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The bialgebra of specified graphs and external structures

Dominique Manchon and Mohamed Belhaj Mohamed1

Abstract. We construct a Hopf algebra structure on the space of specified Feynman graphs of a
quantum field theory. We introduce a convolution product and a semigroup of characters of this
Hopf algebra with values in some suitable commutative algebra taking momenta into account.
We then implement the renormalization described by A. Connes and D. Kreimer in [2] and
the Birkhoff decomposition for two renormalization schemes: the minimal subtraction scheme
and the Taylor expansion scheme.
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1. Introduction

Hopf algebras of Feynman graphs have been studied by A. Connes and D. Kreimer
in [2], [4], [3], and [10] as a powerful tool to explain the combinatorics of renormal-
ization in quantum field theory. In this note we are interested in the Hopf algebras of
specified Feynman graphs, an example of which has been studied by A. Connes and
D. Kreimer in [2].

In Section 2, we review the simpler case of Hopf algebras of locally one-particle
irreducible (1PI) Feynman graphs, neglecting the specification at this stage. First
we consider a theory of fields T (for example '3 in [2], '4 in [15], QED and QCD
in [15], [16], etc.) which gives rise to Feynman graph types determined by T : the
type of a vertex is determined by the type of half-edges that are adjacent to it. We then
construct a structure of commutative bialgebra zHT on the space of locally 1PI graphs
of T . The coproduct is given by

�.�/ D
X
���

�=�2T

� ˝ �=�;

1Research supported by projet CMCU Utique 12G1502 and by Agence Nationale de la Recherche
(CARMA ANR-12-BS01-0017).
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where the sum runs over all locally 1PI covering subgraphs of � such that the con-
tracted subgraph �=� is in the theory T (in other words, locally 1PI superficially
divergent subgraphs [1]). The Hopf algebra HT is obtained by taking the quotient
of the bialgebra zHT above by the ideal generated by 1 � � , where the unit 1 is the
empty graph and � is a 1PI graph without internal edges.

In Section 3, we introduce the specification. We are led by quantum field theory
to distinguish between vertices of the same type. For example the list of vertices
admitted in '3 theory and in QED are respectively

¹
0

;
1

; º and
°

0
;

1
; ;

1

±
:

The contraction of a subgraph on a point rises a problem: For example in '3

theory, if we contract the subgraph inside the graph , shall we get

0

or
1

?

Similarly for QED, does the contraction of inside give
0

or
1

?

We will remedy to this in a purely combinatorial way, by introducing the specified
graph

x� D .�; i/

where i is a multi-index which identifies the type of residue of � , that is to say,
the vertices obtained by contracting each connected components onto a point, for

example res
� � D . The formula for the coproduct of specified graphs is

then given by:

�.x�/ D
X
N��x�

x�= N�2T

N� ˝ x�= N�;

where the sum runs over all locally 1PI specified covering subgraphs N� D .�; j / of
x� D .�; i/ (see definition 1), such that the contracted subgraph .�=.�; j /; i/ is in the
theory T . Here j is a multi-index that identifies the residue of each of the connected
components of � . The Hopf algebra HT is again obtained by identifying the specified
graphs without internal edges with the unit.

In Section 4, we are interested in external structures. Feynman rules associate
to each graph a function which depends on momenta associated with each half edge
of the graph, with the constraints pe C pe0 D 0 for each internal edge .ee0/ and
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P
e2st.v/ pe D 0 for any vertex v, where st.v/ is the set of half-edges adjacent to v.

Feynman rulesˆ do depend on the refined types of vertices, but do not depend on the
overall specification. Refined types of vertices combine themselves in a nice way; for
example, in '3 theory,

0
and

1
combine to an edge , namely [2]:

ˆ
�

0

�
Cˆ

�
1

�
D ˆ

� �
:

Similarly in QED we have

ˆ
� �

D ˆ
� �

;

and
ˆ

�
0

�
Cˆ

�
1

�
D ˆ

� �
:

Considering the relations above we could have chosen only one type of bivalent vertex
for '3 or for the electron edges in QED, and discard the bivalent vertex for the photon
edges: these are the conventions adopted in [16]. We have chosen not to consider
this simplification, in order to follow [2] more closely.

We introduce a semi-group G of characters of zHT with values in some suitable
commutative algebra B, and a convolution product ~ on G. We then implement in
this framework the renormalization described by A. Connes and D. Kreimer in [2]
(see also [5], Chapter 1, §5 and §6), replacing B by

A
defD BŒz�1; z��:

We show that each element of G has a unique Birkhoff decomposition for minimal
renormalization scheme

A D A� ˚ AC;

where
AC

defD BŒŒz�� and A�
defD z�1BŒz�1�:

We also implement the Birkhoff decomposition associated with Taylor expansions in
the algebra B itself, along the lines of [14]. The interest of the construction presented
here is the purely combinatorial nature of the bialgebra zHT and the Hopf algebra HT :
all the dependence on momenta is removed in the target algebra B described in
Section 4. The Feynman rules, given by the integration of these functions on the
internal momenta, will be the subject of a future article.

Acknowledgements. We would likes to thank Kurusch Ebrahimi-Fard for discus-
sions and remarks.
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2. Hopf algebras of Feynman graphs

2.1. Basic definitions. A Feynman graph is a (non-planar) graph with a finite num-
ber of vertices and edges, which can be either internal or external: an internal edge
is an edge connected at both ends to a vertex; an external edge is an edge with one
open end, the other end being connected to a vertex. The edges are obtained by using
half-edges.

More precisely, let us consider two finite sets V and E . A graph � with V (resp.
E) as set of vertices (resp. half-edges) is defined as follows. Let

� W E �! E

be an involution and let

@ W E �! V :

For any vertex v 2 V we denote by

st.v/
defD ¹e 2 E=@.e/ D vº

the set of half-edges adjacent to v. The fixed points of � are the external edges and
the internal edges are given by the pairs

¹e; �.e/º; e ¤ �.e/:

The graph � associated to these data is obtained by attaching half-edges e 2 st.v/ to
any vertex v 2 V , and joining the two half-edges e and �.e/ if �.e/ 6D e.

Several types of half-edges will be considered later on: the set E is partitioned
into several pieces Ei . In that case we ask that the involution � respects the different
types of half-edge, i.e. �.Ei / � Ei .

We denote by � .�/ the set of internal edges and by Ext.�/ the set of external
edges. The loop number of a graph � is given by:

L.�/ D j� .�/j � jV.�/j C j�0.�/j ;
where �0.�/ is the set of connected components of � .

A one-particle irreducible graph (in short, 1PI graph) is a connected graph which
remains connected when we cut any internal edge. A disconnected graph is said to
be locally 1PI if any of its connected components is 1PI.

is 1PI and is not.
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A covering subgraph of � is a Feynman graph � (not necessarily connected),
obtained from � by cutting internal edges. In other words:

(1) V.�/ D V.�/;

(2) E.�/ D E.�/;

(3) ��.e/ D e H) �� .e/ D e;

(4) if �� .e/ ¤ ��.e/, then we have �� .e/ D e and �� .��.e// D ��.e/.

For any covering subgraph � , the contracted graph �=� is defined by shrinking
all connected components of � inside � onto a point, i.e.

� D ; � D H) �=� D

and

� D ; � D H) �=� D :

The residue of the graph � , denoted by res.�/, is the contracted graph �=� . In
other words, it is the only graph with no internal edge and the same external edges
than those of � .

res
� �

D and res
� �

D :

The skeleton of a graph � denoted by sk.�/ is a graph obtained by cutting all
internal edges, for example:

sk
� �

D :

2.2. The bialgebra zHT . We will work inside a physical theory T , which involves
Feynman graphs of some prescribed type: '3; '4, QED, QCD, etc. We denote by
E.T / the set of possible types of half-edges and by V.T / the set of possible types of
vertices.

Example 1. We have

E.'3/ D ¹ º;
V.'3/ D ¹ ; º;

E.QED/ D ¹ ; º;
and

V.QED/ D
°

; ;
±
:
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An element of V.T / can be seen as a function from E.T / into N which to each
type of half-edge associates the number of half-edges of that type arriving on the
vertex in question. Actually the typology of vertices presented here is too coarse, we
will return to this point in Section 2, with the introduction of specified graphs.

Let zVT be the set of 1PI connected graphs � with edges in E.T / and vertices in
V.T / such that res.�/ is a vertex in VT (condition of superficial divergence; see [1],
[2], and [10]). Let

zHT D S. zVT /

be the vector space generated by superficially divergent, locally 1PI, not necessarily
connected Feynman graphs. The product is given by concatenation, the unit 1 is
identified to the empty graph, and the coproduct is defined by

�.�/ D
X
���

�=�2T

� ˝ �=�:

In the above sum, � runs over all locally 1PI covering subgraphs of � such that the
contracted subgraph �=� is in the theory T .

Example 2. In '3 theory we have

�
� �

D ˝ C ˝

C 2 ˝ C 2 ˝

C ˝ C ˝ :

The last term is removed because … '3.

In QED we have

�
� �

D ˝

C ˝ C 2 ˝

C 2 ˝ C ˝ :
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Theorem 1. Equipped with this coproduct, zHT is a bialgebra.

Proof. � is coassociative. Indeed we have

.�˝ id/�.�/ D
X
���

�=�2T

�.�/˝ �=� D
X

ı����

�=ıI �=�2T

ı ˝ �=ı ˝ �=�

and

.id ˝�/�.�/ D
X
ı��

�=ı2T

ı ˝�.�=ı/ D
X

ı�� I Q���=ı

.�=ı/= Q� I �=ı2T

ı ˝ Q� ˝ .�=ı/= Q�:

For any covering subgraph ı of � such that �=ı 2 T , there is an obvious bijection

� 7�! Q� D �=ı

from covering subgraphs of � containing ı such that �=� 2 T and �=ı 2 T , onto
covering subgraphs of �=ı such that .�=ı/= Q� 2 T , given by shrinking ı; see [11].
For all Q� � �=ı there exist a unique covering subgraph � of � containing ı such that
Q� Š �=ı and we have .�=ı/= Q� Š �=� . We then obtain

.id ˝�/�.�/ D
X

ı����

�=ı2T

ı ˝�.�=ı/ D
X

ı����

�=�I �=ı2T

ı ˝ �=ı ˝ �=�:

The two expressions coincide, therefore � is coassociative. The counit is given by
".�/ D 1 if � has no internal edges, and ".�/ D 0 for any graph having at least
one internal edge. The bialgebra zHT is graded and the grading is given by the
number L.

2.3. The Hopf algebra HT . The Hopf algebra HT is given by identifying all ele-
ments of degree zero (the residues) to unit 1:

HT D zHT =J;

where J is the ideal generated by the elements 1 � res.�/ where � is an 1PI graph.
HT is a connected graded bialgebra, it is therefore a connected graded Hopf algebra,
which can be identified as a commutative algebra with S.VT /, where VT is the vector
space generated by the 1PI connected Feynman graphs. The coproduct then becomes:

�.�/ D 1 ˝ � C � ˝ 1 C
X

� proper subgraph of �

loc 1PI. �=�2T

� ˝ �=�:
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Example 3. In '3 theory we have

�
� �

D 1 ˝ C ˝ 1 C 2 ˝

C 2 ˝ C ˝ C ˝ :

In QED we have

�. /

D 1 ˝ C ˝ 1 C ˝

C 2 ˝ C 2 ˝ :

3. The specified Feynman graphs Hopf algebra

3.1. The bialgebra zHT . In this paragraph, we denote by zV.T / the set of possible
refined types of vertices: for t 2 V.T /, you can have a vertices of the same type
t but with different refined type. For any refined type Qt 2 zV.T / we denote by ŒQt �
the underlying vertex type. We denote also Qt D .t; i/ where the index i serves to
distinguish the refined types of same underlying type.

Example 4. We have

zV.'3/ D ¹
0

;
1

; º
and

zV.QED/ D
°

0
;

1
; ;

1

±
:

Remark 1. Note that the types of half-edges adjacent to a vertex v are not sufficient
to determine its refined type.

Definition 1. A specified graph of theory T is a couple .�; i/ where

(1) � is a locally 1PI superficially divergent graph with half-edges and vertices of
the type prescribed in T ;

(2) i W �0.�/ ! N, the values of i.�/ being prescribed by the possible types of
vertex obtained by contracting the connected component � on a point.
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We will say that .�; j / is a specified covering subgraph of .�; i/, ..�; j / � .�; i// if

(1) � is a covering subgraph of � and

(2) if �0 is a full connected component of � , i.e if �0 is also a full connected com-
ponent of � , then j .�0/ D i.�0/.

Remark 2. Sometimes we denote by x� D .�; i/ the specified graph, and we will
write N� � x� for .�; j / � .�; i/.

Definition 2. Let be .�; j / � .�; i/. The contracted specified subgraph is written

x�= N� D .�= N�; i/;
where �= N� is obtained by contracting each connected component of � on a point,
and specifying the vertex obtained with j .

Remark 3. The specification i is the same for the graph x� and the contracted
graph x�= N� .

Let zHT be the vector space generated by the specified superficially divergent
Feynman graphs of a field theory T . The product is given by the concatenation, the
unit 1 is identified with the empty graph and the coproduct is defined by

�.x�/ D
X
N��x�

x�= N�2T

N� ˝ x�= N�;

where the sum runs over all locally 1PI specified covering subgraphs N� D .�; j / of
x� D .�; i/ , such that the contracted subgraph .�=.�; j /; i/ is in the theory T .

Theorem 2. Equipped with the coproduct �, zHT is a bialgebra.

Proof. � is coassociative. Indeed we have

.�˝ id/�.x�/ D
X
N��x�

x�= N�2T

�. N�/˝ x�= N� D
X

Nı� N��x�
N�= NıI x�= N�2T

Nı ˝ N�= Nı ˝ x�= N�:

and

.id ˝�/�.x�/ D
X
Nı�x�

x�= Nı2T

Nı ˝�.x�= Nı/ D
X

Nı�x�I N̨�x�= Nı
.x�= Nı/= N̨ I x�= Nı2T

Nı ˝ N̨ ˝ .x�= Nı/= N̨ :
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For any specified covering subgraph Nı of � such that x�= Nı 2 T , there is an obvious
bijection

N� 7�! N̨ D N�= Nı
from specified covering subgraphs of x� containing Nı such that .x�= Nı/= N̨ , x�= Nı 2
T , onto specified covering subgraphs of x�= Nı such that N�= Nı, x�= N� 2 T , given by
shrinking Nı. Then for any specified covering subgraph N̨ D .˛; j / of �= Nı there exists

a unique specified covering subgraph N� D .�; j / of x� such that ı � � and ˛ Š �= Nı,
we have N̨ Š N�= Nı and .x�= Nı/= N̨ Š x�= N� . We obtain

.id ˝�/�.x�/ D
X

Nı� N��x�
N�= NıI x�= N�2T

Nı ˝ N�= Nı ˝ x�= N�:

Then � is coassociative, zHT is a bialgebra where the counit is given by ".x�/ D 1 if
x� has no internal edges, and ".x�/ D 0 for any graph x� having at least one internal
edge.

Example 5. In '3 theory we have

�
�

; 0
�

D
�

; 0
�

˝
0

C ˝
�

; 0
�

C . ; 0/˝
�

0

; 0
�

C . ; 1/˝
�

1

; 0
�
:

In QED we have

�
�

; 1
� D ˝ �

; 1
�

C �
; 1

� ˝
1

C
�

; 0
�

˝ �
0

; 1
�

C
�

; 1
�

˝ �
1

; 1
�
:
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3.2. The Hopf algebra HT . The Hopf algebra HT is given by identifying all ele-
ments of degree zero (the residues) to unit 1:

HT D zHT =J;

where J is the ideal generated by the elements 1� res.x�/, where x� is an 1PI specified
graph. HT is a connected graded bialgebra. It is therefore a connected graded Hopf
algebra. The coproduct then becomes

�.x�/ D 1 ˝ x� C x� ˝ 1 C
X

N� proper subgraph of x�
loc 1PI. x�= N�2T

N� ˝ x�= N�:

Example 6. Taking the same graphs as in Example 5, we obtain in '3 theory (see [2])

�
�

; 0
�

D
�

; 0
�

˝ 1 C 1 ˝
�

; 0
�

C . ; 0/˝
�

0

; 0
�

C . ; 1/˝
�

1

; 0
�
:

In QED we have (see [16])

�
�

; 1
�

D 1 ˝ �
; 1

� C �
; 1

� ˝ 1

C . ; 0/˝ �
0

; 1
� C . ; 1/˝ �

1
; 1

�
:

4. External structures

4.1. The unordered tensor product. Let A be a finite set, and let Vj be a vector
space for any j 2 A. The product

Q
j 2A Vj is defined by

Y
j 2A

Vj
defD

°
v W A �!

a
j 2A

Vj W v.i/ 2 Vi ; i 2 A
±
:

The space

V
defD

O
j 2A

Vj
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is then defined by the following universal property: for any vector space E and for
any multilinear map F W Q

j 2A Vj �! E, there exists a unique linear map xF such
that the following diagram is commutative:

N
j 2A

Vj

xF

��Q
j 2A Vj

v 7! N
j 2A

vj

���������������������

F
�� E:

Remark 4. Let .e�/�2ƒj
be a basis of Vj . A basis of

N
j 2A Vj is given by

�
f� D

O
j 2A

e�.j /

�
�2ƒ

;

where
ƒ D

Y
j 2A

ƒj D
°
� W A �!

a
j 2A

ƒj W �.j / 2 ƒj

±
:

4.2. An algebra of C 1 functions. Let D be an integer � 1 (the dimension). For
any half-edge e of � we denote by pe 2 RD the corresponding moment. More
precisely the moment space of graph � is defined by

W� D
°
p W E.�/ �! RD;

X
e2st.v/

pe D 0 W v 2 V.�/;

pe C p�.e/ D 0;

e 2 V.�/; e ¤ �.e/
±
:

In particular, we have

Wres.�/ D
°
.p1; : : : ; pjExt.�/j/ W pj 2 RD;

jExt.�/jX
j D1

pj D 0
±
:

We introduce then

V�
defD C1.W� ;C/; � connected,

V
defD

Y
� connected

V� ;

and, finally,

B
defD

Y
� connected or not

V� ; (1)
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where the space

V�
defD

O
j 2A

V�j

is the unordered tensor product of the V�j
’s and where the �j ’s are the connected

components of� . The space V� is naturally identified with a subspace of C1.W� ;C/
via O

j 2A

vi .p/
defD

Y
j 2A

vj .pj /

with

pj
defD pjE.�j /:

We equip also B with the unordered concatenation product denoted by “�”: for

v D
O
j 2A

vj 2 V� and v0 D
O
j 2B

vj 2 V�0

(with A \ B D ;), the product v � v0 2 V��0 is defined by

v � v0 D
O

j 2A
`

B

vj :

The product � is commutative by definition. This definition extends naturally to a
bilinear product B � B ! B.

Proposition 1. Let �1 and �2 be two (not necessarily connected), graphs and let
� D �1�2. For any v1; v

0
1 2 V�1

and v2; v
0
2 2 V�2

we have the equality in V�

.v1v
0
1/ � .v2v

0
2/ D .v1 � v2/.v

0
1 � v0

2/:

Proof. For p1 2 W�1
and p2 2 W�2

we have

.v1v
0
1/ � .v2v

0
2/.p1; p2/ D v1v

0
1.p1/v2v

0
2.p2/

D v1.p1/v
0
1.p1/v2.p2/v

0
2.p2/

D v1.p1/v2.p2/v
0
1.p1/v

0
2.p2/

D .v1 � v2/.p1; p2/.v
0
1 � v0

2/.p1; p2/

D .v1 � v2/.v
0
1 � v0

2/.p1; p2/:
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4.3. The convolution product ~. Let� be a graph and � a covering subgraph of � .
We denote by

i�;� W V�=� ,�! V�

and

��;� W V� �� V�

two morphisms of algebras which are defined as follows.
Let

F�;� W W� �! W�=�

be the projection of W� onto W�=� by neglecting the internal moments of � , that we
can still be defined by the following commutative diagram:

E.�/

p

��
E.�=�/

� �

inj.�;�/

����������������������

F�;� .p/
�� RD:

where inj.�; �/ is the natural injection and F�;� D inj.�; �/�. We now consider the
following commutative diagram:

W�=�

f

��
W�

F�;�

�� ��������������������

F�;�
�f

�� C:

We define the injection i�;� by

i�;� D F�;�
�:

We denote by

G�;� W W� ,�! W�

the natural inclusion of W� in W� and we consider the following commutative dia-
gram:
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W�

f

��
W�

� �

G�;�

��������������������

G�;�
�f

�� C:

We define the surjection ��;� by

��;�
defD G�;�

� W V� �� V� :

Let zHT be the specified Feynman graphs bialgebra associated with a theory T .
We denote by L. zHT ;B/ the space of C-linear maps

	 W zHT �! B

and by zL. zHT ;B/ the subspace of L. zHT ;B/ of 	 such that

(1) 	 does not depend on the specification of � , in other words: 	.�; i/ D 	.�/;

(2) 	.�/ 2 V� for any graph � , i.e. the projection of 	.�/ on V�0 vanishes for any
graph � 0 6D �;

(3) 	.�/ D 1V�
if � has no internal edges, where 1V�

denotes the constant function
equal to 1 on W� .

Then we define a convolution product ~ for all	, 
 2 zL. zHT ;B/ and for all specified
graphs .�; i/ by

.	~ 
/.�; i/ D .	~ 
/.�/

D
X

.�;j /�.�;i/

.�;i/=.�;j /2T

��;� Œ	.�/�i�;� Œ
.�=.�; j //�: (2)

The product used in the right hand side is the pointwise product in V� .

Theorem 3. The product ~ is associative.

Proof. Let 	; 
 and � be three elements of zL. zHT ;B/ and .�; i/ a specified graph.
We denote indifferently x� D .�; i/, N� D .�; j /, Nı D .ı; k/ and x�= N� D .�=.�; j /; i/.
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First, we have

	~ .
~ �/.�; i/

D 	~ .
~ �/.�/

D
X
Nı�x�

x�= Nı2T

�ı; � Œ	.ı/�i�; ı Œ.
~ �/.x�= Nı/�

D
X
Nı�x�

x�= Nı2T

�ı; � Œ	.ı/�i�; ı

h X
N̨�x�=ı

.x�= Nı/= N̨ 2T

�˛; �=ı Œ
.˛/�i�=ı; ˛Œ�..x�= Nı/= N̨/�
i
:

By identifying N̨ with N�= Nı where N� is a subgraph of x� containing Nı, and .x�= Nı/= N̨
with x�= N� we obtain

	~ .
~ �/.�; i/

D 	~ .
~ �/.�/

D
X

Nı� N�� x�
N�= NıI x�= N�2T

�ı; � Œ	.ı/�i�; ı Œ��=ı; �=ı Œ
. N�= Nı/�i�=ı; �=ı Œ�.x�= N�/��

D
X

Nı� N��x�
N�= NıI x�= N�2T

�ı; � Œ	.ı/�i�; ı��=ı; �=ı Œ
. N�= Nı/�i�; ı i�=ı; �=ı Œ�.x�= N�/�:

Secondly we have

.	~ 
/~ �.�; i/ D .	~ 
/~ �.�/

D
X
N��x�

x�= N�2T

��; � Œ	~ �.�/�i�; � Œ�.x�= N�/�

D
X

Nı� N��x�
N�= NıI x�= N�2T

��; � Œ�ı; �	.ı/iı;� Œ
. N�= Nı/��i�; � Œ�.x�= N�/�

D
X

Nı� N��x�
N�= NıI x�= N�2T

��; ��ı; � Œ	.ı/���;� iı; � Œ
. N�= Nı/�i�;� Œ�.x�= N�/�:
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The two following diagrams commute:

W�

G�;�

��

F�;ı �� W�=ı

G�=ı;�=ı

��
W�

F�;ı

�� W�=ı

and

W�=ı

F�=ı;�=ı

��
W�

F�;ı

���������������������

F�;�

�� W�=� :

From the two preceding diagrams we obtain the following two commutative diagrams:

V�=ı

��=ı;�=ı

��

i�;ı �� V�

��;�

��
V�=ı

i�;ı

�� V�

and

V�=ı

��;ı

��
V�=�

i�=ı;�=ı

���������������������

i�;�

�� V� :
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Hence we can write

.	~ 
/~ �.�; i/

D
X

Nı� N��x�
N�= NıI x�= N�2T

�ı; � Œ	.ı/�i�; ı��=ı; �=ı Œ
. N�= Nı/�i�; ı i�=ı; �=ı Œ�.x�= N�/�:

Consequently, as .	~
/~�.�; i/ D 	~.
~�/.�; i/ for any specified graph .�; i/,
the product ~ is associative.

Theorem 4. Let

G D ¹' 2 zL. zHT ;B/ W '.�� 0/ D '.�/ � '.� 0/; '.1/ D 1Bº:
Equipped with the product ~, the set G is a subgroup of the semigroup of characters
of zHT with values in B.

Proof. Let ',  be two elements of G and x� D .�; i/, x� 0 D .� 0; i 0/ two specified
graphs. It is clear that, by definition, ' ~  2 zL. zHT ;B/. Using Proposition 1 we
have then

.' ~  /.x� x� 0/

D .' ~  /.�� 0/

D
X

N� N� 0�x� N�0

x� x�0= N� N� 02T

��� 0; ��0 Œ'.�� 0/�i��0; �� 0 Œ .x� x� 0= N� N� 0/�

D
X

N��x�; N� 0�x�0

x�= N�I x�0= N� 02T

.��; � Œ'.�/� � �� 0; �0 Œ'.� 0/�/
.i�; � Œ .x�= N�/� � i�0; � 0 Œ .x� 0= N� 0/�/

D
X

N��x�; N� 0�x�0

x�= N�I x�0= N� 02T

.��; � Œ'.�/�i�; � Œ .x�= N�/�/ � .�� 0; �0 Œ'.� 0/�i�0; � 0 Œ .x� 0= N� 0/�/

D .' ~  /.x�/.' ~  /.x� 0/:

The identity element e is defined by e.x�/ D 1V�
if x� is a specified graph of degree

zero and e.x�/ D 0 if it is not. Indeed, for any ' 2 zL. zHT ;B/, if x� is of degree zero,
we have

.e ~ '/.x�/ D e.x�/'.x�/ D '.�/
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and, similarly,
.' ~ e/.x�/ D '.x�/e.x�/ D '.�/;

while, if x� of degree � 1, we have

.e ~ '/.x�/ D
X
.x�/

��; � Œe. N�/�i�; � Œ'.x�= N�/�

D �sk.�/; � Œ1Vsk.�/
�i�; sk.�/Œ'.�/�

D '.�/

and

.' ~ e/.x�/ D
X
.�/

��; � Œ'.�/�i�; � Œe.x�= N�/�

D ��; � Œ'.�/�i�; � Œe.sk.x�//�
D '.�/:

The inverse of an element ' of G is given by

'~�1.x�/ D .e � .e � '//~�1.x�/

D
X

n

.e � '/~n.x�/:

This sum is well defined: it stops at n D q for specified graph x� of degree q. Then
we have:

'~�1 ~ ' D ' ~ '~�1 D e:

4.4. The Birkhoff decomposition. In this section we will explain how to renormal-
ize a character ' of the specified graphs graded bialgebra zHT . Let ' be a character
with values in the unitary commutative algebra

A
defD BŒz�1; z��

equipped with the minimal subtraction scheme

A D A� ˚ AC;

where
AC

defD BŒŒz��; and A�
defD z�1BŒz�1�:

Both A� and AC are two subalgebras of A, with 1A 2 AC. We denote by
P the projection on A� parallel to AC. The space of linear maps of zHT to A is
equipped with the convolution product ~ defined by (2). We have verified in the
previous paragraph that the space of characters zHT with values in A is a group for
the convolution product ~.
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Theorem 5. (1) Any character ' 2 G has a unique Birkhoff decomposition in G

' D '~�1� ~ 'C

compatible with the renormalization scheme chosen, in other words, such that 'C
takes its values in AC and such that '�.x�/ 2 A� for any specified graph .�; i/ of
degree � 1. The components 'C and '� are given by simple recursive formulas. For
any x� of degree zero (i.e. without internal edges) we put

'�.x�/ D 'C.x�/ D '.x�/ D 1V�
:

If we assume that '�.x�/ and 'C.x�/ are known for x� of degree k � n � 1, we have
then for any specified graph x� of degree n

'�.x�/ D '�.�/ D �P
�
'.�/C

X
N�¨x�

x�= N�2T

��; � Œ'�.�/�i�; � Œ'.�=.�; j //�
�

and

'C.x�/ D 'C.�/ D .I � P /
�
'.�/C

X
N�¨x�

x�= N�2T

��; � Œ'�.�/�i�; � Œ'.�=.�; j //�
�
:

(2) Both 'C and '� are characters. We will call 'C the renormalized character and
'� the character of the counterterms.

Proof. (1) The fact that 'C takes its values in AC and that '�.�/ 2 A� is immediate
by definition of P , and we can verify by a simple calculation that 'C D '� ~ ':

'C.�/ D .I � P /
�
'.�/C

X
N�¨x�

x�= N�2T

��; � Œ'�.�/�i�; � Œ'.�=.�; j //�
�

D '.�/C '�.�/C
X
N�¨x�

x�= N�2T

��; � Œ'�.�/�i�; � Œ'.�=.�; j //�:

By using the fact that '�.�/ D '.�/ D 1V�
, for any graph � of degree zero we have

'� ~ '.�/ D
X
N��x�

x�= N�2T

��; � Œ'�.�/�i�; � Œ'.�=.�; j //�
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D �sk.�/; � Œ'�.sk.�//�i�; sk.�/Œ'.�/�C ��; � Œ'�.�/�i�; � Œ'.res.�//�

C
X

N�¨x�
x�= N�2T

��; �

Œ'�.�/�i�; � Œ'.�=.�; j //�

D '.�/C '�.�/C
X
N�¨x�

x�= N�2T

��; � Œ'�.�/�i�; � Œ'.�=.�; j //�:

Hence, 'C D '� ~ ' is equivalent to saying that ' D '~�1� ~ 'C.
We now assume that ' D '~�1� ~ 'C D  ~�1� ~  C. Thus we obtain

'C ~  ~�1
C D '� ~  ~�1� :

The right-hand side of the equality sends any specified graph of degree � 1 in AC
but the left-hand side sends it in A�. Hence for any graph x� of degree � 1 we have

'C ~  ~�1
C .�/ D '� ~  ~�1� .�/ D 0:

Then we observe 'C ~  ~�1
C D '� ~  ~�1� D e, which proves the uniqueness of

the Birkhoff decomposition.

(2) We will just prove that '� is a character. Then 'C D '� ~' is also a character.
The idea follows from the fact that the projection P satisfies the Rota-Baxter equality

P.a/P.b/ D P.�ab C P.a/b C P.b/a/: (3)

Let ' be an element of G. The proof is obtained by induction on the degree of the
graph �� 0. For x� x� 0 of degree zero we have 1V�

� 1V 0

�
D 1V��0 . We assume that

'�.�� 0/ D '�.�/ � '�.� 0/ for any x� ,x� 0 2 zHT such that: jx� j C jx� 0j � d � 1 and
we show the equality for x� , x� 0 2 zHT such that jx� j C jx� 0j D d , where jx�j denotes
the degree of x� . We have

'�.�/ � '�.� 0/ D P.X/ � P.Y /;
where

X D '.�/C
X
N�¨x�

x�= N�2T

��; � Œ'�.�/�i�; � Œ'.�=.�; j //�

and
Y D '.� 0/C

X
N� 0¨x�0

x�0= N� 02T

�� 0; �0 Œ'�.� 0/�i�0; � 0 Œ'.� 0=.� 0; j //�:
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We have

'�.�/ � '�.� 0/ D P.X/ � P.Y / D P.�X � Y C P.X/ � Y CX � P.Y //:

Since P.X/ D �'�.�/ and P.Y / D �'�.� 0/, we obtain

'�.�/ � '�.� 0/ D �P.X � Y C '�.�/ � Y CX � '�.� 0//:

Therefore we obtain

'�.�/ � '�.� 0/

D �P
h
'.�/ � '.� 0/C '�.�/ � '.� 0/C '.�/ � '�.� 0/

C
X
N�¨x�

x�= N�2T

.��; � Œ'�.�/�i�; � Œ'.x�= N�/�/ � .'�.� 0/C '.� 0//

C
X

N� 0¨x�0

x�0= N� 02T

.�� 0; �0 Œ'�.� 0/�i�0; � 0 Œ'.x� 0= N� 0/�/ � .'�.�/C '.�//

C
X

N�¨x�; N� 0¨x�0

x�= N�I x�0= N� 02T

.��; � Œ'�.�/�i�; � Œ'.x�= N�/�/
� .�� 0; �0 Œ'�.� 0/�i�0; � 0 Œ'.x� 0= N� 0/�/

i
:

The coproduct �.x� x� 0/ is given by

�.x� x� 0/ D x� x� 0 ˝ res.x�/ res.x� 0/C sk.x�/ sk.x� 0/˝ x� x� 0

C x� sk.x� 0/˝ x� 0 res.x�/C x� 0 sk.x�/˝ x� res.x� 0/

C
X
N�¨x�

x�= N�2T

N� x� 0 ˝ .x�= N�/ res.x� 0/C N� sk.x� 0/˝ .x�= N�/x� 0

C
X

N� 0¨x�0

x�0= N� 02T

x� N� 0 ˝ .x� 0= N� 0/ res.x�/C N� 0 sk.x�/˝ x�.x� 0= N� 0/

C
X

N�¨x�I N� 0¨x�0

x�= N�I x�0= N� 02T

N� N� 0 ˝ .x�= N�/.x� 0= N� 0/:
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Since '�.�� 0/ D �P.'� ~ '.�� 0/ � '�.�� 0//, we have

'�.�� 0/

D �P
h
���0; ��0 Œ'�.�� 0/�i��0; ��0 Œ'.res.x�/ res.x� 0//�

C �sk.�/ sk.�0/;��0 Œ'�.sk.x�/ sk.x� 0//�i��0; sk.�/ sk.�0/Œ'.��
0/�

C �� sk.�0/; ��0 Œ'�.� sk.x� 0//�i��0; � sk.�0/Œ'.�
0 res.x�//�

C ��0 sk.�/; ��0 Œ'�.� 0 sk.x�//�i��0; �0 sk.�/Œ'.� res.x� 0//�

C
X
N�¨x�

x�= N�2T

��� 0; ��0 Œ'�.�� 0/�i��0; �� 0 Œ'.x�= N� res.x� 0//�

C ��� 0; ��0 Œ'�.� sk.x� 0//�i��0; �� 0 Œ'.x�= N�� 0/�

C
X

N� 0¨x�0

x�0= N� 02T

��� 0; ��0 Œ'�.� 0�/�i��0; �� 0 Œ'.x� 0= N� 0 res.x�//�
C ��� 0; ��0 Œ'�.� 0 sk.x�//�i��0; �� 0 Œ'.x� 0= N� 0�/�

C
X

N�¨x�I N� 0¨x�0

x�= N�I x�0= N� 02T

��� 0; ��0 Œ'�.�� 0/�i��0; �� 0 Œ'.x�= N� x� 0= N� 0/� � '�.�� 0/
i
:

We notice that the first and last terms in the right side cancel each other. Since ' is a
character, '.sk.x�// D '�.sk.x�// D 1V�

and by the induction hypothesis we obtain

'�.�� 0/

D �P
h
'.�/ � '.� 0/

C .�� sk.�0/; ��0 Œ'�.�/� � �� sk.�0/; ��0 Œ'�.sk.x� 0//�/

� .i��0; � sk.�0/Œ'.�
0/� � i��0; � sk.�0/Œ'.res.x�//�/

C .��0 sk.�/; ��0 Œ'�.� 0/� � ��0 sk.�/; ��0 Œ'�.sk.x�//�/
� .i��0; �0 sk.�/Œ'.�/� � i��0; �0 sk.�/Œ'.res.x� 0//�/

C
X
N�¨x�

x�= N�2T

.��; � Œ'�.�/�i�; � Œ'.x�= N�/�/ � .'�.� 0/C '.� 0//

C
X

N� 0¨x�0

x�0= N� 02T

.�� 0; �0 Œ'�.� 0/�i�0; � 0 Œ'.x� 0= N� 0/�/ � .'�.�/C '.�//
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C
X

N�¨x�I N� 0¨x�0

x�= N�I x�0= N� 02T

.��; � Œ'�.�/� � �� 0; �0 Œ'�.� 0/�/

� .i�; � Œ'.x�= N�/� � i�0; � 0 Œ'.x� 0= N� 0/�/
i
:

By Proposition 1 we can write

'�.�� 0/ D �P
h
'.�/ � '.� 0/C '�.�/ � '.� 0/C '.�/ � '�.� 0/

C
X
N�¨x�

x�= N�2T

.��; � Œ'�.�/�i�;� Œ'.x�= N�/�/ � .'�.� 0/C '.� 0//

C
X
N� 0¨x�0

x�0= N� 02T

.�� 0; �0 Œ'�.� 0/�i�0; � 0 Œ'.x� 0= N� 0/�/ � .'�.�/C '.�//

C
X

N�¨x�; N� 0¨x�0

x�= N�I x�0= N� 02T

.��; � Œ'�.�/�i�; � Œ'.x�= N�/�/
� .�� 0; �0 Œ'�.� 0/�i�0; � 0 Œ'.x� 0= N� 0/�/

i

D '�.�/ � '�.� 0/;

which shows that '� is a character.

4.5. Taylor expansions. We adapt here a construction from [7], §9, also used
by [14], §3.7, (see also [8] and [9]).

Definition 3. Let B be the commutative algebra defined by (1). For m 2 N’ the
order m Taylor expansion operator is

Pm 2 End.B/; Pmf .v/
defD

X
jˇ j�m

vˇ

ˇŠ
@

ˇ
0f; (4)

where ˇ D .ˇ1; : : : ; ˇn/ 2 Nn with the usual notations, ˇ � ˛ if and only if ˇi � ˛i

for all i ,
jˇj defD ˇ1 C 	 	 	 C ˇn

and

vˇ defD
Y

1�k�n

v
ˇk

k
; ˇŠ

defD
Y

1�k�n

ˇkŠ; @
ˇ
0

defD
Y

1�k�n

@ˇk

@v
ˇk

k jvkD0

:

We can now implement the general momentum scheme using these projectionsPm .
Let zHT D L

n
zHT ;n be the specified Feynman graphs graded bialgebra. We define

a Birkhoff decomposition
' D '~�1� ~ 'C:
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The components 'C and '� are given by simple recursive formulas. For any x� of
degree zero (i.e without internal edges) we put

'�.x�/ D 'C.x�/ D '.x�/ D 1V�
:

If we assume that '�.x�/ and that 'C.x�/ are known for x� of degree k � m � 1, we
have then for any specified graph x� of degree m

'�.x�/ D �Pm

�
'.�/C

X
N�¨x�

x�= N�2T

��; � Œ'�.�/�i�; � Œ'.�=.�; j //�
�

(5)

and

'C.x�/ D .I � Pm/
�
'.�/C

X
N�¨x�

x�= N�2T

��; � Œ'�.�/�i�; � Œ'.�=.�; j //�
�
: (6)

The operators Pm form a Rota–Baxter family in the sense of K. Ebrahimi-Fard,
J. Gracia-Bondia, and F. Patras [7], Proposition 9.1 and Proposition 9.2. The analogue
of the Rota-Baxter equality defined by the formula (3) is given by following theorem;
see [7], and [14].

Theorem 6. Let � be a graph, and let f; g 2 V� . The Taylor expansion operators
fulfill for any s; t 2 N

.Psf /.Ptg/ D PsCt Œ.Psf /g C f .Ptg/ � fg�: (7)

Proof. Denote by �.f ˝ g/ D fg the pointwise product on V� . Using the Leibniz
rule,

@ B � D � B .@˝ Id C Id ˝ @/; (8)

and the formula

@˛
0Ps D @˛

0

X
jˇ j�s

v 7�! vˇ

ˇŠ
@

ˇ
0 D

X
jˇ j�s

@˛
0 .v 7�! vˇ /

ˇŠ
@

ˇ
0 D

8<
:
@˛

0 if j˛j � s;

0 ontherwise,
(9)

by (4) it suffices to check for any multi-index j˛j � s C t that

@˛
0 Œ.Psf /g C f .Ptg/ � fg�

D
X
ˇ�˛

�
˛

ˇ

�
� B .@ˇ

0 ˝ @
˛�ˇ
0 /Œ.Psf /˝ g C f ˝ .Ptg/ � f ˝ g�

D
X
ˇ�˛

�
˛

ˇ

�
Œ.@

ˇ
0Psf /.@

˛�ˇ
0 g/C .@

ˇ
0f /.@

˛�ˇ
0 Ptg/ � .@ˇ

0f /.@
˛�ˇ
0 g/�
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D
X
ˇ�˛

�
˛

ˇ

�
.@

ˇ
0Psf /.@

˛�ˇ
0 Ptg/

D @˛
0 Œ.Psf /:Ptg/�:

Here we used that in the middle line, by formula (9) the contributions with jˇj > s or
j˛�ˇj > t give zero. For example, if j˛�ˇj > t then j˛j�jˇj > t H) jˇj < j˛j�t ,
since j˛j � s C t then jˇj < s such that:

@
ˇ
0Ps D @

ˇ
0 ; @

˛�ˇ
0 Pt D 0; @

˛�ˇ
0 Pt D 0;

then
.@

ˇ
0Psf /.@

˛�ˇ
0 g/C .@

ˇ
0f /.@

˛�ˇ
0 Ptg/ � .@ˇ

0f /.@
˛�ˇ
0 g/ D 0;

and
.@

ˇ
0Psf /.@

˛�ˇ
0 Ptg/ D 0:

Hence only terms with jˇj � s and j˛ � ˇj � t remain. We obtain

@
ˇ
0Ps D @

ˇ
0 ; @

˛�ˇ
0 Pt D @

˛�ˇ
0 ; @

ˇ
0Ps D @

ˇ
0 ; @

˛�ˇ
0 Pt D @

ˇ
0 ;

and then we have

.@
ˇ
0Psf /.@

˛�ˇ
0 g/C .@

ˇ
0f /.@

˛�ˇ
0 Ptg/ � .@

ˇ
0f /.@

˛�ˇ
0 g/

D .@
ˇ
0f /.@

˛�ˇ
0 g/

D .@
ˇ
0Psf /.@

˛�ˇ
0 Ptg/:

Theorem 7. Let zHT be the specified graphs graded bialgebra and ' be a character
with values in the unitary commutative algebra B. Further let

P: W N �! End.B/

be an indexed renormalization scheme, that is a family .Pt /t2N of endomorphisms
such that

� B .Ps ˝ Pt / D PsCt B � B ŒPs ˝ Id C Id ˝ Pt � Id ˝ Id�; (10)

for all s; t 2 N. Then the two maps '� and 'C defined by (5) and (6) are two
characters.

Proof. We will just prove that'� is a character. Then'C D '�~' is also a character.
For x�; x� 0 2 ker ", we write '�.x�/ D �Pj�j. N'.x�//, where

N'.x�/ D '.�/C
X
N�¨x�

x�= N�2T

��; � Œ'�.�/�i�; � Œ'.�=.�; j //�:
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For proving this theorem we use formulas (5) and (10):

'�.x� x� 0/

D �Pj��0j
h
'.�/ � '.� 0/C '�.�/ � '.� 0/C '.�/ � '�.� 0/

C
X
N�¨x�

x�= N�2T

.��; � Œ'�.�/�i�; � Œ'.x�= N�/�/ � .'�.� 0/C '.� 0//

C
X
N� 0¨x�0

x�0= N� 02T
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