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Formal multidimensional integrals, stuffed maps,
and topological recursion

Gaëtan Borot

Abstract. We show that the large N expansion in the multi-trace 1 formal hermitian matrix
model is governed by the topological recursion of [24] with extra initial conditions. In terms of
a 1d gas of eigenvalues, this model includes – on top of the squared Vandermonde – multilinear
interactions of any order between the eigenvalues. In this problem, the initial data .!0

1
; !0

2
/ of

the topological recursion is characterized: for !0
1

, by a non-linear, non-local Riemann–Hilbert
problem on the discontinuity locus � to determine; for !0

2
, by a related but linear, non-

local Riemann–Hilbert problem on the discontinuity locus � . In combinatorics, this model
enumerates discrete surfaces (maps) whose elementary 2-cells can have any topology – !0

1

being the generating series of disks and !0
2

that of cylinders. In particular, by substitution one
may consider maps whose elementary 2-cells are themselves maps, for which we propose the
name “stuffed maps.” In a sense, our results complete the program of the “moment method”
initiated in the 90s to compute the formal 1=N expansion in the 1 hermitian matrix model.
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1. Introduction

1.1. Problem and main results. It is well-known that the largeN expansion of the
partition function and correlation functions in aN �N hermitian matrix model with
measure

d�.M/ D dM e�NV.M/ (1.1)

is governed by a topological recursion [3], [1], [2], and [28]. This topological re-
cursion takes a universal form and it goes far beyond the realm of matrix models.
Eynard and Orantin have defined it axiomatically in the context of algebraic ge-
ometry [24], and in this form, it enjoys many interesting properties (symplectic in-
variance, special geometry, WDVV equations, …), and has appeared provably or
experimentally in many problems of 2d enumerative geometry: the two hermitian
matrices model [26] and the chain of hermitian matrices [19], topological string the-
ory and Gromov–Witten invariants [18], [12], [23], [35], [36], and [27], integrable
systems [7], [8], and [9], intersection numbers on the moduli space of curves [25],
[31], and [30], asymptotic expansion of knot invariants [21], [10], and [11], …

In this article, we extend the range of applicability of the topological recursion,
by showing it governs (in the same universal form) the large N expansion of formal
hermitian matrix integrals based on the measure

d�.M/ D dM exp
� X
k�1
h�0

.N=t/2�2h�k

kŠ
Tr T hk .M

.k/
1 ; : : : ;M

.k/

k
/
�
; (1.2)

where M .k/
i D 1N ˝ � � � ˝ M ˝ � � � 1N is a k-th tensor product where M appears

in i -th position, and 1N is the identity matrix. It induces the following measure of
eigenvalues of M

d�.�1; : : : ; �N /

D Vol.U.N //

N Š.2�/N

NY
iD1

d�i
Y

1�i<j�N
.�i � �j /

2

exp
� X
k�1
h�0

.N=t/2�2h�k

kŠ

NX
i1;:::;ikD1

T hk .�i1 ; : : : ; �ik/
�
:

This is a generalization of the result obtained for arbitrary 2-point interaction (i.e.
T h
k

� 0 whenever .k; h/ ¤ .1; 0/; .2; 0/) in a recent work by the author together
with Eynard and Orantin [13]. As we explain in Section 2, the dependence in N of
the measure (1.2) is the natural choice in order to have an expansion of topological
nature.
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We consider in the model (1.2) the partition function

Z D �Œ1� D
ˆ

d�.M/;

and the n-point correlation function

Wn.x1; : : : ; xn/ D
�

h nY
jD1

Tr
1

xj �M
i
c

�Œ1�
; (1.3)

where the subscript c stands for “cumulant” expectation value. In the context of
formal matrix integrals, they have by construction a decomposition of the form

Z / exp
� X
g�0

.N=t/2�2g F g
�
;

Wn.x1; : : : ; xn/ D
X
g�0

.N=t/2�2g�nW g
n .x1; : : : ; xn/:

The precise definitions will be given in Section 2. Our main results are Theorems 4.2
and 4.3, from which follows Theorem 5.1, which can be stated informally but with
assumptions as follows.

Proposition 1.1. If the parameters of T h
k

are tame (see Definition 4.1), then all
W
g
n .x1; : : : ; xn/dx1 � � � dxn can be analytically continued to meromorphic n-forms

on Cn for the same Riemann surface C , and can be computed by a recursion on
2g � 2 C n > 0. The basic initial data of the recursion is W 0

1 and W 0
2 , and the

recursion coincides, up to extra initial conditions ˆgn.z; zI / at each step .n; g/, with
the topological recursion of [24].

The tame condition is here the analog of an “off-criticality” condition in the context
of random matrix theory.

1.2. Motivations. Beyond the effort to develop a complete theory of the topological
recursion, let us motivate the study of models (1.2).

It is well-known that formal hermitian matrix integrals with measure (1.1) enumer-
ate maps, i.e. discrete surfaces obtained by gluing polygonal faces with the topology
of a disc along their edges. V.x/ is a generating series for the Boltzmann weights
of such 2-cells. The large N expansion of the partition function and the correlation
functions in these models collect maps of a given topology. Similarly, we show in
Section 2 that formal matrix integrals with measure (1.2) enumerate stuffed maps,
i.e. maps obtained by gluing 2-cells having the topology of a Riemann surface of
genus h with k polygonal boundaries. T h

k
.x1; : : : ; xk/ is a generating series of such
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2-cells. Usual maps carrying self-avoiding loop configurations – the so-called O.n/
model, introduced in a special case by [34] – are equivalent to stuffed maps where the
elementary cells may have the topology of a disc (usual faces) or of a cylinder (rings
of faces carrying the loops). Usual maps with a configuration of possibly intersecting
loops can also be represented by stuffed maps. Therefore, the result of this article
applies to many combinatorial models studied previously on usual random maps. In a
sense, our results completes the program of the moment method [3], [1], [2], and [22]
initiated in the context of 2d quantum gravity to compute the large N expansion in
the 1-hermitian matrix model (1.1). Our result is that the same method, put in the
form of the topological recursion [24], applies to all multi-trace 1-hermitian matrix
models.

In [32], Mariño and Garoufalidis claim that, for any closed 3-manifold X realized
by surgery on a knot K � S3, the U.N / evaluation of the LMO invariants of X can
be computed from the U.N /Kontsevich integral ofK, which is a formal 1-hermitian
matrix model, i.e. of the form (1.2) for certain (in general non-explicit) weights t.X/.
This indicates that the large N expansion of those invariants should be described by
a topological recursion. This will be the matter of a forthcoming work.

The convergent version of (2.6) – when it is well-defined – describes a system
of N repulsive particles with positions �1; : : : ; �N , which are subjected to k-body
interactions with arbitrary k’s. Such integrals frequently appear in the computation
of correlation functions in quantum integrable models, after applying Sklyanin’s
separation of variables (see for instance [33] in the example of the XXX spin chain
and references therein). However, the dependance in N for such physically relevant
models is more subtle and in general not captured by the 1=N expansion that we
focus on in the present article.

1.3. Outline. We first define the formal model 1.2 and the combinatorics of stuffed
maps (Section 2), describe their nester structure in the case of planar maps and
analyze some consequences (Section 3). Then, we write down the Schwinger–Dyson
equations satisfied by the correlation functions (1.3) (Section 4). They are equivalent
to functional relations for generating series of stuffed maps, which can be given a
bijective proof by Tutte’s method. Their analysis (Sections 4.2–4.4) shows that W g

n

have the same type of monodromies around their discontinuity locus, independently
of .n; g/. More precisely, they satisfy a hierarchy of linear loop equations in the
terminology of [13] (Theorem 4.2). Then, the Schwinger–Dyson equations can be
recast as quadratic loop equations (Section 4.5, Theorem 4.3), and we can conclude
in Section 5 using the results of [13] that W g

n for 2g � 2C n > 0 are given – up to a
shift for .g; n/ D .2; 0/ – by the topological recursion (Theorem 5.1).

In practice, this reduces the problem of computing the sequence .W g
n /n;g to

the problem of computing W 0
1 and W 0

2 . We show that W 0
1 is characterized by a

scalar non-linear, non-local Riemann–Hilbert problem with a unknown jump locus �
(see (3.4)), whereasW 0

2 is characterized by a related but linear, non-local Riemann–
Hilbert problem on � (see (3.19)).
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In general, it seems hopeless to find the solution for W 0
1 .x/ and W 0

2 .x1; x2/

in closed form, but they can easily be obtained recursively as power series in the
parameters of T h

k
.

The core of our computation is the analysis of the Schwinger–Dyson equations
of Section 5 to show linear and quadratic loop equations (Theorem 4.2 and 4.3),
and is relevant both for convergent and formal matrix integrals. It explains why the
topological recursion holds in the same universal form in the class of models (1.2). The
other technical details and assumptions are somewhat specific to the case of formal
matrix integrals to which we restrict in this article. In the convergent matrix model,
the assumptions and technical steps are of different nature and are more involved,
because one needs first to justify the existence of a large N expansion. In the more
simple convergent model (1.1), the large N asymptotic expansion were established
in the one-cut case in [4] and [14], and in the multi-cut case in [15] justifying the
heuristics of [6] and [29] under natural assumptions on V . The generalization of
this approach to the model (1.2) seen as a convergent matrix model is addressed in a
subsequent work [16].

Acknowledgments. I thank B. Eynard, E. Guitter and N. Orantin for asking ques-
tions which led to this project, the organizers of the Journées Cartes in June 2013 at
the IPhT CEA Saclay where it was initiated, as well as S. Garoufalidis, I. K. Kostov,
and S. Shadrin for useful remarks. This work is supported by a Forschungsstipendium
of the Max-Planck-Gesellschaft.

2. The formal model

We recall the definition of formal matrix integrals, and describe its underlying combi-
natorics in terms of stuffed maps. If A is a ring, and t is a collection of variables, A�t�
is the ring of formal series in t with coefficients in A, whereas AŒt� is the polynomial
ring of A.

2.1. Definition and notations. Let dM be the Lebesgue measure on the space of
N �N hermitian matrices HN , and �0 be the Gaussian measure

d�0.M/ D dM exp
�

� N TrM 2

2t

�
:

Let t D .th
`
/ a sequence of formal variables, assumed to be symmetric in ` D

.`1; : : : ; `k/. For any k � 1 and h � 0, we define a formal series depending on
variables p D .p`/`�1

zT hk .p/ D
X

`1;:::;`k�1
th`1;:::;`k

kY
iD1

p`i
2 C�p��t�:
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We introduce a exponential generating series

 .p/ D exp
� X
k�1
h�0

.N=t/2�2h�k

kŠ
zT hk .p/

�
2 C�p��t�: (2.1)

Given a matrix M , we will specialize those variables to

p`ŒM� D TrM `

`
: (2.2)

Then, we define the partition function Z and the free energy F as
8̂
<
:̂
Z D �0Œ .pŒM�/�

�0Œ1�
2 C�t�;

F D lnZ 2 C�t�;

(2.3)

and the disconnected n-point correlation functions as

xWn.x1; : : : ; xn/ D 1
Z
�0

h
 .pŒM�/

Qn
jD1 Tr 1

xj �M
i

2 C�.x�1
j /j ��t�: (2.4)

If I is a set with n elements, we use the notation Wn.xI / D Wn..xi /i2I /. The
connected n-point correlators Wn.x1; : : : ; xn/ can then be defined as the cumulant
expectation values (instead of the moments) of Tr 1=.xj �M/:

xWn.x1; : : : ; xn/ D
X

J`�1;n�

ŒJ �Y
iD1

WjJi j.xJi
/; (2.5)

where the sum runs over partitions of �1; n�, and ŒJ � denotes the number of subsets
in the partition J .

2.2. Multidimensional integrals. Formally, if we disregard the dependence in N
that we chose in (2.1), d�0.M/ .pŒM�/ is the most general measure on the space
of N � N hermitian matrices which is invariant under conjugation. We may also
diagonalize M and consider the measure induced on its eigenvalues �1; : : : ; �N :

.d�0 �  /.�1; : : : ; �N /

/
NY
iD1

d�i
Y

1�i<j�N
.�i � �j /2

exp
� X
k�1
h�0

.N=t/2�2h�k

kŠ

NX
i1;:::;ikD1

T hk .�i1 ; : : : ; �ik/
�
;

(2.6)
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where we have introduced the formal series

T hk .x1; : : : ; xk/ D �ık;1ıh;0 x
2

2t
C

X
m1;:::;mk�1

thm1;:::;mk

m1 � � �mk x
m1

1 � � �xmk

k
: (2.7)

2.3. Stuffed maps. We now introduce the combinatorial model behind (1.2).

� An elementary 2-cell of topology .k; h/ and perimeters .`1; : : : ; `k/ is a topolog-
ical, orientable, connected surface of genus g, with boundaries Bi (1 	 i 	 k)
endowed with a set Vi � Bi of `i � 1 vertices (see Figure 1). The connected
components of Bi n Vi in Bi are considered as edges.

� A stuffed map of topology .n; g/ and perimeters .`1; : : : ; `k/ is a orientable,
connected, discrete surface M of genus g, obtained from n labeled rooted ele-
mentary 2-cells with topology of a disc and perimeters `1; : : : ; `n, and from a
finite collection of rooted unlabeled elementary 2-cells, by gluing pairs of edges
of opposite orientation. The labeled cells are considered as boundaries of the
stuffed map, and the rooting on edges which do not belong to the boundary of
M are forgotten after gluing. We denote Mg

`1;:::;`n
this set of stuffed maps.

� We say that an elementary 2-cell (or a stuffed map) with boundaries is rooted
when a marked edge has been chosen on each boundary. By following the cyclic
order, the rooting induces a labeling of the edges of the boundaries.

For instance, .1; 0/ denotes the topology of a disc, .2; 0/ denotes the topology of a
cylinder, etc. A map – in the usual sense – is a stuffed map made only of elementary
2-cells with topology of a disc.

We assign a Boltzmann weight to stuffed maps in the following way:

� a weight t per vertex;

� a weight th
`1;:::;`k

per rooted elementary 2-cell, depending on its topology .k; h/,
and on its perimeters `1; : : : ; `k in a symmetric way;

� a symmetry factor jAut Mj�1, where M is a stuffed map in which all constitutive
elementary 2-cells have been labeled and rooted, thus inducing a labeling for
all edges. The identification of edges is thus represented by a permutation �
which is a product of transposition of the edge labels. Aut M is the subgroup
of permutations of elementary 2-cells labels and rooting, for which we get the
same stuffed map after identification of the edges according to � and forgetting
all labels which do not decorate the boundary of M.

By convention, the stuffed map consisting of only one vertex has 1 boundary of length
0, genus 0, and thus receives a weight t . Out of a given finite collection of elementary
2-cells, one can only construct a finite number of stuffed maps. This allows the
definition

F g D
X

M2Mg
;

weight.M/ 2 C�t�;
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Figure 1. An elementary 2-cell of topology .k D 4; h D 1/, with perimeters `1 D 9, `2 D 6,
`3 D 5 and `4 D 3. The corresponding Boltzmann weight is t1

9;6;5;3
.

and

W g
n .x1; : : : ; xn/

D ın;1ıg;0
t

x1

C
X

`D.`1;:::;`n/
`1;:::;`n�1

h nY
jD1

x
�. j̀ C1/
j

i� X
M2Mg

`

weight.M/
�

2 C�.x�1
j /j ��t�;

where t andN are considered as variables, and t D .th
`
/`;h as an infinite sequence of

formal variables.

2.4. Formal matrix model representation. Applying the standard techniques in-
vented in [17], we quickly review the connection between the combinatorial model
of §2.3 and the formal matrix integrals of §2.1.

Given that �0 is a Gaussian measure, Wick’s theorem allows the computation of
the coefficients of the formal series lnZ, xWn and Wn defined in (2.3)–(2.5) as sums
over Feynman diagrams, which are fatgraphs. We claim that those fatgraphs are dual
to stuffed maps. Indeed, we can represent a monomialN 2�2h�kTrM `1 � � � TrM `k as
a collection of k fatvertices, with `i couples of ingoing edge/outgoing edge in cyclic
order at the i -th fatvertex. The dual of this collection of fatvertices is a collection of
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k polygonal faces, with perimeters `1; : : : ; `k , which form the boundaries of a single
elementary 2-cell of topology .k; h/. By construction,  .pŒM�/ 2 C�t� defined
in (2.1)-(2.2) is the generating series of collections of elementary 2-cells, with a
weight deduced from §2.3, and

� an extra weight .N=t/� for each elementary 2-cell with Euler characteristics �;

� a symmetry factor .1=kŠ/� Œ1=.`1 � � � `k/� corresponding to labeling and rooting
the boundaries of the elementary 2-cells.

When we compute the �0 expectation value of product of monomials, the Wick
theorem mimics the gluing rules of elementary 2-cells along edges of opposite ori-
entations, and each pair of glued edges comes with a weight t=N . Each vertex in
the stuffed map correspond in the dual picture of fatgraphs to a line on which flows
a matrix index i 2 �1; N �, and thus receives an extra weight N . Taking into account
the symmetry factors, the classical argument of t’Hooft [37] about Euler character-
istics counting implies that the generating series of stuffed maps coincide with the
correlation functions in the model (1.2):

F D
X
g�0

.N=t/2�2g F g ; (2.8)

Wn.x1; : : : ; xn/ D
X
g�0

.N=t/2�2g�nW g
n .x1; : : : ; xn/: (2.9)

These equalities holds in C�t� (resp. C�.x�1
j /j ��t�), meaning that for a given mono-

mial in the formal variables t, only finitely many g’s contribute to the sum.
If all Boltzmann weights t; th

`
are non-negative, we may also define F g and the

coefficients of
Q
j x

�. j̀ C1/
j inW g

n as numbers in Œ0;C1�. If the latter happens to be
finite for given non-negative values t; t`, they can also be defined as finite numbers
for any real-valued weights t 0 and .th

`
/0 so that jt 0j 	 t and j.th

`
/0j 	 th

`
.

3. Disc generating series and substitution

3.1. Substitution approach. We first focus on planar stuffed maps M with topology
of a disc, i.e. .n; g/ D .1; 0/. All their constitutive elementary 2-cells must also be
planar (h D 0), and if we remove one of them with k boundaries, we end up with
k connected components. One of these components contains the root edge on the
boundary, and is called the exterior; the other ones interior. The existence of a notion
of exterior and interior implies that planar stuffed maps have a nested structure, that
we now describe (see Figures 2 and 3).
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Figure 2. From top to bottom. First picture: a planar stuffed map with the topology of a disc.
The orange arrow denote the root edge. We used different colors for elementary 2-cells of
different topology. The outer face – peach color – is the marked face. Second picture: the
gasket of this stuffed map. The large faces appear in darker purple.
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Figure 3. Third picture: the collection of its cement 2-cells. Fourth picture: its chunks. The
choice of root edges in both picture prescribes the way to glue them. To retrieve the map, we
then have to forget the root edge on the boundaries of the chunks.
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The gasket M00 of M is the map obtained by removing all elementary 2-cells with
k � 2 boundaries, keeping the connected component M0 of the root edge in M, and
filling its holes having perimeter m with new elementary 2-cells with topology of a
disc. We obtain in this way a usual map M00 with topology of a disc, i.e. a map made
only of elementary 2-cells having the topology of a disc. Some of them were already
2-cells in M, and the other are called large faces. The gasket M00 does not contain
all information about M. It can be retrieved by specifying the configuration in the
interior of M0 � M. A hole in M0 was created by the removal of a planar elementary
2-cell with k � 2 boundary, which we call cement 2-cell. Since M is planar, distinct
holes were created by the removal of distinct 2-cells. The interior of a cement 2-cell
can be seen as stuffed maps with topology of a disc, which we call chunks.

We choose an arbitrary procedure to root the large faces of the gasket: among the
points of a large face 	 which are the closest (for graph distance in M00) to the point
at the origin of the boundary of M00, we choose the one o0 reached by the leftmost
geodesic, and we root 	 on the edge with origin o0. We also root the corresponding
edge on the cement 2-cell filling this large face.

Conversely, given a gasket, cement 2-cells rooted on all their boundaries and
rooted chunks, we can reconstruct the map M by gluing. The root edge on the chunks
and the root edge on the corresponding boundary of a cement 2-cell are identified in
this process. This gluing is surjective, and ifmi denote the sequence of perimeters of
the chunks, it is actually

Q
i mi to 1, since we must forget the roots on the boundaries

of the chunks.

3.2. Functional relation between generating series. Let G`Œt; t0� 2 C�t0� be
the generating series of stuffed maps with topology of a disc and perimeter `, and
Gusual
`

Œt; t0� 2 C�t0� the analog for usual maps, obtained from G`Œt; t0� by setting
all t0m1;:::;mk

with k � 2 to zero. The bijection we described implies the simple
functional relation

G`Œt; t
0� D Gusual

` Œt; �.t; t0/�: (3.1)

The right-hand side is the generating series for the gasket, which is a usual map whose
2-cells were either present in the initial map (weights t0), or are large faces in which
we glue a cement planar 2-cell with k � 2 boundaries, and .k� 1/ stuffed maps with
topology of a disc. We are cautious to add a symmetry factor to forget the roots on
the chunks:


m.t; t0/ D t0m C
X
k�2

1

.k � 1/Š
X

m2;:::;mk�1

t0m;m2;:::;mk

m2 � � �mk
kY
iD2

Gmi
Œt; t0�

D
X
k�1

1

.k � 1/Š

X
m2;:::;mk�1

t0m;m2;:::;mk

m2 � � �mk
kY
iD2

Gmi
Œt; t0�:
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�.t; t0/ represents a sequence of effective face weights allowing to enumerate planar
stuffed maps as planar usual maps. The properties of the generating series of planar
usual maps Gusual

`
Œt; �� are well known, and by (3.1) they can be transferred to the

generating series of stuffed maps G`Œt; t0�.
We recall the definition of admissible weights [5]. For usual maps, a vertex weight

t and a sequence of non-negative face weights � D .
01 ; 

0
2 ; 


0
3 ; : : :/ is admissible

if for any ` � 1, the generating series of pointed rooted maps with topology of
a disc t@tGusual

`
Œt; �� is finite. We also say that real-valued t; � are admissible if

j�j D .j
01 j; j
02 j; j
03 j; : : :/ is admissible. For stuffed maps, we will say that a vertex
weight t and a sequence of elementary 2-cells weights t0 is admissible if the effective
face weights �.t; t0/ are admissible. The admissibility condition is not empty.

Lemma 3.1. When only a finite number of t0m1;:::;mk
are non-zero and have given

values, there exists tc > 0 so that, for any jt j < tc , the weights t; t0 are admissible.

Proof. This situation corresponds to usual maps with bounded face degrees. The
existence of tc > 0 in this case is well-known, and can easily be deduced from [5],
Section 6.

As a consequence of [5], for stuffed maps, we obtain a planar 1-cut lemma and a
functional relation.

Lemma 3.2. If t; t0 is a sequence of admissible weights for planar elementary 2-cells,
then G`Œt; t0� < 1 for all ` � 1. The formal Laurent series:

W 0
1 .x/ D t

x
C

X
`�1

G`Œt; t0�

x`C1
(3.2)

is the Laurent expansion at 1 of a holomorphic function in C n �t;t0 , where �t;t0 is
a segment of the real line. Besides, W 0

1 .x/ has limits from above and from below on
�t;t0 , remains bounded, and

�.x/ D W 0
1 .x � i0/ �W 0

1 .x C i0/

2i�
(3.3)

assumes positive values at interior points of �t;t0 , and vanishes at the edges.

Let us introduce the generating series zV 01 .x/ of planar elementary 2-cells, whose
boundaries are all glued to stuffed maps with topology of a disc, except one boundary
which receives a weight x` when it has perimeter `. We also include a shift and a
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sign for convenience:

zV 01 .x/ D �x
2

2t
C

X
`�1

X
m1;m2;:::;mr �1

tm1;m2;:::;mk

m1 � � �mk xm1

kY
jD2

Gmj
Œt; t0�

D
X
k�1

˛
T 0k .x; �2; : : : ; �k/

kY
jD2

d�j W 0
1 .�j /

2i�
:

Lemma 3.3. If t; t0 is a sequence of admissible weights for planar elementary 2-cells,
there exists an open disc Dt;t0 centered on 0 and containing the interior of�t;t0 so that
the formal series T 0

k
.x1; : : : ; xk/ defines a holomorphic function for .x1; : : : ; xk/ 2

Dk
t;t0 , and zV 01 .x/ defines a holomorphic function for x 2 Dt;t0 . Besides, for any x

in the interior of �t;t0 ,

W 0
1 .x C i0/CW 0

1 .x � i0/C @x zV 01 .x/ D 0: (3.4)

Equation (3.4) is a non-linear and non-local Riemann–Hilbert problem for W 0
1 ,

with unknown discontinuity locus � . We will discuss in §3.6 the uniqueness of its
solution.

3.3. Holomorphic functions with a cut

Definition 3.1. If U is an open set of the Riemann sphere, we define M0.U / (resp.
H 0.U /) the space of meromorphic (resp. holomorphic) functions on
. An open set
U � yC n � which is a neighborhood of � is called an exterior neighborhood of � .

Let us introduce a generating series of planar elementary 2-cells, in which all but
two boundaries are glued to stuffed maps with topology of a disc:

zR.x; y/ D
X
k�2

1

.k � 1/Š
˛
T 0k .x; y; �3; : : : ; �k/

kY
jD3

d�j W 0
1 .�j /

2i�
; (3.5)

R.x; y/ D
X
k�2

1

.k � 2/Š
˛
T 0k .x; y; �3; : : : ; �k/

kY
jD3

d�j W 0
1 .�j /

2i�
: (3.6)

The symmetry factor is the only difference between the two expressions. In order
to work with analytic functions rather than formal series, we need slightly stronger
assumptions.
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Definition 3.2

� We say that admissible weights t; t0 are off-critical when @xT 01 .x/ is holomor-
phic in an open neighborhood of �t;t0 .

� We say that a sequence .
m/m is regular when the formal series
X

m1;:::;mr �1


m1;:::;mk

m1 � � �mk x
m1

1 � � �xmk
r 2 C�x1; : : : ; xr�

defines a holomorphic function in Dr , where D is an open neighborhood of
�t;t0 .

� We say that admissible weights t; t0 are completely regular when they are admis-
sible, off-critical, .t0m1;:::;mk

/m is regular for any k � 1, and moreover R.x; y/
is holomorphic in D2, where D is an open neighborhood of �t;t0 .

Let t; t0 be completely regular weights, U be an open exterior neighborhood of
� , and U 0 be an open neighborhood of � . We can define a linear operator

zO W H 0.U / �! H 0.U 0/

by

zO�.x/ D
˛
�

@x zR.x; �/ �.�/; O�.x/ D
˛
�

@x zR.x; �/ �.�/: (3.7)

Besides, we also define the expressions

��.x/ D �.x C i0/C �.x � i0/ and ��.x/ D �.x C i0/ � �.x � i0/: (3.8)

Equation 3.4 can be rewritten: for any interior point x of �t;t0 ,

�W 0
1 .x/C zOW 0

1 .x/C @xT
0
1 .x/ D 0: (3.9)

Since the two last terms are holomorphic in a neighborhood of � andW 0
1 .x/ remains

bounded, we deduce the following lemma.

Lemma 3.4. If t; t0 are completely regular, W 0
1 .x/ can be decomposed, at ˛ D a; b

the edges of �t;t0 , as h1.x/ C h2.x/
p
x � ˛ where h1; h2 are holomorphic in a

neighborhood of ˛.

3.4. Analytic continuation. We start with some preliminaries about analytical con-
tinuation. Let � D Œa; b� be a segment of R. The domain yC n � can be mapped
conformally to the exterior of the unit disc xD by the Zhukovski map (see Figure 4):

x.z/ D aC b

2
C a � b

4

�
z C 1

z

�

() x.z/ D 2

a � b
�
x � a C b

2
C

p
.x � a/.x � b/

�
:

(3.10)
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The image of the unit circle U by x is Œa; b�. We have a holomorphic involution
�.z/ D 1=z, which has z.a/ D 1 and z.b/ D �1 as fixed points. We have a notion
of exterior or interior neighborhoods of U. From now on, we prefer to work with
differential forms rather than functions.

Figure 4. Analytic continuation in the z-plane of functions of x via (3.10), �.z/ D 1=z.

Definition 3.3. If 
 � yC is an open set, M.
/ (resp. H .
/) is the space of mero-
morphic (resp. holomorphic) 1-forms in 
.

If � is a holomorphic function in an exterior neighborhoodU of � , upon multipli-
cation by dx it defines an element' 2 H .
/, where
 is the exterior neighborhood of
U such that x.
/ D U . Similarly, if � is a holomorphic function in a neighborhood
U 0 of � , it defines an element ' 2 H .
0/ with
0 D z.U 0/ is an open neighborhood
of U stable under �, and such that '.z/ D '.�.z//. We can thus define linear operators
O; zO W H .
/ ! H .
0/ upgrading (3.7) to 1-forms in the z-plane. Besides, if 
0 is
an open neighborhood of U stable under �, we may define � ; � W M.
0/ ! M.
0/
by

�'.z/ D '.z/C '.�.z//; �'.z/ D '.z/ � '.�.z//: (3.11)

The restriction of (3.11) to z 2 U, pulled-back by the map z, agrees with the defini-
tion (3.8) in terms of boundary values on � . We will apply repeatedly the following
principle.

Lemma 3.5. LetU be an exterior neighborhood of � , and � 2 H 0.U /. Assume that
� has boundary values on the interior of � D Œa; b�, that for any ˛ 2 fa; bg there
exists an integer r so that �.x/.x � ˛/r˛=2 remains bounded when x ! ˛, and that
��.x/ can be analytically continued as a holomorphic function in a neighborhood
of � . Then, '.z/ D �.x.z//dx.z/, initially a holomorphic 1-form in the exterior
neighborhood 
 of U such that x.
/ D U , can be analytically continued to a
meromorphic 1-form in an open neighborhood 
0 of U which is stable under �. For
˛ D ˙1, if r˛ � 2, it has a pole of order at most r˛ � 1 at z D ˛.

We assume that t; t0 are completely regular, and that the generating series of stuffed
maps with topology of a disc W 0

1 .x/ is known. It is considered as a holomorphic
function on C n � for some segment � � R. According to (3.9), �W 0

1 .x/ can be
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analytically continued as a holomorphic function in a neighborhood of � , and thanks
to Lemma 3.4, we can apply Lemma 3.5 to define

W0
1 .z/ D W 0

1 .x.z//dx.z/ (3.12)

as a meromorphic 1-form in


" D ˚
z 2 yC; jzj > 1� "

�
(3.13)

for some " > 0. Its only singularity is a simple pole with residue �t at z D 1, and
it satisfies for any z 2 
" \ �.
"/:

�W0
1 .z/C zOW0

1 .z/C dzT 01 .x.z// D 0: (3.14)

3.5. The master operator. The operator O will play an important role in the study
of higher topologies, let us recall its definition in the realm of 1-forms:

O'.z/ D
X
k�2

1

.k � 2/Š

˛
Uk�1

dzT 0k .x.z/; x.�2/; : : : ; x.�k// '.�2/
kY
jD3

W0
1 .�j /:

(3.15)
If 
0 is a neighborhood of U stable under �, we want to study the space of solutions
' 2 M.
0/ of

�'.z/C O'.z/ D 0: (3.16)

We start with a result of uniqueness. The uniqueness result is easy in combina-
torics, because the solutions we will be looking for have by construction power series
expansion in t1.

Lemma 3.6. Assume � is fixed and the weights t; t are completely regular. Let " > 0
and consider 
" as in (3.13). The only solution ' 2 H .
"/ to the equation

8z 2 
" \ �.
"/; �'.z/C O'.z/ D 0; (3.17)

which has a power series expansion in t, is ' � 0. The same holds if O is replaced
by zO.

Proof. Since O (or zO) depends linearly on the parameters t0m1;:::;mk
, the leading

order ' D '0 C O.t/ of a power series solution to �'.z/ C O'.z/ D 0 satisfies
'0.z/C'0.�.z// D 0, and we remind �.z/ D 1=z. By assumption, '0 is holomorphic
in the exterior of the unit disc, and this equation implies that '0 is holomorphic in
yCnU. Hence, if ' is holomorphic in an open neighborhood of U, so is '0. Gathering
all the information, we see that '0 is a holomorphic 1-form on the Riemann sphere,
thus it vanishes. The same argument shows that ' cannot have a non-zero leading
order in its power series expansion in t, hence it must vanish identically.

1If we drop the assumption that solutions of (3.16) must have power series expansion in t, the question
of uniqueness can be addressed under an assumption of strict convexity, see [13], Section 3, in the case
where T 0

k
� 0 for k � 3.



242 G. Borot

Let us comment on the use of this result. Since a power series in a infinite sequence
of variable t; t is characterized by its specializations where all but a finite number of
variables have been sent to 0, it is enough to study the latter. Lemma 3.1 then tells
us that, for any given values for the non-zero weights, there exists a neighborhood of
0 of values of t so that t; t0 is admissible, and the solutions we will be looking for
then have a power series expansion in t with non-zero radius of convergence. Since
there are only a finite number of non-zero weights, they are obviously completely
regular in the sense of Definition 3.2. Thus, we do not lose in generality by taking
the detour to set t; t0 to some real admissible values – which enables us to use the
tools of complex analysis – in order to say something about formal series.

Although we do not pursue this issue here, it is possible to show that W 0
1 .x/ 2

C�x�1�Œt� is uniquely determined by the solution of functional equation (3.4) for
completely regular weights, together with the requirement thatW 0

1 .x/ is holomorphic
in C n � , is bounded on yC n � , and behaves like t=x when x ! 1.

3.6. Local Cauchy kernel. We now turn to the generating series of stuffed maps
with topology of a cylinder, which will allow us the representation of any solution of
the homogeneous linear equation (3.16). Cylinders can be obtained by marking an
extra elementary 2-cell with topology of a disc on a stuffed map with topology of a
cylinder. At the level of generating series, this means

W 0
2 .x1; x2/ D

� X
m�1

1

xmC1
2

@

@t0m

�
W 0
1 .x1/: (3.18)

Applying the differential operator to the functional relation (3.4) yields, for all x1 in
the interior of �t;t0 and x2 2 C n � ,

W 0
2 .x1 C i0; x2/CW 0

2 .x1 � i0; x2/C Ox1
W 0
2 .x1; x2/C 1

.x1 � x2/2 D 0: (3.19)

This equation will also be derived from the analysis of Schwinger–Dyson equation in
Section 4. SinceW 0

2 .x1; x2/ is symmetric, it satisfies the same equation with respect
to x2. The subscript of the operator O indicates on which variable it acts. So, we can
apply Lemma 3.5 to W 0

2 , and define

W0
2 .z1; z2/ D W 0

2 .x.z1/; x.z2//dx.z1/dx.z2/ (3.20)

as a symmetric meromorphic 2-form in .z1; z2/ 2 
", and it satisfies

�z1
W0
2 .z1; z2/C Oz1

W0
2 .z1; z2/C dx.z1/dx.z2/

.x.z1/ � x.z2//2 (3.21)

in the domain of analyticity of the left-hand side. We may also define

!02.z1; z2/ D W0
2 .z1; z2/C dx.z1/dx.z2/

.x.z1/ � x.z2//2 ; (3.22)
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which satisfies

�z1
!02.z1; z2/C Oz1

!02.z1; z2/ D dx.z1/dx.z2/

.x.z1/ � x.z2//2
: (3.23)

A computation done in the proof of Proposition 3.8 in [13] shows that !02 .z1; z2/ has
its only singularities at z1 D z2, and it is a double pole with leading coefficient 1 and
no residues. Let us define the local Cauchy kernel

G.z0; z/ D
ˆ z

!02.z0; �/: (3.24)

According to [13], Lemma 2.1, it allows the representation of any solution of the
homogeneous linear equation (3.16) in terms of its singular part only, modulo a
holomorphic part.

Lemma 3.7. Let 
0 be an open neighborhood of U stable under �, and ' 2 M.
0/
be a solution of �'.z/C O'.z/ D 0 with a finite number of poles in 
0. Then,

Q'.z0/ D
X
p2�0

Res
z!p

�zG.z0; z/

4
�'.z/ (3.25)

is such that '.z0/ � Q'.z0/ is holomorphic for z0 2 
0.

We adapt this result to solve (3.16) with a non-zero right hand side.

Lemma 3.8. Let
0 be an open neighborhood of U stable under �, and
 be the union
of 
0 and the exterior of the unit disc in yC. Let  2 H .
0/. Assume ' 2 M.
/

satisfies �'.z/ C O'.z/ C  .z/ D 0 for any z 2 
0, and has a finite number of
poles in 
0. Then, if z0 lies outside the contour of integrations:

Q'.z0/ D � 1

2i�

˛
U
G.z0; z/

 .z/

2
C

X
p2�0

Res
z!p

�zG.z0; z/

4
�z'.z/ (3.26)

is such that'.z0/� Q'.z0/ is holomorphic for z0 2 
 and satisfies �'.z/CO'.z/ D 0

for z 2 
0.

Proof. It follows from Lemma 3.8 and the fact that�.z/ D  .z/
2

� 1
2i�

¸
U G.z0; z/

 .z/
2

is holomorphic in 
, and satisfies ��.z/C O�.z/C  .z/ D 0 for z 2 
0.

And, if we are looking for a solution ' which is initially holomorphic in yCnU, and
has a power series expansion in the parameters t0 of O, we deduce from Lemma 3.6
that Q'.z0/ D '.z0/.
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4. Schwinger–Dyson equations and consequences

4.1. Relations between generating series for all topologies. Stuffed maps M of
genus g with 1 boundary f can be constructed recursively by Tutte’s decomposition.
It consists in removing the root edge of the first boundary, and establishing a bijection
between the set of stuffed maps with given topology, and the pieces obtained after
the removal. According to their topology, two cases can occur.

� The root edge e was bordered on both sides by f, and its removal disconnects
the surface. We obtain two connected stuffed maps M1 and M2, each having
one boundary coming from the splitting of f, and which are rooted at the edge
which was closest to e following f in cyclic order. The handles of M are shared
between M1 and M2.

� The root edge borders another elementary 2-cell f0 with k � 1 boundaries.
We denote K D �1; k� the set of boundaries. Removing the root edge also
removes f0, and we obtain a stuffed map with r 	 k connected components,
M1; : : : ;Mr . Mi has fi handles and ki � 1 boundaries, which were incident
to a subset Ki � K of jKi j D ki boundaries of f0. One of the boundary in
M1 was incident to f in M. The gluing of Mi on f0 contributed to ki � 1C fi
handles in M, and f0 itself contributed for h handles. Therefore, we must have
hCPr

iD1.ki�1Cfi / D g, which can be rewritten hC� Pr
iD1 fi

�Ck�r D g.

In terms of generating series, this bijection implies, for g D 0,

.W 0
1 .x//

2 C
X
k�1

˛ kY
jD1

d�j
2i�

@�i
T 0
k
.�1; : : : ; �k/

.k � 1/Š .x � �1/
kY
jD1

W 0
1 .�j / D 0; (4.1)

In this equation, the contour integral is just a way to write the divergent part of a
formal Laurent series:˛

d�

2i�

1

x � �
� X
m�m0

ˇm

�mC1
�

D
X
m�0

ˇm

xmC1 :

It enforces the matching of perimeters when reconstructing M from its pieces after
Tutte’s decomposition. In this formal representation, everything happens as if the
contour was surrounding 1 and x was closer to 1 than the contour. Similarly, for
g > 0,

W
g�1
2 .x; x/C

gX
fD0

W
f
1 .x; xJ /W

g�f
1 .x; xInJ /

C
X
k�1
h�0

X
K`�1;k�

f1;:::;fŒK��0
hC.Pi fi /Ck�ŒK�Dg

˛ h kY
jD1

d�j
2i�

i@�1
T h
k
.�1; : : : ; �k/

.k � 1/Š .x � �1/
ŒK�Y
iD1

W
fi

jKi j.�Ki
/ D 0:

(4.2)
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Those relations are equalities between formal series in C�x�1��t�, and (4.2) is still
valid for g D 0 with the convention that W g

n D 0 if g < 0.
To obtain relations for stuffed maps of genus g with an arbitrary number n � 1

of boundaries, we apply the operator ıx2
� � � ıxn

to (4.2), since

ıx D
X
m�1

1

xmC1
@

@t0m
(4.3)

is tantamount to marking an elementary 2-cell with topology of a disc, with the formal
variable x coupled to its perimeter. ıx is called the insertion operator. The result is,
for any n � 1 and g � 0,

W
g�1
nC1 .x; x; xI /C

X
J�I
0�f �g

W
f

jJ jC1.x; xJ /W
g�f
n�jJ j.x; xInJ /

C
X
i2I

@xi

�W g
n�1.x; xInfig/ �W

g
n�1.xI /

x � xi
�

C
X
k�1
h�0

X
K`�1;k�

J1
P[��� P[JŒK�DI

X
f1;:::;fŒK��0

hC.Pi fi /Ck�ŒK�Dg

˛ h kY
jD1

d�j
2i�

i@�1
T h
k
.�1; : : : ; �k/

.k � 1/Š .x � �1/

ŒK�Y
iD1

W
fi

jKi jCjJi j.�Ki
; xJi

/ D 0:

(4.4)

IfW g
n can be upgraded to holomorphic functions of xi in some domain of the complex

plane, (4.4) will hold in the whole domain of analyticity.
We can rewrite those equations in a more compact way by summing over genera

with weight .N=t/� and recalling the definitions (2.8)-(2.9). Introducing

Tk.x1; : : : ; xk/ D
X
h�0

.N=t/2�2h�k T hk .x1; : : : ; xk/ (4.5)

we find

WnC1.x; x; xI /C
X
J�I

WjJ jC1.x; xJ /Wn�jJ j.x; xInJ /

C
X
i2I

@xi

�Wn�1.x; xInfig/ �Wn�1.xI /
x � xi

�

C
X
k�1

X
K`�1;k�

J1
P[��� P[JŒK�DI

˛ h kY
jD1

d�j
2i�

i@�1
Tk.�1; : : : ; �k/

.k � 1/Š .x � �1/
ŒK�Y
iD1

WjKi jCjJi j.�Ki
; xJi

/ D 0:

(4.6)
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Equation (4.6) can also be derived by integration by parts in the matrix integrals
described in (2.1), or by expressing the invariance of the matrix integral under in-
finitesimal change of variables M ! M C "

x�M . In this context, they are called
Schwinger–Dyson equations, and they also hold for convergent integrals.

4.2. Analytical properties

Definition 4.1. We say that t; t is tame if t; t0 is completely regular (see Defini-
tion 3.2), and if for any m � 1, h � 0, any partition M ` �1;m�, any sequence
.fi/1�i�ŒM� of nonnegative integers, any finite set I , any sequence .Ji /1�i�ŒM� of
pairwise disjoint and maybe empty subsets whose union is I , the formal series

X
k�m

˛ h kY
jD1

d�j
2i�

i@xT hk .x; �2 : : : ; �k/ � @�1
T h
k
.�1; : : : ; �k/

x � �1

ŒM�Y
iD1

W
fi

jMi jCjJi j.�Mi
; xJi

/

kY
jDmC1

W 0
1 .�j /

(4.7)

which belongs a priori to C�x; .x�1
i /i2I ��t; t�, is a holomorphic function of x in a

neighborhood of �t;t0 and xi in a neighborhood of 1.

Although technical, this condition is similar for usual maps to asking that the
model be not critical. It is thus slightly stronger than asking that the coefficients of
the generating series considered are finite. This condition allows conveniently the
use of analytic functions instead of formal series. For instance, it holds when for
any h � 1, the number of boundaries of elementary 2-cells and their perimeter are
bounded, i.e. when only a finite number of th

`1;:::;`k
are non-zero for a given h. As

we already said in §3.5, since a formal series in an infinite number of variables are
determined by all their restrictions to finitely many variables, the analytic study we are
going to do within the tame condition actually determines completely the generating
series of stuffed maps as a formal series in the infinite set of variables t; t.

In this paragraph, we upgrade that the generating series of stuffed maps to analytic
functions, and study their basic properties.

Lemma 4.1. Assume t; t is tame, then W g

k
.x1; : : : ; xk/ defines a holomorphic func-

tion in Cn�t;t0 , which have boundaries values when xi approaches an interior point
of �t;t0 , and for any ˛ D a; b, there exists an integer rg

˛;k
so that

.xi � ˛/rg
˛;kW

g

k
.x1; : : : ; xk/

remains bounded when xi ! ˛.
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Proof. The statement was established for .n; g/ D .1; 0/ in Lemma 3.2. Let .n; g/ ¤
.1; 0/, and assume the result is proved for .n0; g0/ such that 2g0 �2Cn0 < 2g�2Cn.
We introduce

P hk .x; �1I �2; : : : ; �k/ D @xT
h
k
.x; �2; : : : ; �k/ � @�1

T h
k
.�1; : : : ; �k/

x � �1 : (4.8)

For any .n; g/ ¤ .1; 0/, we isolate the contribution of W g
n in (4.4) and decompose

.2W 0
1 .x/C zOW 0

1 .x/C @xT
0
1 .x//W

g
n .x; xI /CW 0

1 .x/OxW
g
n .x; xI /

�
X
k�1

˛
d�1

P 0
k
.x; �1I �2; : : : ; �k/
.k � 1/Š W g

n .�1; xI /
h kY
jD2

W 0
1 .�j /d�j
2i�

i

�
X
k�1

˛
d�1

P 0
k
.x; �1I �2; : : : ; �k/
.k � 2/Š W g

n .�2; xI /
h kY
jD1
j¤2

W 0
1 .�j /d�j
2i�

i

CW
g�1
nC1 .x; x; xI /C

0X
J�I; 0�f �g

W
f

jJ jC1.x; xJ /W
g�f
n�jJ j.x; xInJ /

C
X
i2I

@xi

�W g
n�1.x; xInfig/ �W g

n�1.xI /
x � xi

�

C
X
k�1
h�0

X
K`�1;k�

J1
P[��� P[JŒK�DI
�1Dx

0X
f1;:::;fŒK��0

hC.Pi fi /Ck�ŒK�Dg

˛ h kY
jD2

d�j
2i�

i@xT hk .x; �2; : : : ; �k/
.k � 1/Š

ŒK�Y
iD1

W
fi

jKi jCjJi j.�Ki
; xJi

/

�
X
k�1
h�0

X
K`�1;k�

J1
P[��� P[JŒK�DI

0X
f1;:::;fŒK��0

hC.Pi fi /Ck�ŒK�Dg

˛ h kY
jD1

d�j
2i�

iP h
k
.x; �1I �2; : : : ; �k/
.k � 1/Š

ŒK�Y
iD1

W
fi

jKi jCjJi j.�Ki
; xJi

/ D 0;

(4.9)

where
P0 means that we excluded all terms containingW g

n . We see that (4.9) involves
only a finite number of terms of the form (4.7), and assuming t; t tame actually justifies
the existence of the decomposition (4.9), and implies that the second, third and last
line of (4.9) define holomorphic functions of x in a neighborhood of �t;t0 . Then, we
can write

W g
n .x; xI / D L

g
n .xI xI /

2W 0
1 .x/C OW 0

1 .x/C @xT
0
1 .x/

:
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We now come to the key observation. Lgn.xI xI / involve terms which either

� define holomorphic functions in an open neighborhood of �t;t0 (This is the case
for OxW

g
n .x; xI / and the lines involving the P ’s.)

� or define holomorphic functions in C n �t;t0 , since they involve only W g0

n0 with
2g0 � 2C n0 < 2g � 2C n for which we already have the induction hypothesis.

Therefore, W g
n .x; xI / upgrades to a holomorphic function in C n �t;t0 , and (4.9) is

valid in the whole domain of analyticity. From the two points above, we infer that
L
g
n.x/ behaves asO..x�˛/�sg

n=2/ for some integer sgn when x ! ˛ D a; b, and has
boundary values at any interior point of �t;t0 . Furthermore, 2W 0

1 .x/C zOW 0
1 .x/C

@xT
0
1 .x/ vanishes like O.

p
x � ˛/ when x ! ˛, and does not vanish elsewhere on

�t;t0 . Thus W g
n .x; xI / 2 O�

.x � ˛/�.sg
n C1/=2� when x ! ˛. We thus conclude the

proof by induction.

4.3. Potentials for higher topologies. In this section, we introduce and study gen-
erating series called potentials for topology .n; g/

V gn .xI x2; : : : ; xn/ 2 C�x; x�1
2 ; : : : ; x�1

n ��t�; (4.10)

which will appear in the determination of the monodromy of W g
n ’s around their

discontinuity locus. The cases .n; g/ D .1; 0/ and .2; 0/ have a special definition:

V 01 .x/ D T 01 .x/; V 02 .xI x2/ D � 1

x � x2 : (4.11)

T 01 .x/ is the potential in the usual sense in random matrix theory, and here in the
context of multi-trace matrix models, we may call it “potential for disc.” For any
.n; g/ ¤ .1; 0/; .2; 0/, denoting I a set with n � 1 elements, we define the potential
in topology .n; g/ by

V gn .xI xI / D
X
m�1
k�mC1
h�0

0X
M`�1;m�

f1;:::;fŒM ��0
hC.Pi fi /Cm�ŒM�Dg

J1
P[��� P[JŒM �DI

˛ h kY
jD2

d�j
2i�

i

�mŠ T h
k
.x; �1; : : : ; �k�1/
.k � 1 �m/Š

ŒM�Y
iD1

W
fi

jMi jCjJi j.�Mi
; xJi

/

k�1Y
jDmC1

W 0
1 .�j /

�
:

(4.12)

The
P0 means that we exclude the term which contains W g

n , which would actually
be equal to OxW

g
n .x; xI /. Notice that the variables x2; : : : ; xn play symmetric roles,

whereas x plays a special role. Besides, those potentials for 2g� 2Cn > 0 depends
on the data T h

k
of generating series of elementary 2-cells which define the model,
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but also on the generating series of stuffed maps themselves. Yet, the potential for
topology .n; g/ only involves the generating series of stuffed maps W g0

n0 with lower
topology, i.e. 2g0 � 2C n0 < 2g � 2C n.

Combinatorially, V gn .xI x2; : : : ; xn/ is the generating series of one elementary
2-cell of arbitrary topology .k; h/, whose first boundary is unrooted and has a perime-
ter coupled to x, and whose .k � 1/ other boundaries are glued to the boundaries of
other stuffed maps, so as to form a connected stuffed map M of genus g with n
boundaries, and with the restriction that no stuffed map of topology .n; g/ should
be used. More precisely, the first boundary of M is the distinguished boundary of
the elementary 2-cell, while the other boundaries are rooted and their perimeters are
coupled to the variables x2; : : : ; xn. We may describe M as a stuffed elementary
2-cell of topology .n; g/.

An equivalent way to write the sum in (4.12) is

V gn .xI xI / D
X
k�2
h�0

0X
K`�2;k�

f1;:::;fŒK��0
hC.Pi fi /Ck�ŒK�Dg

J1
P[��� P[JŒK�DI

˛
�k�1

h kY
jD2

d�j
2i�

i T h
k
.x; �2; : : : ; �k/

.k � 1/Š

ŒK�Y
iD1

W
fi

jKi jCjJi j.�Ki
; xJi

/:

(4.13)

If t; t is tame in the sense of Definition 4.1, one can deduce that (4.13) defines a
holomorphic function of x in a neighborhood of �t;t0 .

V
g
n .xI xI / can be obtained from V

g
1 .x/ by successive applications of the insertion

operators (4.3) ıxi
for i 2 I , since we have the relation

ıy.OxW
g
n .x; xI /C V gn .xI xI // D OxW

g
nC1.x; y; xI /C V

g
nC1.xI y; xI /: (4.14)

For later use, we give a formula for .nC 1; g � 1/ ¤ .1; 0/; .2; 0/:

@1V
g�1
nC1 .x; x; xI /

D lim
y!x

@xV
g�1
nC1 .x; y; xI /

D
X
k�2
h�0

0X
K`�2;k�

f1;:::;fŒK��0
hC.Pi fi /Ck�ŒK�Dg�1

J1
P[��� P[JŒK�DI

˛ h kY
jD2

d�j
2i�

i @xT hk .x; �2; : : : ; �k/
.k � 1/Š

W
f1

jK1jCjJ1jC1.x; �K1
; xJ1

/

ŒK�Y
iD2

W
fi

jKi jCjJi j.�Ki
; xJi

/:

It is readily checked from (4.13) by calling 1 the index of the element of the partitionK
for which the corresponding subset of I [ fyg contains the variable y.
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4.4. Monodromy of W
g

n ’s. We establish the analog of (3.4) for generating series
of stuffed maps of higher topologies.

Theorem 4.2. For any x interior to � , and any x2; : : : ; xn 2 C n � , we have

�xW
g
n .x; xI /C OxW

g
n .x; xI /C @xV

g
n .x; xI / D 0; (4.15)

where V gn is the potential for topology .n; g/ introduced in (4.13).

As a consequence of Lemma 4.1 and Theorem 4.2, following §3.4, there exists
a symmetric n-form in n variables W

g
n .z1; : : : ; zn/, holomorphic when z1; : : : ; zn

belong to the exterior of U in C and such that

Wg
n .z1; : : : ; zn/ D W g

n .x.z1/; : : : ; x.zn//dx.z1/ � � � dx.zn/; (4.16)

and meromorphic when one of the zi is in a neighborhood of U. Similarly, we have
a function of z

Vg
n .zI zI / D V gn .x.z/; x.zI //

Y
i2I

dx.zi / (4.17)

which is holomorphic when z is in a neighborhood of U stable under �, and such that
V
g
n .�.z/I zI / D V

g
n .zI zI / in this neighborhood. Besides, if zI is a set of .n � 1/

spectator variables in the domain of analyticity, and z 2 
" \ �.
"/ for some " > 0,
equation (4.15) translates into

�zW
g
n .z; zI /C OzW

g
n .z; zI /C dzV

g
n .zI zI / D 0 (4.18)

The definition of W0
1 .z/ and W0

2 .z1; z2/, as well as their analytic properties, were
already treated in §§3.4- 3.6.

Proof. We recall the definitions

��.x/ D �.x C i0/C �.x � i0/ and ��.x/ D �.x C i0/ � �.x � i0/:

We have the polarization formulas

�.�1 � �2/.x/ D 1

2
.��1.x/ � ��2.x/C��1.x/ ���2.x//;

�.�1 � �2/.x/ D 1

2
.��1.x/ ���2.x/C��1.x/ � ��2.x//:

We will compute the discontinuity of the Schwinger–Dyson equations in the form (4.9),
and we remind that the terms involving O�.x/; zO�.x/ and the P ’s are holomorphic
in a neighborhood of � , thus have no discontinuity across � . For g D 0, there is
a huge simplification in the sum over partitions K ` �1; k�, since we must have
h C .

P
i fi / C k � ŒK� D 0, therefore h D f1 D : : : D fŒK� D 0 and ŒK� D k,
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which means that K is the partition consisting of singletons. We will consider the
cases .n; g/ D .1; 0/; .2; 0/; .1; 1/ which are somewhat special, before explaining
the general pattern of the proof, which proceeds by induction on 2g � 2 C n. It
is possible to derive the result for all .n; g/ from the result for all .n D 1; g/ by
successive applications of the insertion operator using (4.14) (one should not forget
to act with ıx on the operator O). We will take a more direct route, which has its own
pedagogical interest, although it is more cumbersome.

For .n; g/ D .1; 0/, the Schwinger–Dyson equation only involvesW 0
1 . Therefore,

the
P0 are empty, and we easily find

�x Œ.W
0
1 .x//

2�C�xW
0
1 .x/.

zOxW 0
1 .x/C @xT

0
1 / D 0: (4.19)

Using the polarization formula to transform the first term, we infer

�xW
0
1 .x/.�xW

0
1 .x/C zOxW 0

1 .x/C @xT
0
1 .x// D 0: (4.20)

Hence, we retrieve the equation (3.4) stating that, on the discontinuity locus (the
interior of �) of W 0

1 ,

�xW
0
1 .x/C OxW

0
1 .x/C @xT

0
1 .x/ D 0: (4.21)

By definition V 01 .x/ D T 01 .x/, hence (4.15) for .n; g/ D .1; 0/.
For .n; g/ D .2; 0/, the set indexing auxiliary variables is I D f2g, hence in the

sum over .Ji /1�i�k in the Schwinger–Dyson equation (4.4), we just have to choose
in which Ji we put the element 2. We get a first term if we put 2 in J1, and .k � 1/

equal terms for 2 … J1. So, the Schwinger–Dyson equation reads

2W 0
1 .x/W

0
2 .x; x2/C @x2

�W 0
1 .x/ �W 0

1 .x2/

x � x2
�

C
X
k�1

˛
�k

h kY
jD1

d�j
2i�

i@�1
T 0
k
.�1; : : : ; �k/

.k � 1/Š .x � �1/
W 0
2 .�1; x2/

kY
iD2

W 0
1 .�i /

C
X
k�2

˛
�k

h kY
jD1

d�j
2i�

i@�1
T 0
k
.�1; : : : ; �k/

.k � 2/Š .x � �1/ W
0
1 .�1/W

0
2 .�2; x2/

kY
iD3

W 0
1 .�i / D 0:

Then, computing its discontinuity with respect to x and applying the polarization
formula for the first term, we find

�xW
0
1 .x/ �xW

0
2 .x; x2/C �xW

0
1 .x/�xW

0
2 .x; x2/C 1

.x � x2/2 �xW
0
1 .x/

C�xW
0
1 .x/OxW

0
2 .x; x2/C�xW

0
2 .x; x2/

� zOxW 0
1 .x/C @xT

0
1 .x/

� D 0:
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We collect the terms

�xW
0
1 .x/.�xW

0
2 .x; x2/C OxW

0
2 .x; x2/C 1

.x � x2/2
/

C�xW
0
2 .x; x2/.�xW

0
1 .x/C zOxW 0

1 .x/C @xT
0
1 .x// D 0;

and since W 0
1 satisfies (4.21), we find for any interior point x of �

�xW
0
2 .x; x2/C OxW

0
2 .x; x2/C 1

.x � x2/2
D 0: (4.22)

This equation was already derived in §3.6 by application of the insertion operator
on (4.21). Since by definition, V 02 .x; x2/ D � 1

x�x2
, we obtain (4.15) for .n; g/ D

.2; 0/.

We now come to .n; g/ D .1; 1/. The Schwinger–Dyson equation (4.4) reads

2W 0
1 .x/W

1
1 .x/CW 0

2 .x; x/

C
X
k�1

˛
�k

h kY
jD1

d�j
2i�

i@�1
T 0
k
.�1; �2; : : : ; �k/

.k � 1/Š .x � �1/ W 1
1 .�1/

kY
iD2

W 0
1 .�i /

C
X
k�2

˛
�k

h kY
jD1

d�j
2i�

i@�1
T 0
k
.�1; �2; : : : ; �k/

.k � 2/Š .x � �1/ W 0
1 .�1/W

1
1 .�2/

kY
iD3

W 0
1 .�i /

C
X
k�2

˛
�k

h kY
jD1

d�j
2i�

i@�1
T 0
k
.�1; �2; : : : ; �k/

.k � 2/Š .x � �1/ W 0
2 .�1; �2/

kY
iD3

W 0
1 .�i /

C
X
k�3

˛
�k

h kY
jD1

d�j
2i�

i2@�1
T 0
k
.�1; �2; : : : ; �k/

.k � 3/Š .x � �1/ W 0
1 .�1/W

0
2 .�2; �3/

kY
iD4

W 0
1 .�i /

C
X
k�1

˛
�k

h kY
jD1

d�j
2i�

i@�1
T 1
k
.�1; �2; : : : ; �k/

.k � 1/Š .x � �1/
kY
iD1

W 0
1 .�i / D 0:

(4.23)

The discontinuity of the first term can be computed by polarization formula. For the
second term, we write similarly

�x.W
0
2 .x; x// D lim

y!x
�x�yW

0
2 .x; y/:
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We find for the discontinuity of (4.23)

�xW
0
1 .x/ �xW

1
1 .x/C �xW

0
1 .x/�xW

1
1 .x/C lim

y!x
�x�yW

0
2 .x; y/

C�xW
1
1 .x/.

zOW 0
1 .x/C @xT

0
1 .x//C�xW

0
1 .x/OxW

0
1 .x/

C lim
y!x

�xOyW
0
2 .x; y/

C�xW
0
1 .x/

� X
k�3

˛
�k�1

h kY
jD2

d�j
2i�

i2 @xT 0k .x; �2; : : : ; �k/
.k � 3/Š

W 0
2 .�2; �3/

kY
iD4

W 0
1 .�i /

�

C�xW
0
1 .x/

� X
k�1

˛
�k�1

h kY
jD2

d�j
2i�

i@xT 1k .x; �2; : : : ; �k/
.k � 1/Š

kY
iD2

W 0
1 .�i /

�
D 0:

(4.24)

This can be rewritten

lim
y!x

�y

�
�xW

0
2 .x; y/C OxW

0
2 .x; y/C 1

.x � y/2
�

C .�xW
0
1 .x/C zOxW 0

1 .x/C @xT
0
1 .x//�xW

1
1 .x/

C�xW
0
1 .x/.�xW

1
1 .x/C OxW

1
1 .x/C @xV

1
1 .x// D 0;

where V 11 .x/ is the potential for tori with one boundary introduced in (4.13), namely

V 11 .x/ D
X
k�3

˛
�k�1

h kY
jD2

d�j
2i�

i2 @xT 0k .x; �2; : : : ; �k/
.k � 3/Š W 0

2 .�2; �3/

kY
iD4

W 0
1 .�i /

C
X
k�1

˛
�k�1

h kY
jD2

d�j
2i�

i@xT 1k .x; �2; : : : ; �k/
.k � 1/Š

kY
iD2

W 0
1 .�i /:

In order to obtain (4.24), we have introduced �y
�

1
.x�y/2

� D 0 in the equation to
recognize the combination appearing in (4.22). Since we already have linear equa-
tions (4.21)–(4.22) for W 0

1 and W 0
2 , we find at any interior point of �

�xW
1
1 .x/C OxW

1
1 .x/C @xV

1
1 .x/ D 0:

This case was special in the sense that we had to split W 0
2 .x; x/ in limy!xW

0
2 .x; y/

because of the pole at x D y in the equation (4.22). This issue is absent for the other
values of .n; g/.
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We now arrive to the general case. Let n � 1 and g � 0 be integers such that
2g�2Cn > 0, and .n; g/ ¤ .1; 1/. Let us assume that the result (4.15) holds for any
W
g0

n0 such that 2g0 � 2C n0 < 2g � 2C n. As before, we compute the discontinuity
with respect to x of the Schwinger–Dyson equation (4.4). In the sum over partitions
K ` �2; k�, we have to distinguish whether the element of K which contained 1
(associated to the variable �1), that we call K1, is a singleton or not. We denote K 0
the partition of �1; k� nK1 determined by the other elements of K. We then find

�x;2�x;1W
g�1
nC1 .x; x; xI /C�xW

0
1 .x/ �xW

g
n .x; xI /

C
X

J�I; 0�f�g
.J;f /¤.;;0/;.I;g/

�xW
f

jJ jC1.x; xJ / �xW
g�f
n�jJ j.x; xInJ /

C
X
i2I

�xW
g
n�1.x; xInfig/
.x � xi /2

C
X
k�1
h�0

X
J�I
0�f �g

X
K0`�2;k�

J 0

1
P[��� P[J 0

ŒK0�
DInJ

X
f 0

1;:::;f
0

ŒK0�
�0

hC.Pi f
0

i
/Ck�.ŒK0�C1/Dg�f

˛
�k�1

h kY
jD2

d�j
2i�

i@xT hk .x; �2; : : : ; �k/
.k � 1/Š

�xW
f

jJ jC1.x; xJ /
ŒK0�Y
iD1

W
f 0

i

jK0

i
jCjJ 0

i
j.�K0

i
; xJ 0

i
/

C
X
k�2
h�0

X
K0`�2;k�

f1;:::;fŒK0��0
hC.Pi fi /Ck�ŒK0�Dg

J1
P[��� P[JŒK0�DI

˛
�k�1

h kY
jD2

d�j
2i�

i@xT hk .x; �2; : : : ; �k/
.k � 1/Š

�xW
f1

jK0

1
jCjJ1jC1.x; �K1

; xJ1
/

ŒK0�Y
iD2

W
fi

jK0

i
jCjJi j.�K0

i
; xJi

/ D 0:

The indices x; i for the operators � or � in the first line indicate on which of the two
variables x they act. We can collect the terms in three steps.

� In the second line, �xW
g
n�1.x; xInfig/=.x � xi /

2 can be included in the term
�xW

g
n�1.x; xInfig/ �xW

0
2 .x; xi / arising in the sum over J � I .

� The prefactor of the terms involving �xW
f

jJ jC1.x; xJ / in the third/fourth line

can be included in the term �xW
f

jJ jC1.x; xJ / �xW
g�f
n�jJ j.x; xInJ / of the second

line. For .J; f / ¤ .I; g/, it produces: a term for which jKi j C jJi j D 1

and fi D 0 for all i , which is equal to �xW
f

jJ jC1.x; xj /OxW
g�f
n�jJ j.x; xInJ /;
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and a term equal to �xW
f

jJ jC1.x; xJ / V
g�f
n�jJ j.xI xInJ /, by comparison with the

definition of the potential for higher topologies (4.13). When .J; f / D .;; 0/, the
result is slightly different due to symmetry factors, and we obtain a contribution
�xW

g
n .x; xI /. zOW 0

1 .x/C @xT
0
1 .x//.

� The last two lines are equal to�xV
g
n .xI x; xI /. This can be checked by compar-

ing the last two lines with the expression of @1V
g�1
nC1 .xI x; xI / given in (4.15),

and noticing that @xT hk .x; �2; : : : ; �k/ is by assumption a holomorphic function
of x in a neighborhood of � .

Therefore, we have found

�xW
0
1 .x/.�xW

g
n .x; xI /C OxW

g
n .x; xI /C @xV

g
n .xI xI //

C�xW
g
n .x; xI /.�xW

0
1 .x/C zOxW 0

1 .x/C @xT
0
1 .x//

C
X

J�I; 0�f�g
.J;f /¤.;;0/;.I;g/

�xW
f

jJ jC1.x; xJ /
�
�xW

g�f
n�jJ j.x; xInJ /

C OxW
g�f
n�jJ j.x; xInJ /C ın�jJ j;2 ıg�f;0

.x � xInJ /2
�

C�x;1.�x;2W
g�1
nC1 .x; x; xI /C Ox;2W

g�1
nC1 .x; x; xI /C @1V

g�1
nC1 .xI x; xI // D 0:

(4.25)

By the induction hypothesis, the three last lines vanish: we deduce that for any interior
point x of � ,

�xW
g
n .x; xI /C OxW

g
n .x; xI /C @xV

g
n .xI xI / D 0;

which is the desired result.

4.5. From Schwinger–Dyson equations to quadratic loop equations. We define
for convenience

MWg
n .z1; : : : ; zn/ D Wg

n .z1; : : : ; zn/C ın;2ıg;0
dx.z1/ dx.z2/

.x.z1/ � x.z2//2 (4.26)

The only difference is that now MW0
2 .z1; z2/ D !02.z1; z2/, thus has a singularity at

z1 D z2 only.

Theorem 4.3. For any .n; g/ ¤ .1; 0/; .2; 0/, the quadratic differential form in z

Qg
n .zI zI / D MW

g�1
nC1 .z; �.z/; zI /C

X
J�I
0�f �g

MW
f

jJ jC1.z; zJ / MW
g�f
n�jJ j.�.z/; zJ / (4.27)

has double zeroes at z D ˙1, i.e. x.z/ 2 fa; bg.

The content of this theorem is that, although W
g
n can have poles of high order at

z D ˙1, the combination Q
g
n .zI zI / does not.
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Proof. To arrive to (4.27), we recast the Schwinger–Dyson equation (4.9) using the
same decomposition of the sum over partitions K ` �1; k� which led to (4.25). We
find

zQg
n .zI zI /C W

g�1
nC1 .z; z; zI /

C Oz;2W
g�1
nC1 .z; z; zI /C .1� ın;1ıg;0/d2Vg�1

nC1 .zI z; zI /
C .2W0

1 .z/C zOzW0
1 .z/C dzV0

1 .z//W
g
n .z; zI /

C W0
1 .z/.OzW

g
n .z; zI /C dzVg

n .zI zI //
C

X
J�I; 0�f�g.J;f /¤.;;0/;.I;g/

W
f

jJ jC1.z; zJ /.W
g�f
n�jJ j.z; zInJ /

C OzW
g�f
n�jJ j.z; zInJ /

C dzV
g�f
n�jJ j.zI zInJ // D 0

(4.28)

where

zQg
n .zI zI / D �dx.z/ dzi

� W
g
n�1.zI /

dx.zi/ .x.z/ � x.zi //2

�

�
X
k�1
h�0

X
K`�1;k�

J1
P[��� P[JŒK�DI

X
f1;:::;fŒK��0

hC.Pi fi /Ck�ŒK�Dg

˛
Uk

P h
k
.z; �1I �2; : : : ; �k/

.k � 1/Š .x.z/� x.�1//
ŒK�Y
iD1

W
fi

jKi jCjJi j.�Ki
; zJi

/:

(4.29)

The contribution
P
i2I dx.z/ dzi

� W
g
n�1

.zI /

.x.z/�x.zi //
2

�
to the Schwinger–Dyson equations

was included in the term V0
2 appearing in the sum of the fourth line. We have

introduced the differential form version of (4.8), and

P h
k .z; �1I �2; : : : ; �k/ D dx.�1/ dzT hk .x.z/; x.�2/; : : : ; x.�k//

x.z/ � x.�1/

� dx.z/ d�1
T h
k
.x.�1/; x.�2/; : : : ; x.�k//

x.z/ � x.�1/ ;

and in (4.29), the variables �i are integrated over the unit circle. We already observe
that zQg

n .zI zI / has a double zero at z D f˙1g, since it is a holomorphic function
in a neighborhood of z D ˙1 multiplied by

�
dx.z/

�2
. We also recognize in (4.28)

combinations which can be represented using

W
g0

n0 .�.z/; zJ / D �W
g0

n0 .z; zJ / � OzW
g0

n0 .z; zJ / � dzV
g0

n0 .z; zJ /:

If we rewrite the equality (4.28) in terms of!g
0

n0 .z; zJ / and!g
0

n0 .�.z/; zJ /, we conclude
after some algebra that Q

g
n .zI zI / D zQg

n .zI zI /.
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5. Solution by the topological recursion

5.1. Main result. Assuming that t; t are tame, we are going to show that the gener-
ating series of stuffed maps W g

n (in the x variables) or W
g
n (in the z variables), are

given up to a shift – which is essential – by the topological recursion of [24] applied
to the initial data

!01.z/ D W0
1 .x.z//dx.z/; (5.1)

together with the Bergman kernel

!02.z1; z2/ D
�
W0
2 .x.z1/; x.z2//C 1

.x.z1/ � x.z2//2

�
dx.z1/dx.z2/; (5.2)

and local involution given by �.z/ D 1=z (this is Theorem 5.1 below).
For this purpose, we remind the definition of the local Cauchy kernel

G.z0; z/ D
ˆ z

!02.z0; �/;

and introduce the recursion kernel

K.z0; z/ D 1

2

�zG.z0; z/

�z!
0
1 .z/

D �
1

2

ˆ z

	.z/

!02.z0; �/
!01.z/ � !01.�.z//

:

For 2g � 2C n > 0, we introduce the meromorphic forms

!gn .z1; : : : ; zn/ D Wg
n .z1; : : : ; zn/dx.z1/ � � � dx.zn/

and from Theorem 4.2, we have the inhomogeneous linear equations

�z!
g
n .z; zI /C Oz!

g
n .z; zI /C dzVg

n .z; zI / D 0 (5.3)

According to Lemma 3.5 and Lemma 4.1, !gn .z; zI / is meromorphic in a neighbor-
hood of U, and has poles only at z D ˙1. Therefore, and since we are working in the
realm of formal series in t; t, we can apply Lemma 3.8 and Lemma 3.6 to represent,
for .n; g/ ¤ .1; 0/; .2; 0/,

!gn .z; zI / D ˆgn.zI zI /C Res
z!˙1

�zG.z0; z/

4
�z!

g
n .z; zI / (5.4)

and

ˆgn .z0I zI / D 1

4i�

˛
z2U

G.z0; z/ dzVg
n .zI zI /

D 1

4i�

˛
z2U

!02.z0; z/Vg
n .zI zI /:

(5.5)
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The expression (5.5) is valid when z0 is outside U, and can be analytically continued
inside U. We remind that ˆgn .z; zI / is holomorphic in a neighborhood of U. Then,
we decompose Q

g
n defined in (4.27) as

Qg
n .zI zI / D 1

2
�z!

0
1.z/ �z!

g
n .z; zI /�

1

2
�z!

0
1.z/�z!

g
n .z; zI /CEgn .zI zI / (5.6)

and

Egn .zI zI / D !
g�1
nC1.z; �.z/; zI /C

X
J�I; 0�f �g

.J;f /¤.;;0/;.I;g/

!
f

jJ jC1.z; zJ / !
g�f
n�jJ j.�.z/; zInJ /:

The first term in (5.6) has a double zero at z D ˙1. So does Q
g
n .zI zI / accord-

ing to Theorem 4.3. Therefore, if we plug the expression for �zW
g
n .z; zI / in

terms of Q
g
n .z; zI /, we find that the only term contributing to the residue in (5.4)

is E
g
n .z; �.z/; zI /. So, we have proved the following theorem.

Theorem 5.1. If t; t is tame, we have the recursion relation, for any .n; g/ ¤
.1; 0/; .2; 0/,

!gn .z0; zI / D ˆgn.zI zI /
C Res

z!1
K.z0; z/

h
!
g�1
nC1.z; �.z/; zI /

C
X

J�I; 0�f�g
.J;h/¤.;;0/;.I;g/

!
f

jJ jC1.z; zJ / !
g�f
n�jJ j.�.z/; zInJ /

i
:

(5.7)

This is a topological recursion, since the right-hand side involves only !g
0

n0 with
2g0 � 2C n0 < 2g � 2C n. The form of the recursion is universal, it only depends
on the model through the initial condition !01 and !02 , and the monodromy opera-

tor �. Evaluating !g
0

n0 .z1; zJ / at z1 D �.z/ is done by Theorem 4.2, which led to the
expression (5.3) for the monodromy.

5.2. Examples of Euler characteristics �1

5.2.1. Torus with 1 boundary. For .n; g/ D .1; 1/, (5.7) becomes

!11.z0/ D ˆ11.z/C Res
z!˙1K.z0; z/ !

0
2.z; �.z//;
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and (5.5) gives

ˆ11.z0/ D 1

4i�

2

.k � 3/Š
X
k�3

ˆ
Uk

2 T 0k .x.�1/; : : : ; x.�k//

!02 .z0; �1/ !
0
2.�2; �3/

kY
jD4

!01.�j /

C 1

4i�

1

.k � 1/Š
X
k�1

ˆ
Uk

2 T 1k .x.�1/; : : : ; x.�k// !
0
2.z0; �1/

kY
jD2

!01 .�j /:

5.2.2. Sphere with 3 boundaries. For .n; g/ D .3; 0/, we compute from (5.7)

!03.z1; z2; z3/

D ˆ03.z1I z2; z3/
C Res
z!˙1K.z1; z/.!

0
2.z; z2/!

0
2.�.z/; z3/C !02.z; z3/!

0
2.�.z/; z2//

D Res
z!˙1

!02.z; z1/!
0
2.z; z2/!

0
2.z; z3/

2dx.z/ dy.z/
;

(5.8)

where we have defined the function y which is the analytic continuation of�xW 0
1 .x/

in the z-plane, and has simple zeroes at z D ˙1. The integrand in (5.8) has a simple
pole at z D ˙1 owing to dx.z/ in the denominator. Hence, the residue can be
evaluated:

!02.1; z1/!
0
2.1; z2/!

0
2.1; z3/

x0.1/y0.1/
C !02.�1; z1/!02.�1; z2/!02.�1; z3/

x0.�1/y0.�1/ ;

where ˛ means that we divide the 1-form by dz and evaluate the function obtained
in this way at z D ˛. Besides, from (5.5), we have

ˆ03.z1; z2; z3/

D 1

4i�

X
k�3

1

.k � 3/Š

˛
Uk

T 0k .x.�1/; : : : ; x.�k//

!02.�1; z1/ !
0
2.�2; z2/ !

0
2.�3; z3/

kY
jD4

!01.�j /:

We observe that both !03.z1; z2; z3/ and ˆ03.z1; z2; z3/ are symmetric in their 3 vari-
ables, although this is not obvious of the definition.

We leave to a future investigation the study of the symmetry properties of both
!
g
n .z1; : : : ; zn/ and ˆgn .z1; : : : ; zn/.
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5.3. Generating series of closed stuffed maps. The generating series of connected
closed stuffed maps of genus g is denoted F g (see (2.8)). It is characterized by its
derivatives with respect to the parameters t of the model

@F g

@thm1;:::;mk

D .�1/k Res
x1!1 � � � Res

xn!1
h kY
iD1

x
mi

i dxi
i X

K`�1;k�
f1;:::;fŒK��0

hC.Pi fi /Ck�ŒK�Dg

W
fi

jKi j.xKi
/:

(5.9)

The residue just picks up the coefficient of x�.m1C1/ � � �x�.mk C1/
k

in the Laurent
expansion at 1 of the integrand. We leave to a future investigation the simultaneous
integration of (5.9) to get a closed formula forF g in terms ofW g0

n0 ’s. For usual maps,
this step was performed systematically in [20], but the problem here seems more
complicated since the evaluation of !gn .z1; : : :/ at z1 D �.z/ involves the operator O

in (3.15) and thus depends explicitly on t.

5.4. Abstract loop equations with initial conditions. In the terminology of [13],
Theorem 4.2 means that !�� defined by (5.1), (5.2) and (5.5) satisfy linear loop equa-
tions, which are here solvable thanks to Lemma 3.6 because we work in the realm
of formal series in t; t. Theorem 4.3 then established that !�� satisfies quadratic loop
equation. The recursion formula (5.7) is then shown in [13], Proposition 2.7, to be a
consequence of those two properties, §5.1 merely follows the proof of this result.

For usual maps (or for the usual single trace, 1-hermitian matrix model), the
relation betweenW g

n .x1; : : : ; xn/ the generating series of maps (resp. the coefficients
in a largeN expansion of the n-point correlation functions) and the !gn satisfying the
usual topological recursion of [24], was

!gn .z1; : : : ; zn/

D
�
W g
n .x.z1/; : : : ; x.zn//C ın;2

1

.x.z1/ � x.z2//2
�
dx.z1/dx.z2/:

It included a shift only for the unstable topologies .n; g/ D .1; 0/; .2; 0/. Here, for
stuffed maps (or for the multi-trace hermitian matrix model), there is a shift between
the residue formula and !gn for any .n; g/, and this shift is given by ˆgn (see (5.5)),
in terms of the potentials for topology .n; g/ discussed in §4.3. In some sense, we
can see ˆgn as a way to include an “initial condition” for each stable topology in the
topological recursion.
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Appendix A. Two matrix model realization of stuffing

Consider two N �N hermitian matrices with formal measure

d�.M1;M2/

/ dM1 dM2 det.1 � ˛M1 ˝M2/
�
 exp.�NTr V1.M1/ �N Tr V2.M2//:

(A.1)

It induces on M1 the distribution

d�.M1/

/ dM1 exp
� �N Tr V1.M1/

�ˆ
HN

dM2 exp.�N Tr V2.M2//

det.1 � ˛M1 ˝M2/
�


/ dM1 exp.�N Tr V1.M1//

ˆ
HN

dM2 exp
�

�N Tr V2.M2/

C 	
X
`�1

˛`

`
TrM `

1 TrM `
2

�

/ dM1 exp
�

�N Tr V1.M1/C
X
k�1

	k

kŠ

X
`1;:::;`k�1

LT`1;:::;`k

`1 � � � `k
kY
iD1

TrM `i

1

�
;

where
LT`1;:::;`k

D ˛`1C���C`k hTrM `1

2 � � � TrM `k

2 iM2;c ;

and by definition

hf .M2/iM2
D

ˆ
HN

dM2 exp.�N Tr V2.M2// f .M2/

ˆ
HN

dM2 exp.�N Tr V2.M2//

; (A.2)

and the subscript c stands for “cumulant.” In other words, the marginal distribution
of M1 in the model (A.1) is of the form (1.2), where T`1;:::;`k

are by definition the
coefficients of the k-point correlators LWk of the matrix M2 for the measure defined
in (A.2):

dx1
� � � dxk

LTk.x1; : : : ; xk/

D
X

`1;:::;`k�1
LT`1;:::;`k

kY
iD1

x`i �1dxi

D LWk.1=.˛x1/; : : : ; 1=.˛xk//d.�1=.˛2x1// � � � d.�1=.˛2xk//
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and

LWk.�1; : : : ; �k/ D
D kY
jD1

Tr
1

�j �M2

E
M2;c

:

The fatgraphs underlying the formal model (A.1) are dual to usual maps with two
types of faces (associated to M1 or to M2), and the particular coupling between M1

and M2 ensures that we can collect faces of the same type in clusters which are
actually usual maps made of faces of type M1 only. Therefore, a map appearing in
the combinatorial description behind (A.1) can be seen as a stuffed map (in the sense
of §2.1) associated withM1, whose elementary 2-cells are themselves usual maps (of
arbitrary topology) made of faces of type M2. This justifies the name of “stuffing.”
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