively, to a vertex v� 2 V�). The
position of an index in the tensor becomes a color: ia has the color a. The contraction
of an index ia of some ˆ:::ia::: with and index ja of some x̂ :::j 0

a::: is represented by
a line of color a between a vertex vC associated with ˆ and a vertex v� associated
with x̂ . Some examples are provided in Figure 2. The trace invariant associated with
B is given by

TrB.ˆ; x̂ / D
X
i;j

ıB
i;j

Y
v;v02V.B/

ˆiv
x̂

jv
; (2a)

and

ıB
i;j D

dY
aD1

Y
la2˛�1.a/

ıia

vC.la/
;j a

v�.la/
; (2b)

A B C

D E

c1

c2

c3

ˆ x̂

ˆ x̂

x̂ ˆ

ˆ x̂

x̂ ˆ

x̂ ˆ

c3 c3

c1

c2

c2

c1
c1

c2

c3c1 c1

c2 c2

c3 c3

c3

c2

c2

c2

c1

x̂ ˆ

x̂ ˆ

ˆ x̂
c1 c1

c3 c3

c1 c1

c3 c3

c3

c1

c2

c2

c2

ˆ x̂

ˆ x̂

x̂ ˆ

Figure 2. Some rank d D 3 tensor invariants.
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where in the formula, the sum is performed over all indices of the tensors, the function
ıB

i;j implements the d -line coloring or contraction between tensor indices, such that,
given a line la of color a incident to vertices vC.la/ and v�.la/, the indices ia

vC.la/

must be equal to j a
v�.la/

. One can check the formal expression

TrB.ˆU ; x̂ xU / D TrB.ˆ; x̂ /;

where ˆU stands for the transformed of ˆ with respect to the unitary action (1).
The trace invariant may factorize over the connected components of B. For instance
in Figure 2, combining graphs A and B generates a new rank 3 disconnected invariant
made with six tensors.

Finally, we must emphasize that colored graphs of this kind are dual to d -dimen-
sional abstract simplicial pseudo-manifolds [33]. Such a feature is important in the
framework of tensor models. In the same way that the study of matrix models pro-
vides the statistical sum of random triangulations of Riemannian surfaces and turned
out to be important to solve 2D quantum gravity, tensor models generate random
triangulations of higher dimensional objects and address gravity in dimension higher
than 2. The colored tensor model introduced in [33] yields a first step towards a
clearer understanding of the type of “regular” triangulations that can be generated by
the partition function using colored tensors. The next section formally introduces the
generic type of tensor models.

2.2. Tensor models. The simplest form of rank d tensor models are described by
an action with complex tensor field ˆi1:::id with kinetic term

S kin D
X
fiag
x̂

i1:::id ˆi1:::id :

In the specific instance S kin corresponds to a mass term. Certainly, more elaborate
kinetic terms can be constructed.

A typical . x̂ˆ/p interaction in such a model may be written as

S inter D �V

X
fi

.p/
a ;j

.p/
a g

V.fi .p/
a ; j .p/

a g/
nY

pD1

x̂
i
.p/
1

:::i
.p/
d

ĵ
.p/
1

:::j
.p/
d

;

where � is a coupling constant and V is constructed from Kronecker delta’s and
determines the precise form of the interaction. In 1-matrix theory, interaction terms
are, say at order 3, of the form tr.M 3/; Œtr.M 2/�.trM/; .trM/3: at order n there are
p.n/ possible interaction terms (number of partitions of n). The enumeration of tensor
invariants we give in subsequent sections allows a group theoretic characterization
of the interaction terms at each order for tensor models and gives a number Zd .n/

which replaces p.n/ when we go from matrix models to tensor models. Particular
forms of V might lead to models with different properties. For instance, discussing
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perturbative renormalizability, the type of contractions implemented by V should be
of form of trace invariants of the melonic kind; see [49].

The partition function associated with the type of tensor model can be written

Z D
Z

dˆd x̂ e�Skin�S inter. x̂ ;ˆ/:

Either at the Gaussian limit � D 0 or, in the perturbative picture, by perturbing
around the Gaussian measure, the several types of countings that we will discuss in
the following are useful for the understanding of the 2P correlation function issued
from tensor models as

h x̂I1
ˆI 0

1
: : : x̂IP

ˆI 0
P
i D

Z
dˆd x̂ x̂I1

ˆI 0
1

: : : x̂IP
ˆI 0

P
e�Skin�S inter. x̂ ;ˆ/;

where Ii are multi-indices. The external data .I1; I2; : : : ; IP / and .I 0
1; I 0

2; : : : ; I 0
P /

are associated with external boundary topological data of the simplex corresponding
to the collection of fields . x̂I1

; ˆI 0
1
; : : : ; x̂IP

; ˆI 0
P

/. Referring to the renormalizable
tensor models, it has been proved that, for a primitively divergent correlation function,
these momentum data should match with melonic tensor invariant contractions of the
same form of the vertex in the initial action. Once again, unitary invariants play a
central role in this context.

3. Counting invariants in colored tensor models

For simplicity, we start the discussion by the rank d D 3 case, the general situation
d � 3 can be easily inferred from this point.

3.1. Tensor invariants as U.N/d group action invariants. Consider a colored
tensor ˆ of rank d , where the indices are colored. Making the indices explicit, we
have ˆi1:::id . We want to know the number Z3.n/ of invariants in the form (2) that
one can build from n copies of ˆ and n copies of x̂ .

This can be formulated as a problem in invariant theory. Given a U.N / repre-
sentation V , there is a one-dimensional space of linear maps from V ˝ xV to C such
that

ı j ei i˝ j Nej i D ıij ;

which are invariant in the sense that

ı.U ˝ U / D ı; U 2 U.N /:

This follows since

ı.U ˝ U / j ei i˝ j Nej i D Uki .U
�/lj ı.j eki˝ j Neli/ D Uki .U

�/kj D ıij :
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Given˝d
aD1Va which is a representation of U.N /�d of dimension N d (note that we

could equally well work with U.N1/�U.N2/� � � � �U.Nd /, in which case we have
dimension N1N2 : : : Nd ), consider

W D Sym.V1 ˝ V2 ˝ � � � ˝ Vd /˝n

and
xW D Sym. xV1 ˝ xV2 ˝ � � � ˝ xVd /˝n;

where Sym indicates that we are symmetrizing the n copies (in other words these
define indistinguishable copies). The first counting problem we solve is to find the
dimension of the space of invariants in W ˝ xW . We will assume N > n, otherwise
there are finite N corrections which we leave for future investigation (see more
comments on this in the discussion section).

Now W has an action of Sd of permuting V1 ˝ V2 ˝ � � � ˝ Vd , likewise for xW .
We can define a linear operator for each ˛ 2 Sd , denoted �W .˛/ acting on W and a
linear operator � xW .˛/ acting on xW . Consider the Sd -symmetrizer acting on W ˝ xW
given by

1

dŠ

X
˛2Sd

�W .˛/˝ � xW .˛/:

The second problem in invariant theory is to count the dimension of the space
of U.N /�d invariants in the image of the above symmetrizer. This is the color-
symmetrized counting we address in Section 5.

3.2. Tensor invariants for d D 3 and permutation double coset. At this point we
will, for concreteness, specialize the discussion to d D 3, although it will be clear
how the steps generalize to general d . Returning to the first problem, the invariants
are generated by the different ways of contracting the different copies of Va in W

with the copies of xVa in xW . Diagrammatically, one may think about all the possible
contractions between n tensors simply as the possible parings in the way given in
Figure 3. In other words, the determination of possible graph amounts to count
triples

.�1; �2; �3/ 2 .Sn � Sn � Sn/

with equivalence

.�1; �2; �3/ � .�1�1�2; �1�2�2; �1�3�2/; (3)

where �i 2 Sn. Thus, we are counting points in the double coset

Diag.Sn/n.Sn � Sn � Sn/=Diag.Sn/:

We denote the number of points in this double coset as Z3.n/. For general subgroups
H1 � G; H2 � G, the cardinality of this double coset is given by

jH1nG=H2j D 1

jH1jjH2j
X
C

Z
H1!G
C Z

H2!G
C Sym.C /: (4)
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�1

�2

�3

ˆ ˆ ˆ

x̂ x̂ x̂

c2 c2 c2

c2 c2 c2

c1 c3 c1 c3 c1 c3

c1 c3 c1 c3 c1 c3

Figure 3. Diagrammatic tensor contraction defining .�1; �2; �3/.

The sum is over conjugacy classes of G, and ZH!G
C is the number of elements of H

in the conjugacy class C of G. This formula appears in the context of graph counting
in [52] and is used for a variety of Feynman graph problems in [23].

Let us explain the proof of this formula using Burnside’s lemma reviewed in
Appendix A. We think of the double coset as the number of orbits of the H1 � H2

action on G. The fixed-point counting formula for the number of orbits becomes

jH1nG=H2j D 1

jH1jjH2j
X

h12H1

X
h22H2

X
g2G

ı.h1gh2g�1/; (5)

where ı is the delta function over the group G, equal to 1 if its argument is the
identity element and 0 otherwise. This means that h1 and h2 have to be in the same
conjugacy class of G. Now organize the sums according to conjugacy classes C of G.
The number of elements in conjugacy class C from H1 and H2 are denoted Z

H1

C and

Z
H2

C , respectively. So the counting has a factor Z
H1

C Z
H2

C from the h1 and h2 sums.
For each such pair, there are Sym.C / possible g’s. Hence we get the above formula.

The conjugacy classes of Sn � Sn � Sn are entirely determined by a triple
.p1; p2; p3/ where each pi is a partition of n (see Proposition 1 in Appendix A).
This correspondence holds because each conjugacy class is determined by a cycle
structure. Now, the diagonal subgroup produces conjugacy classes .p; p; p/. So ap-
plying (4), we get

Z3.n/ D 1

.nŠ/2

X
p`n

� nŠ

Sym.p/

�2
.Sym.p//3 D

X
p `n

Sym.p/; (6)

where

Sym.p/
defD

nY
iD1

.ipi /.pi Š/
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and the sum over p D fp1; p2; : : : ; png is performed over all partitions of n DP
i ipi . The cardinality of a conjugacy class Tp of Sn with cycle structure determined

by a partition p is given by jTpj D nŠ=Sym.p/; see Proposition 3 in the same
appendix.

We can generate this sequence (using a GAP or Mathematica program, see GAP
code and Mathematica code 1 in Appendix D) and get (from n D 1 up to n D 10)

1; 4; 11; 43; 161; 901; 5579; 43206; 378360; 3742738; : : : : (7)

This series is recognized in the OEIS website as A110143. The same sequence also
matches with the counting of n-fold coverings of a graph [53]. This link will be
clarified through the discussion vis permutation-TFT in Section 4.

The number Z3.n/ actually includes disconnected invariants. One can easily give
a graphical representation to the first order terms:

� Z3.1/ D 1 consists in a single connected mass term (see Figure 2 A) of the formX
i;j;k

x̂
ijkˆijk I

� Z3.2/ D 4 consists in 3 connected invariants (see Figure 2 B), one of these is
given by X

i;i 0

x̂
i1i2i3ˆi 0

1
i2i3
x̂

i 0
1

i 0
2

i 0
3
ˆi1i 0

2
i 0
3

and the two others are obtained by simple color permutation 1 ! 2 ! 3, plus
one disconnected invariant of the form

� X
i;j;k

x̂
ijkˆijk

�2

This term is nothing but twice a mass term (same as in Figure 2 A above). Such
disconnected invariant terms in higher rank Tensorial Group Field Theory frame-
work should be interesting since they appear as “anomalous” terms generated
by the Renormalization Group flow; see [47].

3.3. Connected invariants. To get the connected invariants, we can use the so-
called plethystic logarithm (Plog) function (for recent applications of this function in
supersymmetric gauge theory and further references, see [54]). This can be achieved
in the following manner. Define the generating function of the disconnected invariants
as

Z3.x/ D
1X

nD0

Z3.n/xn: (8)

http://oeis.org/
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The Plog of Z3.x/ is the function

PlogŒZ3.x/� D
1X

kD1

�.k/

k
logŒZ3Œxk �� (9)

where

�.k/ D

8̂̂̂
<
ˆ̂̂:

0 if k has repeated prime factors,

1 if k D 1,

.�1/n if k is a product of n distinct primes,

is the so-called Möbius function. This series can be expanded at finite order by Math-
ematica (see Mathematica code 1 in Appendix D). We get the following expansion at
the lowest order (up to n D 10):

x C 3x2 C 7x3 C 26x4 C 97x5 C 624x6 C 4163x7

C 34470x8 C 314493x9 C 3202839x10 COŒx11�;
(10)

where an the coefficient of xn gives now the number of connected diagrams with
n black vertices (corresponding to x̂ ) and n white vertices (for ˆ). This is again
recognized in the OEIS as the series A057005 giving the number of conjugacy classes
of subgroups of index n in the free group of rank 2. The first orders Z3Iconnected.1/ D 1,
Z3Iconnected.2/ D 3 and Z3Iconnected.3/ D 7 are represented graphically in Figure 4.

Returning to a previous sequence, Z3.n/, see eq. (7), includes disconnected in-
variants. For the first orders, Z3.2/ D 4 includes B1, B2 and B3 as connected objects
plus a disconnected graph given by twiceA; Z3.3/ D 11, contains all seven connected
graphs with six external legs which are C1, C2,…, E, drawn in Figure 4, plus four
other disconnected graphs given by the following combinations of connected pieces:
(A, A, A), (A, B1), (A, B2) and (A, B3) (we will keep that notation for disconnected
components graphs).

3.4. Generalized rank d case. For rank d tensors, using d�tuples of permutations
.�1; : : : ; �d / 2 .Sn/�d equivalent under the diagonal action Diag.Sn/ such that

.�1; : : : ; �d / � .�1�1�2; : : : ; �1�d �2/;

following the same procedure and in adapted notations, it is direct to obtain the
number of tensor invariants made with 2n fields as

Zd .n/ D
X
p `n

.Sym.p//d�2: (11)

http://oeis.org/
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A B1 B2 B3
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c1c1
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c1

c1

c1

c1
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c2c2

c2c2

c2

c2

c2

c2 c2

c2
c2

c2

c2c2
c2

c2c2
c2

c2c2

c2

c2

c2c2

c2

c2

c2

c3

c3

c3

c3

c3c3

c3c3

c3

c3 c3

c3

c3

c3c3

c3

c3c3
c3

c3c3

c3

c3

c3

c3

c3c3

c3

ˆ x̂

ˆ x̂ˆ x̂ˆ x̂

x̂ ˆx̂ ˆx̂ ˆ

ˆ x̂ˆ x̂ˆ x̂

x̂ ˆx̂ ˆx̂ ˆ

x̂ ˆx̂ ˆx̂ ˆ

ˆ x̂ˆ x̂ˆ x̂

x̂ ˆx̂ ˆx̂ ˆ

x̂ ˆx̂ ˆx̂ ˆ

ˆ x̂

ˆ x̂

x̂ ˆ

Figure 4. The colored graphs associated with Z3Iconnected.n/: n D 1, A; n D 2, B1, B2, and
B3; n D 3, C1, C2, C3, D1, D2, D3, and E.

Given d and n, this number can be evaluated by a GAP or Mathematica program (see
GAP and Mathematica code 1, in Appendix D). This counting function Zd .n/ has
also been studied in connection with counting of n-fold coverings of the one-vertex
graph with .d � 1/ edges (which we denote by Fd�1, the flower graph with d � 1

legs) which is equivalent to counting n-fold branched covers of the sphere with d

branch points [53]. The link between the tensor-invariant counting, which we related
to the double coset Diag.Sn/nS�d

n =Diag.Sn/, and the counting of covers will become
clearer when we develop the permutation-TFT description in the next section.

For the d D 4 case, the counting of invariants yields the sequence

1; 8; 49; 681; 14721; 524137; 25471105;

1628116890; 131789656610; 13174980291658; : : : ;
(12)

for n D 1; 2; : : : ; 10, respectively. For the case of connected invariants we use the
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Plog function to get, for n D 1; 2; 3; : : : ; 10;

1; 7; 41; 604; 13753; 504243; 24824785;

1598346352; 129958211233; 13030565312011; : : : :
(13)

This is recognized as the A057006 sequence by OEIS or as the number of conjugacy
classes of subgroups of index n in the free group of rank 3. This sequence is also
discussed the context of connected covers of Fd�1 in [53].

4. Tensor model invariants and permutation-TFTs

In Section 3, the counting of tensor invariants was related to the number of points
in a double coset. To calculate this we used a sum over group elements weighted
by a delta function over the group (5) to arrive at formula (4). Such delta functions
arise in a very simple physical construction, namely topological lattice gauge theory,
where permutation groups play the role of gauge groups. We give a brief review of
this construction, and refer the reader to a more detailed review in Section 5.1 of [11]
and the original literature [55] and [56]. Then we will show that the topological
invariance of this lattice construction illuminates the link between the counting of
tensor invariants and the counting of branched covers of the 2-dimensional sphere.

4.1. Permutation TFTs – lightning review. On any cellular complex X , one can
define a partition function for a finite group G by assigning a group element ge to
each edge e and to each plaquette P a weight w.gP /, where

gP D
Y
e2P

ge :

A most simple and natural choice independent of the plaquette size is given by

w.gP / D ı.gP / D
8<
:

1 if gP D id;

0 otherwise.

The partition function in the model is given by

ZŒX I G� D 1

jGjV
X
ge

Y
P

wP

� Y
e2P

ge

�
; (14)

where V is the number of vertices in the cell decomposition. This theory is topological
in the sense that it is invariant under refinement of the cellular decomposition. We
will be interested in cases where G is taken to be the symmetric group Sn, of all
permutations of n objects. This simple topological field theory construction, with n

arbitrary, has a variety of applications in QFT combinatorics; see [23], [24], and [11].

http://oeis.org/
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Take the torus realized as a rectangle, with opposite sides identified (Figure 5).
This is a cell decomposition with a single 0-cell, two 1-cells a; c and a single 2-cell.
Assign to each 1-cell a group element in G:

a �! � and c �! �: (15)

Thus the plaquette weight for the single 2-cell (plaquette) is

w.gP / D ı.����1��1/ (16)

and the partition function is

Z.T 2I Sn/ D 1

nŠ

X
�;�2Sn

ı.����1��1/: (17)

a�1

a

a

a

c c c�1

A B

Figure 5. Periodic torus and the plaquette action.

This partition function, for a topological space X , counts equivalence classes of
homomorphisms from �1.X/ to Sn (weighted by the number of elements of Sn which
fix the homomorphism under conjugation). By a standard theorem of algebraic topol-
ogy, this is the same to count equivalence classes of covering spaces of X of degree
n (see e.g. [57]), counted with weight equal to inverse of the order of the automor-
phism group of the cover). The partition function (17) thus counts n-fold covers of
the torus and plays a role in the string theory interpretation of two-dimensional YM
theory [17], [18], and [20]. Given a cover, we can pick a generic point on the target
space, label the inverse images f1; : : : ; ng and obtain permutations �; � 2 Sn as we
follow the inverse images of the 1-cells a; c on the torus. The combination aca�1c�1

is a contractible path (shrinkable on the rectangle of Figure 5), so must give a trivial
permutation of the sheets, which is enforced by the delta function.



94 J. Ben Geloun and S. Ramgoolam

4.2. Topological invariance of permutation-TFT: double coset to conjugation
equivalence. We first start with the rank 3 case and then generalize the ideas to any
rank d . The partition function Z3.n/ can be written by applying Burnside’s lemma
(see Appendix A, Proposition 2) as

Z3.n/

D 1

nŠ2

X
�1;�22Sn

X
�1;�2;�32Sn

ı.�1�1�2��1
1 /ı.�1�2�2��1

2 /ı.�1�3�2��1
3 /:

Having seen the connection between sums over group delta functions and lattice
TFTs, the natural question is: what topological space has a permutation-TFT partition
function given by Z3.n/? This allows us to see an emergence of geometry (more
precisely topology at this stage, but see comment on holomorphic maps later) directly
from the structure of the counting problem.

Consider the graph G3 in Figure 6, which has two vertices and three edges. Next
consider G3�S1, which can be visualized as being obtained by evolving G3 along a
vertical time direction and then compactifying the time, which amounts to identifying
the graph at the base of the Figure 6 with the one at the top. The three 2-cells of this
cell-complex are shaded.

aa

bb

cc

d

d 0

G3 G3 � S1

Figure 6. G3, G3 � S1, and its different plaquettes (shaded).

To do Sn permutation-TFT on this complex, we assign

a �! �1; b �! �2; c �! �3;

where �i 2 Sn, and we have two extra edges d and d 0 to which we assign

d �! �1; and d 0 �! �2;
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with �i 2 Sn. The partition function of this complex computed according to (14) as

Z.G3 � S1ISn/

D 1

nŠ2

X
�1;�22Sn

X
�1;�2;�32Sn

ı.�1�1�2��1
1 /ı.�1�2�2��1

2 /ı.�1�3�2��1
3 /:

We thus recognize that the counting function for 3-index colored tensor invariants is
the permutation-TFT partition function on G3 � S1:

Z.G3 � S1ISn/ D Z3.n/:

As observed in the lightning review, we can interpret this as counting covering spaces
of G3 � S1, and this is counting the covering spaces, with weight equal to inverse
symmetry factor; see for example [18], and [20] for explanation of this fact.

The power of the permutation-TFT approach is that, not only, it exposes the
geometry behind counting problems, but it also allows easy manipulations of the
delta functions, which often reveal connections to other geometrical interpretations
of the same counting problem. In this case, we can use one the delta functions to
solve for �1:

Z3.n/ D 1

nŠ2

X
�2

X
�1;�2;�32Sn

ı.�1��1
2 ��1

1 �2�2��1
2 /ı.�1��1

2 ��1
1 �3�2��1

3 /

D 1

nŠ

X
�2Sn

X
�1;�22Sn

ı.�	1��1	�1
1 /ı.�	2��1	�1

2 /:

(18)

In the last line, we have defined 	1 D ��1
1 �2; 	2 D ��1

1 �3, used the invariance of
the �2; �3 sums under this redefinition. We also renamed �2 ! � . Now recalling
Burnside’s lemma again, we see that this is counting pairs .	1; 	2/ subject to the
equivalence

.	1; 	2/ � .�	1��1; �	2��1/: (19)

Physically, these manipulations amount to starting from the equivalences

.�1; �2; �3/ � .�1�1�2; �1�2�2; �1�3�2/;

fixing �1 gauge symmetry by setting �1 D 1

.�1; �2; �3/! .1; 	1 � ��1
1 �2; 	2 � ��1

1 �3/:

Then we use the remaining �2 gauge symmetry, which becomes (19) after renaming
�2 ! � .
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Now let us interpret the outcome geometrically. We observe that the expres-
sion (18) coincides with a permutation-TFT partition function for a simpler cell-
complex. This is F2 � S1, where F2 is the Flower graph, with a single vertex and
two edges illustrated in Figure 7.

a ab b

c

a b

F2 F2 � S1

Figure 7. The flower F2 and its periodic lattice F2 � S1.

The flower F2 has a fundamental group made of two generators without any
relations. Consider the periodic flower F2 � S1 as given in Figure 7. Opening
F2 � S1, we get, in the similar way as (15), the following assignments

a �! �1; c �! �; b �! �2;

and to the two different plaquettes present in the theory we assign a weight analogous
to (16) as

w.gPa
/ D ı.��1��1��1

1 / and w.gPb
/ D ı.��2��1��1

2 /:

Thus, we identify the partition function of this Sn-TFT over the periodic cellular
complex F2 � S1 with our previous counting:

Z.F2 � S1I Sn/ D Z3.n/:

Now we have

Z3.n/ D Z.F2 � S1I Sn/ D Z.G3 � S1I Sn/: (20)

Since the Sn-TFT Z.X ISn/ simply counts homomorphisms �1.X/ ! Sn, the last
equality is just the topological fact that

�1.F2 � S1/ D �1.G3 � S1/ and �1.F2/ D �1.G3/:

In more physical terms, these relations give an example of the statement that the Sn-
TFT is a topological field theory, with partition function invariant under a coarsening
of the lattice which leaves the fundamental group invariant. The transformation
leading from G3�S1 to F2�S1 shrinks the middle 2-cell in Figure 6 thus identifying
the two edges d and d 0.
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4.3. Conjugation equivalence, embedded bi-partite graphs, matrix models, and
branched covers. Let us return to the formulation of the counting in terms of con-
jugation equivalence of the pair .	1; 	2/ which is expressed, via the Burnside lemma
in (18). We can manipulate this expression by introducing another permutation 	0

constrained by 	0 D .	1	2/�1

Z3.n/ D 1

nŠ

X
�2Sn

X
�1;�22Sn

ı.�	1��1	�1
1 /ı.�	2��1	�1

2 /

D 1

nŠ

X
�2Sn

X
�0;�1;�22Sn

ı.�	1��1	�1
1 /ı.�	2��1	�1

2 /ı.	0	1	2/

D 1

nŠ

X
�2Sn

X
�0;�1;�22Sn

ı.�	0��1	�1
0 /ı.�	1��1	�1

1 /ı.�	2��1	�1
2 /ı.	0	1	2/:

(21)

In the last line we introduced an extra delta function, implied by the ones already
there, to make the formula more symmetric. We can recognize that this is counting,
according to the Burnside lemma, triples of permutations 	0; 	1; 	2 obeying

	0	1	2 D 1: (22)

More precisely, it is counting equivalence classes of these triples under the conjuga-
tion equivalence by � 2 Sn W 	i � �	i�

�1. We recognize in (22) the group generated
by three generators subject to one relation, which is the fundamental group of the two-
sphere, with three punctures (equivalently 2-sphere with 3 discs removed). Our count-
ing function Z3.n/ thus counts the number of equivalence classes of branched covers
of the 2-sphere, with 3-branch points, each equivalence class being counted once.2

In two dimensions, branched covers are also holomorphic maps. These permutation
triples thus have a very rich mathematics: maps with three branch points (which are
often taken as 0; 1;1) are called Belyi maps and are known to be definable over
algebraic number fields; see [58]. Given such a map, the inverse image of the in-
terval Œ0; 1� gives an embedded bi-partite graph on the covering Riemann surface,
where black vertices are inverse images of 1 and white vertices are inverse images
of 0. These bi-partite graphs can be viewed as the large N graphs of matrix models;
see [13] and [59]. Since branched covers in two dimensions are also holomorphic
maps (defined by nice local equations which use the complex structure of the surfaces
involved), this has led to investigations of links between these bi-partite graphs and
topological string theory; see [13], [14], and [15]. Our present observations relating

2This is to be contrasted with the statement that Z3 .n/ counts equivalence classes of covers of G3 �S1,
not with weight one, but with weight equal to inverse automorphism group of these covers. As observed
in [24], counting with weight 1 and with inverse automorphism are related via Burnside’s lemma to
introduction of an extra circle associated with � .
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the counting of 3-index tensor model invariants to embedded bi-partite graphs sug-
gests that there may be surprising connections between these tensor models and matrix
models (and their associated gauge/string duals), with permutation-TFTs playing a
key role. We will venture some more remarks in this direction in Section 8.

Eq. (21) was used as a starting point for refined counting of embedded bi-partite
graphs in [24]. A very similar solving of delta functions, alongside Burnside’s lemma,
was used to uncover a surprising link between the counting of vacuum graphs in
Quantum Electrodynamics and ribbon graphs; see [23].

4.4. General rank d . Most of the above discussion generalizes straightforwardly to
higher rank. The counting of invariants built from n copies of a rank d colored tensor
ˆ and n copies of the conjugate x̂ is given by a function Zd .n/ which coincides with
the permutation-TFT partition function on Gd �S1. Gd is a graph with two vertices
and d edges. This partition function can be simplified to that of Fd�1 � S1, where
Fd�1 is the flower graph with d � 1 edges and a single vertex, as

Zd .n/ D ZŒFd�1 �S1I Sn� D ZŒGd �S1I Sn�; �1.Fd�1/ D �1.S2 n d discs/:
(23)

By introducing an extra permutation equal to the inverse of the d � 1 permutations,
we recognize the counting of equivalence classes of branched covers of degree n of
the sphere S2 with d branch points (each counted with weight 1). The counting for
the case of general d is not known to us to have a simple matrix model realization,
of the kind discussed above for d D 3.

5. Color-symmetrized counting of tensor invariants

The simplest colored-tensor model, e.g. the Gaussian model, has a symmetry of
permutations of the colors. It is natural to investigate the class of interaction terms
invariant under this symmetry. Here we will investigate the enumeration of these
color-symmetrized equivalence classes, express them in the language of permutations
and obtain multi-variable generating functions for their counting.

5.1. Rank d D 3 case. We start by the rank d D 3 case which will serve as a guiding
non trivial situation. The color symmetrization can be achieved after imposing another
type of equivalence now acting on the permutation triple as

.�1; �2; �3/ � .�2; �1; �3/ � .�1; �3; �2/ � � � � : (24)

As it stands, this problem turns out to nicely addressed using the group algebra C.Sn/

of Sn. Consider the element

Œ�1�2�3�
defD

X
˛2S3

�˛.1/ ˝ �˛.2/ ˝ �˛.3/ 2 C.Sn/˝3: (25)
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Now we are investigating equivalence classes given by

Œ�1�2�3� � Œ�˝3
1 �Œ�1�2�3�Œ�˝3

2 � D
X

˛2S3

�1�˛.1/�2 ˝ �1�˛.2/�2 ˝ �1�˛.3/�2

and we intend to find Z3I sc.n/ or the cardinal of

Diag.Sn/nSym.C.Sn/˝3/=Diag.Sn/;

with Sym.C.Sn/˝3/ the group algebra generated by symmetric elements of the
form (25).

Using Burnside’s lemma on C.Sn/˝3, we have

Z3I sc.n/

D 1

.3Š/2.nŠ/2

X
�1;�22Sn

X
�i 2Sn

ı.Œ�˝3
1 �Œ�1�2�3�Œ�˝3

2 �Œ�1�2�3��1/

defD 1

.3Š/2.nŠ/2

X
�1;�22Sn

X
�i 2Sn

X
˛;ˇ2S3

ı.�1 �˛.1/�2��1
ˇ.1//

ı.�1�˛.2/�2��1
ˇ.2//ı.�1�˛.3/�2��1

ˇ.3//:

(26)

We then use the same recipe introduced before and integrate one � . Solving one delta
function such that �1 D �ˇ.1/�

�1
2 ��1

˛.1/
, we rewrite (26) as

Z3I sc.n/

D 1

.3Š/2.nŠ/2

X
�22Sn

X
�i 2Sn

X
˛;ˇ2S3

ı.�ˇ.1/�
�1
2 ��1

˛.1/�˛.2/�2��1
ˇ.2//

ı.�ˇ.1/�
�1
2 ��1

˛.1/�˛.3/�2��1
ˇ.3//:

We change dummy variables i $ ˛�1.i/ so that

Z3I sc.n/

D 1

.3Š/2.nŠ/2

X
�2Sn

X
�i 2Sn

X
˛;ˇ2S3

ı.�Œ˛�1ˇ�.1/�
�1��1

1 �2���1
Œ˛�1ˇ�.2/

/

ı.�Œ˛�1ˇ�.1/�
�1��1

1 �3���1
Œ˛�1ˇ�.3/

/:

Perform a last change in variable

˛�1ˇ �! ˇ
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and generate

Z3I sc.n/

D 1

3Š.nŠ/2

X
�2Sn

X
�i 2Sn

X
ˇ2S3

ı.�ˇ.1/�
�1��1

1 �2� ��1
ˇ.2//

ı.�ˇ.1/�
�1��1

1 �3� ��1
ˇ.3//

D 1

3Š.nŠ/2

X
�2Sn

X
�i 2Sn

n
ı.�1��1��1

1 �2���1
2 /ı.�1��1��1

1 �3���1
3 /

C ı.�2��1��1
1 �2���1

1 /ı.�2��1��1
1 �3���1

3 /

C ı.�3��1��1
1 �2���1

2 /ı.�3��1��1
1 �3���1

1 /

C ı.�1��1��1
1 �2���1

3 /ı.�1��1��1
1 �3���1

2 /

C ı.�3��1��1
1 �2���1

1 /ı.�3��1��1
1 �3���1

2 /

C ı.�2��1��1
1 �2���1

3 /ı.�2��1��1
1 �3���1

1 /
o
:

These six terms come, respectively, from ˇ D fid; .12/; .13/; .23/; .132/; .123/g.
In each of the last three lines, �3 appears only once in at least one of the delta
functions. So we can integrate these to be left with a single delta function. For the
last line, we also do renaming of �3 ! �� after the elimination of �2. The upshot is

Z3I sc.n/ D 1

6nŠ

X
�2Sn

X
�2;�32Sn

ı.��1�2���1
2 /ı.��1�3���1

3 /

C 1

2nŠ

X
�2Sn

X
�2Sn

ı.�2���2��1/

C 1

3nŠ

X
�;�2Sn

ı.�3�3/:

We know how to calculate the first sum in terms of a sum over partitions. We should
be able to derive something similar for the last two terms. As a first step, we write

Z3I sc.n/

D 1

6nŠ

X
p`n

Sym.p/C 1

2nŠ

X
�2Sn

X
�2Sn

ı.�2���2��1/C 1

3nŠ

X
�;�2Sn

ı.�3�3/:

(27)

Let us write this as

Z3Isc.n/ D 1

6
S

.3/

Œ13�
.n/C 1

2
S

.3/

Œ2;1�
.n/C 1

3
S

.3/

Œ3�
.n/ (28)
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where the superscript indicates that this is the d D 3 case, while the subscript is
a partition of 3 corresponding to the conjugacy class of ˛ which gives rise to the
relevant term. We record here our most effective formulae for each term:

S
.3/

Œ13�
.n/ D

X
p`n

Sym.p/ D
X
p`n

nY
iD1

.i�i /.�i Š/; (29a)

S
.3/

Œ2;1�
.n/ D

X
p`n

Coefficient ŒZ.2/.t; Ex/; tnx
p1

1 x
p2

2 : : : xpn
n � �

h nY
iD1

ipi pi Š
i
; (29b)

and

S
.3/

Œ3�
.n/; D

X
p`n

�
Coefficient ŒZ.3/.t; Ex/; tn

nY
iD1

x
pi

i �
�2 �

h nY
iD1

ipi pi Š
i
: (29c)

The derivation of S
.3/

Œ13�
.n/ was explained earlier; see (6). The formulae for S

.3/

Œ2;1�
.n/

and S
.3/

Œ3�
.n/ in terms of multi-variable generating functions Z.2/.t; Ex/ and Z.3/.t; Ex/,

respectively, are explained and derived as (B.1) and (B.3) in Appendix B. These
formulae can be evaluated to high orders using Mathematica (see Mathematica code 2
in Appendix D). The result for S

.3/

Œ2;1�
.n/ is,3 from n D 1 to n D 10,

1; 2; 5; 13; 31; 89; 259; 842; 2810; 10020; : : : :

The sequence S
.3/

Œ3�
.n/ evaluates in the same way as (seeAppendix B and Mathematica

code 2 in Appendix D), from n D 1 to n D 10,

1; 1; 2; 4; 5; 13; 29; 48; 114; 301:

Adding all these up with the right coefficients, we get, up to order n D 10,

1; 2; 5; 15; 44; 199; 1069; 7638; 64503; 628900: (30)

Note that the summands can be fractional, but the sum (28) is integral. This is the
disconnected case. Having a closer look at Figure 4, we can associate the graphs to
the first orders, Z3Isc.1/ D 1 is simply the class given by A; for Z3Isc.2/ D 2, there
are two classes of graphs: the first is given by a disconnected graph formed by twice
(A, A), and the second class is formed by the three remaining B1, B2, and B3 which
are indeed form a closed set under the S3 operations of permuting the three colors.

3This is recognized as the sequence A082733 by OEIS, and described there as the sum of all entries in
the character table of Sn.

http://oeis.org/
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Now Z3Isc.3/ D 5 is generated by f(A,A,A)g (disconnected), AB=f(A, Bi),
i=1,2,3g (disconnected), C=fC1, C2, C3g, D=fD1, D2, D3g and the last class given
by E=fEg.

It turns out that the Plog does not give the correct relation between connected
and disconnected for this color-symmetrized counting. For instance, at order n D 4

(graph with eight legs), the Plog gives 9. This means that it has subtracted six classes
(from the initial fifteen classes) regarded as disconnected. Now, from the case n D 3,
we can observe directly that these classes can be organized as follows: 3 disconnected
graphs are formed by (A, C), (A, D) and (A, E); another case is given by twice a copy
of A plus a connected piece with four legs, which gives (A, AB); then we must also
include the graph made with four copies of A, which is (A, A, A, A). That yields five
cases already out of six. So the remaining disconnected graph would be the one formed
by twice a graph made with four legs (a double copy of Bi, i=1,2,3, see Figure 4).
However, in the latter category of disconnected objects, the class obtained by the
disjoint union of graphs Bi denoted by f(Bi, Bi)g and the one f(Bi, Bj); i ¤ j g (see
Figure 8) are not equivalent under (24). Thus, the ordinary Plog of the disconnected
series does not give the correct answer. It would be interesting to work out an analog
of the Plog formula for this case of color-symmetrized counting of invariants.

c1

c1

c1

c1

c1

c1

c1

c1

c2c2

c2

c2

c2

c2

c2

c2

c3

c3

c3c3c3c3c3c3

B1B1B1 B2

ˆ x̂ˆ x̂ˆ x̂ˆ x̂

x̂ ˆx̂ ˆx̂ ˆx̂ ˆ

Figure 8. Non equivalent disconnected graphs.

A GAP program can however generate the sequence of connected graphs (see
GAP code, in Appendix D). One finds

1; 1; 3; 8; 24; 72: (31)

The case n D 4 giving Zconnected
3I sc .n D 4/ D 8 has been illustrated in Figure 9.

5.2. Rank d D 4 case. The color symmetrization in general can be implemented
by the equivalence of the d–tuples

.�1; : : : ; �d / � .�˛.1/; : : : ; �˛.d//; ˛ 2 Sd :
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c1

c1

c1 c1

c1

c1

c1

c1 c1

c1

c1

c1

c1

c1

c1

c2

c2

c2

c2

c2

c2

c2

c2
c2

c2c2

c2

c2

c2

c3

c3

c3

c3

c3

c3

c3

c3

c3

c3 c3

c3c3

c3

c3

c3

ˆ x̂

x̂ ˆ x̂ ˆ

ˆ x̂

x̂ ˆ

ˆ x̂

ˆ x̂ ˆ x̂ˆ x̂

ˆ x̂ˆ x̂
x̂ ˆx̂ ˆ

x̂ ˆx̂ ˆ

x̂ ˆ

x̂ ˆ

x̂ ˆ
ˆ x̂ˆ x̂ˆ x̂

ˆ x̂ x̂ ˆx̂ ˆ

ˆ x̂ x̂ ˆ

x̂ ˆ ˆ x̂ ˆ x̂ˆ x̂

x̂ ˆx̂ ˆ

Figure 9. Rank 3 colored symmetric connected invariants at order n D 4.

Using now the group algebra C.Sn/ of Sn, we consider the element

Œ�1 : : : �d � WD
X

˛2Sd

�˛.1/ ˝ �˛.2/ ˝ � � � ˝ �˛.d/ 2 C.Sn/˝3 (32)

which leads us to the search of equivalent classes such that

Œ�1 : : : �d � � Œ�˝d
1 �Œ�1 : : : �d �Œ�˝d

2 � D
X

˛2S3

�1�˛.1/�2 ˝ � � � ˝ �1�˛.d/�2:

This is counting the points of

Diag.Sn/nSym.C.Sn/˝d /=Diag.Sn/;

with Sym.C.Sn/˝d / the group algebra generated by symmetric elements of the
form (32).

Burnside’s lemma on C.Sn/˝d allows us to write

Zd I sc.n/

D 1

.d Š/2.nŠ/2

X
�1;�22Sn

X
�i 2Sn

X
˛;ˇ2Sd

ı.�1�˛.1/�2��1
ˇ.1// : : : ı.�1�˛.d/�2��1

ˇ.d//:

(33)

Integrating �1, �1 D �ˇ.1/�
�1
2 ��1

˛.1/
, eq. (33) re-expresses as

Zd I sc.n/ D 1

.sŠ/2.nŠ/2

X
�22Sn

X
�i 2Sn

X
˛;ˇ2Sd

ı.�ˇ.1/�
�1
2 ��1

˛.1/�˛.2/�2��1
ˇ.2// : : :

: : : ı.�ˇ.1/�
�1
2 ��1

˛.1/�˛.d/�2��1
ˇ.d//:
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Changing variables as

i  ! ˛�1.i/

and performing

˛�1ˇ �! ˇ

generate

Zd I sc.n/

D 1

.d Š/2.nŠ/2

X
�2Sn

X
�i 2Sn

X
˛;ˇ2Sd

ı.�Œ˛�1ˇ�.1/�
�1��1

1 �2���1
Œ˛�1ˇ�.2/

/ : : :

: : : ı.�Œ˛�1ˇ�.1/�
�1��1

1 �d ���1
Œ˛�1ˇ�.d/

/

D 1

dŠ.nŠ/2

X
�2Sn

X
�i 2Sn

X
ˇ2Sd

ı.�ˇ.1/�
�1��1

1 �2���1
ˇ.2// : : :

ı.�ˇ.1/�
�1��1

1 �d ���1
ˇ.d//:

We now specialize to the case d D 4. Expanding the last sum
P

ˇ2Sd
, one gets after

some algebra:

Z4I sc.n/ D 1

24nŠ

X
�2Sn

X
�i 2Sn

ı.��1�2���1
2 /ı.��1�3���1

3 /ı.��1�4���1
4 /

C 1

4nŠ

X
�2Sn

X
�i 2Sn

ı.��1��1��1
1 /ı.�2�2��2��1

2 /

C 1

3nŠ

X
�2Sn

X
�2Sn

ı.�3���3��1/

C 1

8nŠ

X
�2Sn

X
�i 2Sn

ı.�2
1 �2/ı.�2�2��2��1

2 /

C 1

4nŠ

X
�2Sn

X
�2Sn

ı.�4�4/:

(34)

These five terms come, respectively, from the conjugacy classes represented by

fid; .12/; .123/; .12/.34/; .1234/g:

As above, the first sum computes to a sum over partitions already known from (12).
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Let us denote

Z4Isc.n/

D 1

24
S

.4/

Œ14�
.n/C 1

4
S

.4/

Œ2;12�
.n/C 1

3
S

.4/

Œ3;1�
.n/C 1

8
S

.4/

Œ22�
.n/C 1

4
S

.4/

Œ4�
.n/;

(35)

where, as in the rank 3 case, we can label each sum by a subscript giving by a
particular partition of d D 4. In Appendix B, we manipulate these delta func-
tions to arrive at expressions as sums over symmetry factors of partitions or in terms
of multi-variable generating functions. We summarize the key formulae (see Ap-
pendix B, (B.4), (B.5), (B.6), and (B.7) for more details):

S
.4/

Œ14�
.n/ D

X
p`n

.Sym p/2; (36a)

S
.4/

Œ2;12�
.n/

D
X
p`n

h b n
2 cY

j D1

.2j /2p4j .2p4j /Š
ih b n

2 cY
j D0

.2j C 1/p2j C1C2p4j C2.p2j C1 C 2p4j C2/Š
i
;

(36b)

S
.4/

Œ3;1�
.n/ D

X
p`n

Coefficient ŒZ.3/.t; Ex/; tnx
p1

1 x
p2

2 : : : xpn
n � �

h nY
iD1

ipi pi Š
i
; (36c)

S
.4/

Œ22�
.n/ D

X
p`n

.CoefficientŒZ.2/.t; Ex/; tnx
p1

1 x
p2

2 : : : xpn
n � Sym.p//2; (36d)

and

S
.4/

Œ4�
.n/ D S

.4/

Œ4�
.n/ D

X
p`n

�
CoefficientŒZ.4/.t; Ex/;

nY
iD1

x
pi

i �
�2 �

h nY
iD1

ipi pi Š
i
:

(36e)

With these formulae in hand, we can generate the sequences to high order with
Mathematica. Direct evaluation of the delta functions with GAP at low orders agrees
with these generating functions but at high orders calculation with the help of (36) is
the only practical option. The sequences S

.4/

Œ�� .n/ can be computed with Mathematica
to give (see Appendix B and Appendix D, Mathematica code 2, 3, and 4 for further
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details) up to order n D 10,

S
.4/

Œ2;12�
W 1; 4; 15; 83; 385; 2989; 20559; 203922; 1827640; 21863590; : : : ;

S
.4/

Œ3;1�
W 1; 2; 4; 12; 27; 103; 391; 1383; 6260; 32704; : : : ;

S
.4/

Œ22�
W 1; 4; 17; 105; 685; 5825; 54013; 585018; 6873522; 90254150; : : : ;

S
.4/

Œ4�
W 1; 2; 3; 11; 27; 93; 233; 978; 3156; 13280; : : : :

Combining these sums yields

1; 3; 10; 69; 811; 23372; 1073376; 67963017; 5492554668; 548974274040; : : : :

This sequence corresponds to the disconnected case. The connected case sequence
can be obtained with a GAP program extending the rank d D 3 case as given in
Appendix D.

6. Counting tensor invariants without color

We address here countings of invariants for tensors without color, which are the
tensor models of more traditional interest. In the first case, the tensor field ˆi1:::id

will have d indices and we will allow contraction of any ia with any of the d indices
of x̂j1:::jd

. In the second case, there will again be no restriction on which j a given i

can contract with, but the tensor field will be symmetric under Sd permutations of its
indices. We will have a family of counting problems for each integer n corresponding
to the number of ˆ and x̂ fields.

6.1. Invariants without color: general tensors. The counting above is equivalent
to the counting of invariants in Symn.V ˝d /˝n ˝ Symn. xV ˝d /˝n under a diagonal
U.N / action. Here, Symn indicates the symmetrization of the n copies, which arises
from the fact that the n copies of ˆ and the n copies of x̂ can be permuted without
changing the invariant. The unitary group acts as

U ˝nd ˝ xU ˝nd

on .V ˝d /˝n˝. xV ˝d /˝n which descends to an action on the symmetrized subspaces.
The contractions are given by permutations � 2 Sdn (mixing all dn indices) and the
equivalences that we seek are encoded in

� � �1 � �2

where �1; �2 2 Sn D Diag.S�d
n / � Sdn (this is the embedding of Sn in Sdn).

Equivalently we are counting points in the double coset

SnnSdn=Sn:
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We can again use the formula

Zd I noncolor.n/ D 1

.nŠ/2

X
C

.Z
Sn!Sdn

C /2Sym.C /;

where the sum is over conjugacy classes of Sdn. For a given conjugacy class C ,
Z

Sn!Sdn

C counts the number of elements .�; : : : ; �/ in Diag.S�d
n / that is in C . For

.�; : : : ; �/ to be in C , C must have a cycle structure of d � the cycle structure of � .
The latter is entirely determined by partition of n so that Sym.C / D Q

i idpi .dpi /Š

(see Proposition 3, in Appendix A). We finally get

Zd I noncolor.n/ D
X
p`n

1

.Sym.p//2

Y
i

idpi .dpi /Š D
X
p`n

Y
i

i .d�2/pi .dpi /Š

.pi Š/2
:

A Mathematica program allows to compute this (see Appendix D, Mathematica
code 5). Doing this for d D 2 (matrix models) we get the sequence, up to order
n D 10,

2; 8; 26; 94; 326; 1196; 4358; 16248; 60854; 230184; : : : : (37)

This sequence is recognized by the OEIS as A067855 or the squared length of sum
of s2

p , where sp is a Schur function and p ranges over all partitions of n.
For d D 3, we get, up to order n D 10,

6; 192; 10170; 834612; 90939630;

12360636540; 2012440468938; 381799921738584; : : : :
(38)

This corresponds to the disconnected case. The Plog function can generate the
connected situation along the lines (8), (9), and (10) (Mathematica code 1 see Ap-
pendix D).

6.2. Invariants without color: symmetric tensors. Consider a complex symmetric
tensor ˆ of rank d , such that

ˆi1i2i3:::id D ˆi�.1/i�.2/:::i�.d/
; � 2 Sd :

We want to know the number Zd I sym.n/ of bi-partite graphs that one can build by
contracting n copies of ˆ (seen as vertices of valence d ) with n copies of x̂ . In terms
of a traditional invariant theory question, we are counting invariants of U.N / acting
on Symn..Symd .V ˝d //˝n ˝ Symn..Symd . xV ˝d //˝n/. The Sd symmetrization
implicit in Symd comes from having symmetric tensors. The Sn symmetrization
comes from having n copies of the same ˆ and n of the same x̂ .

The possible contractions between these fields can be drawn as the possible parings
between two families of n vertices with d half-lines in the way given in Figure 10.

http://oeis.org/
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�

c2c2c2

c2c2
c2

ˆ ˆ ˆˆ ˆ ˆ

x̂ x̂ x̂
c1 c3 c1 c3 c1 c3

c1 c3 c1 c3 c1 c3

Figure 10. Symmetric tensor contraction.

In other words, the determination of possible graph amounts to count the number
of permutations

� 2 Sdn;

permutations subject to the equivalence

� � �1 � � � �2;

where
�i 2 Sn Ë .Sd /n defD SnŒSd �

(called the wreath product) act as follows. The S˝n
d

permutes independently the
d -tuples of indices for each of the n tensors (say ˆ); the Sn acts by permuting the n

tensors, equivalently it permutes the n d -tuples among each other, while not changing
their internal structure. The permutation � acts point-wise on the full set of these
f1; : : : ; ndg indices. If we write the nd indices on the ˆ’s as ia

˛ where a runs from 1

to n and ˛ runs from 1 to d , with all indices with fixed a attached to the same ˆ, the
action of .� I �1; : : : ; �n/ 2 SnŒSd � with � 2 Sn; �a 2 Sd for a 2 f1; : : : ; dg acts as

ia
˛ �! i

�.a/

�a.˛/
:

Hence, the counting we are interested in is given by the number of classes in the
double coset space

SnŒSd �nSdn =SnŒSd �:

Applying (4), the counting can be recast as

Zd I sym.n/ D 1

.nŠ/2.d Š/2n

X
C

.Z
SnŒSd �!Sdn

C /2Sym.C /:

In order to achieve this, we use similar generating function techniques as developed
in [23]. We have the generating function of wreath products as

Z
S1ŒSd �

d
.t; Ex/ D

X
n

tnZSnŒSd �.Ex/ D e
P1

iD1
ti

i

�P
q`d

Qd
`D1

�
xi`

`

��` 1
�`Š

�
;
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where Ex D .x1; x2; : : : / and the partition q D .
`/` of d generates
P

` `
` D d .
Finally,

Zd I sym.n/ D
X

p`dn

.Coefficient ŒZ
S1ŒSd �

d
.t; Ex/; tnx

p1

1 x
p2

2 : : : x
pdn

dn
�/2Sym.p/:

A Mathematica program (see Mathematica code 6, in Appendix D) allows to obtain
the sequences. For d D 2 (matrix model fully symmetric invariants),

1; 2; 3; 5; 7; 11; 15; 22; 30; 42; (39)

which gives, according to the OEIS, simply the number of partition up to order
of starting at n D 1 up to order 10. At order n � 14, the evaluation becomes
challenging. This sequence might be coincide several known by OEIS (for instance
A000041, A046054, etc.).

For d D 3, one gets, for n D 1; : : : ; 8,

1; 2; 5; 12; 31; 103; 383; 1731: (40)

Last for d D 4, we obtain for n D 1; : : : ; 8;

1; 3; 9; 43; 264; 2804; 44524; 1012456: (41)

Both of (40) and (41) are new sequences according to the OEIS website.

7. Correlators of tensor observables

We have already motivated the enumeration of the tensor model invariants in terms
of classifying the possible interaction terms that can be added to the Gaussian term.
Other perspectives suggest that there should be additional algebraic structures on
these tensor invariants. In the context of matrix models, the string duals lead one to
consider a state space with basis corresponding to the traces of matrices; see [60].
On this state space, there can be an interesting non-degenerate pairing or inner product.
The pairings are related to correlators involving insertions of two of these general
observables in the path integral. A ring structure is also a fruitful object of study
containing information about the dual geometry; see [61]. With this in mind, we
can define a vector space with basis labeled by the tensor model invariants and study
correlators involving insertions of two or more of the general invariants. We write
some formulae for correlators with two insertions of the observables we have classified
in a Gaussian integral for colored tensors. We obtain some formulae in terms of
permutation groups, with structure similar to the delta function sums that appeared
in the previous counting. We will restrict attention to d D 3.

Consider the Gaussian model

Z D
Z

dˆd x̂ e� 1
2 ˆi1i2i3 x̂ i1i2i3

:

http://oeis.org/
http://oeis.org/
http://oeis.org/
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The index ia runs over f1 : : : Nag, for a 2 f1; 2; 3g. The 2-point function is

hˆi1i2i3 x̂ j1j2j3i D ıi1j1ıi2j2ıi3j3 :

The observables, invariant under U.N /�U.N /�U.N /, are labeled by permutations
.�1; �2; �3/ subject to equivalence .�1; �2; �3/ � .�1�1�2; �1�2�2; �1�3�2/. We will
write these observables as O�1;�2;�3

with the understanding that

O�1;�2;�3
D O�1�1�2;�1�2�2;�1�3�2

:

The two-point function obtained by inserting in the above tensor model integral the
product of two such operators

hO�1;�2;�3
xO�1;�2;�3

i D 1

Z

Z
dˆd x̂ e� 1

2
ˆijk x̂ ijk

O�1;�2;�3
O��1

1
;��1

2
;��1

3
:

We consider the operators to be normal-ordered, i.e when we sum over Wick contrac-
tions, we do not include contractions between the ˆ’s within an operator O�1;�2;�3

and x̂ ’s within the same operator. The two-point function will be a function of �i ; 	i

which is invariant when either the �i or the 	i are multiplied by �1 on the left and �2

on the right. The answer is (see Appendix C for the derivation)

hO�1;�2;�3
xO�1;�2;�3

i

D
X

�1;�22Sn

N n
1 N n

2 N n
3 ı.�1�1�2	�1

1 �1/ı.�1�2�2	�1
2 �2/ı.�1�3�2	�1

3 �3/:

(42)

Here �a DP
�2Sn

N
C�a �n
a � and is in the group algebra of Sn. A transformation

�i �! �1�i�2; 	i �! � 0
1	i�

0
2

can be absorbed by changing variables in the sums

�1 �! � 0
2�1�1; �2 �! � 0

1�2�2:

This shows that the correlator gives a pairing of the equivalence classes of permutation
triples which we counted in Section 3. Note that �a commute with all permutations
in Sn. In the large Na limit, �a ! 1. Then the 2-point correlator becomes an inner
product which is diagonal on the equivalence classes, with positive diagonal values.
This is an analog of the familiar large N factorization of matrix model, where different
trace structures do not mix in the leading large N limit. Here the two equivalence
classes of invariants inserted (which are the analogs of trace structure for one-matrix
invariants) have to be identical for a non-vanishing 2-point correlator. At subleading
orders 1

Na
, different equivalence classes mixing under the inner product, with the

mixing being controlled by the group multiplication in Sn.
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Eq. (42) can be further simplified by defining

˛2 D ��1
1 �2; ˛3 D ��1

1 �3

and

ˇ2 D 	�1
1 	2; ˇ3 D 	�1

1 	3:

We have

hO�1;�2;�3
xO�1;�2;�3

i D nŠ
X

�2Sn

ı.ˇ�1
2 ��1˛2��1�2/ı.ˇ�1

3 ��1˛3��1�3/:

This simplification is analogous to the one that happened in the counting delta func-
tions (18) and (20). The close parallels between counting and correlators exhibited
by the permutation-TFT approach is a recurrent theme that has been encountered for
example in [62], [11], and [12] in the context of AdS/CFT. The algebraic structures
present in correlators, such as non-degenerate pairing (inner product) and product
structure (related to insertion of three observables), are also of interest in the context
of CFTs. We will comment on a 4D CFT context for studying the combinatorics and
correlators of 3-index fields in Section 8.

8. Summary and discussion

In this section, we will summarize the main results of this paper and outline extensions
thereof. We then discuss some conceptual questions raised by the results of this paper,
and describe associated technical investigations that can be carried out.

8.1. Summary of main results.
� There is a counting of invariants made from n copies of a colored d�tensor, along

with n copies of the conjugate tensor given in terms of a sum over partition of n;
see eq. (11). This counting includes disconnected invariants (analogous to multi-
traces in matrix models). With this disconnected counting as input, the plethystic
log function is used to generate the connected invariants. Using these formulae,
we generated the counting sequences to high order: (7) and (12) give the dis-
connected counting for the rank 3 and rank 4 case, respectively, whereas (10)
and (13) give the connected counting for the rank 3 and 4, respectively.

� We have shown that the counting of invariants of the d�tensors, with n copies
of ˆ and n of x̂ , is equivalent to the counting of degree n branched covers
of the sphere with d branch points (summed over the possible genera of the
covering space). Other geometrical interpretations in terms of covering spaces
are also discussed in Section 4. Permutation-TFTs, in conjunction with the
Burnside lemma from combinatorics and the links between fundamental groups,
permutations and covering spaces given by algebraic topology, form a unifying
framework for exhibiting the different geometrical interpretations.
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� For the case d D 3, the counting of tensor invariants is equivalent to the counting
of embedded bi-partite graphs with n edges and is also related to the computation
of correlators of complex matrix models.

� We studied a color-symmetrized counting, obtaining explicit formulae in terms
of multi-variable generating functions. Key results are (27), (29), (34), and (36).

� The permutation techniques were used to give counting formulae for the tensor
invariants in the cases of the more traditional non-colored tensor models.

� As a start towards investigating algebraic structures on the space of tensor ob-
servables provided by the Gaussian tensor model, we gave permutation group
formulae for the 2-point correlator of the general invariants. We noted that the
normal-ordered 2-point correlator gives an inner product, which is diagonalized
by the equivalence classes of tensor invariants (or, expressed another way, by the
equivalence classes of branched covers of the 2-sphere) in the large N limit. This
diagonality is a tensor model analog of large N factorization of matrix models.

8.2. Discussion. In this section, we discuss some conceptual questions raised by
our results and list some related problems for investigation.

8.2.1. Braid orbits. Given a permutation triple, .	1; 	2; 	3/ obeying

	1	2	3 D 1

color-symmetrization proceeds by group actions generated by .C1; C2/,

C1.	1; 	2; 	3/ D .	2; 	1; 	�1
1 	�1

2 /

and

C2.	1; 	2; 	3/ D .	�1
1 ; 	�1

1 	2; 	�1
2 	2

1 /:

One checks that

C 2
1 D 1; C 2

2 D 1; C1C2C1 D C2C1C2:

This means that the group generated by fC1; C2g contains

f1; C1; C2; C1C2; C2C1; C1C2C1g
and is S3, the symmetric group of permutations of 3 elements.

Recall that this came from gauge-fixing .�1; �2; �3/, using the gauge equivalence
in (3)

.�1; �2; �3/ �! .1; ��1
1 �2; ��1

1 �3/ � .1; 	1; 	2/:

There is another S3 action on triples 	1; 	2; 	3 which multiply to 1, which is generated
by two braiding generators B1; B2 which act as

B1.	1; 	2; 	3/ D .	2; 	�1
2 	1	2; 	3/ and B2.	1; 	2; 	3/ D .	1; 	3; 	�1

3 	2	3/:
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Again we have B2
1 D B2

2 D 1 and B1B2B1 D B2B1B2, so that the group generated
is S3.

From the above description, there appear to be two similar but distinct S3 actions -
one coming from color-symmetrization and one from braiding. Yet when we compute
the number of braid orbits using Burnside’s lemma, applying delta functions and
simplifying, we get the same answer as with color-symmetrized equivalence classes.
Also computation with GAP gives the same counting. This means that formulae (27)
and (29) give the counting of braid orbits. Braid orbits are of interest from the point
of view of the topological classification of polynomials; see [63].

It is natural to ask if the connection between color-symmetrized equivalence
classes and braid orbits goes beyond the counting and holds for the actual orbits
themselves. This would hold if a more direct connection between the two actions
of S3 on .	1; 	2; 	3/ could be found, e.g. by some appropriate change of variables.
Even at the level of counting, there is the question of whether the equality holds for
d higher than 3. The cases d D 4; 5 should be a somewhat tedious but very doable
problem.

8.2.2. Higher dimensional topology and low-dimensional covers. The primary
motivations for the study of tensor models by physicists has been its connections
to higher dimensional topology and geometry. With an improved understanding of
counting problems associated with tensor models and with the aid of modern com-
putational tools for group theoretic computations, one may ask if tensor models can
provide a new perspective on counting problems in topology studied in the math-
ematical literature, e.g. [64] and [65]. For example, can we use tensor models to
count triangulations of 3-sphere with specified numbers of vertices? Such a question
is strongly related to Gromov’s conjecture on sphere triangulations; see [66]. An-
other goal would be to try and extract information about continuum geometry from
discrete computations, through mathematical connections such as that provided by
the Riemann existence theorem – we would need some form of higher dimensional
generalizations of it.

What is intriguing in the connection between tensor models and branched covers
of the two-sphere we have developed here, is that it suggests that two dimensional
holomorphic maps know about higher dimensional combinatoric topology. The study
of dimer models - and the associated bi-partite graphs and Belyi maps – in connection
with toric Calabi-Yau geometries is another example of physical links between low-
dimensional holomorphic maps and higher dimensional geometry; see [67], [68],
[69], [70], [71], and [72].

8.2.3. Fourier transforms and finite N effects. In all the counting problems we
have treated in this paper, we have treated N – the range of values taken by the tensor
index – to be large sufficiently large compared to n – the number of tensors in the
observable. There are qualitative changes in the counting when N is finite. For the
case of matrices, this is a consequence of Caley–Hamilton theorem which allows us
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to write tr.XN C1/ for an N �N matrix in terms of products of lower traces. This has
important implications in string theory in the form the stringy exclusion principle;
see [73]. These finite N effects have been studied in a variety of multi-matrix systems;
see [8], [10], and [6]. The key lesson is that they are neatly characterized by using
permutations to describe invariants (as we have done here) and then performing
the Fourier transform on permutation groups to go from “permutations subject to
constraints” to appropriate representation theoretic data given by representations of
permutation groups. The finite N cutoffs are simple in terms of Young diagrams.
The reason why representation theory of the permutation groups knows about the
finite N of U.N / is Schur–Weyl duality. For an overview of how Schur–Weyl duality
enters gauge-string duality see [19], [74], [75], and [12].

8.2.4. A gauge theory perspective on counting and correlators of tensor invari-
ants. Consider a gauge theory, say in 4 dimensions, with gauge group U.N /�3.
Choose the matter to be a Lorentz scalar which is complex and transforms in the
.N; N; N / of the gauge group. It is then a four dimensional field ˆijk.x/. We may
ask how to enumerate all the gauge invariant observables made from ˆijk.x/ in the
large N limit. The zero coupling limit is a conformal field theory (CFT), so we have
an operator-state correspondence. The enumeration we gave in Section 3 is then
counting physical (gauge-invariant) states that can be built from the scalar. The two-
point correlators we computed give the CFT-inner-product on these states; for uses
of operator-states corresponding in the context of AdS/CFT see for example [76].
3-index fields have recently been of interest in the context of supersymmetric gauge
theories; see [77], and [78].

8.2.5. Complex matrix models and 3-index tensor models: An intriguing rela-
tion. Consider a complex matrix model with Gaussian measure, withZ

dZe� 1
2

trZZ�

;

where we have
hZi

j .Z�/k
l i D ıi

l ı
k
j :

The holomorphic traces of Z can be parametrized by permutations 	 ,

O� .Z/ D
NX

i1:::inD1

Z
i1
i�.1/

: : : Z
in
i�.n/

;

subject to constraints
O� D O����1 ;

for � 2 Sn. This parametrization includes both single traces such as tr.Z3/ and
multi-traces such as Œtr.Z2/�.trZ/. The cycle structure of 	 determines the numbers
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of single traces, double traces etc. Of particular interest inAdS/CFT are the correlators
with one holomorphic and one anti-holomorphic observable. We have

jT1j
nŠ

jT2j
nŠ
hO�1

.Z/O�2
.Z�/i

The natural normalization factors involve the sizes of the conjugacy classes corre-
sponding 	1; 	2 which have been denoted T1; T2. It can be shown that the correlator
is a sum over triples of permutations, see [3], [13], and [59],

jT1j
nŠ

jT2j
nŠ
hO�1

.Z/O�2
.Z�/i D 1

nŠ

X
�12T1

X
�22T2

X
�02Sn

ı.	1	2	0/N C�0 :

This shows that the correlator is a sum over branched covers of the 2-sphere, branched
over three points. The covers are summed with weight given by the inverse order
automorphism group of the covers. This is a geometrical description of the Feynman
graphs (more bi-partite embedded graphs) of the matrix model.

In this paper, we have found that observables of the 3-index tensor model are
parametrized by permutations 	1; 	2 subject to conjugation equivalence; see equa-
tions (18) and (21). These equivalence classes are precisely the Feynman graphs for
the correlators of the complex matrix model described above. Feynman graphs of
the matrix model become physical states (observables) of the tensor model. As we
saw the (normal-ordered) two-point correlators of the tensor model provide an inner
product on these observables. So in this case, in a more than superficial sense, Feyn-
man graphs of a matrix model have become states of a tensor model. It would be
interesting to unravel the proper interpretation and implications of this connection.
How general is it? It has a flavor of being a dimensional uplift, which is often related
to categorification (see further discussion of the connection between (refined) graph
counting and three-dimensional permutation-TFTs in [24]). This should be better
understood both from a physical and a mathematical point of view. Note that the
usual physical argument for tensor models being a higher dimensional generalization
of matrix models relies on interpreting the indices as being dual to simplexes. Here
we are seeing an extra dimension from the tensor model by considering counting and
correlators of invariants, which are objects built after contracting away all the indices.
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Appendices

A. Orbit-stabilizer theorem, Burnside’s lemma, size of conjugacy classes

We gather, in this appendix, basic facts about conjugacy classes in the symmetric
group Sn, the group of all nŠ permutations of n objects, and about finite groups acting
on finite sets. Further discussion of these topics can be found, for example, in [79].

Definition 1 (Cycle-type). Two permutations are of the same cycle type or have the
same cycle structure if the unordered list of sizes of their cycles coincide.

Example. Consider �1 a permutation defined by its cycles .123/.4/.5/.67/ the list
of the sizes of the cycles of �1 is .3; 1; 1; 2/. Note that the order in which appear
3,1,1,2 is not relevant. Consider another permutation �2 such that .12/.3/.456/.7/,
then �1 and �2 have the same cycle type.

The cycle type of a permutation in Sn determines a list p D .p1; : : : ; pn/ of
numbers pi of cycles of length i . The list p is a partition of n:

n D
X

i

ipi :

Proposition 1 (Conjugacy class). Two permutations ˛ and ˛0 have the same cycle
type if and only if they are related to each other by conjugation, i.e ˛0 D �˛��1 for
some � .

Proof. ( H) ) The action under conjugation preserves the cycle structure. Indeed,
consider ˛ and � two permutations. From �˛��1.�.x// D �.˛.x//, one has for any
cycle of a given permutation

�.a1; : : : ; a2/��1 D .�.a1/; : : : ; �.a2//: (A.1)

( (H ) Consider �1 and �2 with same cycle type. Construct first a bijection '

between the cycles of these permutations mapping cycles with the same size one onto
another (' may be not unique). For a pair of cycles s1 D .a1; : : : ; aq/ of �1 and
s2 D .b1; : : : ; bq/ of �2 linked by ', namely '.s1/ D s2, construct a bijection � such
that �.ai / D bi (� may be not unique as well). Then one checks that �s1��1 D s2

and that ��1��1 D �2.

Burnside’s lemma. Consider a finite set X and a finite group G acting on X .
Consider x 2 X and the application

Fx W G �! X; g 7�! gx:
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Note that the image of Fx , =.Fx/ D Gx, is the orbit of x in X whereas the kernel
ker.Fx/ D Gx of Fx is the stabilizer of x in G. The orbit-stabilizer theorem states
that the size of the orbit generated by the group action on an element x is the ratio of
the group size divided by the size of the subgroup which leaves the element x fixed.
In equations

jGxj D ŒG W Gx� D jGjjGx j : (A.2)

The following statement holds.

Proposition 2 (Burnside’s lemma). The number of orbits of the G-action on X ,
denoted jX=Gj is given by average number of fixed points of the group action. More
explicitly,

jX=Gj D 1

jGj
X
g2G

Xg ;

where Xg D fx 2 X; gx D xg is the set of fixed point of g.

Proof. Let us observe thatX
x2X

jGx j D
X
x2X

h X
g2G=gxDx

1
i
D

X
g2G

h X
x2X=gxDx

1
i
D

X
g2G

Xg :

Then inverting the relation (A.2) and summing over x yieldsX
g2G

Xg D
X
x2X

jGx j D jGj
X
x2X

1

jGxj D jGj
X
x2X

X
A2X=G=x2A

1

jAj

D jGj
X

A2X=G

X
x2A

1

jAj D jGj jX=Gj;

where we used the fact that the classes in X=G determine a partition of X .

If one is interested in the number of elements in a conjugacy class of symmetric
group, then, by Proposition 1, it is enough to look at their unique cycle type. Precisely,
the following statement holds.

Proposition 3 (Size of conjugacy classes). Consider the conjugacy class Tp in the
symmetric group G D Sn with cycle type entirely determined by the list p D
.p1; p2; : : : ; pn/, where pi gives the number of cycles of size i . This list forms a
partition of n since n D P

i ipi . Then the size of the conjugacy class jTpj is given
by

jTpj D nŠ

Sym.p/
; Sym p D

nY
iD1

.ipi /.pi Š/;

where Sym.p/ is the number of elements of Sn commuting with any permutation in
the conjugacy class Tp .
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This is an application of the orbit stabilizer theorem, for the case where the group
Sn acts on itself by conjugation.

Sym.p/ can be computed as follows. For ˛ 2 Tp, we are looking for � 2 Sn such
that �˛��1 D ˛. As we saw in (A.1), conjugating ˛ with � amounts to replacing
the integers j in the cycles of ˛ by �.j /. This � transformation of the cycles of
˛ can leave the cycles fixed, or exchange cycles of the same length. Focusing on
cycles of length i , of which there are pi , � can cycle the numbers within a cycle. For
a cycle of length i there are i of these cyclic permutations. So there are ipi cyclic
permutations � which just cycle the integers within cycles of length i in ˛, thus
leaving ˛ unchanged. Then, there are permutations of exchanging the pi different
cycles. In all, we get

Qn
iD1.ipi /.pi Š/ as stated above.

B. Symmetric group delta functions to generating functions for countings

In this appendix, we address the evaluation of formal sums appearing as S
.3/

Œ2;1�
and

S
.3/

Œ3�
.n/ in (27) and S

.4/

Œ2;12�
, S

.4/

Œ3;1�
, S

.4/

Œ22�
, and S

.4/

Œ4�
appearing in (35).

Let us start by S
.3/

Œ2;1�
and find a way to perform this sum. We have

S
.3/

Œ2;1�
D

X
�;�2Sn

ı.�2���2��1/:

For every partition p of n, n D p1 C 2p2 C : : : ; there is a permutation � of cycle
of type p, i.e. � has p1 cycles of length 1, p2 cycles of length 2, etc. Let us denote
this by � 2 p. Let Tp be the sum of permutations in the cycle-type p in the group
algebra C.Sn/:

Tp D
X
�2p

�:

Consider the sum, still with value in C.Sn/,

Z.2/.n/ D
X

�2Sn

�2 D
X
p`n

Z.2/
p

Tp

jTpj :

The sum of �2 commutes with each element of Sn (for all � 2 Sn,
P

� ��2��1 DP
� .����1/2 D P

� �2), so it is a sum over complete conjugacy classes Tp , each

which some weight. We have defined Z
.2/
p

jTpj to be the coefficient of Tp in the sum of

�2, where jTpj is the number of permutations in the conjugacy class corresponding
to cycle-type given by p (see Proposition 1). Similarly, we can define

X
�2Sn

� D
X
p`n

Z.1/
p

Tp

jTpj :
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In this case we have

Z.1/
p D jTpj D nŠQ

i ipi pi Š
D nŠ

Sym.p/
:

Now there is a generating function for Z
.1/
p given by

Z.1/.t; Ex/ D Z.1/.t; x1; x2; : : : / D e
P1

iD0

ti xi
i D

1X
nD0

tn

nŠ

X
p`n

Z.1/
p

Y
i

x
pi

i ;

where Ex D .x1; x2; : : : /. When we square a permutation, all odd cycles become odd
cycles again, whereas all even cycles split in two of half the length of the former ones.
As a result the generating function for Z

.2/
p is

Z.2/.t; Ex/ D Z.1/.t; x1; x2 D x2
1 ; x3; x4 D x2

2 ; : : : / D
1X

nD0

tn

nŠ

X
p`n

Z.2/
p

Y
i

x
pi

i :

We can finally write

S
.3/

Œ2;1�
D 1

nŠ

X
p`n

Z.2/
p Sym.p/

D
X
p`n

Coefficient ŒZ.2/.t; Ex/; tnx
p1

1 x
p2

2 : : : xpn
n � �

h nY
iD1

ipi pi Š
i
;

(B.1)

where, given a partition p of n, Coefficient ŒZ.2/.t; Ex/; tnx
p1

1 x
p2

2 : : : x
pn
n � is the co-

efficient of the monomial tnx
p1

1 x
p2

2 : : : x
pn
n in the series Z.2/. This is easily pro-

grammable in Mathematica (see Mathematica code 2, in Appendix D) and one gets
(from n D 1 to n D 13)

1; 2; 5; 17; 59; 265; 1095; 6342; 33966;

219968; 1333654; 9930505; 70419371; : : : :

Another quantity which appears in the computation of the invariants constructed
from 3-index invariants is

S
.3/

Œ3�
D 1

nŠ

X
�;�2Sn

ı.�3�3/:

Consider the following element of the group algebra of Sn,

Z.3/.n/ D
X

�2Sn

�3 D
X
p`n

Z.3/
p

Tp

jTpj :
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In terms of these, we have

S
.3/

Œ3�
D 1

nŠ

X
p`n

�Z
.3/
p

jTp j
�2jTpj D 1

.nŠ/2

X
p`n

.Z.3/
p /2Sym.p/:

In an analogous way than before, there is a generating function

Z.3/.t; Ex/ D
1X

nD0

tn
X
p`n

Z
.3/
p

nŠ

nY
iD1

x
pi

i :

When we take the cube of a permutation, any cycle of length divisible by 3 becomes
a triple of 1-cycles. Any other cycle stays a cycle of the same length. Hence, one has

Z.3/.t; x1; x2; : : : / D Z.1/.t; xi jxi !.xi=3/3 if and only if i is divisible by 3/: (B.2)

So, we have

S
.3/

Œ3�
D

X
p`n

�
Coefficient

h
Z.3/.t; Ex/; tn

Y
i

x
pi

i

i�2 �
h Y

i

ipi pi Š
i
: (B.3)

This is easily calculable in Mathematica (see Mathematica code 2 in Appendix D)
and we list the numbers starting at n D 1 up to n D 13 as

1; 1; 2; 4; 5; 13; 29; 48; 114; 301; 579; 1462; 4198; : : : :

The first few terms can be easily checked in GAP by directly summing pairs of
permutations subject to �3�3 D id.

Counting the case of tensors with 4-indices, say Z4I sc.n/, we encounter the sum

S
.4/

Œ3;1�
.n/ which is similar to that S

.3/

Œ2;1�
.n/, but Z.2/ is replaced with Z.3/:

S
.4/

Œ3;1�
.n/ D 1

nŠ

X
p`n

Z.3/
p Sym.p/

D
X
p`n

Coefficient ŒZ.3/.t; Ex/; tnx
p1

1 x
p2

2 : : : xpn
n � �

h nY
iD1

ipi pi Š
i
;

(B.4)

where Z.3/ is as given above in (B.2). Using still Mathematica, this can be pro-
grammed and we get (see Appendix D, Mathematica code 2), for n D 1 to n D 13,

1; 2; 4; 12; 27; 103; 391; 1383; 6260; 32704; 149045; 812696; 5034682 : : : :

Still in the rank 4 case, one finds the sum

S
.4/

Œ4�
.n/ D 1

nŠ

X
�;�2Sn

ı.�4�4/:
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Following the above arguments, we will define Z.4/.t; Ex/ by substituting in Z.1/.t; Ex/

xi �! .xi=4/4 for i D 4q with integer q,

�! .xi=2/2 for i D 4q C 2,

�! xi for i D 4q C 1 or i D 4q C 3.

Then we have

S
.4/

Œ4�
.n/ D

X
p`n

�
Coefficient

h
Z.4/.t; Ex/;

Y
i

x
pi

i

i�2 �
h Y

i

ipi pi Š
i
: (B.5)

Some terms of this sequence, starting from n D 1 up to n D 13 (see Mathematica
code 2 in Appendix D)

1; 2; 3; 11; 27; 93; 233; 978; 3156; 13280; 44476; 205611; 796091; : : : :

The first few terms are quickly checked by directly summing the delta function over
the symmetric group with GAP, but this soon becomes prohibitive, and the generating
function method is much more efficient.

Counting rank 4 tensor invariants up to color permutation leads to another sum
given by

S
.4/

Œ2;12�
.n/ D 1

nŠ

X
�;�1;�22Sn

ı.��1��1��1
1 /ı.�2�2��2��1

2 /:

For � in a conjugacy class given by p, let us define Sq.p/ to be the cycle structure
of �2:

.Sq.p//2j D 2p4j and .Sq.p//2j C1 D p2j C1 C 2p4j C2:

As � runs over all the partitions p, we have

S
.4/

Œ2;12�

D 1

nŠ

X
p`n

jTpj Sym.p/ Sym.Sq.p//

D
X
p`n

Sym.Sq.p//

D
X
p`n

b n
2

cY
j D1

.2j /2p4j .2p4j /Š

b n
2

cY
j D0

.2j C 1/p2j C1C2p4j C2.p2j C1 C 2p4j C2/Š:

(B.6)
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This is calculated with Mathematica for n in the range 1 to 10 (see Mathematica
code 3 in Appendix D) as

1; 4; 15; 83; 385; 2989; 20559; 203992; 1827640; 21864590; : : : :

The first few terms are checked against GAP which calculates the delta functions
directly.

Finally, one can transform S
.4/

Œ22�
.n/ in the following way:

S
.4/

Œ22�
.n/ D 1

nŠ

X
�2Sn

X
�i 2Sn

ı.�2
1 �2 /ı.�2�2��2 ��1

2 /

D 1

nŠ

X
�;˛2Sn

X
�i 2Sn

ı.�2
1 ˛/ı.˛�1�2/ı.˛�2˛�1��1

2 /

D 1

nŠ

X
˛2Sn

ı.˛Z.2/.n//ı.˛�1Z.2/.n//Sym.˛/

D 1

nŠ

X
p`n

X
˛2Œp�

ı.˛Z.2/.n//ı.˛�1Z.2/.n//Sym.˛/

D 1

nŠ

X
p`n

X
˛2p

�Z
.2/
p

jTpj
�2

Sym.p/

D 1

nŠ

X
p`n

nŠ

Sym.p/
.Z.2/

p /2 1

jTpj2 Sym.p/

D 1

.nŠ/2

X
p`n

.Z.2/
p /2.Sym.p//2

D
X
p`n

.CoefficientŒZ.2/.t; Ex/; tnx
p1

1 x
p2

2 : : : xpn
n � Sym.p//2:

(B.7)

Doing this with Mathematica (see Appendix D code ), we get for n from 1 to 12.

1; 4; 17; 105; 685; 5825; 585018; 54013;

6873522; 90254150; 1275023778; 19651966895:

The first few agree with GAP.
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C. Derivations for correlator computations

In this section, we explain the derivations of the formulae for correlators in terms
of delta functions over symmetric groups, which are best expressed in diagrammatic
form. For some CFT applications of such techniques for correlators see [4], [6], [8],
[10], and [11]. When we use the basic 2-point correlator and apply Wick’s theorem
to calculate the correlator of n copies of ˆ with n copies of x̂ , we get a sum over
Wick contractions. This is a sum over permutations which expresses as

hˆi1;j1;k1 : : : ˆin;jn;kn x̂ i1;j1;k1 : : : x̂ in;jn;kni

D
X

�1;�2;�32Sn

ıi1;i�1.1/ : : : ıin;i�1.1/ ıj1;j�2.1/ : : : ıjn;j�2.n/

ık1;k�3.1/ : : : ıkn;k�3.n/ :

It is convenient to describe this diagrammatically as in Figure 11.

*
RR

GG
BB

ˆ˝n x̂˝n

+
D

X
�1;�2;�32Sn

RR GG BB

ˆ˝n x̂˝n

�1 �2 �3

Figure 11. Basic correlator in a diagrammatic form.

Let us also draw the observable parametrized by �1; �2; �3 using a similar diagram
of Figure 12. This is simplified version of the diagram in Figure 3.

�1 �2 �3

R B

R B

G

G

ˆ˝n

x̂˝n

Figure 12. Observable as a diagram.

Similarly, draw the two-point function in a diagrammatic form given in Figure 13
and use the diagrammatic expression of the Wick contractions (Figure 11) in this
correlator. As stated before, we are taking the observables to be “normal ordered” so
we only allow contractions to take place between the ˆ’s from the first observable
to the x̂ ’s from the second (parametrized by �a) and between the x̂ ’s from the first
observable to the ˆ’s from the second (parametrized by 
a).



124 J. Ben Geloun and S. Ramgoolam

hO�1;�2;�3
xO�1;�2;�3

i� D

�
�1 �2 �3

R B

R B

G

G

ˆ˝n

x̂˝n

	�1
1 	�1

2 	�1
3

R B

R B

G

G

ˆ˝n

x̂˝n
�

D
X

�1;�2;�3

�1;�2;�3

�1 �2 �3

�1 �2 �3

�3 �2 �1

��1
3

��1
2

��1
3

Figure 13. Two-point function as a diagram.

The final step is a simple diagrammatic straightening, to recognize that the corre-
lator is a product of three traces of sequences of permutations

hO�1;�2;�3
xO�1;�2;�3

i

D
X

�i 2Sn

X
�i 2Sn

tr
V

˝n
1

.�1�1	�1
1 
1/tr

V
˝n
2

.�2�2	�1
2 
2/tr

V
˝n
3

.�3�3	�1
3 
3/:

Now if V is an N -dimensional space with basis ei for i D 1 : : : N we have

trV ˝n.�/ D hei1 ˝ � � � ˝ ein j � j ei1 ˝ eini
D hei1 ˝ � � � ˝ ein j ei�.1/

˝ ei�.n/
i

D ı
i1
i�.1/

: : : ı
in
i�.n/

D N C� :
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The repeated i indices are summed since we are taking a trace. C� is the number of
cycles in the permutation � . It is instructive to see how the last step works in a simple
example, where n D 2. If � D .1/.2/ is the identity permutation, then

ı
i1
i�.1/

ı
i2
i�.2/
D ı

i1
i1

ı
i2
i2
D N 2:

If � D .12/ is the swop, we have instead

ı
i1
i�.1/

ı
i2
i�.2/
D ı

i1
i2

ı
i2
i1
D ı

i1
i1
D N:

Thus, we see that the power of N is the number of cycles in the permutation.

�1

��1
1

�1

�1

�2

��1
2

�2

�2

�3

��1
3

�3

�3

Figure 14. Straightening the traces.

Since we have allowed the 3-tensor indices to have different ranks, we can write

hO�1;�2;�3
xO�1;�2;�3

i

D
X

�i 2Sn

X
�i 2Sn

N
C

�1�1�1��1
1

1 N
C

�2�1�1��1
2

2 N
C

�3�1�1��1
3

3

D
X

�i 2Sn

X
�i 2Sn

X
˛i 2Sn

N
C˛1

1 N
C˛2

2 N
C˛3

3 ı.�1�1	�1
1 
1˛1/

ı.�2�2	�1
2 
2˛2/ı.�3�3	�1

3 
3˛3/

D
X

�i 2Sn

X
�i 2Sn

N n
1 N n

2 N n
3 ı.�1�1	�1

1 
1�1/ı.�2�2
2	�1
2 �2/ı.�3�3
3	�1

3 �3/:
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In the second line, we introduced three extra permutations constrained by delta func-
tions to re-write the previous line. Note that C˛ D C˛�1 . In the third line, we have
extracted the leading power of N which comes from the permutation with the largest
number of cycles, namely the identity permutations. The �.N / factor is an element
of the group algebra of Sn of the form

N n� D N n
�
1C

X
˛2Snnf1g

N C˛

N n
˛

�
: (C.1)

This element plays a key role in large N expansions of two dimensionalYM; see [17]
and [18]. The device of introducing delta functions makes the connection to the
counting of branched covers transparent. Thus, we have derived (42) stated in Sec-
tion 7.

D. GAP and Mathematica codes

We provide here some programming codes of GAP and Mathematica. These have
allowed the determination of several sequences in the text. The number Zd .n/ of
rank d tensor invariants, made with n covariant tensors T and n contravariant tensor
xT , is the one we primarily focused. Then other numbers are derived from its group
data or its structure. After entering a given line, the line starting by (out) should be
obtained.

GAP code for Zd .n/ and ZdI sc.n/. We provide here a code for evaluating Z3.n/,
number of rank 3 tensor invariants, and Z3I sc.n/ number of rank 3 color-symmetrized
tensor invariants. In the following program, we use the particular value n D 4.
Changing that parameter n or introducing a procedure for any finite range of value
of n will allow one to recover the full sequences (7), (10), (30), and (31) in the text.
Meanwhile changing the rank d of the tensor will require little extra work and allow
to find (11) giving, in particular for d D 4, eq. (12).

The sequence of lines starting by the prompt gap> denotes the lines entered. The
following lines with (out) are the outputs of that entry. The procedure starts by
the computation of Z3.n D 4/ using the formula (18). This allows us to reduce the
number of steps because we simply avoid another sum over S4. Then, from this, we
can evaluate the number of connected invariants Zconnect

3 .n D 4/ (10), the number of
color-symmetrized invariants Z3I sc.n D 4/ (30) and then the number Zconnect

3I sc .n D 4/

of color-symmetrized connected invariants (31). Interestingly, in order to obtain
connected graphs, we use the command IsTransitive (G, [1..4]) checking if
the action of the group G on f1; 2; 3; 4g is transitive.
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gap> TT := [ ];

(out) [ ]

gap> n := 4;;
for tau1 in SymmetricGroup(n)

do for tau2 in SymmetricGroup(n)
do Add (TT, [tau1, tau2]);
od;

od;

gap> TT[3];

(out) [ (), (1,2,4) ]

gap> OTT := OrbitsDomain (SymmetricGroup(n), TT, OnPairs);;
Ln := Length (OTT);;

Print("Z_3(n=4) = ", Ln);

(out) Z_3(n=4) = 43

gap> OS := [];; for k in [1..Ln]
do Add (OS , Set(OTT[k]));
od;

gap> OU := [];; for p in [1..Length(Unique(OS))]
do Add (OU, Unique(OS)[p][1]);
od;

gap> cnx := [];; for j in [1..Length(Unique(OS))]
do if IsTransitive (Group (OU[j][1], OU[j][2]) , [1..m])

then Add (cnx, OU[j]);
fi;

od;

gap> Print("Z^{connect}_3(n=4) = " , Length (cnx) );

(out) Z^{connect}_3(n=4) = 26

gap> P23 := function (List2P)
local LL ;
LL := [];
Add (LL , List2P[2]);
Add (LL , List2P[1]);
return LL;

end;

(out) function( List2P ) ... end
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gap> P12 := function (List2P)
local LL ;
LL := [];
Add (LL , Inverse ( List2P[1] ) );
Add (LL, Inverse ( List2P[1] ) * List2P[2] );
return LL;

end;

(out) function( List2P ) ... end

gap> QROTT := [];;
for i in [1 .. Ln]
do Add (QROTT, [ ]);
od;

for i in [1.. Ln]
do for j in [1 .. Length (OTT[i]) ]
do Add (QROTT[i] , OTT[i][j] );

Add (QROTT[i] , P12 (OTT[i][j]));
Add (QROTT[i] , P23 (OTT[i][j]));
Add (QROTT[i] , P12( P23 (OTT[i][j]) ) );
Add (QROTT[i] , P23( P12 (OTT[i][j]) ) );
Add (QROTT[i] , P12( P23 (P12 (OTT[i][j]) )));

od;
od;

gap> Length (QROTT);

(out) 43

gap> SetQROTT := [];; for i in [1..Ln]
do Add (SetQROTT, Set (QROTT[i]));
od;

LUsq := Length ( Unique (SetQROTT) );;

gap> Print ("Z_{3;color}(n=4)=", LUsq);

Z_{3;color}(n=4) = 15

gap> UQROTT := [];; for i in [1..LUsq]
do Add (UQROTT, Unique (SetQROTT)[i][1]);
od;

gap> CnX := [];; for i in [1..LUsq]
do if IsTransitive (Group (UQROTT[i][1],

UQROTT[i][2]), [1..n])
then Add (CnX, UQROTT[i]);
fi;

od;
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gap> Print ("Z^{connect}_{3;color}(n=4) = ", Length(CnX));

Z^{connect}_{3;color}(n=4) = 8

Mathematica code 1 for Zd.n/. In this paragraph, we provide a Mathematica code
for evaluating the number Zd .n/ (denoted Z[n,d]) of rank d tensor invariants made
with 2n tensors. Specifically, we evaluate Z3.n/ and Z4.n/ for the rank 3 and 4,
respectively. We use the built-in function Count[list, pattern] which count the
number of elements in a list matching a pattern. We also give the code for the
generating functions Zd .x/ (denoted Zseries[x,d]) from which the Plog function
PlogZd .x/ (denoted PLogZ[F,d,x]) is derived. Then we can obtain the number of
connected invariants from the later function using the built-in MoebiusMu or Möbius
function.

IntegerPartitions [ 4 ]
IntegerPartitions [ 4 ][[1]]

(out) {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}
(out) {4}

Count [{1,1}, 2]
Count [{1,1,2}, 1]

(out) 0
(out) 2

Sym [p_ , n_] := Product [ i^( Count [p , i] ) ( Count [p , i] )! , {i, 1, n} ]

Sym [{1, 1} , 2]

(out) 2

Z [n_ , d_] := Sum [ ( Sym [ IntegerPartitions[n][[i]] , n ] )^(d - 2) ,
{i, 1, Length [ IntegerPartitions[n] ] } ]

Zseries [x_, d_] := Sum [ Z [n , d] x^n , {n, 0, 10} ]

Zseries [x , 3]

(out) 1 + x + 4 x^2 + 11 x^3 + 43 x^4 + 161 x^5 + 901 x^6 + 5579 x^7 +
43206 x^8 + 378360 x^9 + 3742738 x^10

Zseries [x , 4]

1 + x + 8 x^2 + 49 x^3 + 681 x^4 + 14721 x^5 + 524137 x^6 +
25471105 x^7 + 1628116890 x^8 + 131789656610 x^9 + 13174980291658 x^10

PLog [F_, d_, t_] := Sum [ MoebiusMu [ k ] / k Log [F [t^k , d] ] , {k, 1, 10} ]
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Do[ Print[ "Plog[Z(", x, ",", d, ")] = ",
Series [ PLog [ Zseries, d, x] , {x , 0, 10} ] ] , {d, 3, 4} ]

(out) Plog[Z(x,3)] = x + 3 x^2 + 7 x^3 + 26 x^4 +97 x^5 + 624 x^6 + 4163 x^7
+ 34470 x^8 + 314493 x^9 + 3202839 x^10+ O [x^11]

(out) Plog[Z(x,4)] = x + 7 x^2 + 41 x^3 + 604 x^4 + 13753 x^5 + 504243 x^6
+ 24824785 x^7 + 1598346352 x^8 + 129958211233 x^9 + 13030565312011 x^10
+ O [x^11]

Mathematica code 2 for S
.3/

Œ2;1�
, S

.3/

Œ3�
.n/, S

.4/

Œ3;1�
.n/, and S

.4/

Œ4�
.n/. In this para-

graph, we provide Mathematica codes useful for the evaluation of S
.3/

Œ2;1�
and S

.3/

Œ3�
.n/

appearing in Z3I sc.n/ (28) and S
.4/

Œ3;1�
.n/ and S

.4/

Œ4�
.n/ appearing in Z4I sc.n/ (35).

The sums can be programmed in a very similar way. We start by S
.3/

Œ2;1�
denoted as

S2ans (evaluated up to order 10) and then, using small modifications, we will give
the program for the rest of the above sums.

X = Array [x , 15]

(out) {x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10],
x[11], x[12], x[13], x[14], x[15]}

Z [X , t] := Product [ Exp [ t^i x[i]/i ] , {i, 1, 15} ]

RR = Table [ x[2 i] -> x[i]^2 , {i, 1, 5} ]

(out) {x[2] -> x[1]^2, x[4] -> x[2]^2, x[6] -> x[3]^2, x[8] -> x[4]^2,
x[10] -> x[5]^2, x[12] -> x[6]^2, x[14] -> x[7]^2}

Z2 [X , t] = Z [X , t] /. RR

(out) e^(t x[1] + 1/2 t^2 x[1]^2 + 1/4 t^4 x[2]^2 + 1/3 t^3 x[3]
+ 1/6 t^6 x[3]^2 + 1/8 t^8 x[4]^2 + 1/5 t^5 x[5] + 1/10 t^10 x[5]^2
+ 1/12 t^12 x[6]^2 + 1/7 t^7 x[7] + 1/14 t^14 x[7]^2 + 1/9 t^9 x[9]
+ 1/11 t^11 x[11] + 1/13 t^13 x[13] + 1/15 t^15 x[15])

PP [ n_ ] := IntegerPartitions [n]

Z2ans [ n_ ] := Coefficient [ Series [ Z2[X , t] , {t, 0, n} ], t^n ]

Z2ans [3]

(out) 1/3 (2x[1]^3 + x[3])

Symm [q_ , n_] := Product [ i^( Count [q , i] ) ( Count [q , i] )! , {i, 1, n} ]

Symm [ {2, 2, 1} , 5]
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(out) {8}

CC [n_ , q_] := Coefficient [ Z2ans[n] ,
Product [x[i]^(Count[q , i]) , {i, 1, n} ] ]

CC [3 , {1, 1, 1}]
CC [3 , {3}]
Z2ans [ 3 ]

(out) 2/3
(out) 1/3
(out) 1/3 (2 x[1]^3 + x[3])

S2ans [ n_ ] := Sum [ CC [ n , PP[n][[i]] ] * Symm [ PP[n][[i]], n ] ,
{i, 1, Length [ PP[n] ] } ]

Do [Print ["S_2(", i, ") = ", S2ans[i][[1]]], {i, 10}]

Table [ S2ans [i] , {i, 1, 10} ]

(out) {1, 2, 5, 13, 31, 89, 259, 842, 2810, 10020}

The Mathematica code for S
.3/

Œ3�
.n/ can be obtained from the above code by simply

replacing RR and S2ans (by S3ans) entries as follows

RR = Table [ x[3 i] -> x[i]^3 , {i, 1, 5} ]

S3ans [n_] := Sum [ ( CC [ n , PP[n][[i]] ] )^2 * Symm [ PP[n][[i]], n ] ,
{i, 1, Length [ PP [n] ] } ]

Table [ S3ans [i] , {i, 1, 10} ]

(out) {1, 1, 2, 4, 5, 13, 29, 48, 114, 301}

The sum S
.4/

Œ3;1�
.n/ can be programmed using the above and by substituting the

definition of S3ans as follows.

S3ans [ n_ ] := Sum [ CC [ n , PP[n][[i]] ] * Symm [ PP[n][[i]], n ] ,
{i, 1, Length [ PP [n] ] } ]

Table [ S3ans [i] , {i, 1, 10} ]

(out) {1, 2, 4, 12, 27, 103, 391, 1383, 6260, 32704}

The Mathematica code for S
.4/

Œ4�
.n/ can be also obtained by replacing (as well where

necessary afterwards) RR, Z2 (by Z4) and S2ans (by S5ans) entries as follows.

RR = Table [ { x[4 i] -> x[i]^4 , x[4 i - 2] -> x[2 i - 1]^2 }, {i, 1, 4} ]

FRR := Flatten [ RR ]

Z5 [X , t] = Z [X , t] /. FRR
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S5ans [ n_ ] := Sum [ ( CC [ n , PP[n][[i]] ] )^2 * Symm [ PP[n][[i]], n ] ,
{i, 1, Length [ PP [n] ] } ]

Table [ S5ans [i] , {i, 1, 10} ]

(out) {1, 2, 3, 11, 27, 93, 233, 978, 3156, 13280}

Mathematica code 3 for S
.4/

Œ2;12�
.n/. In this paragraph, we provide a Mathematica

program for evaluating S
.4/

Œ2;12�
.n/ occurring in Z4I sc.n/; see (35).

SymH [n_ , p_] := Product [ (2 j)^( 2 Count [p , 4 j])
Factorial [ 2 Count [p , 4 j] ] ,
{j, 1, Floor [ n/2 ] } ]

Product [ (2 j + 1)^( Count [p , 2 j + 1] + 2 Count [p , 4 j + 2] )
Factorial [Count [ p , 2 j + 1] + 2 Count [ p , 4 j + 2 ] ] ,
{j, 0, Floor [ n/2 ] } ]

SymH [ 3 , {3} ]
SymH [ 3 , {1,1,1} ]
SymH [ 4 , {4} ]

(out) 3
(out) 6
(out) 8

PP [ n_ ] := IntegerPartitions [ n ]

Sp2 [ n_ ] := Sum [ SymH [ n , PP[n][[i]] ] , {i , 1, Length [ PP [n] ] } ]

Table [ Sp2 [i] , {i, 1, 10} ]

(out) {1, 4, 15, 83, 385, 2989, 20559, 203922, 1827640, 21863590}

Mathematica code 4 for S
.4/

Œ22�
.n/. The code for S

.4/

Œ22�
.n/ (important for the eval-

uation of Z4I sc.n/ (35)) is again very similar to the above 2 for S
.3/

Œ2;1�
. We simply

remove some lines and adjust the final S2ans in order to evaluate S
.4/

Œ22�
.n/.

X = Array [x , 15]

Z [X , t] := Product [ Exp [ t^i x[i]/i ] , {i, 1, 15} ]

RR = Table [ x[2 i] -> x[i]^2, {i, 1, 7} ]

Z2 [X , t] = Z [X , t] /. RR

PP [ n_ ] := IntegerPartitions [n]
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Z2ans [n_] := Coefficient [ Series [ Z2 [X, t] , {t, 0, n} ], t^n ]

CC [n_ , q_] := Coefficient [ Z2ans [n] ,
Product [ x[i]^(Count[q , i]) , {i, 1, n} ] ]

S4prime [ n_ ] := Sum [ (CC [ n , PP[n][[i]] ] Symm [ PP [n][[i]] , n ] )^2 ,
{i, 1, Length [ PP [n] ] } ]

Table [ S4prime [i] , {i, 1, 10} ]

(out) {1, 4, 17, 105, 685, 5825, 54013, 585018, 6873522, 90254150}

Mathematica code 5 for ZdInoncolor.n/. Here, we provide a program which yields
eq. (37) and eq. (38).

PP [n_] := IntegerPartitions [ n ]

CC [d_ , n_] := Sum [ Product [ i^( (d - 2) Count [PP[n][[j]] , i] )
* (d Count [PP[n][[j]], i ])!
/ (Count [PP[n][[j]] , i ]!)^2 ,
{i, 1, n}] , {j, 1, Length [ PP[n] ] } ]

Table [ CC [2, j] , {j, 1, 10} ]

(out) {2, 8, 26, 94, 326, 1196, 4358, 16248, 60854, 230184}

Table [ CC [3, j] , {j, 1, 10} ]

(out) {6, 192, 10170, 834612, 90939630, 12360636540, 2012440468938,
381799921738584}

Mathematica code 6 for ZdIsym.n/. The following codes allow us to obtains the
sequences (39), (40), and (41) for Zd Isym.n/, for any rank d � 2 and order n � 1.

X = Array [x , 15]

PP [n_] := IntegerPartitions [n]

Sym [q_ , n_] := Product [ i^(Count [q , i]) Count [q , i] ! , {i , 1, n}]

Symd [X, k_, q_, d_] := Product [ ( X [[ k *l ]] / l )^(Count [q , l])
/( Count [q , l] !) ,
{l, 1, d} ]

Z [X, t, d_] := Product [ Exp [ ( t^i /i )
* Sum[ Symd [X, i, PP [d][[j]], d],

{j, 1, Length [ PP [d] ]}] ] ,
{i, 1, 15} ]



134 J. Ben Geloun and S. Ramgoolam

Zprim [n_, d_] := Coefficient [ Series [ Z [X, t, d] , {t, 0, n} ] , t^n ]

CC[ n_ , q_ , d_] := Coefficient [ Zprim [n , d] ,
Product [ X[[i]]^( Count [q , i] ) ,
{i, 1, dn} ] ]

Zdsym [n_, d_] := Sum [ ( CC [n , PP [d n][[i]], d])^2
* Sym [ PP [n d][[i]] , dn ] ,

{i, 1, Length [ PP [nd] ] } ]

Table [ Zdsym [i, 2] , {i, 1, 13} ]

(out) {1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101}

Table [ Zdsym [i, 3] , {i, 1, 7} ]

(out) {1, 2, 5, 12, 31, 103, 383, 1731}
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