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An application of Khovanov homology to quantum codes

Benjamin Audoux

Abstract. We use Khovanov homology to define families of LDPC quantum error-correcting

codes: unknot codes with asymptotical parameters
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Introduction

Classical error–correcting codes have been now studied for decades. Among them,
some codes ([11]), defined by sparse matrices and called LDPC (Low Density Parity
Check), noteworthily come with fast decoding algorithms. Since the end of the last
century, error–correcting codes for quantum computing were also known to exist
and explicit constructions were given. A. R. Calderbank, P. Shor and A. Steane
([6] and [25]) described, for instance, a way to associate such a code to any pair
.HX ;HZ/ of F2-matrices with HX Ht

Z D 0. This procedure allows the construction
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of several codes with good parameters ; it means infinite families of quantum codes
whose dimension (usually denoted by k) and number of rectifiable errors (which is
related to the minimum distance, usually denoted by d ) are both linear in the length
of codewords (usually denoted by n).

However, quickness in quantum decoding is all the more crucial since correc-
tions should occur as fast as quantum decoherence arises. It is then natural to try to
transpose the LDPC notion for classical codes into a quantum counterpart, looking
for pairs of matrices .HX ;HZ/ with minimally weighted rows. Surprisingly, topol-
ogy appeared to be a fruitful field for such a project. This was initiated by Kitaev
codes ([17]) who defined such a family of, so-called toric, codes by considering a
m�m-squared tessellation of the S1 �S1-torus. It led to codes with parameters equal
to �nI kI d� D �2m2I 2Im�. Toric codes were then generalized to surface ([3]) and
color ([2]) codes. Other LDPC quantum codes were also defined; see for instance the
constructions given by M. Freedman, D. Meyer, and F. Luo in [10] with asymptotical
parameters �nI apnI bpn ln.n/� or by J.-P. Tillich and G. Zemor in [26] with asymp-
totical parameters �nI cnI dpn�, where a, b, c and d are some constants. It is striking
that none of these, and even none of any known LDPC quantum error-correcting codes
families, has a minimum distance d that grows faster than n˛ for any ˛ > 1=2. It is
still an open question to know whether there is actually a general square root barrier
for minimum distance in LDPC quantum codes or if this is only due to an “excess of
structure” in these constructions. Indeed, constructing LDPC quantum codes remains
challenging, and the few examples which are known to date carry lots of structure
– in particular, a duality structure – and symmetry. This enables exact comptutation
of parameters but may yield artificial restrictions. The square root barrier has been
proved for local euclidian codes ([4]) and for surfaces and color codes ([8] and [9]).
There is thus a need for new constructions.

In this paper, we explore a new side of topology which is likely to hold interesting
quantum codes. Khovanov homology is a link invariant defined in [15]. To any
diagram representation of a link, it associates a chain complex whose homology
depends on the underlying link only. The chain complex is actually bigraded and
its Euler characteristic is famed for categorifying the Jones polynomial, however
we will not be interested here in this second non homological grading. Khovanov
homology has a rich structure, in particular a Poincaré duality property, that makes
easier the computation of minimum distances. As a matter of fact, we study three
families of codes, associated to some very simple knots and links, and compute

explicitly their parameters. Asymptotically, we respectively obtain
�

32`C1p
8�`
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�

,�q
3

2�`
6`I 2`I 2`

�
and �nI 1I apn� with a a constant. This is below the parameters of

Freedman–Meyer–Luo and Tillich–Zemor codes, but reaches, and even beats, toric
codes and most other known ones. Moreover, there are still many others candidates
among link diagrams to look at and other codes properties to study such as minimal
amount of energy needed to reach an unrectifiable error. Moreover, it is worthwhile to
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note that, even if the construction drastically differs from its predecessors, it seems to
run into the same square root bound for minimum distance. Finally, even if this study
was initially motivated by quantum computing interests, it opens some questions (see
e.g. question 2.6) that may result on interesting properties of Khovanov homology,
even from the knot theory point of view.

This paper aims at being readable by both topologists and code theorists. It begins
by a review of LDPC CSS codes followed by a review of chain complexes and
homology. The first part ends with a generic way to define one of the former using
the latter. The second part is devoted to the definition of Khovanov homology and
to some of its properties. Third, fourth and fifth parts deal each with a family of
codes associated, respectively, to diagrams of the unknot, of the unlinks and of the
.2; n/-torus knots and links. All the parameters of the codes are computed there.
Finally, in order to lighten the core of the text, a technical appendix gathers some
analytical proofs needed on the way.

Acknowledgement. The author thanks Alain Couvreur and Gilles Zemor for intro-
ducing him to quantum codes and to their connection with topology. He is also deeply
grateful to Nicolas Delfosse for answering all his (numerous) questions on quantum
computing. May also Rinat Kashaev be thanked for a simplification in the proof of
Proposition A.1. Finally, the author is grateful for support by PEPS ICQ2013 TOCQ
and ANR VasKho.

1. Chain complex codes

1.1. From quantum errors to codes. For more details, the author recommends [21]
and [22] or the (french) introduction of [7] to the reader. This section is a rough
overview of error–correcting quantum codes adressed to non specialists.

1.1.1. Qubits and their errors. In quantum theory, the elementary piece of infor-
mation is the qubit. It is a unitary element in the C-vector space H spanned by two
generators, usually denoted by j0i and j1i. We denote the space of qubits by H1.
Actually, only the images in the projective quotient can be physically apprehended,
but since it will be fruitful to deal with signs issues, we will often switch between the
(non commutative) affine and the (commutative) projective cases. For convenience,
we will use notation with tildas each time we deal with affine elements.

Unlike the classical case, multiple qubits do not just concatenate: they can entan-
gle. From the postulates of quantum mechanics, n qubits are described by unitary
elements in H ˝n; they are of the formX

x2f0;1gn

˛xjxi

with
P

x j˛x j2 D 1. We denote the space of such n-qubits by H n
1 .
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Transmitting, or even just keeping stored, an n-qubit may alter it. On a single
qubit, a set of possible alterations is the Pauli group zG1, generated by three elements:

zX W j0i 7�! j1i;
j1i 7�! j0i;

zY W j0i 7�! �i j1i;
j1i 7�! i j0i;

zZ W j0i 7�! j0i;
j1i 7�! �j1i:

Of course, they are not the only errors which may occur, but they are an orthogonal
basis for them. For this reason, it is sufficient to focus our effort on them. We can
note that every such Pauli error is of the form �A with

� 2 S WD f˙1;˙ig and A 2 zE WD fI; zX; zY ; zZg
and that any two errors always do commute or anti-commute. We denote by G1 the
projective quotient of zG1. It is an abelian group which is generated by only two
elements, for instance X andZ, the images of zX and zZ. On an n-qubit, every factor
can be altered by an error. The group zGn D zG ˝n

1 , defined as the set zEn � S with the
obvious product, forms an orthogonal basis for errors on n-qubits. Here again, every
two elements do commute or anti-commute; and the projective quotient Gn of zGn is
En, where

E WD fI; X;Z;XZg:
The group Gn is abelian but we say that two elements commute (resp. anti-commute)
only if their lifts in zGn do commute (resp. anti-commute). Note that it does not depend
on the choosen lifts.

1.1.2. CSS codes. A quantum code C of length n 2 N� and dimension k 2 �1; n�
is a 2k-dimensional subspace of H ˝n. It makes possible the storage of a k-qubit in
the form of an n-qubit, what enables, as we will see, a correction process for small
alterations of the encoding n-qubits. The terminology, here, may be misleading since
the dimension of a quantum code refers to the number of encoded qubits and not to
the actual dimension of the code as a C-vector space. We define a codeword as any
element of C .

Let G be a subgroup of Gn such that G is liftable to a group zG � zGn. For every
g 2 G, we denote by Qg its lift in zG. We define CG as

Fix zG.H
n
1 / WD fx 2 H n

1 W for all Qg 2 zG; Qg.x/ D xg:
Note that it only depends on G and not on the choosen lift zG. If G is generated by
.n� k/ independent elements of Gn, then one can prove that CG is a code, so-called
stabilizer code, of dimension k.

We say that CG is a CSS – for Calderbank, Shor, and Steane code – if G is
even more restrictively generated by elements in En

X [ En
Z with EX WD f1; Xg and

EZ WD f1; Zg. Since En
X and En

Z are both abelian and made of order 2 elements,
they are both isomorphic to F n

2 . As a matter of fact, such a set of generators can
be described as the rows of two matrices HX ;HZ 2 [p2N� MatF2

.p; n/: to a row
.a1; : : : ; an/ 2 F n

2 of A˛ with ˛ D X or Z, we associate .˛a1 ; : : : ; ˛an/ 2 En
˛ .
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The fact thatG is liftable in zGn means that every two generators x and y commute.
Of course, if x; y 2 En

X or x; y 2 En
Z , this is trivially satisfied; but since zX and zZ

anticommute, x 2 En
X and y 2 En

Z do commute if and only if they share an even
number of non-zero entries, that is if the product of the associated rows in HX and in
HZ is zero. In short, G is liftable if and only if HX Ht

Z D 0.
Finally, generators in En

X are necessarily independent from those in En
Z , so the

minimal number of independent generators for G is rk.HX /C rk.HZ/. As a matter
of fact, two matrices HX and HZ such that HX Ht

Z D 0 being given, the length n of
the associated CSS code is their common number of columns, and the dimension is
k D n � rk.HX / � rk.HZ/.

1.1.3. Decoding and minimum distance. In quantum physics, certain measure-
ments can be seen as orthogonal projections. More precisely, for a given orthogonal
decomposition

H n D
?M
Vi ;

there is an associated measure which sends a unitary element
P
xi 2 H n

1 to 1
kxi0

kxi0

with probability kxi0k2.
Now, let CG be a CSS code and fE1; : : : ; En�kg be a minimal set of n � k

generators for G. For every

� WD .s1; : : : ; sn�k/ 2 F n�k
2 ;

we set

C.�/ WD fx 2 H n
1 W for all i 2 �1; n� k�; zEi.x/ D .�1/sixg:

For every error E 2 G n, we define its syndrome

�.E/ WD .s1.E/; : : : ; sn�k.E// 2 F n�k
2

by si .E/ D 0 if and only if E commutes with Ei . We can note that if x 2 CG and
E 2 Gn, then zE.x/ 2 C.�.E//. The weight of an error is the number of qubits it
alters. For every� 2 F n�k

2 , we choose a minimally weighted errorE� of syndrome� .
The decomposition

H n D
?M

�2F n�k
2

C.�/

holds and the associated measure discretizes the set of possible alterations of a code-
word. Indeed, let e.x0/ be a codeword x0 2 CG D Fix zG.H n

1 / altered by an error
e and let assume that the measure projects it to E.x0/ where E is a Pauli error of
syndrome �E . Then one can try to correct the error by computing

Nx0 WD zE�E
zE.x0/:
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By construction, zE�E
zE has a syndrome equal to zero, so it commutes with all elements

in G. If it is actually in G, then Nx0 D x0 and we got back the initial codeword.
However, it may happen that zE�E

zE does not belong toG. Then the decoding process
fails.

The minimum distance of a code is the minimal weight of a non detectible error
that does alter codewords. For a CSS code CG , it is the minimal weight of an error
which commutes with all the elements ofG but does not belong toG. It corresponds,
as we will see in the proof of Proposition 1.7, to the minimal weight of a vector which
is in the kernel of one of the matrices HX or HZ without being spanned by the rows
of the other.

Notation 1.1. For any code, we denote its parameters by �nI kI d� where n is the
length of the code, k its dimension and d its minimum distance.

1.2. From codes to chain complexes. For further details, the reader can refer to [28],
[12], [20], or [18].

1.2.1. Homology and cohomology. Before relating them to quantum codes, we
recall some basic definitions on chain complexes. We will focus here on F2, but up
to signs issues, everything remains true for any field. Everything but the Künneth
formula, which has then a more sophisticated statement, remains even true for any
ring.

Definition 1.2. An increasing (resp. decreasing) chain complex C is a Z-graded
F2-vector space

L
i2Z C

i (resp.
L

i2Z Ci ) together with a linear map @ W C ! C

which increases (resp. decreases) the grading by one and satisfies @2 � 0. It is often
denoted as

: : :
@�! C i @�! C iC1 @�! : : : :

The grading is called homological grading. If C is non zero for only a finite number
of homological degrees, then we omit all the redundant zero spaces.

Remark 1.1. Unless otherwise specified, chain complexes will be assumed to be
increasing. This convention is opposite to the usual one, but it sticks to the stan-
dard appellation “Khovanov homology,” which should be more appropriately called
“Khovanov cohomology.”

Definition 1.3. If
C WD

�M
i2Z

C i ; @
�

is a chain complex, then its dual C_ is the decreasing chain complex�M
i2Z

C_
i ; @

_�
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defined, for every i 2 Z, by

C_
i D Hom.C i ; F2/

and

.@_.f //.c/ D f .@.c//

for every f 2 C_
i and c 2 C i�1.

Definition 1.4. If

C WD
�M

i2Z

C i ; @
�

is a chain complex, then its homology H�.C / is the graded space

M
i2Z

H i .C / WD
M
i2Z

.Ker.@/ \ C i /
.
.Im.@/ \ C i /

and its cohomology H�.C / the graded space

M
i2Z

Hi.C / WD
M
i2Z

.Ker.@_/ \ C_
i /
.
.Im.@_/ \ C_

i /
;

where C_ is the dual of C .
For every x 2 Ker.@/ (resp. x 2 Ker.@_/), we denote by Œx� its image in H�.C /

(resp. H�.C /).

Now, we prove a very elementary lemma which will be central in the proof of
Proposition 5.3.

Lemma 1.1. LetC WD .
L

i2Z C
i ; @/ be a chain complex, r an integer and f˛igi2I �

Ker.@/ \ C r a finite set such that fŒ˛i �gi2I generates H r.C /. Then every ' 2
Ker.@_/ \ C_

r satisfying '.˛i / D 0 for every i 2 I is null in Hr.C /.

Proof. Since
˚
Œ˛i �

�
i2I

generates H r.C /, every x 2 Ker.@/ \ C r can be written
x D P

i2I 0�I ˛i C @.y/ with y 2 C r�1. Then '.x/ D '.@.y// D .@�.'//.y/ D 0

and 'jKer.@/ � 0. Now, consider a basis f ǰ gj 2J of Ker.'/? � Ker.@/? in C r , set
ˇ0

j D @. ǰ / ¤ 0 for all j 2 J and define g 2 Hom.C rC1; F2/ by g.ˇ0
j / D '. ǰ /

for all j 2 J and gjF ?
2

<ˇ 0
j

> � 0. Then ' D g B @ 2 Im.@_/ and Œ'� D 0.
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1.2.2. Operations on chain complexes. Later on the paper, we will need the fol-
lowing definitions and propositions.

Definition 1.5. If C1 WD .
L

i2Z C
i
1; @1/ and C2 WD .

L
i2Z C

i
2; @2/ are two chain

complexes, then
C1 ˝ C2

is the chain complex .
L

i2Z C
i ; @/ defined by

C i D
M
j 2Z

.C
j
1 ˝ C

i�j
2 /

and
@.c1 ˝ c2/ D @1.c1/˝ c2 C c1 ˝ @2.c2/

for every c1 2 C1 and c2 2 C2.

Proposition 1.2 (Künneth formula). If C1 and C2 are two chain complexes, then

H�.C1 ˝ C2/ Š H�.C1/˝H�.C2/

and
H�.C1 ˝ C2/ Š H�.C1/˝H�.C2/

as graded spaces.

Definition 1.6. If C1 WD .
L

i2Z C
i
1 ; @1/ and C2 WD .

L
i2Z C

i
2 ; @2/ are two chain

complexes, then
f WD .f i W C i

1 ! C i
2/i2Z

is a chain map if and only if it commutes with the differentials, i.e. if and only if

@2 B f D f B @1:

The cone of f is the chain complex

Cone.f / WD
�M

i2Z

C i ; @
�

defined by
C i WD C i

1 ˚ C i�1
2

for every i 2 Z and

@ D
 
@1 0

f @2

!
:

Proposition 1.3. A chain map f W C1 ! C2 between two chain complexes C1 and
C2 induces maps at the level of homology and cohomology which are denoted by

f � W H�.C1/ �! H�.C2/ and f� W H�.C1/ �! H�.C2/:
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1.2.3. Exact sequences. The following notion will be usefull to compute homolo-
gies.

Definition 1.7. An exact sequence is a chain complex .C; @/ with homology equal
to zero in all degrees. It means that Ker.@/ D Im.@/.

Proposition 1.4. If .C0; @0/, .C1; @1/ and .C2; @2/ are three chain complexes such
that, for every n 2 Z, there are maps

�n W C n
0 �! C n

1

and

�n W C n
1 �! C n

2

which commute with the differentials @0, @1 and @2 and such that

0
r�! C n

0

�n�! C n
1

�n�! C n
2 �! 0

is an exact sequence, then

: : :
f �

n�1���! Hn.C0/
��n�! Hn.C1/

��
n�! Hn.C2/

f �
n�! HnC1.C0/

��
nC1���! : : :

is an exact sequence, where, for all n 2 Z, ��n and ��
n are the maps induced in

homology by �n and �n and f �
n is some connecting map.

Remark 1.2. The condition on the short exact sequence just states that maps �n are
injective, maps �n are surjective and Ker.�n/ D Im.�n/.

Proposition 1.5. If f W C1 ! C2 is a chain map, then Cone.f / WD L
i2Z C

i fits
the following short exact sequence in every degree n 2 N:

0 �! C n�1
2

�n�! C n �n�! C n
1 �! 0:

Corollary 1.6. If f W C1 ! C2 is a chain map, then

: : :
f �

n�1���! Hn�1.C2/
��n�! Hn.Cone.f //

��
n�! Hn.C1/

f �
n�! Hn.C2/

��
nC1���! : : :

is an exact sequence. In this case, maps f �
n are the maps induced in homology by f .
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1.2.4. Chain complex codes. Now, we can state the purpose of this section.

Proposition 1.7. To any length 3 piece of chain complex

C WD �
C i0�1 @�! C i0

@�! C i0C1
�

given with a basis B, one can associate a CSS code CC with parameter �nI kI d�
where

n D dim.C i0/;

k D dim.H i0.C // D dim.Hi0.C ///

and

d D minfjxjB W Œx� 2 H i0.C / tHi0.C /; Œx� ¤ 0g;
where j � jB denotes the B-weight, that is the number of non trivial coordinates in
the basis B.

Proof. We set HX WD MatB.@jC i0 / and HZ WD MatB.@jC i0�1/t . Since @2 D 0, we
have that HX Ht

Z D 0 and the matrices HX and HZ define a CSS code CC . Its length
is trivially dim.C i0/. Its dimension is

n � rk.HX / � rk.HZ/ D dim.C i0/ � rk.@jC i0 / � rk.@jC i0�1/

D dim.Ker.@jC i0 // � rk.@jC i0�1/

D dim
�

Ker.@jC i0 /
.

Im.@jC i0�1/

�
D dim.H i0.C //:

To compute the minimum distance, we consider an errorE which commutes with
every element of G but which is not in G.

If E only involves Z alterations, then it can be described by a vector vE 2 F n
2

and the weight of E is exactly jvE jB . Since E commutes with all the generators
of G induced by the rows of HX , the vector vE is orthogonal to all these rows
and vE 2 Ker.@jC i0 /. But E … G, so vE is not spanned by rows of HZ and
vE … Im.@jC i0�1/. It follows that E is non detectible if and only if ŒvE � is non zero

in H i0.C /.
If E only involves X alterations, then a similar reasoning at the dual level shows

that E is non detectible if and only if ŒvE � is non zero in Hi0.C /.
Now, for a generalE, we factorize it as a productEXEZ whereE˛ only involves

˛ alterations. Since every given generator ofG involves onlyX alterations or onlyZ
ones, the fact that E commutes with them implies that EX and EZ do. But E … G,
so at least one of EX or EZ is not in G. We conclude by noting that the weight of E
is greater than each of the weights of EX and EZ .
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2. Khovanov homology

For more details on knot theory, the reader can refer to [19] or [14]. For details
on Khovanov homology, the author advises Khovanov’s seminal paper [15] for the
general definition, [16] for the reduced case, Viro’s elementary reformulation [27]
and Shumakovich’s survey [24].

2.1. Link diagrams. A link is an embedding of a disjoint union of circles in R3

considered up to ambient isotopies in R3. Two maps f; g W X ! Y are said ambient
isotopic in Y if there exists a continuous path of homeomorphisms �t W Y ! Y such
that �0 D IdY and g D �1 B f .

The notion can be turned combinatorial by considering link diagrams. They are
generic projections, i.e. with regular points and a finite number of transverse double
points, of links into the plane R2�f0g together with an over/underpassing information
for the strands at each double point.

Theorem 2.1 ([23]). Every link admits diagrams and two given diagrams describe
the same link if and only if they can be connected by ambient isotopies in R2 and a
finite number of the following Reidemeister moves:

� � � �

R1C & R1� R2 R3

:

Two diagrams are connected by a Reidemeister move if they are identical outside a
disk inside which they respectively correspond to the given pictures.

A double point with over/underpassing information is called a crossing. There
are two canonical ways to smooth (or resolve) a crossing:

 
or

!
W 0-resolution,������

���
��

�  
or

!
W 1-resolution.

The second pictures aim at keeping tracks of the resolved crossing. If D is a link
diagram, we call resolution of D any map � W fcrossings of Dg ! f0; 1g, or equiv-
alently the diagram D� obtained from D by �.c/-resolving every crossing c of D.
Resolution diagrams are not considered up to isotopies and different maps � always
lead to different resolution diagrams D� . Note that D� is a union of disjoint circles
embedded in the plane. An enhanced resolution D�

� of D is a resolution D� of D
together with a labelling map � W fcircles of D�g ! f1; Xg. The labels can be seen
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as elements of F2ŒX�
ı
X2, and later, when dealing with combinations of enhanced

diagrams, we will assume multi-linearity for the labels. Note that thisX is not related
in any sense to the eponym Pauli error, and actually, this notation will be dropped out
by the end of the section.

7�! 7�! 1
1

X

a diagram a resolution an enhanced resolution

Figure 1. From diagrams to enhanced resolutions.

2.2. Khovanov chain complex. To any diagramDwithn 2 N crossings, Khovanov
theory associates a length nC 1 chain complex

C.D/ WD 0 �� C 0 @D �� C 1 @D �� : : :
@D �� C n �� 0

defined as follows. For i 2 �0; n�, C i is spanned over F2 by enhanced resolutions of
D with exactly i 1-resolved crossings. The map @D is the F2-linear map defined for
a generator D�

� by

@D.D
�
� / D

X
c2��1.0/

@c.D
�
� /

where @c.D
�
� / is a sum of enhanced resolutions over D�Cıc

, with ıc the Kronecker
delta. The resolution D�Cıc

is nothing but the resolution obtained by changing the
smoothing of c. Before stating the enhancing rules, let us note that D�Cıc

differs
from D� by the merging of two circles into one or the splitting of a circle into two.
Now, the rules are:

- the untouched circles keep their labels unchanged;

- if two circles are merging, then the resulting circle is labelled by the product of
the labels in F2ŒX�

ı
X2. Note that a 0-label just means no contribution;

- if one 1-labelled circle is splitting, then there are two contributions obtained as
the two ways to distribute 1 and X to the two new circles;

- if one X-labelled circle is splitting, then there is only one contribution obtained
by labelling both new circles by X .

These rules are summarized in Figure 2.
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Figure 2. Rules for labelling in the differential: here (and throughout the paper), only the
modified part is depicted, the rest of the resolutions being identical on both sides of the arrows.

Proposition 2.2 ([15] Proposition 8, and [27], Theorem 5.3.A). The map @D satisfies

@D B @D D 0:

Remarks 2.1. (1) The construction was originally given with Z-coefficients instead
of F2-ones. It can therefore be adapted to any ring.

(2) Khovanov homology is usually defined with a second grading j on C.D/,
namely

j.D�
� / D j��1.X/j � j��1.1/j � j��1.1/j

where j � j stands for cardinality. Since the differential @D respects this grading j ,
the chain complex C.D/ splits into several chain complexes, one for each value of
j . However, this grading is not relevant for the purpose of the present paper.

2.3. Change of variable. With this basis, Khovanov complexes are not really effi-
cient for quantum codes since non trivial homology elements can easily have small
weight. To change this matter of fact, we consider another set of generators, where
labels are not anymore 1 and X but signs � WD 1 and C WD 1 C X . A label C for
a circle means the sum of the two generators for which the circle is labelled by 1 or
by X , all the others circles being identically labelled. The differential is then kind of
symmetrized as pointed in Figure 3.
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Figure 3. Modified rules for labelling in the differential: here, � and � are element of f�;Cg
and the product is the obvious one.

Remark 2.2. The new set of generators is not anymore graded with regard to the
second grading j . That is essentially why j is not relevant here.

2.4. Reidemeister moves invariance. The Khovanov complexC.D/depends heav-
ily on the diagram D, but if considering the homology, then Kh.D/ WD H��C.D/�
depends essentially on the underlying link. Indeed, the following theorem makes
explicit the behavior of Kh.D/ under Reidemeister moves.

Theorem 2.3 ([27], Sections 5.6 and 5.7, [13]). LetD1 andD2 be two link diagrams
connected by a Reidemeister move (with D2 having greater or equal number of
crossings thanD1). Then the chain maps given in Figures 4–71 induce isomorphisms
between Kh.D2/ and Kh.D1/f�g where f � g denotes a shift in the grading and � D 1

if the Reidemeister move is R1� or R2 and � D 0 otherwise.

Remark 2.3. There is a canonical way to shift Khovanov homology so it becomes
really invariant under Reidemeister moves ([15]), but this is not relevant for our
purpose.

2.5. Basic properties. Khovanov homology does behave quite nicely under certain
usual operations on knots.

Proposition 2.4 ([15], Corollary 12). If D1 and D2 are two link diagrams, then

C.D1 tD2/ Š C.D1/˝ C.D2/

so

Kh.D1 tD2/ Š Kh.D1/˝ Kh.D2/:

1In Figures 4–7 only the part involved in the Reidemeister move is depicted, the rest of the diagrams are
identical on each side; �:� and �:� are the two labels (maybe a sum of) obtained when merging/splitting
circles with labels � and �; overlining a label means that it may be modified if, outside the depicted part,
its circle is connected to the splitting/merging ones; a unresolved crossing stands for any of its resolutions,
the map is then the natural one-to-one one.
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Figure 4. Invariance chain maps: Reidemeister move R1C.

Figure 5. Invariance chain maps: Reidemeister move R1�.
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Figure 6. Invariance chain maps: Reidemeister move R2.

Figure 7. Invariance chain maps: Reidemeister move R3.
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Proposition 2.5 ([15], Proposition 32). For any linkD with n crossings and for every
i 2 �0; n�, we have

Khi.DŠ/ Š Kh_
n�i .D/

whereDŠ is the mirror image ofD, i.e. the link obtained by swapping the under and
the over strands at every crossings, and _ stands for duality. Besides, the isomorphism
is induced by the generator-to-generator chain map

m W C_
n�i .D/ �! C i .DŠ/

defined by

m.D�
�

_
/ D DŠ��

1�� :

Remark 2.4. This analogue of Poincaré duality is of special interest since it enables
to deal with dual chain complexes while staying in the frame of Khovanov complexes.

2.6. Reduced Khovanov homology. There is a reduced Khovanov homology de-
fined for pointed links, i.e. links with a marked point on it. The definition is nearly
the same except the marked point induces a pointed circle in every resolution, and
we force it to be labelled by X , that is the sum of labels � and C. It leads to the
additional labelling rules for the differential given in Figure 8.

Figure 8. Extra rules for labelling in the reduced differential: here � is an element of f�; Cg.

Proposition 2.6 ([24], Theorem 2.6). IfD� is a pointed version of a link diagramD,
then

Kh.D/ Š Kh.D�/˚ Kh.D�/:

Proposition 2.7. If D1 and D2 are two pointed link diagrams, then

C.D1#D2/ Š C.D1/˝ C.D2/

so

Kh.D1#D2/ Š Kh.D1/˝ Kh.D2/;

where # is the connected sum operation done on the two marked points (see Figure 9).
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Figure 9. Connected sum for pointed links.

2.7. Exact sequence. Let D be a link diagram (possibly pointed) and c a crossing
of D. We denote by D0 and D1 the diagrams obtained, respectively, by 0-resolving
and 1-resolving c. The following proposition is a consequence of the definition.

Proposition 2.8. C.D/ Š Cone.@c W C.D0/ ! C.D1//.

If we denote by
˛ W C.D1/ �! C.D/

and
ˇ W C.D/ �! C.D2/

the natural injection and surjection, then Proposition 1.6 implies the following result.

Corollary 2.9 ([27], Section 6.2). The long sequence

: : :
@�

c�! Khi�1.D1/
˛�

�! Khi .D/
ˇ�

�! Khi .D0/
@�

c�! Khi .D1/
˛�

�! : : : :

is exact.

2.8. Weight considerations. As far as the author knows, weight of representives for
non-zero elements in Khovanov homology have not been studied yet. This section
aims at presenting some first thoughts toward this direction.

For every chain complex C WD ˚i2ZC
i and every integer i 2 Z, we set

d i
C WD minfjxj W x 2 C i ; Œx� 2 H i .C / n f0gg:

In the case of Khovanov homology, we will write, for a diagram D and an integer
i 2 N, d i

D for d i
C.D/

.

Proposition 2.10. Let C1 and C2 be two chain complexes. If a chain map (which
possibly shifts the homological grading)  W C i

1 ! C
j
2 , with i; j 2 N, induces an

injective map in homology, then

kd i
C1

� d
j
C2

where
k WD maxfj .x/j W x generator of C i

1g:
Moreover, if k D 1, if the map  is also injective and if a minimally weighted
homology-surviving element of C j

2 is on the image of  , then the inequality becomes
an equality.
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Proof. Let x 2 C i
1 be such that Œx� ¤ 0 and jxj D d i

C1
. In one hand, we have

j .x/j 	 kjxj but on the other hand, since  � is injective,  �.Œx�/ D Œ .x/� ¤ 0

so j .x/j � d
j
C2

.
Now, if all the conditions of the second part of the statement hold, we can find

y 2 C
j
2 and x 2 C i

1 such that Œy� ¤ 0, jyj is minimal and  .x/ D y. Then
 
�
@C1

.x/
� D @C2

.y/ D 0, but  is injective so @D1
.x/ D 0 and since  �.Œx�/ D

Œy� ¤ 0, Œx� ¤ 0. But  is injective and k D 1 so jyj D j .x/j D jxj. It follows
that d i

C1
	 d

j
C2

and hence d i
C1

D d
j
C2

.

Corollary 2.11. With obvious notation for diagrams differing from Reidemeister
moves, we have for any i 2 N

d i D 2d i ; d iC1 D d i ;

1
3
d i 	 d iC1 	 2d i ; 1

8
d i 	 d i 	 8d i :

Proof. Most of the statement is a direct application of Proposition 2.3 and 2.10. Only

d i � 2d i needs a further argumentation. Let x 2 C i . / be a representative of a

non-zero element of the homology. We can decompose it as

x D aC C a� C b

with aC, resp. a�, a sum of generators of the form

;

resp.

;

and b a sum of generators of the form

:

Since x represents an element of the homology, we know that @ .x/ D 0. Looking
at the part which lies in resolutions of the form

; (
)
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we obtain
AC C A� C @ .b/ D 0

whereA� (resp.AC) is an element of (
) obtained froma� (resp.aC) by removing the
“�”-labelled circle and performing a small isotopy (resp. removing the “C”-labelled
circle, inverting the sign of � and performing a small isotopy). In particular jACj D
jaCj and jA�j D ja�j. Applying backward the small isotopy, we obtain

zAC C zA� C @ . zB/ D 0 in C i . /:

We deduce that

Œ zAC� D Œ zA�� in Khi . /:

But the image of x under the R1C-chain quasi-isomorphism is precisely zAC. So

Œ zAC� D Œ zA�� ¤ 0 and j zACj; j zA�j � d i :

Finally,
jxj � jaCj C ja�j D j zACj C j zA�j � 2d i :

Remark 2.5. Computations and the fact that awkward generators are part of acyclic
subcomplexes suggest that those naïve bounds are far from being sharp for Reide-
meister moves R2 and R3.

Question 2.6. Do Reidemeister moves R2 always double minimal distances, and do
Reidemeister moves R3 always preserve it? If true, Khovanov homology would hide
inner invariants on each degree supporting a non trivial homology.

3. Unknot codes

For every ` 2 N, we consider the following diagram Duk
`

of the pointed unknot with
2` crossings:

:

We call `th unknot code the code obtained from

C `�1.Duk
` /

@
Duk

`���! C `.Duk
` /

@
Duk

`���! C `C1.Duk
` /:

Its parameters are denoted by �n`I k`I d`�.
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3.1. Length

Proposition 3.1. As ` tends to infinity,

n` � 32`C1

p
8�`

Proof. When 0-resolving all the crossings, we obtain

with ` undotted circles. Swapping the resolution of one of the ` crossings on the left
creates a new undotted circle. On the contrary, swapping the resolution of one of
the ` crossings on the right reduces by one the number of undotted circles. Now we
gather the generators of C `.Duk

`
/ according to the number of 1-resolved crossings

among the ` left ones. We obtain

n` D
X̀
rD0

�
`

r

��
`

` � r
�
2`Cr�.`�r/ D

X̀
rD0

	�
`

r

�
2r


2

:

Then, using the formula of Proposition A.1 for x D 2, we get

n` � 32`C1

p
8�`

:

3.2. Dimension and minimum distance

Proposition 3.2. k` D 1 and d` D 2`.

Proof. To pass fromDuk
`

toDuk
`C1

, one can perform two R1 moves (one R1C and one
R1�). Now the statement on k` follows from Proposition 2.3 and the statement on
d` from Proposition 2.11.

3.3. Sparseness

Proposition 3.3. The weight of each row in the `th unknot code is O.ln.n`// as `
increases.

Proof. It is clear from Khovanov homology construction that each row has between
`C 1 and 2.`C 1/ non trivial entries. Since 8` 	 n` 	 9` for sufficiently large `,
the result follows.
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4. Unlink codes

For every ` 2 N, we consider the following diagramDul
`

of the pointed .`C1/-unlink:

:

We call `th unlink code the code obtained from

.C `�1.Dul
` /

@
Dul

`���! C `.Dul
` /

@
Dul

`���! C `C1.Dul
` /:

Its parameters are denoted by �n`I k`I d`�.

4.1. Case ` D 1. It follows from Proposition 2.7 that C.Dul
`
/ Š C.Dul

1 /
˝`. It is

hence worthwhile to deal with the case ` D 1 in detail.
It can be directly computed that C.Dul

1 / Š C_.Dul
1 / has six generators:

degree 0 W a WD I

degree 1 W b1 WD ; b2 WD ;

b3 WD ; b4 WD I

degree 2 W c WD :

The differential is
@Dul

1
.a/ D b1 C b2 C b3 C b4

and
@Dul

1
.b1/ D @Dul

1
.b2/ D @Dul

1
.b3/ D @Dul

1
.b4/ D c

The non-zero elements of the homology are then represented by sums bi C bj with
i ¤ j 2 �1; 4� and two such sums are equivalent if and only if their supports
are disjoint. The homology is then of rank 2 and its three non trivial elements are
Œb1 C b2� D Œb3 C b4�, Œb1 C b3� D Œb2 C b4� and Œb1 C b4� D Œb2 C b3�.
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4.2. Length

Proposition 4.1. As ` tends to infinity,

n` �
r

3

2�`
6`:

Proof. Since Proposition 2.7, we have C.Dul
`
/ D C.Dul

1 /
˝`. It follows then that�

C `.Dul
`
// is the coefficient of degree ` in .1C 4t C t2/`, that is the constant term

in .t�1 C 4C t /`. But

.t�1 C 4C t /` D ..t� 1
2 C t

1
2 /2 C 2/`

D
X̀
rD0

�
`

r

�
.t�

1
2 C t

1
2 /2r2`�r

D 2`
X̀
rD0

�
`
r

�
2r

2rX
lD0

�
2r

l

�
t r�l

so

n` D 2`
X̀
rD0

�
`
r

��
2r
r

�
2r

:

Then we use Proposition A.2 to conclude.

4.3. Dimension

Proposition 4.2. k` D 2`.

This is a direct consequence of Proposition 2.7.

4.4. Minimum distance

Proposition 4.3. d` D 2`.

Proof. It is easily seen that there is a differential-preserving one-to-one correspon-
dance between generators of C.Dul

`
/ and C.Dul

`
Š/ Š C_.Dul

`
/. It is hence sufficent

to deal with C.Dul
`
/.

By induction on `, we prove a sligthly stronger result: 2` is the minimum distance
and it is reached for any non trivial element of the homology. This is trivial for ` D 0

(and it has been checked for ` D 1). Now, we assume the assertion is true for a given
` 2 N.
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Since C.Dul
`C1

/ Š C.Dul
`
/ ˝ C.Dul

1 /, any element A of C k.Dul
`C1

/, for k 2�0; 2`C 2� can be decomposed into the following form

A D

8̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

x ˝ a 2 C k.Dul
`
/˝ C 0.Dul

1 /;

C
4X

iD1

yi ˝ bi 2 C k�1.Dul
`
/˝ C 1.Dul

1 /;

C
z ˝ c 2 C k�2.Dul

`
/˝ C 2.Dul

1 /:

Thus, we have

@Dul
`C1
.A/ D

8̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

@Dul
`
.x/˝ a 2 C kC1.Dul

`
/˝ C 0.Dul

1 /;

C
4X

iD1

.x C @Dul
`
.yi //˝ bi 2 C k.Dul

`
/˝ C 1.Dul

1 /;

C
.y1 C y2 C y3 C y4 C @Dul

`
.z//˝ c 2 C k�1.Dul

`
/:˝ C 2.Dul

1 /

Lemma 4.4. If .Œw1�; : : : ; Œw2`�/ is a basis for Kh.Dul
`
/, then

.Œw1 ˝ .b1 C b2/�; : : : ; Œw2` ˝ .b1 C b2/�; Œw1 ˝ .b1 C b3/�; : : : ; Œw2` ˝ .b1 C b3/�/

is a basis for Kh.Dul
`C1

/.

Proof. Elements of the formwi ˝ .bi Cbj /, for i; j 2 �1; 4� are clearly in the kernel
of @Dul

`C1
. If

2`X
iD1

˛i Œwi ˝ .b1 C b2/�C ˇi Œwi ˝ .b1 C b3/� D 0

with .˛i /; .ˇi/ 2 F 2`

2 , then there exists A 2 C`.D
ul
`C1

/ such that

2`X
iD1

˛iwi ˝ .b1 C b2/C ˇiwi ˝ .b1 C b3/ D @Dul
`C1
.A/
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and hence, with the notation above, and by looking at the : ˝ bi parts,8̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂:

x C @Dul
n
.y1/ D

2`X
iD1

.˛i C ˇi /wi ;

x C @Dul
n
.y2/ D

2`X
iD1

˛iwi ;

x C @Dul
n
.y3/ D

2`X
iD1

ˇiwi ;

x C @Dul
n
.y4/ D 0:

It follows that

2`X
iD1

˛iwi D @Dul
`
.y2 C y4/

and
2`X

iD1

ˇiwi D @Dul
`
.y3 C y4/:

This means that
2`X

iD1

˛i Œwi � D
2`X

iD1

ˇi Œwi � D 0

and hence that ˛i D ˇi D 0 for every i 2 �1; 2`�.

Lemma 4.5. If ŒA� is a non trivial element of Kh.Dul
`C1

/ then jAj � 2`C1.

Proof. If

A D ˛ ˝ a C
4X

iD1

ˇi ˝ bi C 	 ˝ c;

then

jAj D j˛j C
4X

iD1

jˇi j C j	 j:

According the precedent lemma, there exists .v; w/ 2 Ker.@Dul
`
/ such that

ŒA� D Œ.v C w/˝ b1 C v ˝ b2 C w ˝ b3�
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with .Œv�; Œw�/¤ .0; 0/. As above, it follows, that8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

x C @Dul
`
.y1/ D ˇ1 C v C w;

x C @Dul
`
.y2/ D ˇ2 C v;

x C @Dul
`
.y3/ D ˇ3 C w;

x C @Dul
`
.y4/ D ˇ4:

If Œv� ¤ 0, then

ˇ1 C ˇ3 D v C @Dul
`
.y1 C y3/

and

ˇ2 C ˇ4 D v C @Dul
`
.y2 C y4/

so Œˇ1 C ˇ3� D Œˇ2 C ˇ4� is a non trivial element of Kh.Dul
`
/ so jˇ1 C ˇ3j � 2` and

jˇ2 C ˇ4j � 2`. Finally

jAj � jˇ1j C jˇ2j C jˇ3j C jˇ4j � jˇ1 C ˇ3j C jˇ2 C ˇ4j � 2`C1:

If Œv� D 0 then we replace v by w.

This ends the proof of Proposition 4.3.

Remark 4.1. This proposition would be a direct application of Question 2.6 if it
were answered true. It is also an example of chain complexes product with minimum
distance equal to the product of the minimum distances.

Remark 4.2. It is explicit in the proof that minimally weighted homology-surviving
elements are carried by 4` generators only, namely those of C1.D

ul
1 /

˝`.

Question 4.3. Can unlink codes be swept out, for instance by removing acyclic
subcomplexes, so they reach parameter �4`I 2`I 2`�? Since it would share almost the
same dimension and same logarithmic sparseness property, would it be somehow
related to Couvreur–Delfosse–Zemor codes ([5])?

4.5. Sparseness

Proposition 4.6. The weight of each row in the `th unlink code is O.ln.n`// as `
increases.

Proof. It is clear from Khovanov homology construction that each row has between
`C 1 and 2.`C 1/ non trivial entries. Since 4` 	 n` 	 6`, the result follows.
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5. .2 ; n/-torus link codes

For every ` 2 N, we consider the following diagram Dtl
`

of the pointed .2; `/-torus
link:

:

For every r 2 �2; `�, the code obtained from

C r�1.Dtl
` /

@
Dtl

`��! C r.Dtl
` /

@
Dtl

`��! C rC1.Dtl
` /

is called .`; r/th .2; n/-torus link code. Its parameters are denoted by �n`;r I k`;r I d`;r�.

5.1. Homology. For convenience, we introduce, for every ` 2 N the diagram

U` WD :

It follows from Proposition 2.3 that Kh.U`/ and Kh.U`Š/ have only one non-zero
element, respectively in degree ` and 0. Then the exact long sequence presented in
section 2.7, applied to the rightmost crossing, gives for every ` 2 N�

0 �! Khr .Dtl
` /

ˇr
`��! Khr .Dtl

`�1/ �! 0 for r 2 �0; `� 2�;

0 �! Kh`�1.Dtl
` /

ˇ`�1
`�! Kh`�1.Dtl

`�1/ �!Kh`�1.U`�1/
˛`�! Kh`.Dtl

` / �! 0;Š

F2

0 �! Khr�1.Dtl
`�1Š/

˛r
`�! Khr .Dtl

` Š/ �! 0 for r 2 �2; `�;
0 �! Kh0.Dtl

` Š/
ˇ`�!Kh0.U`�1Š/ �! Kh0.Dtl

`�1Š/
˛1

n�! Kh1.Dtl
` Š/ �! 0:Š

F2
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But Kh`.Dtl
`
/ ¤ 0 since @Dtl

`
W C `�1.Dtl

`
/ ! C `.Dtl

`
/ involves only splitting circles,

so the weight of any image is necessarily even and every single generator survives
in homology. Similarly, it is easy to produce a non trivial element in the kernel of
@Dtl

`
Š W C 0.Dtl

`
Š/ ! C 1.Dtl

`
Š/ and since there is nothing to quotient by, it follows that

Kh0.Dtl
`
Š/ ¤ 0.

Then, by induction, we can deduce that all the named maps are isomorphisms and
that

Khr.D
tl
` / D

8<
:F2 for r D 0 and r 2 �2; `�;
0 otherwise,

and

Khr .D
tl
` Š/ D

8<
:F2 for r 2 �0; `� 2� and r D `;

0 otherwise.

5.2. Length and dimension

Proposition 5.1. n`;r D 2r�1
�

`
r

�
and k`;r D 1.

Proof. Concerning the length, one has to choose the r 1–resolved crossings and then
it remains r � 1 undotted circles to label.

The dimension has been computed in the previous section.

5.3. Minimum distance.

Proposition 5.2. For r 2 �2; `�, d r
Dtl

`

D �
`
r

�
and d0

Dtl
`

D 2.

Proof. Within the framework of this proof and for simplicity, we will denote Dtl
`

by
D and fC;�g`�1 by S .

Equality d0
Dtl

`

D 2 follows from the fact that C 0.D/ has only two generators with

equal non-zero image throught @D .
Now, we consider r 2 �2; `�. First we note that the cardinal of the set

Er WD f� W fcrossings of Dg ! f0; 1gW j��1.1/j D rg
is
�

`
r

�
. Then, we construct a map

Er �! flabelling mapsg;
� 7�! �� ;

so that
P

�2Er
D

��

� is in the kernel of @D W C r.D/ ! C rC1.D/. To this end, we
choose � WD .�1; : : : ; �`�1/ 2 S .
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When 1–resolving all the crossing ofD, we obtain a resolutionD� with `�1 undotted
circles and we label them, from left to right with �1; �2; : : : ; �`�2 and �`�1:

D� WD :

To � 2 Er corresponds a resolution of D where ` � r crossings are turned into
0-resolutions. Roughly, we defineDr

� as the image ofD� under the partial maps @�1
c ,

for c successively all these `�r crossings. Explicitly, the `�1 circles merge into r�1
ones and there are numbers a; b1; : : : ; br�1; c 2 N such that the first a and the last c
crossings are 0–resolved, and the i th circle, numbered from left to right, contains bi

0–resolved crossings. Note that the .r C 1/-uple .a; b1; : : : ; br�1; c/ determines �.
Then we denote by Bi the sum

1C aC
i�1X
j D1

.1C bi /

and we define �� the map which label the i th circle by

ƒi WD .�1/1Cbi �Bi
�Bi C1 : : : �Bi Cbi

:

For instance, the case ` D 10, r D 4, a D 2, b1 D 1, b2 D 0, b3 D 3 and c D 0

gives

We set Dr
� WD P

�2Er
D

��

� and we claim that @D.D
r
� / D 0. It is sufficient to show

that for any given ' 2 ErC1 the contributions of the formD�
' cancel. So let us choose

such a '. As above, we can describe it by integers a; b1; : : : ; br ; c. The elements of
Er such that @D.D

��

� / contributes are

.aC 1C b1; b2; : : : ; br ; c/;

.a; b1; : : : ; bi�1; bi C 1C biC1; biC2; : : : ; br ; c/ for i 2 �1; r � 1�;

.a; b1; : : : ; br�1; br C 1C c/:

The labels of their circles, given from left to right and using the same notation ƒi as
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above are

.ƒ2; : : : ; ƒr/;

.ƒ1; : : : ; ƒi�1;�ƒiƒiC1; ƒiC2; : : : ; ƒr/ for i 2 �1; r � 1�;

.ƒ1; : : : ; ƒr�1/:

And their contributions, again given by the labels of the circles, are

.ƒ1; ƒ2; : : : ; ƒr/;

.�ƒ1; ƒ2; : : : ; ƒr/;

.ƒ1; : : : ; ƒi�1;�ƒi ; ƒiC1; ƒiC2; : : : ; ƒr/ for i 2 �1; r � 1�;

.ƒ1; : : : ; ƒi�1; ƒi ;�ƒiC1; ƒiC2; : : : ; ƒr/ for i 2 �1; r � 1�;

.ƒ1; ƒ2; : : : ;�ƒr/;

.ƒ1; ƒ2; : : : ; ƒr/:

They do cancel indeed. The element Dr
� is hence an element of the kernel of @D

which contains exactly one element for each resolution of Er . But the map @D only
splits circles, so it produces even numbers of contributions for each resolution ofEr .
So Dr

� cannot be in the image of @D and it survives in homology. Moreover, it is of

weight
�

`
r

�
.

Now, we assume ad absurdum that there exists x 2 ker.@D jC r .D//, surviving
in homology and satisfying jxj < jDr

� j. Then there is a resolution of Er which
doesn’t appear in x, and hence it appears exactly once in x C Dr

� . It follows that
x CDr

� survives in homology for the same reason as Dr
� . But dim.Khr.D// D 1,

so Œx� D ŒDr
� � and Œx CDr

� � D 0. This concludes the proof for r 2 �2; `�.

Remark 5.1. Defining a representative of the non trivial homology class for every
.�1; : : : ; �`�1/ 2 S is obviously redundant since the simpliest case, when all circles
are labelled by �, would have been sufficient. However, all these Dr

� will be helpful
in the proof of the next proposition.

Proposition 5.3. For r 2 �0; `� 2�, d r
Dtl

`
Š

D 2`�r�1 and d `
Dtl

`
Š

D 1.

Proof. Since the homology is non trivial in degree `, the assertion on d `
Dtl

`
Š

is also

trivial.
The map ˇ` from section 5.1 is an isomorphism and the map underlying ˇ` at the

chain complexes level is a generator-preserving isomorphism. Since it follows from
Proposition 2.11 that d0

U`�1
D 2`�1, Proposition 2.10 implies that d0

Dtl
`

Š
D 2`�1.

Then, inductive use of maps ˛r
`
, for r 2 �1; `� 2�, shows that d r

Dtl
`

Š
	 2`�r�1.
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Reciprocally, we consider an element x 2 Ker.@Dtl
`
Š/ \ C r.Dtl

`
Š/ such that jxj <

2`�r�1. Up to the reversing of all signs, x can be seen as an element x_ of the dual
of C `�r.Dtl

`
Š/. Using the notation of the previous proof, our goal is now to prove

that there exists some � 2 S such that x_.Dr
� / D 0. It will follow from lemma 1.1

and the fact that dim.C `�r.Dtl
`
// D 1, that x_ is null in cohomology. Let x0 be a

generator of C `�r.Dtl
`
Š/ and x_

0 its dual element under the mapm of Proposition 2.5.
For x_

0 .D
r
� / D 0 to hold, it is sufficient that x0 doesn’t appear in Dr

� . The generator

x0 is determined by its labelling .�1; : : : ; �`�r�1/ 2 fC;�g`�r�1 read from left to
right and its r crossings c which are 0-resolved. It is easily checked that for each such
crossing, @�1

c .any generator/ contains exactly two elements. It follows that there are
only 2r elements � 2 S such that x_

0 .D
r
� / ¤ 0. As a consequence, there are at most

2r jxj < 2`�1 D #S elements � 2 S such that x_.Dr
� / ¤ 0. There is thus room for

at least one � 2 S such that x_.Dr
� / D 0. This concludes the proof.

Corollary 5.4. d`;r D minf�`
r

�
; 2r�1g.

5.4. Summary

r 0 1 2 r 2 �3; `� 1� `

dim.C r.Dtl
`
// 2 ` `.`C 1/ 2r�1

�
`
r

�
2`�1

dim.Khr.Dtl
`
// 1 0 1 1 1

d r
Dtl

`

2 1 `.`C1/
2

�
`
r

�
1

d `�r
Dtl

`
Š

1 1 2 2r�1 2`�1

5.5. Extraction of a subfamily. Since the minimum distance d`;r is a minimum
involving

�
`
r

�
, it collapses for extremal values of r . However, for r � `

2
, we have, for

large `,
�

`
`
2

� � 2
`C 1

2p
�`

which is greater than 2
`
2

�1. So one can expect to find a “best”

value r` such that
�

`
r`

� � 2r`�1. As a matter of fact, for every ` 2 N�, we define

r` WD round.˛0` � ˇ0 ln.`/C 	0/

with round. � / any rounding function to the nearest integer, ˛0 the unique zero in
.0; 1/ of the function

x 7�! .2x/x.1 � x/1�x � 1;
ˇ0 WD 1

2 ln
�

2˛0
1�˛0

� and 	0 WD ˇ0 ln
�

2
�˛0.1�˛0/

�
.
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Proposition 5.5. The family of .`; r`/th .2; `/-torus link codes has asymptotical pa-

rameter �nI 1I dn� with dn >
p

n

1;62
.

Proof. This is a consequence of Proposition A.3

Question 5.2. Computations suggests that the sequence .2�` /`2N� is dense in Œ�1; 1�.
If true, or at least if there is a subsequence .�`s

/s2N converging to 0, then the subfamily
of .`s ; r`s

/th .2; `/-torus link codes would have an asymptotical parameter �nI 1I p
n�

similar to Kitaev code one.

5.6. Sparseness.

Proposition 5.6. If .r`/`2N is any sequence satisfying ˛` 	 r` 	 ˇ` for every ` 2 N
and some given ˛; ˇ 2 .0; 1/, then the weight of each row in the .`; r`/th .2; `/-torus
link code is O.ln.n`;r`

// as ` increases.

Proof. By construction, the rows of one matrix have exactly 2.` � r`/ non trivial
entries and the rows of the other matrix exactly r`. So the weight of each row is
bounded below by min.˛; 2.1�ˇ//` and above by max.ˇ; 2.1�˛//`. But according

Proposition 5.1, the length is 2r`�1
�

`
r`

� � 2r`�1 � .2˛/`

2
.

Remark 5.3. The subfamily dicussed in the previous section satisfies such bounds
for r`.

Appendix A. Technical proofs

For the sake of clarity, we gather in this appendix some analytical proofs which would
have weight down the core of the text.

Proposition A.1. For any x 2 R�C,

X̀
rD0

	�
`

r

�
xr


2

� .1C x/2`C1

2
p
x�`

as ` tends to infinity.

Proof. For every ` 2 N, we define

f` W R �! C

by

f`.t / D .1C xe2it /` D
X̀
rD0

�
`

r

�
xre2irt :



An application of Khovanov homology to quantum codes 217

Then, since f` is clearly �-periodic and L2, Parseval’s identity gives

X̀
rD0

	�
`

r

�
xr


2

D 1

�

�
2Z

� �
2

j1C xe2it j2`dt

D 1

�

�
2Z

� �
2

.1C 2x cos.2t/C x2/`dt

D
Z
I

1

�
e f̀x.t/

with I D Œ��
2
; �

2
� and

fx.t / D ln
�
1C 2x cos.2t/C x2/:

Now, fx is smooth with

f 0
x.t / D �4x sin.2t/

1C 2x cos.2t/C x2

and

f 00
x .t / D sin.2t/� something � 8x cos.2t/

1C 2x cos.2t/C x2
;

so 0 is the unique maximum of fx on I and it is non degenerate. It follows from the
method of steepest descent that

X̀
rD0

	�
`

r

�
xr


2

� 1

�

r
2�

`
e` ln.1C2xCx2/ 1q

8x
1C2xCx2

D .1C x/2`C1

2
p
x�`

:

Proposition A.2. As ` tends to infinity,

2`
X̀
rD0

�
`
r

��
2r
r

�
2r

�
r

3

2�`
6`:

Proof. We consider the power series

f .x/ D
X
`�0

T`x
`

with

T` WD 2`
X̀
rD0

�
`
r

��
2r
r

�
2r

:
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This is well defined in a neighrborhood of 0 since T` is clearly bounded above by
..t�1 C 4C t /`/tD1 D 6`. Then, for x sufficiently small, we have

f .x/ D
X
`�0

X̀
rD0

2`

�
`
r

��
2r
r

�
2r

x` D
X
r�0

X
`�r

�
2r
r

�
2r

�
`

r

�
.2x/`:

It is standard to check that

1p
1 � 4z D

X
r�0

�
2r

r

�
zr

and, for any r 2 N,
zr

.1 � z/rC1
D
X
`�r

�
`

r

�
z`:

So, we can deduce

f .x/ D
X
r�0

�
2r
r

�
2r

.2x/r

.1� 2x/rC1

D 1

1� 2x

X
r�0

�
2r

r

�� x

1� 2x
�r

D 1

.1� 2x/

q
1 � 4 2x

1�2x

D 1p
1 � 8x C 12x2

:

But since it is known (see e.g. [1], formula 22.9.1 for ˛ D ˇ D 0, p. 783) that

1p
1� 2xt C t2

D
X
`�0

P`.x/t
`

where P` is the `th Legendre polynomial. It follows that

T` D .2
p
3/`P`

� 2p
3

�
:

On the other hand, it is also known (see e.g. [1], formula 22.3.1 for ˛ D ˇ D 0,
p. 775) that

P`.x/ D 1

2`

X̀
rD0

�
`

r

�2

.x � 1/n�r .x C 1/r ;
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so

x`
0T` D

X̀
rD0

	�
`

r

�
xr

0


2

with x0 D 1

2�p
3

. Using Proposition A.1 for x D x0, we obtain the desired

T` �
r

3

2�`
6`

Proposition A.3. If, for every ` 2 N�, r` WD round.˛0`�ˇ0 ln.`/C 	0/ with ˛0 the
unique zero in .0; 1/ of the function

x 7�! .2x/x.1 � x/1�x � 1;
ˇ0 WD 1

2 ln
�

2˛0
1�˛0

� and 	0 WD ˇ0 ln
�

2
�˛0.1�˛0/

�
, then, for every sufficiently large

integer `,

min

²�
`

r`

�
; 2r`�1

³
>

q
2r`�1

�
`
r`

�
1; 62

:

Proof. First we note that

1

2
C ˇ0 ln

�1� ˛0

2˛0

�
D 0

and that � 2˛0

1 � ˛0

��0 D
s

2

�˛0.1� ˛0/
:

Now, we write
r` D ˛0` � ˇ0 ln.`/C 	0 C �`

with

j�`j 	 1

2

and set
	` WD 	0 C �`:

Stirling’s approximation applied to `Š, r`Š and .n � r`/Š gives

2r`�1�
`
r`

� D
r
`�

2

r
r`

`

�
1 � r`

`

��2r`
`

�r`
�
1 � r`

`

�`�r`

.1C o.1//

D
r
`�˛0.1� ˛0/

2

�2r`
`

�r`
�
1 � r`

`

�`�r`

„ ƒ‚ …
A`

.1C o.1//:



220 B. Audoux

Then

A` D 2˛0�ˇ0 ln.`/C�`

�
˛0 � ˇ0

ln.`/

`
C 	`

`

�˛0`�ˇ0 ln.`/C�`

�
1� ˛0 C ˇ0

ln.`/

`
� 	`

`

�.1�˛0/`Cˇ0 ln.`/��`

D ..2˛0/
˛0.1� ˛0/

1�˛0/`
2�`

2ˇ0 ln.`/
B`C`D`

D 2�`

`ˇ0 ln 2
B`C`D`

with

B` WD
�
1 � ˇ0

ln.`/

˛0`
C 	`

˛0`

�˛0`

;

C` WD
�
1C ˇ0

ln.`/

.1 � ˛0/`
� 	`

.1 � ˛0/`

�.1�˛0/`

;

D` WD
�1 � ˛0 C ˇ0

ln.`/
`

� �`

`

˛0 � ˇ0
ln.`/

`
C �`

`

�ˇ0 ln.`/��`

:

But

B` D e
˛0` ln

�
1�ˇ0

ln.`/
˛0`

C �`
˛0`

�
D e

˛0`
�

�ˇ0
ln.`/
˛0`

C �`
˛0`

Co
�

1
`

��
D e�ˇ0 ln.`/C�`Co.1/

D `�ˇ0e�`.1C o.1//;

and similarly
C` D `ˇ0e��`.1C o.1//:

Concerning D`, we have

D` D e
.ˇ0 ln.`/��`/

�
ln
�

1�˛0
˛0

�
C ln

�
1Cˇ0

ln.`/
.1�˛0/`

� �`
.1�˛0/`

�
C ln

�
1�ˇ0

ln.`/
˛0`

C �`
˛0`

��
D e

.ˇ0 ln.`/��`/
�

ln
�

1�˛0
˛0

�
Co
�

ln.`/
`

��
D e

ˇ0 ln
�

1�˛0
˛0

�
ln.`/��` ln

�
1�˛0

˛0

�
Co.1/

D `
ˇ0 ln

�
1�˛0

˛0

�� ˛0

1 � ˛0

��`

.1C o.1//:
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Finally, we get

A` D 2�`

`ˇ0 ln.2/
`

ˇ0 ln
�

1�˛0
˛0

�� ˛0

1 � ˛0

��`

.1C o.1//

D
� 2˛0

1 � ˛0

��`

`
ˇ0 ln

�
1�˛0
2˛0

�
.1C o.1//

and hence

2r`�1�
`
r`

� D
r
�˛0.1� ˛0/

2

� 2˛0

1 � ˛0

��`

`
1
2

Cˇ0 ln

�
1�˛0
2˛0

�
.1C o.1//

D
� 2˛0

1 � ˛0

��`

r
�˛0.1� ˛0/

2

� 2˛0

1 � ˛0

��0

.1C o.1//

D
� 2˛0

1 � ˛0

��` C o.1/:

Now, computations show that

ı0 WD 2:61 >

s
2˛0

1 � ˛0

�
� 2˛0

1� ˛0

��` �
s
1 � ˛0

2˛0

> ı�1
0 :

So, for ` sufficiently large, we have ı�1
0

�
`
r`

�
< 2r`�1 < ı0

�
`
r`

�
. For symmetry reason,

we may assume that 2r`�1 	 �
`
r`

�
. Then .2r`�1/2 >

2r`�1. `
r`
/

ı0
and the results follow

since
p
ı0 < 1:62.
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