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Planar maps, circle patterns and 2D gravity

François David and Bertrand Eynard1

Abstract. Via circle pattern techniques, random planar triangulations (with angle variables)
are mapped onto Delaunay triangulations in the complex plane. The uniform measure on
triangulations is mapped onto a conformally invariant spatial point process. We show that this
measure can be expressed as: (1) a sum over 3-spanning-trees partitions of the edges of the
Delaunay triangulations; (2) the volume form of a Kähler metric over the space of Delaunay
triangulations, whose prepotential has a simple formulation in term of ideal tessellations of
the 3d hyperbolic space H3; (3) a discretized version (involving finite difference complex
derivative operators r; xr) of Polyakov’s conformal Faddeev–Popov determinant in 2d gravity;
(4) a combination of Chern classes, thus also establishing a link with topological 2d gravity.
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1. Introduction

It has been argued by physicists, see [8], [14], and [17], that the continuous limit
of large 2-dimensional maps, should be the same thing as the so-called 2d-quantum

1The work of Bertrand Eynard is partly supported by the Quebec government FQRNT.
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gravity, i.e. a theory of random surfaces, or also a theory of random metrics (for gen-
eral references on the subject see e.g. [2]). For 2d quantum gravity, since changing the
metrics can be partially absorbed by reparametrizing the surface, Polyakov first pro-
posed to gauge out the diffeomorphism group, by choosing a conformal metrics [27].
The measure (probability weight) of the conformal metrics, is then the Jacobian of
the gauge fixing operator, which itself can be written as a Gaussian integral over
Faddeev–Popov ghosts, with the quadratic form encoding diffeomorphisms, i.e. the
covariant derivative operators. Polyakov found that the Faddeev–Popov determinant
can be evaluated through its trace anomaly, and is the exponential of the Liouville
action times the central charge of ghosts cghosts D �26. Hence 2d quantum gravity
can be treated as a conformal 2d field theory: the Liouville theory, where essen-
tially the metrics is locally the exponential of a Gaussian free field, and is a peculiar
case of (bosonic) string theories, often denoted non-critical strings (for a review see
e.g. [26]). The couplings of the Liouville theory is fixed by the consistency condi-
tion that the total conformal anomaly (Liouville + ghosts + additional quantum fields
living in the metric) must vanish. The Liouville conformal field theory is defined in
the Euclidian plane (and more generally on any open and closed Riemann surfaces),
and is characterized by its correlation functions, which are functions of points in
the Euclidian plane. In particular it is characterized by its short distance behaviors,
called OPE=“operator product expansion”, and by the scaling dimensions of its local
operators, encoded into the so called KPZ relations [20], [10], [9], and [11].

Let us also mention that another approach to 2d quantum gravity, proposed by
Witten [31], claims that the probability weight of random surfaces, being metrics
independent, is topological, and is a combination of Chern classes. Kontsevich proved
later [22] that Witten’s topological gravity partition function, indeed coincides with
KdV tau function, which was the expected continuous limit of large map obtained
through matrix model techniques [5], [12], and [15].

Going back to the discrete case, planar maps have been studied since decades
by combinatorial and random matrix methods, and many explicit results corroborate
the equivalence between the large map limit and 2d quantum gravity (see e.g. [23]
and [6]). It has been shown recently, by combinations of combinatorics and prob-
abilistic methods, that the continuous limit (with the Gromov–Hausdorff distance)
of large planar maps equipped with the graph distance, exists, and converges as a
metric space, towards the so-called “Brownian map” [24] and [25] (see the refer-
ences therein for previous works and the relation between labeled trees and planar
maps). The problem which has so far remained elusive, is to compare that limit (in
the Gromov–Hausdorff topology) with the Liouville conformal field theory in the
plane, and to prove their equivalence, if it exists. Therefore, a requirement in order to
check this claim, is to be able to bijectively embed the planar maps into the Euclidian
plane.

Many methods of embedding planar maps into the Euclidian plane are available.
In particular, for planar triangulations, studies involve the “barycentric” (or Tutte)
embedding (see e.g. [1] ), and the “Regge” embedding (where the curvature is located
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at vertices only) (see e.g. Section 6 of [16]). “Circle packing” methods (and their
extensions known as “circle pattern”) are also available (and largely studied in the
mathematical literature, for a a review see [30]) and the use of circle packings has been
advocated more recently for the problem considered here (see e.g. [3]). These later
methods have the advantages that: (1) they provide quasiconformal mappings, hence
a control of the conformal properties of the mapping, (2) the embedding is obtained
by a variational principle [7], involving an integrable system, and integrability helps
a lot (notice that Liouville theory itself is an integrable theory).

In this article, we consider a very natural extension of the circle packing and circle
pattern methods, relying on the patterns of circumcircles of Delaunay triangulations.
While the circle pattern methods involve (implicitly or explicitly) assigning fixed
“intersection angle variables” to the edges of the map, we use the fact that the whole
(moduli ) space of surfaces is obtained by varying these angle variables. We thus
study how the uniform measure on random planar maps, equipped with the uniform
Lebesgue measure on edge angles variables, gets transported by the circle pattern
embedding method, to a distribution in the Euclidian plane, and we obtain several
new and interesting results. We first show that we obtain a conformally invariant
measure on point distributions (i.e. a conformally invariant spatial point process), with
an explicit representation in term of geometrical objects on Delaunay triangulations.
We then show that this distribution is nothing but the volume form of a Kähler metric
form on the space of Delaunay triangulations, and identify its prepotential, which
turns out to have a geometrical interpretation in term of 3d hyperbolic geometry (in an
analogous but different sense than the variational principles underlying circle patterns
and quasiconformal mappings). We also show that this Kähler measure can be written
as a “discrete Faddeev–Popov” determinant (involving discrete complex derivative
operators r; xr), very similar to Polyakov’s conformal Faddeev–Popov determinant,
thus establishing a new link between planar maps and 2d gravity. Finally we show that
our measure on planar maps can also be written as a combination of Chern classes,
thus also establishing a link with topological 2d gravity.

Acknowledgements. François David thanks Michel Bauer and Philippe Di Francesco
for their interest and many useful discussions.

2. Presentation of the results

2.1. Abstract Euclidean triangulations and Delaunay triangulations. Let T de-
note an abstract triangulation of the Riemann sphere. Let V.T /, E.T /, and F .T /

denote, respectively, the sets of vertices v, edges e, and faces (triangles) f of T . Let
TN be the set of all such T with N D jV.T /j vertices, hence jE.T /j D 3.N � 2/

and jF .T /j D 2.N � 2/.
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An Euclidean triangulation zT D .T; �/ is a triangulation T plus an associated
edge angle pattern � D f�.e/ W e 2 E.T /g such that the �.e/ 2 Œ0; �/. zT f

N will
denote the set of flat Euclidean triangulations, where flat means that for each vertex
v 2 V.T /, the sum of the angles of the adjacent edges satisfyX

e!v

�.e/ D 2� (2.1)

Note that not all planar triangulations T 2 TN are present in zT f
N . However “generic

simple triangulations” are expected to be in zTN .

Sphere Plane

v1

Figure 1. An abstract triangulation zT of the sphere and the corresponding Delaunay trian-
gulation T of the plane. The neighborhood of the vertex at 1 is the exterior of the convex
hull of T. The circumcircles of the triangles containing v1 are straight lines tangent to the
boundary of the convex hull. Requiring that those “circles” meet at given angles � � �e , fixes
the orientation of the half-lines starting from the summits of the convex hull.

A theorem by Rivin [28] states that there is an angle pattern preserving bijection
between zT f

N and the set of Delaunay triangulations of the complex plane (modulo
Möbius transformations) DN D CN =SL.2;C/. More precisely, let Z D fzvg be
a set of N (distinct) points v with complex coordinate zv on the complex plane.
For simplicity select 3 distinct points (v0; v1; v1/ and fix through a SL(2,C) trans-
formation their coordinates .zv0

; zv1
; zv1

/ to .0; 1;1/. ToZ is associated the planar
Delaunay triangulation T by the standard Voronoï/Delaunay construction (the neigh-
bors of v1 being on the convex hull of the Delaunay triangulation of Znfzv1

g, see
Figure 1). As depicted on Figure 2, to an edge e D .z1; z2// are associated the upper
and lower triangles (faces) f D .z1; z2; z3/ and f 0 D .z2; z1; z4/, and their circum-
circles C and C 0. ��.e/ D ˛ C ˛0 denotes the intersection angle of the two circles
and �.e/ D ����.e/ is the angle .f 0; v1; f / D .f; v2; f

0/ between a vertex and the
center zf and z0

f
of the circumcircles C and C 0 of the faces f and f 0. A triangulation

T of the plane is a Delaunay triangulation if for any face f D .z; z0; z00/, all the
other vertices z000 of T are outside the circumcircle of f .
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Figure 2. The triangles f and f 0, the circumcircles C and C 0 and angles � and �� D � � �
associated to an edge e D .z1; z2/ of a Delaunay triangulation. R and R0 are the radii of the
circles C and C 0.

Rivin’s theorem states that these is a bijection zT D .T; �/ $ Z (with 3 points
fixed) between zT f

N and DN , which identify the abstract triangulations T and the De-
launay triangulation T, and the flat edge angle pattern �.e/ to the circle angle pattern
�.e/ D � � ��.e/. It is an extension of the famous theorem by Koebe-Andreev-
Thurston [21] stating that there is a bijection between (simple) triangulations and cir-
cle packings in complex domains, modulo global conformal transformations, which
is widely used to construct quasi-conformal mappings and in conformal geometry.
The proof of Rivin’s theorem rely on the same kind of convex minimization func-
tional, using hyperbolic 3-geometry, than for the original circle packing case (see [28]
and [4]).
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The concept of Euclidean triangulations can be generalized to non-flat triangula-
tion with defect angles at the verticesX

e!v

�.e/ D „.v/ ¤ 2�

(which can be mapped to Delaunay triangulation of locally flat surfaces with conical
singularities with defect angles 2��„.v/ at the points zv), to triangulations of genus
g > 0 surfaces, in particular periodic triangulations (g D 1) and to surfaces with
boundaries.

2.2. The measure D on Delaunay triangulations. Our purpose is to use this bi-
jection to construct conformally invariant measures on the ensemble zTN of distribu-
tions of N points Z D fz1; � � � zN g in the complex plane (i.e. spatial point processes
on C), via their associated Delaunay triangulation, and to study the properties of these
measures. This allows to discuss their relations with the continuum field-theoretic
formulation of 2-dimensional quantum gravity and with Liouville theory, as well as
their relation with the simpler discrete combinatorial models of random planar maps
and matrix models.

Since the SL.2;C/ invariance allows to fix three points in the triangulations, from
now on we work with triangulations and points ensembles with M D N C 3 points.

For this, we start from the uniform flat measure on zTNC3.

Definition 2.1. We take the measure �. zT / D �.T; d�/ on zT NC3 to be the discrete
uniform measure on triangulations (as in random planar map ensembles) times the
flat Lebesgue measure on the angles �.e/’s (constrained by (2.1)):

�. zT / D �.T; d�/ D uniform.T /
Y

e2E.T /

d�.e/
Y

v2V.T /

ı
�X
e 7!v

�.e/ � 2�
�
:

The uniform(T ) term in general takes into account the symmetry factor of T . If
we choose to fix a point v1 at infinity, it is always equal to one.1 It is known that
the space zTNC3 is made of the small pieces zT .T / associated to each triangulation T ,
glued at their boundary where one of the �.e/ D 0, and where a flip of the edge
e 2 E.T / $ e0 2 E.T /0 occurs. So it is a connected, piecewise linear space.
Its dimension as a real manifold (in fact an orbifold) is 2N .

A first step to study this space is to construct for any triangulation T in zTNC3 a
basis E0 � E.T / of 2N independent edges, such that given the 2N angles f�.e/ W e 2
E0g, the remaining N C 3 f�.e0/ W e0 … E0g can be reconstructed out of the N C 3

constraints (2.1). Such basis are characterized by the following theorem, which is
most plausibly already known.

1This is analogous to what is done in the theory of random planar maps, i.e. random planar lattices, by
dealing with rooted triangulations, i.e. specifying a vertex and an adjacent oriented link.
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Figure 3. The basic edge flip (Whitehead move) e ! e0 between triangulations occurs when
�.e/ D 0.

Theorem 2.1. A set E0 � E.T / of 2N edges, is a basis if and only if its comple-
mentary xE0 D E.T / nE0 form a cycle-rooted spanning tree of the triangulation T ,
whose cycle is of odd length.

A cycle-rooted spanning tree (CRST) t of a graph G is a connected subgraph of G

which contains all the vertices of G and has as many edges as vertices. It is composed
of a single cycle and of trees attached to this cycle; see Figure 4.

Figure 4. A triangulation T (with one point at 1) and an odd CRST xE0 (thick lines). Its
complement E0 (dashed edges) form an independent basis of angle variables.

Choosing a specific basis of independent edges angles f�.e/I e 2 E0g, i.e. an odd
CRST on T , is not very important. Indeed one has the following result.

Theorem 2.2. The measure on zT NC3 can be written

�.T; d�/ D 1

2
uniform.T / �

Y
e2E0.T /

d�.e/

and is independent of a choice of basis E0.T / � E.T / for each triangulation T .
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We now look at the induced measure on the space DNC3 of Delaunay triangula-
tions on the plane. For simplicity, from now on we consider triangulations T with
N C 3 vertices, such that the first three points .z1; z2; z3/ are fixed, and can be taken
to be the three vertex of a given triangle f0 of T . The remaining variables are the
complex coordinates Znf1;2;3g D z D .z4; � � � ; zNC3/ of the N free points. For a
given z 2 CN there is generically a single Delaunay triangulation T . We shall denote
�e the angle associated to the edge e of T , and wf the complex coordinate of the
center of the circumcircle of the triangle f .

So this measure is simply given locally by a Jacobian determinant

�.T; d�/ D d�.z/ D
NC3Y
vD4

d2zv

ˇ̌̌�2
i

�N
det.JT .z/nf1;2;3g�E0

/
ˇ̌̌
;

whered2z D dx dy D i
2
dz ^ d Nz is the flat measure on C, and with JT .z/nf1;2;3g�E0

the 2N �2N Jacobian matrix (associated to a basis E0 of independent edges) obtained
from the .2N C 6/ � .3N C 3/ partial derivative matrix JT .z/

JT .z/ D
� @�e

@.zv; Nzv/
�
e2E.T /
v2V.T /

by removing the 6 lines associated to the three fixed vertices .z1; Nz1; z2; Nz2; z2; Nz3/, and
the 3 columns .e1; e2; e3/. FromTheorem 2.2 the Jacobian determinant is independent
of the choice of E0.

Definition 2.2. The N point density measure associated to the (Delaunay) triangu-
lations T with the 3 fixed points f1; 2; 3g is

DT .z/nf1;2;3g D
ˇ̌̌�2
i

�N
det.JT .z/nf1;2;3g�E0

/
ˇ̌̌

(2.2)

The N point density measure DT .z/nf1;2;3g is a function of the N C 3 complex
coordinates z D .z1; � � � ; zNC3/, and is well defined when no points coincide.

The matrix elements of JT .z/ are easy to calculate. For a given triangulation T ,
the elements

Jv;e D @�e

@zv
and J Nv;e D @�e

@ Nzv
are non zero only if the vertex v is a vertex of one of the two triangles f and f 0 that
share the edge e (see Figure 2). With the notations of Figure 2 one has explicitly for
the edge e D .v1; v2/

Jv1;e D i

2

� 1

zv4
� zv1

� 1

zv3
� zv1

�
; Jv2;e D i

2

� 1

zv3
� zv2

� 1

zv4
� zv2

�
;

Jv3;e D i

2

� 1

zv3
� zv1

� 1

zv3
� zv2

�
; Jv4;e D i

2

� 1

zv4
� zv2

� 1

zv4
� zv1

�
:

(2.3)
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2.3. Spanning trees representation of D . Eq. (2.3) implies that DT .z/nf1;2;3g is
locally a rational function of the .zi ; Nzi/, and is the determinant of a “derivative-like”
operator involving only neighbors vertices and links in the triangulation T , like Dirac
and Laplace operators. The determinant of Laplace operators on graphs are known
to have a representation in term of spanning trees (or extensions). DT .z/nf1;2;3g has
also such a representation, but involving more complicated geometrical objects.

Definition 2.3 (triangle rooted spanning 3-tree). Let T be a planar triangulation with
N C 3 vertices, and 4 D f0 be a face (triangle) of T , with 3 vertices V.4/ D
.v1; v2; v3/ and 3 edges E.4/ D .e1; e2; e3/. Let E.T /n4 D E.T / n E.4/ be the
set of 3N edges of T not in 4.

We call a 4-rooted 3-tree of T (4R3T ) a family F of three disjoint subsets

.� ; � 0; � 00/

of edges of E.T / such that

(1) .� ; � 0; � 00/ are disjoint and disjoint of E.4/,
(2) each � [ E.4/, � 0 [ E.4/, � 00 [ E.4/ is a cycle rooted spanning tree of T

with cycle 4.

It follows that each � ; � 0; � 00 contains N edges. There is a natural orientation
e ! Ee of their edges, that we take to be “pointing towards the triangle 4”. See
Figure 5 for a simple illustration. NB: the 3-trees defined here look like but are not
Schnyder woods! (See [29].)

Figure 5. 2 inequivalent triangle-rooted spanning 3-trees of aN D 3 planar triangulation (here
the octahedron). The fixed triangle 4 is here the exterior black triangle. The three trees � ,
� 0, and � 00 are respectively made of the dotted-red, dashed-blue and dot-dashed-green edges.
The natural orientation towards the triangle 4 is depicted.
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When we keep the vertices .v1; v2; v3/ of the triangle 4 fixed, the measure deter-
minant DT .z/nf1;2;3g/ defined in (2.2) can be rewritten as a sum over the 4-rooted
3-trees of T of products of the building blocks Jv;e and xJv;e of the Jacobian matrix J .
More precisely, we have the following result.

Theorem 2.3. Let T be a planar triangulation of the plane withN C3 vertices. If the
3 fixed points .v1; v2; v3/ belong to a triangle (face) of T , the measure determinant
takes the form

DT .z/nf1;2;3g

D
� 1
2i

�N X
F D.�;�0;�00/

4R3T of T

�.F / �
Y

EeD.v!v0/2 �

1

zv � zv0

�
Y

EeD.v!v0/2 �0

1

Nzv � Nzv0

;

(2.4)

where �.F / D ˙1 is a sign factor, coming from the topology of T and of F , that is
defined explicitly by eq. (4.7).

The proof is given in Section 4.3. This theorem is non trivial, and is not obtained
simply by the Cauchy–Binet expansion of the determinant of DT .z/ in terms of
permutations. Its proof involves also techniques developed in the derivation of the
very nice and useful representation of D , that we present in Theorem 2.6.

Remark. The trees � , � 0 and � 00 play equivalent roles, but only the edges of the
first two appear in the right hand side of (2.4). Each term in the sum is complex, but
exchanging � and � 0 exchanges the zv’s and the Nzv’s, and in fact does not changes
the sign of the �.F / prefactor, so that the determinant is real.

Eq. (2.4) shows thatDT .z/diverge when two or more pointszv coincide. However
it allows to control the singularity.

Theorem 2.4. Each individual term in the sum of (2.4) is singular when some zv’s
coincide, but the associated (complex) measure

d�F .z/ D
Y
v…4

d2zv
Y

EeD.v!v0/2 �

1

zv � zv0

�
Y

EeD.v!v0/2 �0

1

Nzv � Nzv0

(2.5)

is well defined and absolutely integrable.

The proof is discussed in Section 4.4. The fact that the total determinant D.z/

defines an integrable measure is not surprising, since the original flat measure�.T; �/
over the angles �.e/ is finite. The decomposition (2.4) is interesting since it takes into
account many cancellations in the expansion of the determinant, so that each term is
also integrable, and can be used to study the properties of the measure.
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2.4. D as a Kähler volume form and hyperbolic geometry. Here we show that
the space DNC3 ' CN of Delaunay triangulations with 3 point fixed is embodied
with a natural structure of a N -dimensional Kähler manifold, and that the measure
determinant D.z/ is nothing but the volume form for this Kähler metric.

In the geometry of circle packings and circle patterns in 2-dimensions, 3-dimen-
sional hyperbolic geometry plays a central role. Let us recall a few definitions and
basic facts. The complex plane C is considered as the boundary of the 3 dimensional
hyperbolic space H3, represented by the upper half-space above C. Adding the point
at 1, the Riemann sphere �2 is therefore the boundary of the 3-dimensional Poincaré
ball B3.

Definition 2.4 (Hyperbolic volume of a triangle). Let f D .z1; z2; z3/ be a (oriented)
triangle in C. The hyperbolic volume Vol.f / of the triangle f is the hyperbolic
volume of the ideal tetrahedron in H3 with vertices .z1; z2; z3;1/ on its boundary.
In term of the coordinates it is given by the Bloch-Wigner function

Vol.f / D Im.Li2.z//C ln.jzj/Arg .1� z/; with z D z3 � z1

z2 � z1
; (2.6)

where Li2 is the dilogarithm function. In term of the angles .˛1 ; ˛2; ˛3/of the triangle,
it is given by

Vol.f / D Л.˛1/C Л.˛2/C Л.˛3/;

where Л is the Lobachevsky-Milnor function

Л.˛/ D �
Z ˛

0

d� log.2 sin.�//:

(See Figure 6.)

The hyperbolic volume Vol(f ) satisfies the basic variation formula

dVol.f / D �
X

3 angles

d˛i ln.sin.˛i // D �
X

3 angles

d˛i ln.`i / (2.7)

(`i being the length of the side of the triangle opposite to the angle i ).

Now let us consider a planar Euclidean triangulation zT on the sphere and the
associated Delaunay triangulation T in C, where three points are fixed. We define
an action (or prepotential) AT for T simply as follows.

Definition 2.5 (Action-prepotential of a triangulation). The action AT of a Delaunay
triangulation T is defined as minus the sum of the hyperbolic volumes of its faces
(triangles):

AT D �
X

triangles f 2F .T /

Vol.f /:
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˛1 ˛2

˛3

z1
z2

z3

C

H3

Figure 6. A triangle f D .z1; z2; z3/ in the plane and the associated ideal tetrahedron in the
upper-space H3.

Remark. Some care should be exercised in this definition with the 3 fixed points and
the point at 1. Here we shall consider two special cases.

Point at infinity. The Delaunay triangulation T contains the point at 1, v1 as one of
the fixed points. As depicted in Figure 1, the faces that do not contain the point at 1
are contained within the convex hull of the Delaunay triangulation of the remaining
points zv ¤ 1. The faces that contain v1 are of the form f D .v; v0; v1/ with
e D .v; v0/ an edge of the convex hull„ and hence are such that Vol.f / D 0. They
do not contribute to AT which becomes

AT D �
X

trianglesf

� convex hull

Vol.f /:

Fixed face. The three fixed points .v1; v2; v3/ are the vertices of a triangle f0 of T .
Then, by a well chosen SL(2, C) transformation, this face can be taken to be the
exterior face of T , namely all the other points are inside the (circumcircle of the)
exterior face f0. Then AT is

AT D
�

�
X

triangles f¤f0

Vol.f /
�

C Vol.f0/:
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The C sign for the contribution of the exterior face f0 comes from the fact that it is
now clockwise oriented, instead of anti-clockwise as the internal faces of T . Since
the three points z1, z2, and z3 are fixed, this Vol(f0) will not play any role in what
follows anyway.

General case. The general case is to consider an arbitrary Delaunay triangulation of
the Riemann sphere, mapped by stereographic mapping on the complex plane, and to
associate the algebraic hyperbolic volume Vol.f / to each triangle. It may be positive
or negative depending on the orientation of f .

Remark. The hyperbolic volume functional AT is not the hyperbolic volume func-
tional that appears in the convex minimization problem for circle patterns (finding
the vertices zv from the edge angle �e). Indeed in this latter problem: it is the volume
associated to the triangles .v; f; f 0/ (one vertex, two circumcircle centers) which
appears in [28] and in [4].

Definition 2.6 (Hermitian form). The spaceDNC3 ' CN of Delaunay triangulations
with three fixed point .z1; z2; z3/ (in one of the first two above discussed cases),
parametrized by the N remaining points z D .z4; � � � ; zNC3/ is embodied with the
Hermitian form D:

Du Nv.z/ D @

@zu

@

@ NzvAT .z/: (2.8)

This form is defined locally for non-coinciding points and in each sub-domain
of CN corresponding to a given triangulation T . One has the two following results.

Theorem 2.5 (D as a Kähler form). The Hermitian formD is positive, and continuous
on DNC3, away from coinciding points configurations. Hence it is a continuous
Kähler form, whose prepotential is AT .

The proof of Theorem 2.5 is given in Section 2.5, where the explicit geometrical
form of the matrix D is given and its conformal properties are discussed.

Theorem 2.6 (The measure as a Kähler volume form). The measure over Delaunay
triangulation is the volume form of D

DT .z/nf1;2;3g D 2N detŒ.Du; Nv/u;v¤f1;2;3g�:

This means that the measure DT .z/nf1;2;3g/, which is defined as the determinant
of a 2N � 2N real Jacobian matrix, can be written as a simpler N � N complex
determinant. The proof of Theorem 2.6 is given in Section 4.5.
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2.5. Geometrical form of D and conformal properties. Elementary plane geom-
etry, using the differential of the hyperbolic volume function (2.7) leads to the explicit
form for the matrix elements Du Nv of D. First D can be decomposed into a sum of
contributions for each triangle f of T :

Du; Nv D
X
f

Du; Nv.f /; (2.9a)

and

Du; Nv.f / D � @2

@zu@ NzvVol.f /: (2.9b)

Each Du; Nv.f / is non-zero only if the vertices u and v belongs to the triangle f .

e1

e2

e3

f

R

˛1

˛2
˛3

v1

v2

v3

Figure 7. A triangle f D .v1; v2; v3/. (e1; e2; e3/ denote both the edges of f and the middle
point of the edges. f denote both the triangle and the center of the circumcircle. R is the
radius of the circumcircle.



Planar maps, circle patterns and 2D gravity 153

For a given trianglef , depicted on Figure 7, with (anti clockwise oriented) vertices
.v1; v2; v3/, oriented angles .˛1; ˛2; ˛3/ and circumcircle radiusR D R.f /, the 3�3
matrix D.f / reads

D.f / D 1

8R.f /2

0
B@ cot.˛2/C cot.˛3/ � cot.˛3/ � i � cot.˛2/C i

� cot.˛3/C i cot.˛3/C cot.˛1/ � cot.˛1/ � i

� cot.˛2/ � i � cot.˛1/C i cot.˛1/C cot.˛2/

1
CA :

(2.10)
This can be rewritten as a real and imaginary part

D.f / D �1
8R.f /2

.2�0.f /C iE.f //;

where �0.f / is symmetric real, and E.f / the totally antisymmetric Levi-Civita
tensor. �0.f / is nothing but the contribution of the triangle f to the discretized
scalar Laplace–Beltrami operator on the triangulation T in the plane.

It is easy to check that D.f / has 2 zero eigenvalues �1 D �2 D 0, with right
eigenvectors .1; 1; 1/ and . Nz1; Nz2; Nz3/, and a non trivial positive one (with right eigen-
vector . Nz21 ; Nz22 ; Nz23/):

�3 D 1

4R2
.cot.˛1/C cot.˛2/C cot.˛3// > 0;

if f non-flat & counterclockwise oriented. FromD.f / � 0 and (2.9), the positivity
of the Hermitian form DT follows.

To establish the continuity of D, one shows that the matrix elements of D are
continuous when a flip of an edge occurs. As depicted in Figure 8, the flip of an
edge e D .v1; v2/ ! e0 D .v3; v4/ occurs when the two triangles f D .v1; v2; v3/

and f 0 D .v2; v1; v4/ have the same radii R D R0, so that their respective centers
coincide wf D wf 0 . Then it is easy to check from (2.10) that the matrix elements for
the edge e vanish, as well as those for the flipped edge e0 on the flipped triangulation
T 0,

Dv1 Nv2
D 0; Dv2 Nv1

D 0;

while the other matrix elements Du Nv and D0
u Nv are unchanged. This establishes The-

orem 2.5
Another simple property of the matrix D.f / for a triangle f D .z1; z2; z3/ is

3X
i;jD1

z2i Di N| .f / Nz2j D 1

2
Area.f /;

with Area.f / the algebraic area of the triangle f .
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˛

˛0

v1

v1

v2

v2

v3

v3

v4

v4

f

ff

f 0 D f

f 0 D f

R

R

R0 D R � D 0�� D �

C

C

C 0 D C

C 0 D C

Figure 8. A flip.
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Using Theorem 2.6 the measure determinant D can be shown to have nice prop-
erties under global conformal SL(2, C) transformations. For instance, let us define
Dna;b;c the N � N matrix obtained from the general form Du Nv by removing three
(distinct) arbitrary points .va; vb; vc/ of the triangulations T . Comparing two differ-
ent choices of these 3 points (which fix the SL(2,C) invariance), one has the following
result.

Proposition 2.1. The function H defined as

H.z/ D det.Dna;b;c
.z//

j�3.za; zb; zc/j2 ; (2.11)

with �3 the Vandermonde determinant for the three points

�3.za; zb; zc/ D .za � zb/.za � zc/.zb � zc/

is independent of the choice of the three fixed points .a; b; c/. Moreover, it is a weight
.1; 1/-function under global SL(2, C) conformal transformations:

z ! w D az C b

cz C d
with ad � bc D 1

and

w0.z/ D @w

@z
D 1

.cz C d/2
I

namely,

H.z/ D
ˇ̌̌NC3Y
iD1

w0.zi /
ˇ̌̌2
H.w/ D

NC3Y
iD1

1

jczi C d j2H.w/:

2.6. D as a discretized Faddeev–Popov operator. Another nice representation
of the Kähler form D leads to the connection with the continuous formulations of
2 dimensional gravity. Let us define a discretized complex derivative operator on
Delaunay triangulations.

Definition 2.7. Let CV.T / and CF .T / be respectively the vector spaces of complex
functions over the vertices and faces (triangles) of a Delaunay triangulation T in the
complex plane. We define the complex derivative operators

r; xr W CV.T / �! CF .T /

as follows. For an anticlockwise oriented triangle f D .v1; v2; v3/, we set
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rˆ.f / D 1

4i

ˆ.v1/. Nz3 � Nz2/Cˆ.v2/. Nz1 � Nz3/Cˆ.v3/. Nz2 � Nz1/
Area.f /

and

xrˆ.f / D � 1

4i

ˆ.v1/.z3 � z2/Cˆ.v2/.z1 � z3/Cˆ.v3/.z2 � z1/
Area.f /

;

with (again) Area.f / the algebraic area of the triangle f :

Area.f / D 1

4i
..z3 � z1/. Nz2 � Nz1/ � .z2 � z1/. Nz3 � Nz1//:

This corresponds to the naive definition of the derivative of the function ˆ point-
wise defined on the vertices zi of the triangulation T , and interpolated linearly inside
each triangle. Indeed, if ˆ is linear over C, ˆ.vi/ D a C b zi C c Nzi , then rˆ D b

and xrˆ D c. These operators r and xr differ from the @ and N@ operators usually
considered in the theory of discrete analytic functions (as far as we know, it is not
possible to define standard discrete analyticity on generic Delaunay triangulations).

The scalar product of the local operator D.f / relative to a single triangle f
between two functions of CV.T / takes the specific form described below.

Proposition 2.2. We have

ˆ �D.f / � x‰ D
X

i;j vertices of f

ˆ.vi/Di N| .f /x‰.vj /

D Area.f /

R.f /2
xrˆ.f /r x‰.f /:

(2.12)

This formula is very suggestive. Summing over the triangles we can rewrite it (in
short hand notations) as

D D
X
f

D.f / D r� A

R2
r:

Remember that D D P
f D.f / is a complex Kähler form and can be viewed as a

linear operator acting on the space of real vector fields V (living on the vertices of T ).
For this, we identify a complex function ‰ 2 CV.T / with a real vector field with
components in the coordinate z D x1 C i x2:

.‰1; ‰2/ D .Re.‰/; Im.‰//

or, in complex component notations,

.‰z; ‰ Nz/ D .‰; x‰/:
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Now let us denote wf the complex coordinate of the center of the circumcircle of the
triangle f , the area of the triangle as a volume element

Area.f / D d2wf

and the R.f /�2 factor as a “quantum area” Liouville factor

1

R.f /2
D e �.wf /: (2.13)

Then we can rewrite formally (by summing (2.12) over the faces) the scalar Kähler
product of two vector fields as an integral

ˆ �D � x‰ D
Z
d2w e �.w/@ Nzˆz.w/ @z‰ Nz.w/: (2.14)

This is very reminiscent of the conformal gauge fixing Faddeev–Popov operator
introduced by Polyakov in his famous 1981 paper [27]; see [13] for details. Re-
member that the functional integral over 2-dimensional Riemannian metrics gab.z/
is performed by choosing a conformal gauge

gab.z/ D ıab e �.z/:

This gauge fixing introduces a Faddeev–Popov determinant in the functional measureZ
D Œgab � D

Z
D Œ	� det.rFP/;

where rFP is the differential operator that maps vector fields C D fC ag onto traceless
symmetric tensors B D fBabg via (Da being the covariant derivative):

Bab D .rFPC/
ab D DaC b CDbC a � gabDcC

c :

In the conformal gauge and in complex coordinates one has C D .C z; C Nz/ and

.rFPC/
zz D e ��@ NzC z;

.rFPC/
Nz Nz D e ��@zC Nz;

and

.rFPC/
z Nz D .rFPC/

Nzz D 0:

The determinant is usually computed by introducing a ghost-antighost system

c D .cz; c Nz/ D .c; Nc/
and

b D .bzz; b Nz Nz/ D .b; Nb/;
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and writing

det.rFP/ D
Z

D Œc; b� exp
�Z

d2z e �.bzz.rc/zz C b Nz Nz.rc/ Nz Nz/
�
:

In the standard approach one treats separately the holomorphic .b; c/ and anti-
holomorphic . Nb; Nc/ ghost fields. Each of them is a conformal field theory and con-
tribute by a central charge c D �13 to the conformal anomaly. One may however
integrate over the anti-ghosts b D .b; Nb/, keeping only the ghosts c D .c; Nc/. One
then obtains

det.rFP D
Z

D Œc� exp
�Z

d2z e �@zc Nz@ Nzcz
�
:

One recognizes the Kähler form c�D� Nc that appears in (2.14). Therefore the Kähler
operatorD defined on the Delaunay triangulation T is in fact a correct discretization
of the conformal gauge Faddeev–Popov operator of 2 dimensional gravity

D D rFP;

while the field 	.f / defined by (2.13) in term of the radii of the triangles

	.f / D � 2 log.R.f //

and which lives on the vertices of the Voronoï lattice, dual to the Delaunay trian-
gulation T , is an attractive discretization of the Liouville field of the continuous
formulation.

2.7. Relation with planar maps and c D 0 2d gravity

2.7.1. Intrinsic planar triangulations and local curvature. Let us discuss the
relation between our model and other models of abstract planar maps or random
triangulations. Consider a given triangle F0 of a Delaunay triangulation zT D .T; �/,
as depicted on Figure 9 (up), with its 3 neighbors F1, F2 and F3. Consider the kite
parallelogram K D .V1; F3; V2; F0/ associated to the edge e D .V1; V2/. It can be
mapped (by a SL(2, C) transformation) onto a rhombusR D .v1; f3; v2; f0/with unit

edge length ` D jv1f0j D 1 with the same edge angle � D 3.F3V1F0/ D 3.f3v1f0/.
Repeating this operation for all the edges, we obtain a planar, but non-flat complex
of rhombi, with angles � (at the v vertices) and �� D � � � (at the f vertices).
Condition (2.1) implies flatness at the v vertices, but there is a defect angle‚f at the
f vertices, given for the vertex f0 by

‚f D � C � 0 C � 00 � � D � � ˛0
1 � ˛0

2 � ˛0
3 (2.15)

that we can identify with local scalar curvature ‚f localized at the center wf of the
circumcircle Cf of the triangle f in the Delaunay triangulation.
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˛0
1

˛0
2

˛0
3

�

�

� 0

� 0
� 00

� 00

v0
1

v0
2

v0
3

v1 v2

v3

v1 v2

v3v3

f0

f1
f2

f3

‚

F0

F1

F2

F3

Figure 9. Kite decomposition of a Delaunay triangulation (up), and the corresponding rhombi
complex (down) with unit edge length (` D 1) and curvature at the f vertices corresponding
to the center of the faces (triangles).
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So our model can be formulated as a sum over planar quadrangulations (hence
a bipartite lattice with f and v vertices), with a Euclidean structure (given by the
angles of the rhombi), with the two constraints: (1) flatness, i.e.

P
� D 2� , at the v

vertices; (2) only three rhombi meet at f vertices.
One may instead decompose the complex into polygons centered around the v

vertices, whose summits are the neighbors f vertices, as depicted in Figure 10.
The model is then formulated as a sum over planar polyhedra complex with the three
constraints: (1) all polyhedra are isoradial, i.e. their vertex belongs to a circumcircle
with unit radius ` D 1; (2) they are glued along their edges; (3) only three polyhedra
meet at a vertex.

v0

v1

v2

v3

v4

v5

Figure 10. Equivalent decomposition into planar isoradial polygons.

2.7.2. Relation with other models. The main point is that the model is a variation
of the model of planar triangulations (or the dual model of planar trivalent maps),
with some geometrical constraint on the vertices and the faces. It is known that
unless some very specific constraints are applied, these models belong to the same
universality class than the simple random planar map model), namely the class of
c D 0 pure two dimensional gravity. So we conjecture that our model also belong to
this class. Of course a full solution is needed to confirm this claim, but this is indeed
the case in some limiting case.

Let us for instance modify the model by changing the flat measure over the �e’s
onto a measure of the formY

e

d�ej cos.�e/j2k
Y
v

ı
�X
e!v

�e � 2�
�
:
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In the limit k ! 1, the only triangulations .T; �/ that survive are those such that

�e D 0 or �

and the constraint
P
e!v

�e D 2� implies that there are two and only two edges such that

�e D � at each vertex. In this limit, the model reduces to a combinatorial model of
fully packed loop systems on random triangulations (of course the Euclidean metric on
such a triangulation becomes degenerate). No particular weight is attached to the loop
system, since each loops configuration is counted with true same weight. Therefore
the model corresponds to a fully packed loop model with z D 1 loop fugacity, i.e. to a
dense O(N ) model forN D 1=2. The loops live on the edges e of the triangulation T ,
not on the edges e� of the dual trivalent lattice T �. The triangulation T is generically
not an Eulerian lattice, and there should be no difference between the fully packed
model and the densely packed model. Densely packed loop models with z D 1 loop
fugacity are known to be described in the continuum limit (i.e. at large distances) by
a c D 0 conformal field theory. This was our claim.

2.7.3. Isoradial limit. Another simple limit is to enforce the constraint that the local
curvature ‚f given by (2.15) vanishes for all faces (not discussing the boundary
conditions). Then it is easy to see that this is equivalent to the isoradiality condition
that (in a proper coordinate system) all the circumcircle radii Rf are equal

‚f D 0 for allf () Rf D ` for allf:

In this limit, only flat rhombic planar graph survives, and from (2.12) the discretized
Faddeev–Popov operator D reduces to the scalar Laplace–Beltrami operator �0 D
4N@@:

isoradial limit H) D D � 1

4 `2
�0:

This case has been much studied in connection with dimer models and discrete an-
alyticity, and there exists beautiful explicit forms for the determinant of �0 and its
inverse (the scalar propagator); see [18], and [19].

3. Link with topological gravity

Another approach to quantum gravity, is “topological gravity,” introduced by Wit-
ten [31], and culminating with Kontsevich’s proof [22] . Here we make the link be-
tween our approach and Witten–Kontsevich, by relating our measure DT .z/nf1;2;3g
to a combination of Chern classes on the moduli space of Riemann surfaces.

3.1. Chern classes. TNC3 D CNC3=Sl2.C/, the set ofNC3 point on the Riemann
sphere, is the moduli space M 0;NC3 of Riemann surfaces of genus zero with N C 3
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marked points, and we have seen that it is isomorphic to the combinatorial space zTNC3
of abstract triangulations T with angles �e associated to edges with the constraint thatP
e 7!v �e D 2� . A good tool to study the topology of such a space, is to consider

Chern classes of U.1/ bundles.

Let us define the following circle bundle: Lv ! TNC3, as depicted on Figure 11:
the fiber over the point fz1; : : : ; zNC3g 2 zTNC3, is the unit circle Sv of center v in the
Euclidian plane. Some special points on Sv are the intersections pv;f D Sv \ Œv; f /
of Sv with the half lines Œv; f / emanating from v towards the centers f of adjacent
circumcircles.

�1

F1

F2

F3

F4

F5

F6

v
v1

v2
v3

v4

v5

v6





v;F1

pv;F1

pv;F2

pv;F3

pv;F4

pv;F5

pv;F6

Figure 11. The fiber of the circle bundle Lv ! TN C3, is a circle centered at v. A point in
the fiber, is a point 
 on the circle, and a coordinate for that point is the angle 
f;v between 

and the segment Œv; f � where f is a face adjacent to v.



Planar maps, circle patterns and 2D gravity 163

Consider a section 
 2 Sv. For each face f adjacent to v, define the angles:


v;f D angle alongSv between 
 andpv;f :

If we label the faces f1; : : : ; fn in the trigonometric order around v, we have


v;fC1 D 
v;f � �fC
D 
v;1 � �1C

� � � � � �fC
;

where Œv; fC� is the edge following Œv; f / around Sv. The following 1-form depends
only on v, it is independent of the choice of labeling of faces around v:

uv D 1

4�2

X
f 7!v

�v;fC
d
v;f D d
v;1

2�
� 1

4�2

nX
fD2

f�1X
f 0D1

�v;fC
d�v;f 0

C
:

It is clear thatZ
Sv

uv D 1

4�2

X
f 7!v

�v;fC

Z
Sv

d
v;f D 2�

4�2

X
f 7!v

�v;fC
: D 1

In other words, uv is a connection globally defined on the bundle Lv , whose integral
along the fiber is 1, its curvature duv is then the Chern class

 v D c1.Lv/ D duv D � 1

4�2

nX
fD2

f�1X
f 0D1

d�v;fC
^ d�v;f 0

C
:

The Chern class v of the bundleLv is a 2-form onTNC3, notice that it is independent
of a choice of origin of labeling of faces around v.

In other words, if we label the edges aroundv in the trigonometric order e1 ; : : : ; en,
we have

 v D � 1

4�2

nX
eD2

e�1X
e0D1

d�e ^ d�e0 :

Notice that  v is independent of the choice of labeling, and also, notice that sinceP
e 7!v �e D 2� , we also have

 v D � 1

4�2

n�1X
eD2

e�1X
e0D1

d�e ^ d�e0 ;

where the upper bound of the sum is now e � n � 1, instead of n.

3.2. Measure and Chern classes. The 2N form .
P
v  v/

N is a top-dimensional
form on TNC3, with constant coefficients; therefore the form .

P
v  v/

N must be
proportional to

Q
e2E0

d�e , i.e. to our measure DT .z/nf1;2;3g:

.

NC3X
vD1

 v/
N D CT DT .z/nf1;2;3g:
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Notice that the coefficient CT might apparently depend on the triangulation T ; how-
ever, it was proved by Kontsevich that it doesn’t2 and we have�X

v

4�2 v

�N D ˙NŠ 22NC1Y
e

d�e :

This shows that our measure DT .z/nf1;2;3g is also the measure of topological
gravity.

4. Proofs of the results

4.1. Choosing a basis of edges

4.1.1. Proof of Theorem 2.1. We have defined the measure on zT NC3 to be the
uniform measure on triangulations tensored with the flat Lebesgue measure on angles
�e’s (constrained by (2.1)):

uniform.T /˝
Y

e2E.T /
d�e

Y
v2V .T /

ı
�

� 2� C
X
e 7!v

�e
�
:

One takes care of the constraints
P
e 7!v �e D 2� by choosing a basis of 2N inde-

pendent edges. We now prove Theorem 2.1, which characterizes these basis.

Definition 4.1 (Adjacency matrix R). Let us define the .N C 3/� .3N C 3/ matrix
R by

Rv;e D
8<
:1 if v is adjacent to e,

0 otherwise.
(4.1)

If we choose a set E0 � E.T / of 2N independent edges, we haveY
e2E.T /

d�e
Y

v2V .T /
ı
�

� 2� C
X
e 7!v

�e
�

D 1

detv2V .T /; e2E.T /nE0
Rv;e

Y
e2E0

d�e :

(4.2)
Assume that we can find a basis E0 with 2N edges.

First, notice that for every vertex v of T , at least one of adjacent edges to v must
not be in E0 (otherwise the determinant at the denominator in (4.2) would have a
vanishing line, and be vanishing).

2Kontsevich introduced the combinatorial space of Strebel graphsM comb
g;n D ˚T R

#edges.T /

C
with triva-

lent graphs of genus g and n vertices, with some coordinates le 2 RC on each edge, subject to constraintsP
e 7!v le D Lv fixed at each vertex. He considered the Chern classes  v D P

e0<e around v dle ^dle0 ,

and proved that .
P

v  v/
3g�3Cn

Q
v dLv D .3g�3Cn/Š 25g�5C2n

Q
e dle . Our space TNC3 D

M comb
0;NC3 corresponds to the planar case g D 0 and n D N C 3, and we identify le D �e=2� .
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The dualE�
0 ofE0 (i.e. the set of edges on the dual graph of T crossing the edges

of E0), must thus contain no loop, i.e. it must be a tree or a union of k disjoint trees
on the dual graph.

Since a tree contains one more vertex than edges, and sinceE�
0 contains 2N edges,

then E�
0 must contain 2N C k dual vertices i.e. faces (vertices of the dual E�

0 are
faces of T ), but since there are 2N C 2 faces in T , we must have k � 2, i.e. k D 1

or k D 2. Notice that if k D 1, that means that exactly one face of T is not reached
by E�

0 , and one can say that this face, is a tree with 1 vertex and no edge, in some
sense we are back to k D 2 by allowing one of the 2 trees to be reduced to a point.
This shows that E�

0 must have two connected components.
This implies that xE0 D E.T / n E0 is a set of N C 3 edges and must contain

exactly one loop. This implies that xE0 is a 1-loop rooted tree, i.e. a loop with trees
attached to it; see Figure 12.

Figure 12. A basis E0 of 2N edges, is such that the complementary xE0 D E.T / n E0 is a
1-loop rooted tree, whose loop has odd length. Its dual E�

0 is made of 2 trees with a total of
2N edges.

We now have

det
v2V .T /; e2 xE0

Rv;e D
X

� W V .T /! xE0

.�1/�
Y
v

Rv;�.v/
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A term Rv;�.v/ is non–vanishing (and is then D 1) only if �.v/ is an edge of xE0
adjacent to v, we represent it as an arrow on edge e with origin v. The determinant is
thus a sum over all arrowed paths on xE0. There exist only two possible arrowed paths
on xE0, obtained from putting arrows from the leaves of xE0 towards the loop, and
putting arrows around on the loop, in the two possible directions around the loop. If
the loop has length l , reversing the arrows multiplies the signature of � by .�1/l�1.
We thus have:

det
v2V .E/; e2 xE0

Rv;e D ˙ .1C .�1/l�1/; (4.3)

i.e. it vanishes if the loop of xE0 has even length, and is equal to ˙2 otherwise.
A necessary condition for E0 to be a basis is thus that xE0 D E.T / n E0 is a

1-loop tree, with a loop of odd length. Its is also a sufficient condition because then
detv2V .E/; e2 xE0

Rv;e D ˙2 is non vanishing. This ends the proof of Theorem 2.1.

4.1.2. Example and proof of Theorem 2.2. A particular example is obtained by
choosing the loop of xE0 to be a triangle around a face f0 of T , i.e. one of the two
connected components ofE�

0 to be a point, namely the center of facef0; see Figure 13.
In that case, E0 is the dual of a covering tree E�

0 of the dual graph of T n f0.

Figure 13. Two examples of basis of 6 edges for the octahedron (N D 3). In both cases,
the basis is made of the 2N D 6 red thick edges, its complementary is a 1-loop rooted tree
(N C 3 D 6 thin blue edges), and the dual is made of 2 trees (2N D 6 dashed edges). In the
second example, the 1-loop rooted tree is chosen such that the loop is the triangle whose face
is the point at 1, and thus one of the 2 dual trees is reduced to the point at 1.

Finally, from (4.2) and (4.3) one has that if E0 is an admissible basis, the measure
on zTNC3 is

1

2
uniform.T / ˝

Y
e2E0

d�e

and is independent of a choice of basis E0 � E.T /. This is Theorem 2.2.
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4.2. Computation of the determinants det.J / and det.D/. We now show how
to compute the Jacobian determinant J and prove the main theorems Theorem 2.3
and Theorem 2.6. We first introduce some important matrices. We chose a given
Delaunay triangulation T .

Definition 4.2 (Edge-edgeE matrix). Let us define the .3N C 3/� .3N C 3/matrix
E D fEe;e0g for edges .e; e0/ 2 E.T /2:

Ee;e0 D

8̂̂̂
<
ˆ̂̂:
0 if e and e0 are not in the same triangle,

C1 if e 7! e0 clockwise,

�1 if e 7! e0 counter-clockwise.

Definition 4.3 (Edge-vertex A and xA matrices). The .N C 3/ � .3N C 3/ matrix
A D fAv;eg where v is a vertex of T and e an edge of T is defined as

Av;e D

8̂<
:̂

1

zv � zv0

if e is adjacent to v, i.e. Rv;e D 1,

0 otherwise,

where v0 denotes the vertex of T opposite to v on the edge e D .v; v0/. The matrix
xA is the complex conjugate of A:

xAv;e D

8̂<
:̂

1

Nzv � Nzv0

if e is adjacent to v, i.e. Rv;e D 1,

0 otherwise.

The matrices A and NA appear in the tree expansion of det J in (2.4).

We now choose an admissible basis of 2N edges E0 � E.T /.

Definition 4.4 (P0 and M0 matrices attached to an edge basis E0 ). Let P0 be the
.3N C 3/ � .2N/ matrix projector on E0, i.e.

P0 D
 

Id2N

0

!

(in a basis where E0 D .e1; � � � ; e2N / and xE0 D E.T / n E0 D .e2NC1; � � � e3NC3/).
Since E0 is an admissible basis, the .N C 3/� .3N C 3/ adjacency matrix R defined
by (4.1) can be decomposed into a .N C 3/� .2N/ blocR0 and a .N C 3/� .N C 3/

invertible bloc zR0

R D .

E0D2N‚…„ƒ
R0 j

NC3‚…„ƒ
zR0 / gNC3 :
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Let us define the matrix M0 as the .3N C 3/ � .2N/ matrix given by

M0 D
 

Id2N

� zR�1
0 R0

!
:

The matrix M0 is defined in order to give:

d�e D
X
e02E0

.M0/e;e0d�e0 ; e 2 E.T /:

Definition 4.5. Finally, we define the restriction of the matrix E to the basis E0
simply as the .2N/ � .2N/ matrix:

E0 D P T0 EP0:

We now have some simple results

Lemma 4.1. We have
R � E D 0:

Proof. Trivial, just compute all cases.

Lemma 4.2. We have
det.E0/ D 1:

Proof. Remember that the basis E0 is the set of edges of a union of 2 trees T �
0 on the

dual graph of the triangulation T , with 2N edges. We have

det
e02E0; e2E0

.Ee0;e/ D
X
�

.�1/�
Y
e

Ee;�.e/:

The product
Q
e Ee;�.e/ is non-vanishing only if e and �.e/ are neighbors, and in

particular, since Ee;e D 0, we must have �.e/ ¤ e. First observe that a cycle of �
corresponds to a vertex of T �

0 , i.e. � can have only cycles of lengths 2 or 3.
If � contains a cycle of length 3, �.v/ D v0, �.v0/ D v00 and �.v00/ D v,

we have a factor Ev;v0Ev0;v00Ev00;v. Let � 0 be the permutation obtained from �

by reversing the cycle v ! v0 ! v00 ! v into v ! v00 ! v0 ! v, we have
Ev;v0Ev0;v00Ev00;v D �Ev;v00Ev00 ;v0Ev0;v , and therefore the contribution of � 0 cancels
that of � .

This shows that only � ’s which have only cycles of length 2 contribute, i.e.
� Dproduct of transpositions, and .�1/� D .�1/N . Thus � is an involution
without fixed points, and can be represented as a perfect matching. Notice that
Ee;e0Ee0;e D �1, therefore

Q
e Ee;�.e/ D .�1/N , finally we have

det
e02E0; e2E0

.Ee0;e/ D .�1/N .�1/N#perfect matching onE0:
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Let us prove that there is only 1 perfect matching on a (at most trivalent) forest with
2N edges. Start from an edge e which is a leaf, and apply the following procedure.

1) e has one or two neighboring edges on E�
0 .

2) If e has only one neighbor e0, we match e with its unique neighbor e0, and we start
to 1) with the forest E�

0 n fe; e0g.

3) If e has two neighbors e0 and e00, since E�
0 is at most trivalent, this means that

removing e and e0 (resp. e and e00) disconnects the tree E�
0 into two subtrees

whose total number of edges is 2N � 2. If the subtrees obtained by removing e0
(resp. e00) are odd, then the subtrees obtained by removing e00 (resp. e0) are even.
In other words there is one and only one possibility to match e with �.e/ D e0 or
�.e/ D e00 such that E�

0 n .e; �.e// is the union of even subtrees. Then, remove
e and �.e/ from E�

0 , and start at 1) again with the subtrees.

In the end, we get the unique perfect matching on E0. This gives

det
e02E0; e2E0

.Ee0;e/ D 1:

Lemma 4.3. We have
E D M0E0M

T
0 : (4.4)

Proof. By Lemma 4.1, R:E D 0 implies that E is of the form

E D
 

E0 zE0
� zR�1

0 R0E0 � zR�1
0 R0 zE0

!
D M0 � .E0; zE0/

with zE0 some .2N/ � .N C 3/ matrix. The condition that E D �ET implies that
zR0 zET0 D R0E0, and thus

E D M0E0M
T
0 :

We now express the Jacobian matrix J and the Kähler metric D in terms of these
matrices.

Proposition 4.1. We have

Jv;e D @�e

@zv
D i

2

X
e0

Av;e0Ee0;e D i

2
A �E

and

xJv;e D @�e

@ Nzv D �i

2

X
e0

xAv;e0Ee0;e D i

2
xA �E:

This is nothing but (2.3).
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Proof. Let e be an edge, and let v and v0 be its two adjacent vertices. We denote
.v; v0; v00/ and .v; v000; v0/ the two positively oriented triangles adjacent to e, and f
and f 0 the center of their respective circumscribed circles. Notice that in the triangle
.v; f; f 0/ we have

�e D � � f̨;e � f̨ 0;e

and since f is the center of the circumscribed circle to .v; v0; v00/ we have

f̨;e D 1vv00v0 D Arg
zv0 � zv00

zv � zv00

D Im ln
�zv0 � zv00

zv � zv00

�
and similarly

f̨ 0;e D 1v0v000v D Arg
zv � zv000

zv0 � zv000

D Im ln
� zv � zv000

zv0 � zv000

�
:

That gives

d�e D Im
�dzv � dzv00

zv � zv00

� dzv0 � dzv00

zv0 � zv00

C dzv0 � dzv000

zv0 � zv000

� dzv � dzv000

zv � zv000

�

D �1
2i

X
v

X
e0

� dzv

zv � zvCe0

Ee0;e � d Nzv
Nzv � NzvCe0

Ee0;e

�
:

Proposition 4.2. The Kähler matrix D D .Du; Nv/ defined by (2.8) can be rewritten
as

D D 1

4i
A �E � A�:

Proof. Writing for an oriented triangle f D .v; v0; v00/ we get

� dVol.f / D d˛v ln jzv0 � zv00 j C d˛v0 ln jzv00 � zvj C d˛v00 ln jzv � zv0 j

D 1

2i

��dzv0 � dzv
zv0 � zv � dzv00 � dzv

zv00 � zv
�

ln jzv0 � zv00 j � c:c:

C
�dzv00 � dzv0

zv00 � zv0

� dzv � dzv0

zv � zv0

�
ln jzv00 � zvj � c:c:

C
�dzv � dzv00

zv � zv00

� dzv0 � dzv00

zv0 � zv00

�
ln jzv � zv0 j � c:c:

�
i.e.

�2i
@Vol.f /

@zv
D 1

zv � zv0

ln jzv0 � zv00 j � 1

zv � zv00

ln jzv0 � zv00 j

� 1

zv � zv0

ln jzv � zv00 j C 1

zv � zv00

ln jzv � zv0 j

D
X
e;e0

Av;eEe;e0 ln le0 :
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The N@ act only on the log terms, and give for an edge e D .v; v0/:

@ ln le
@ Nzv D 1

2
xAv;e:

Finally one has the following result. Albeit simple, it is very important, so let us
promote it to a theorem.

Theorem 4.1. We have the identity

A �E � AT D 0:

Proof. If v D v0, let vi be the neighboring vertices of v, oriented positively, we have

.AEAt/v;v D
X
i

1

zv � zvi

� 1

zv � zvi�1

� 1

zv � zviC1

�
: D 0

If v ¤ v0 are neighbors, and the (positively oriented) triangles adjacent to the edge
.v; v0/ are denoted .v; v0; v00/ and .v; v000; v0/, we have

.AEAt /v;v0 D 1

zv � zv0

� 1

zv0 � zv00

� 1

zv0 � zv000

�

C 1

zv � zv00

� 1

zv0 � zv
� 1

zv0 � zv00

�

C 1

zv � zv000

� 1

zv0 � zv000

� 1

zv0 � zv
�

D 0:

Any other element of .AEAt/v;v0 is zero.

4.3. Proof of Theorem 2.3. Let us choose a face f0, dual to a triangle .v1; v2; v3/.
We want to compute the determinant in (2.2)

zJ D det.JT .z/nf1;2;3g�E0
/: (4.5)

Using Proposition 4.1 we have

zJ D .i=2/N .�i=2/N det
v2V .T /nfv1;v2;v3g; e2E0

 P
e02E Av;e0 Ee0;eP
e02E xAv;e0 Ee0;e

!
: (4.6)

The Cauchy–Binet identity gives

4N zJ D
X

I�E; #ID2N
det

v2V .T /nfv1;v2;v3g; e02I

 P
e02I Av;e0P
e02I xAv;e0

!
� det
e02I; e2E0

.Ee0;e/:
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The first determinant can be written as a sum over permutations

V .T / n fv1; v2; v3g [ V .T / n fv1; v2; v3g �! I;

which we decompose into two applications:

�; N� W V .T / n fv1; v2; v3g �! I;

v 7�! e:

We call I 0 � I the image of � and xI 0 � I the image of N� . They have to be disjoint:
I 0 \ xI 0 D ;. We thus write

4N zJ D
X

I�E.T /
#ID2N

X
�[ N�

.�1/.�[ N�/ Y
v¤v1;v2;v3

Av;�.v/ xAv; N�.v/ det
e02I; e2E0

.Ee0;e/;

with � [ N� W V .T / n fv1; v2; v3g ! I . Since Av;e is non-zero only if e is adjacent
to v, we have the further constraint that �.v/ (resp. N�.v/) be a neighboring edge to v.

One can thus represent a pair .v; �.v// (resp. .v; N�.v//) as a white (resp. black)
arrow on edge e D �.v/ (resp. N�.v/) with origin at v. Every vertex (except v1, v2,
and v3) must have a unique white (resp. black) outgoing arrow. Therefore, the set of
white arrows I 0 D �.V .T / n fv1; v2; v3g/ (resp. xI 0 D N�.V .T / n fv1; v2; v3g/) is a
forest of trees with 0 or 1 loop; see Figure 14.

Notice that trees with no loop must end on v1; v2 or v3 (because any other vertex
would have an outgoing arrow).

v1

v2

Figure 14. A map � W v 7! e mapping a vertex to an adjacent edge, can be encoded as a graph.
Each pair .v; �.v// is represented by an arrow on edge �.v/ originating at v. The graph is
thus such that each vertex has exactly one outgoing arrowed edge. It may have any number of
incoming edges. The vertices at the leaves of the graph can only be v1; v2, or v3 since every
other vertex has an outgoing arrow. The only possibility of not ending on v1, v2, or v3 is to
end on a loop. The graph is thus a union (forest) of trees and 1-loop trees.
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Let us assume that it has k0 trees connected components, and k1 1-loop trees
connected components. Since a tree has one more vertex than edges, and 1-loop trees
have as many vertices as edges, and since we haveN edges, the number of vertices is
thus N C k0. Since T has N C 3 vertices (including v1; v2; v3) we get that k0 � 3,
and k0 > 0 implies that k0 of the points v1; v2; v3 are reached. But notice that the
vertices v1; v2; v3 can’t be reached on a 1-loop tree. If we add to I 0 the 3 edges of the
triangle .v1; v2; v3/ (they form a loop), we see that I 0 [ ..v1; v2/; .v2; v3/; .v3; v1/

is a forest of 1-loop trees only.
Now, Imagine that I 0 contains one (or more) loop different from the triangle

.v1; v2; v3/. One can then find another map

Q� W V .T / n fv1; v2; v3g/ �! I 0

obtained by reversing the orientation of the loop. Its signature is multiplied by
.�1/length �1, whereas the product

Q
v Av;�.v/ gets multiplied by .�1/length , i.e. the

contribution of Q� is the opposite of that of� , and the sum of the contributions of� and Q�
cancel. In the end we have to consider only I 0 without loops other than .v1; v2; v3/.
Therefore I 0 must be a union of 3 trees (possibly empty) ending respectively on
v1; v2; v3; see Figure 15. We have the same for xI 0.

v1

v2

v3

Figure 15. The image I 0 of � (resp. xI 0 image of N� ) must be a union of 3 disjoint trees (possibly
with no edges) ending at v1; v2; v3, i.e. if we add the edges of the triangle .v1; v2; v3/we must
have a 1-loop tree whose unique loop is the triangle .v1; v2; v3/.

Moreover, because of the factor dete02I; e2E0
.Ee0;e/ which vanishes when I is

not a basis, we have an extra requirement on I 0 and xI 0, which is that I D I 0 [ xI 0
must be a basis, i.e. E.T / n I is a 1-loop tree, with a loop of odd length. Since the
edges of the triangle .v1; v2; v3/ are not contained in I 0 nor xI 0, they have to be in
E.T / n I , and thus the unique loop of E.T / n I must be the triangle .v1; v2; v3/.
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Eventually this gives

4N zJ D
X

trees I 0; xI 0

Y
v

Av;�.v/ xAv; N�.v/..�1/.�; N�/ det
e02I 0[ xI 0; e2E0

.Ee0;e//;

where the sum is over disjoint sets I 0, xI 0 ofN edges forming trees rooted at v1; v2; v3,
and such that the complementary set E.T / n .I 0 [ xI 0/ is a 1-loop tree whose loop is
the triangle .v1; v2; v3/.

In the end we have

zJ D 1

4N

X
treesI 0; xI 0

.˙1/
Y

.v;e/2I 0

Av;e
Y

.v;e/2 xI 0

xAv;e;

where the sum is over disjoint sets I 0, xI 0 of N edges forming oriented trees ending
at v1; v2; v3, and such that the complementary set E.T / n .I 0 [ xI 0/ is a 1-loop tree
whose loop is the triangle .v1; v2; v3/. This implies (2.2), i.e. Theorem 2.3.

In particular, the sign factor .˙1/ D �.F / in (2.2) is given explicitly by

�.F / D .�1/.�; N�/ det
e02I 0[ xI 0; e2E0

.Ee0;e/; (4.7)

Remark. The sets I 0, xI 0, and I 00 D E.T / n .I 0 [ xI 0 [ f.v1; v2/; .v2; v3/; .v3; v1/g/
play equivalent roles; the three of them have cardinal N and are made of three trees
ending on v1; v2; v3, and are pairwise disjoint.

Note that exchanging I 0 and xI 0 exchanges the zv’s and the Nzv’s, and changes the
prefactor by a .�1/N :

zJ D � xzJ:
This is Theorem 2.6.

4.4. Proof of Theorem 2.4. To prove Theorem 2.4, let us consider how the term
associated to a given 3-tree F scales when a subset of vertices fzv; v 2 V0g �
f1; N C 3g collapse to a single point Z0. For simplicity we consider the case where
V0 does not contain any of the fixed vertices f1; 2; 3g. So let us rescale

zv �! zv.x/ D Z0 C x.zv �Z0/ if v 2 V0 (4.8)

and study how the measure (2.5),

d�F .z/ D
Y
v…4

d2zv
Y

EeD.v!v0/2 �

1

zv � zv0

�
Y

EeD.v!v0/2 �0

1

Nzv � Nzv0

;
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scales as x ! 0. It is clear that for x 2 R�C small enough and the original zv fixed,
the topology of the Delaunay triangulation should not depend on x, and it should
collapse as x ! 0 from a triangulation T withN C 3 vertices to the triangulation T0
withN C 2�P vertices (where P D jV0j), such that the P vertices of V0 have been
replaced by the vertex Z0. This is depicted in Figure 16. Similarly, if we keep the
vertices of V0 fixed and send the other vertices of T to infinity via the inverse scaling

zv �! Qzv.x/ D Z0 C x�1 .zv �Z0/ if v … V0

we obtain a Delaunay triangulation zT0 with P C 1 vertices: the P vertices on V0 and
an additional vertex et 1. This is depicted in Figure 17.

Figure 16. Collapse of a triangulation T to the triangulation T0 as x ! 0.

Figure 17. Inverse scaling of a triangulation T to the triangulation zT0 as x ! 0. The zzT0 part
is in red.

It is clear that the most singular terms will come from the 3-trees F D .� ; � 0; � 00/
such that the restrictions �0 and � 0

0 of the trees � and � 0 to the triangulation zzT0
(obtained from zT0 by removing the vertex at 1) have the maximal number of lines.
Since � , � 0 and � 00 are disjoint, �0, � 0

0 and � 00
0 are also disjoint, hence are disjoint

spanning forests of zzT0, whose union is the set of links of zzT0. From this it follows that

# vertex zzT0 D # links �0 C # connected components � 00
0

D # links � 0
0 C # connected components � 0

0

D # links � 00
0 C # connected components � 00

0
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and
# links �0 C # links � 0

0 C # links � 00
0 D # links zzT0:

Since zzT0 has the topology of a disk, its boundary (or hull) is a circle and is such that

# links of the hull of zzT0 D # vertex of the hull of zzT0
From the Euler formula and the fact the zzT0 is a triangulation of the disk one has

# vertex zzT0 � # links zzT0 C # triangles zzT0 D 1

and
2 # links zzT0 � # links of the hull of zzT0 D 3 # vertex zzT0:

Each connected component of the spanning forests has at least one point on the hull,
hence

# connected components of �0; � 0
0 and � 00

0 � # vertex of the hull of zzT0: (4.9)

Combining these relations we get

# links �0 C # links � 0
0 � 2 # vertex zzT0 � 3: (4.10)

Now under the rescaling (4.8) the measure d�F scales as

d�F .z.x// / xn; n D 2 # vertex zzT0 � .# links �0 C # links � 0
0/

and (4.10) implies that
n > 2:

This ensures global convergence of the integral over the measure when all the points
of V0 tend towards Z0 at the same rate. In the language of renormalization theory,
the “superficial degree of convergence” of the subgraph V0, given by n� 2, is strictly
positive.

The analysis of the subdivergences when subsets of points collapse at different
rates is more involved but goes along the same line. The decomposition in forests of
the total measure d�.z/ given by (2.4) ensures that the analysis by power counting
is valid and that the measure is absolutely convergent.

One should note that the inequality (4.10) is saturated when the inequality (4.9)
is saturated for the spanning forest � 00

0 , i.e. when

# connected components of � 00
0 D # vertex of the hull of zzT0

which implies

# connected components of �0 C # connected components of � 0
0 D 3:

This probably implies some factorization property for the measure.
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4.5. Proof of Theorem 2.6. Let us denote byQ0 theN � .N C3/ projection matrix
obtained by projecting out the first three fixed vertices

Q0 D .ıu;v/uD4;NC3
vD1;NC3

:

We project out the first three lines of the matrixA and the first three lines and columns
of the matrix D by

A0 D Q0A and D0 D Q0DQ
T
0
:

Using Proposition 4.2 and Theorem 4.1 we have�
A0

� xA0

�
E

�
A0

� xA0

�T
D
�

0 �4iD0

�4i xD0 0

�
so that ˇ̌̌

ˇdet

��
A0

� xA0

�
E

�
A0

� xA0

�T�ˇ̌̌ˇ D 42N det.D0/2: (4.11)

Using that E D M0E0M
T
0 (Lemma 4.3, eq. (4.4)) we have

det

��
A0

� xA0

�
E

�
A0

� xA0

�T�
D det

��
A0

� xA0

�
M0E0M

T
0

�
A0

� xA0

�T�
:

Since E0 is an invertible matrix and detE0 D 1 (Lemma 4.2) we can write

det

��
A0

� xA0

�
E

�
A0

� xA0

�T�
D det

��
A0

� xA0
�
M0E0

�
det

�
E0M

T
0

�
A0

� xA0
�T�

and since P T0 M0 D 1 we have (using Lemma 4.3, eq. (4.4))

det

��
A0

� xA0
�
E

�
A0

� xA0
�T�

D det

��
A0

� xA0

�
M0E0M

T
0 P0

�
det

�
P T0 M0E0M

T
0

�
A0

� xA0

�T�

D det

��
A0

� xA0
�
EP0

�
det

�
P T0 E

�
A0

� xA0
�T�

:

One recognizes the determinant zJ of the Jacobian matrix defined in (4.5) and (4.6);
since

zJ D 1

4N
det

��
A0

� xA0
�
EP0

�
(4.12)

eq. (4.11) and eq. (4.12) give the final result

det.D0/2 D zJ 2:
This gives Theorem 2.6.
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4.6. Proof of Proposition 2.1. We study in more details the conformal properties
of the Kähler formD and its determinant. We consider a triangulation T withN C 3

points in the plane. No point is considered fixed, and the exterior triangle which
contains the point at 1 is taken to have a clock wise orientation, so that its area
and its hyperbolic volumes are taken with a negative sign. We have seen that A is
minus the sum of the hyperbolic volumes associated to the triangles (the faces) of the
triangulation T associated to the position of the vertices z1; zNC4

A D �
X

triangles

Vol.zi ; zj ; zk/

and the .N C 3/ � .N C 3/ Kähler matrix D is

Di N| D @

@zi

@

@ Nzj A:

A convenient basis to study the conformal properties of the matrix D is to use the
vectors

 a D �
za�1
1 : : : za�1

NC3

�
; N a D

0
BB@

Nza�1
1

:::

Nza�1
NC3

1
CCA ; a D 1; � � � ; N C 3;

which define the .N C 3/ � .N C 3/ square matrices

‰ D

0
BB@
 1
:::

 NC3

1
CCA ; ‰� D � N 1 : : : N NC3

�
;

and to consider the .N C 3/ � .N C 3/ matrix

zD D ‰D‰�

whose matrix elements are

zDab D za�1
i Di N| Nzb�1

j :

Since the hyperbolic volumes of ideal tetrahedra Vol.zi ; zj ; zk; zl/ are invariant
under global SL(2;C) conformal transformations

z �! w D az C b

cz C d
;

i.e.
Vol.zi ; zj ; zk; zl/ D Vol.wi ; wj ; wk; wl/;
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it is clear that the matrix D transform covariantly under global conformal trans-
formations. In particular, the three generators of global conformal transformations
correspond to the three zero modes of D

 aD D 0 and D N a D 0; a D 1; 2; 3:

This implies that the first three lines and three columns of the matrix zD are zero, so
that zD takes the block form

zD D
�
0 0

0 D0

�
;

whereD0 D . zDab/a;b>3 is a non-degenerate Hermitian N �N matrix. Let us define
the non-zero determinant of zD as

det0. zD/ D det.D0/:

We want to express the relation between det0. zD/ and the determinant Dn1;2;3 D
det

�
Dn1;2;3

�
obtained by removing the first three lines and columns ofD (i.e. fixing

the three points .1; 2; 3/). Using the fact that the Jacobian of the change of variables
given by the matrix ‰ is nothing but the Vandermonde determinant

det.‰/ D �NC3.z1; � � � zNC3/ D
Y
i<j

.zi � zj /

it is easy to show that the original determinant Dn1;2;3 is related to det0.D/ by

det.Dn1;2;3
/ D

ˇ̌̌
ˇ �3.z1; z2; z3/

�NC3.z1; � � � zNC3/

ˇ̌̌
ˇ2 det0. zD/;

where �3.z1; z2; z3/ is the Vandermonde determinant for the three fixed points
.z1; z2; z3/

�3.z1; z2; z3/ D .z1 � z2/.z1 � z3/.z2 � z3/:
Since det0. zD/ and�NC3.z1; � � � zNC3/ do not depend on the choice of the three points
that are fixed, this leads to the relation between the Dnabc for two different choices
of triplets of fixed points (different “gauge fixings” for global conformal invariance)

det.Dna;b;c
/ D

ˇ̌̌
ˇ�3.za; zb; zc/�3.z1; z2; z3/

ˇ̌̌
ˇ2 det.Dn1;2;3

/:

Since the full matrix D and the matrices ‰ and ‰� transform simply under global
SL(2,C) transformations, one deduces also that it is the density function H defined
by (2.11) as

H D det
�
Dna;b;c

�
j�3.za; zb; zc/j2 D det0.D/

j�NC3.z1; � � � zNC3/j2
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transforms covariantly as

z �! w D az C b

cz C d
; H.z/ D

NC3Y
iD1

jad � bcj
jczi C d j2H.w/

4.7. Proof of Proposition 2.2. To prove (2.12), it is enough to start from the explicit
form (2.10) for the matrix elements of D.f / in terms of the angles .˛1; ˛2; ˛3/ of
the triangle and of its circumcircle radius R and to use the well known geometrical
relations involving the lengths of the edges .l1; l2; l3/ and the area A of the triangle.
More precisely, using (2.12) gives for the matrix element

D1 N2 D �1
4i

z3 � z2

A

A

R2
1

4i

Nz1 � Nz3
A

D � l1l2

16AR2
e i˛3 :

Using

sin.˛1/

l1
D sin.˛2/

l2
D sin.˛3/

l3
D 1

2R
and Area D l1l2l3

4R
;

we get

D1 N2 D � 1

4l3R
e i˛3 D � 1

8R2
e i˛3

sin.˛3/
D � 1

8R2
.cot.˛3/C i/;

which is precisely (2.10). The proof is similar for the diagonal elements.

5. Conclusion

In this article, we have investigated the relation between planar maps, considered as
discretized combinatoric formulations of 2d gravity, and their planar embedding in
the complex plane, in view of getting a better understanding of their relation with
the conformal field theory and topological field theory formulations of 2d gravity.
We started from a natural extension of the circle packing and circle pattern methods,
relying on Euclidean structures, i.e. triangulations with edge angle variables, and
patterns of circumcircles of Delaunay triangulations. We have shown that the uniform
measure on random planar maps, equipped with the uniform Lebesgue measure on
edge angles variables, gives a conformally invariant spatial point process on the
complex plane or the Riemann sphere, with very interesting properties. We obtained
an explicit representation for this measure in term of geometrical objects (triangle
rooted spanning 3-trees) on Delaunay triangulations. This measure is also the volume
form of a Kähler metric on the space of Delaunay triangulations, whose prepotential
has a simple geometrical interpretation in term of 3d hyperbolic geometry. It can also
be written as a “discrete Faddeev–Popov” determinant (involving discrete complex
derivative operators r; xr), very similar to Polyakov’s conformal Faddeev–Popov
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determinant, thus establishing a new link between planar maps and 2d gravity. It can
as well be written as a combination of Chern classes, thus also establishing a link
with topological 2d gravity.

In our opinion the results presented in this article are interesting, since they bring
together different aspects of 2d gravity, treated from the combinatorial, conformal and
topological points of view, and offer a new pathway to study 2d gravity. Nevertheless
we have discussed here only the discrete case, where the number of points Nv (and
more generally the local density of points in the plane) is finite. Of course the most
interesting thing to do next is to define and study the continuum limit (Nv ! 1, or
equivalently the large distance scaling properties of this measure in the plane). This
is required in order to get a better understanding of the various continuum limits of
2d gravity.
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