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The matrix model for dessins d’enfants

Jan Ambjørn and Leonid Chekhov1

Abstract. We present the matrix models that are the generating functions for branched covers

of the complex projective line ramified over 0, 1, and 1 (Grothendieck’s dessins d’enfants) of

fixed genus, degree, and the ramification profile at infinity. For general ramifications at other

points, the model is the two-logarithm matrix model with the external field studied previously

by one of the authors (L.Ch.) and K.Palamarchuk. It lies in the class of the generalized

Kontsevich models (GKM) thus being the Kadomtsev–Petviashvili (KP) hierarchy �-function

and, upon the shift of times, this model is equivalent to a Hermitian one-matrix model with a

general potential whose coefficients are related to the KP times by a Miwa-type transformation.

The original model therefore enjoys a topological recursion and can be solved in terms of

shifted moments of the standard Hermitian one-matrix model at all genera of the topological

expansion. We also derive the matrix model for clean Belyi morphisms, which turns out to

be the Kontsevich–Penner model introduced by the authors and Yu. Makeenko. Its partition

function is also a KP hierarchy tau function, and this model is in turn equivalent to a Hermitian

one-matrix model with a general potential. Finally we prove that the generating function for

general two-profile Belyi morphisms is a GKM thus proving that it is also a KP hierarchy tau

function in proper times.

Mathematics Subject Classification (2010). 05A15, 14H70, 15B52.
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1. Introduction

In general, Hurwitz numbers pertain to combinatorial classes of ramified mappings

f W CP1 ! †g of the complex projective line onto a Riemann surface of genus g.

Commonly, single and double Hurwitz numbers correspond to the cases in which
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ramification profiles (defined by the corresponding Young tableaux � or � and �) are

respectively given at one (1) or two (1 and 1) distinct points whereas we assume

the existence of m other distinct ramification points with only simple ramifications.

Generating functions for Hurwitz numbers have been considered for long in math-

ematical physics. Notably, Okounkov and Pandharipande [29] showed that the ex-

ponential of the generating function for double Hurwitz numbers is a tau-function

of the Kadomtsev–Petviashvili (KP) hierarchy. The same result was obtained by

A. Yu. Orlov and Shcherbin [30] and [31] using the Schur function technique and, in

a more general setting, by Goulden and Jackson [21] using Plucker relations.

Orlov and Shcherbin [30] also addressed the case of the generating function for the

case of Grothendieck dessins d’enfants where we have only three ramification points

with multiple ramifications and the ramification profile is fixed at one or two of these

points. In this case, they also obtained that the exponentials of the corresponding

generating functions are the tau functions of the KP hierarchy.

On the other hand, Hurwitz numbers manifest properties intrinsic for conformal

theories including sets ofVirasoro constraints and closely related loop equations. That

simple Hurwitz numbers satisfy the topological recursion – the technique originated

in matrix models – was conjectures in [7] and proved in [8] and [26].

In a nice recent paper [32], Zograf provided recursion relations for the generating

function of Grothendieck’s dessins d’enfants enumerating the Belyi pairs .C; f /,

where C is a smooth algebraic curve and f a meromorphic function f W C ! CP1

ramified only over the points 0; 1; 1 2 CP1.

We recall some mathematical results relating Belyi pairs to Galois groups and

begin with the following theorem.

Theorem 1.1 (Belyi [6]). A smooth complex algebraic curve C is defined over the

field of algebraic numbers xQ if and only if it exists a nonconstant meromorphic

function f on C .f W C ! CP 1/ ramified only over the points 0; 1; 1 2 CP 1.

For a Belyi pair .C; f / let g be the genus of C and d the degree of f . If we take

the inverse image f �1.Œ0; 1�/ � C of the real line segment Œ0; 1� 2 CP 1 we obtain

a connected bipartite fat graph with d edges with vertices being pre-images of 0 and

1 and with the cyclic ordering of edges entering a vertex coming from the orientation

of the curve C . This led Grothendieck to formulating the following lemma.

Lemma 1.2 (Grothendieck [22]). There is a one-to-one correspondence between the

isomorphism classes of Belyi pairs and connected bipartite fat graphs.

We define a Grothendieck dessin d’enfant to be a connected bipartite fat graph

representing a Belyi pair.

It is well known that we can naturally extend the dessin f �1.Œ0; 1�/ � C corre-

sponding to a Belyi pair .C; f / to a bipartite triangulation of the curve C . For this,

we cut the complex plane along the (real) line containing 0; 1; 1 coloring upper half
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plane white and lower half plane gray. This defines the partition of C into white and

gray triangles such that white triangles has common edges only with gray triangles.

We then consider a dual graph in which edges are of three types (pre-images of the

three edges shown in Figure 1): the type of an edge depend on which segment –

f �1.Œ0; 1�/ � C , f �1.Œ1; 1C�/ � C , or f �1.Œ1�; 0�/ � C – it intersects (1˙

indicate the directions of approaching the point of infinity along the real axis in CP1).

Each face of the dual partition then contains a preimage of exactly one of the points

0; 1; 1, so they are of three sorts (bordered by solid, dotted, or dashed lines in the

figure). We call such a graph a Belyi fat graph.

1� 1C
0 1

ƒ

xƒ

Figure 1. The Belyi graph �1 corresponding to the Belyi pair .CP1; id/; 1˙ indicate directions

of approaching the infinite point in CP1. By ƒ, xƒ we indicate the insertions of the external

field in the matrix-model formalism of Section 2. For example, this graph contributes the term

N 2ˇ tr.ƒxƒ/.

The type of ramification at infinity is determined by the set of solid-line bounded

faces of a Belyi fat graph: the order of branching is r for a 2r-gon, so we introduce the

generating function that distinguishes between different types of branching at infinity.

We let n1; n2; n3 denote the numbers of respective solid-, dotted-, and dashed-line

cycles (faces) and let mr denote the number of solid-line cycles of length 2r in a

Belyi fat graph

We are interested in the following counting problem: we are going to calculate

the generating function

F Œftmg; ˇ;  I N � D
X

�

1

jAut �jN
2�2gˇn2n3

n1
Y

iD1

tri
; (1.1)

where N , ˇ;  , and tr are formal independent parameters and the sum ranges all

(connected) Belyi fat graphs. Often a factor ˛n1 is also added; it can however be

adsorbed into the times tr by scaling tr ! ˛tr for all r .

The structure of the paper is as follows. In Section 2, we show that generating

function (1.1) is the free energy of a special matrix model. We demonstrate that

this model is the two-logarithm matrix model of [17], and it therefore belongs to the

class of generalized Kontsevich models (GKM); see [24]. In Section 3, we present

the solution of this model from paper [17] in which it was reduced, upon a special
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transformation of times, to a Hermitian one-matrix model with a general potential. In

Section 4, we present the direct solution of the original generating function in terms

of the Hermitian one-matrix model without appealing to the external field model

thus again establishing the equivalence between the two models and describing the

corresponding topological recursion. In Section 5, we construct the matrix model for

clean Belyi morphisms (those having ramifications only of type .2; 2; : : : ; 2/ over 1)

and show that the corresponding generating function is the original Kontsevich–

Penner model of [15]. This model is also equivalent [16] to the Hermitian one-matrix

model with a general potential and to the BGW model of [27]. Finally, in Section 6,

we combine the techniques of Secs. 2, 3, and 4 establishing that the generating

function for the two-profile Belyi morphisms (with the given ramifications at two

points, 1 and 1) is again given by the GKM integral thus being a tau function of the

KP hierarchy (that is, it satisfies the bilinear Hirota relations). We conclude with the

discussion of our results.

Throughout the entire text we disregard all multipliers not depending on external

fields; all equalities in the paper must therefore be understood modulo such factors.

Acknowledgments. The authors thank Maxim Kazarian, Andrei Mironov, and Petr

Zograf for the useful discussion.

2. The model

In our conventions the indices i , i1, i2, etc. take positive integer values between 1 and

˛N , the indices j , j1, etc. take positive integer values between 1 and ˇN , and the

indices k, k1, etc. take positive integer values between 1 and N . We introduce three

complex-valued rectangular matrices Rk;i , Gi;j , and Bj;k and one diagonal matrix

(the external field) ƒi1;i2 D �i1ıi1;i2 . The action is given by the integral

F Œftrg; ˇ;  I N �

WD
Z

DR D xR DB D xB DG D xG eN tr.�B xB�R xR�G xGCRƒGBC xB xG xƒ xR/:
(2.1)

The free energy F Œftrg; ˇ;  I N � is given by the sum over all connected bipartite

three-valent fat graphs � weighted by

1

jAut �jN
2�2gˇn2n3

Y

r

tmr
r .

P

r mr D n1/ (2.2)

where n1;2;3 are the respective numbers of solid-, dotted-, and dashed-line cycles

in � ,

tr WD
˛N
X

iD1

j�i j2r (2.3)
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are the times of the model, and mr is the number of solid-line cycles of length 2r

in � . Measures of integration are the standard Haar measures; for instance,

DR D xR WD
N
Y

kD1

˛N
Y

iD1

dRe Rk;id Im Rk;i :

The logarithm of the integral (2.1) is therefore just the generating function (1.1) for

the Belyi graphs.

Integrating with respect to B and xB we obtain the integral

Z

DR D xR DG D xG eN tr.�R xR�G xGCRƒG xG xƒ xR/ (2.4)

in which we can perform the Gaussian integration with respect to G and xG thus

obtaining
Z

DR D xR e�N tr.R xR/ detŒıi1;i2 � .xƒ xRRƒ/i1;i2 ��ˇN : (2.5)

After the change of variables R ! Rƒ this integral becomes

˛N
Y

iD1

j�i j�2N

Z

DR D xR e�N tr. xRRŒƒ xƒ��1/ detŒıi1;i2 � . xRR/i1;i2 ��ˇN : (2.6)

For definiteness, let  � ˛. A general rectangular matrix xR can then be reduced to

the form xR D U � xM V , where U 2 U.˛N /, V 2 U.N /=U.. � ˛/N /, and

xM D

0

B

B

@

Nm1 0 0 0 0

0
: : : 0 0 0

0 0 Nm˛N 0 0

1

C

C

A

:

In the vicinity of the unities of the unitary groups, we can write U D ei�H and

V D ei�Q with the Hermitian .˛N �˛N /-matrix H and Hermitian .N �N /-matrix

Q of the form

Q D
 

zH P

P � 0

!

; (2.7)

in which zH is another Hermitian .˛N � ˛N /-matrix and P is the general complex

.˛N � . � ˛/N /-matrix. The Jacobian of the transformation

D xR DR D Jac DU DV
Y

i

dmi d Nmi (2.8)
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can then be easily calculated (see Appendix A) to be

Jac D
Y

1�i1<i2�˛N

.jmi2 j2 � jmi1 j2/2

˛N
Y

iD1

jmi j2.�˛/N ; (2.9)

Introducing the new variables xi D jmi j2 ranging from zero to infinity, we reduce

the integral in (2.6) to the ˛N -fold integral with respect to xi and to the integration

with respect to the unitary group:

˛N
Y

iD1

j�i j�2N

Z 1

0

dx1 : : : dx˛N

�Z

DUe
�N

P

i1;i2
xi1

Ui1;i2
j�i2

j�2U
�

i2;i1

�

� Œ�.x/�2
˛N
Y

iD1

Œx
.�˛/N
i .1 � xi /

�ˇN �:

(2.10)

The integral over DU is given by the Itzykson–Zuber–Mehta formula (we write it

having in mind that we subsequently integrate it over variables xi with a totally

symmetric measure),

Z

DU e
�N

P

i1;i2
xi1

Ui1;i2
j�i2

j�2U
�

i2;i1 D e�N
P

i xi j�i j�2

�.xi /�.j�i j�2/
;

so the final formula for the generating function reads

˛N
Y

iD1

j�i j�2N

�.j�j�2/

Z 1

0

dx1 : : : dx˛N �.x/eN
P

i Œ�xi j�i j�2C.�˛/ log xi �ˇ log.1�xi /�:

(2.11)

The integral (2.11) is equivalent to the matrix-model integral

˛N
Y

iD1

j�i j�2N

Z

˛N �˛N

DH�0eN trŒ�Hƒ�2C.�˛/ log H�ˇ log.1�H/�; (2.12)

where the integration goes over Hermitian .˛N � ˛N /-matrices with positive eigen-

values. We thus obtain the following statement.

Lemma 2.1. The generating function for Grothendieck dessins d’enfants – Belyi fat

graphs (1.1) – is the matrix-model integral (2.12).

The integral (2.12) belongs to the class of generalized Kontsevich models (GKM);

see [24]. In terms of variables �i D 1=j�i j2 it can be calculated as the ratio of

determinants of .˛N � ˛N /-matrices,










@i1�1f .�i2/

@�
i1�1
i2











=�.�/;
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where

f .�/ D
Z 1

0

dxe�Nx�x.�˛/N .1 � x/�ˇN ;

and as such is a tau-function of the Kadomtsev–Petviashvili (KP) hierarchy in times

tn D
P

i ��n
i D

P

i j�i j2n (cf. (2.3)) i.e., we come to the following theorem proved

by Zograf [32] by purely combinatorial means with the using of the cut-and-joint

operator.

Theorem 2.2. The generating function for Belyi fat graphs (1.1) is the tau-function

of the KP hierarchy in times (2.3).

The integral (2.12) was studied by one of the authors and Palamarchuk [17]

in relation to exploring possible explicit solutions of matrix models with external

fields. It was called the two-logarithm model there and it was proved that this integral

admits Virasoro constraints that, upon a proper change of times, become the Virasoro

constraints of the matrix model introduced in [15] (the term Kontsevich–Penner model

was coined there), which, in turn, is equivalent [16] to a Hermitian one-matrix model

with the potential related to the external-field variables �i via the Miwa transformation.

As such, this integral must also satisfy the equations of the Toda chain hierarchy.

Remark 2.3. An important remark concerning integral (2.12) is that its asymptotic

behavior as N ! 1 is different depending on whether  � ˛ ' O.1/ or  � ˛ '
O.1=N /. In the first case, we have an infinite repulsive potential at the origin and

an eigenvalue distribution is confined within an interval Œx0
�; x0

C� (see below) with

0 < x0
� < x0

C. The 1=N -expansion then is “insensitive” to the hard edge at the origin,

and we can assume that we integrate over the whole real axis (the difference between

the restricted and nonrestricted integrations is then exponentially small in N ). If

 D ˛ or  � ˛ � O.1=N /, representation (2.12) still remains valid, but in this case

the eigenvalue support is Œ0; x0
C�, so it reaches the hard edge x D 0 at the origin.

We then again have a topological expansion (about 1=N -expansion in matrix models

with hard edges, see, e.g., the review [11]) but with the differential ydx finite at

x D 0 (y � 1=
p

x as x ! 0 and y �
p

x � x0
C as x ! x0

C). The asymptotic

expansions of integral (2.12) are therefore different in the corresponding regimes and

do not admit an analytical transition as  ! ˛.

Remark 2.4. In Section 4, we present a simpler, straightforward way of proving

that generating function (1.1) for general Belyi morphisms is indeed a Hermitian

one-matrix model free energy. However, the external field technique of this and next

sections will be instrumental when proving a general correspondence between the

generating functions for clean (Section 5) and two-profile (Section 6) Belyi mor-

phisms and free energies of the corresponding generalized Kontsevich models.
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3. The two-logarithm matrix model

In this section, we present the results of [17] adapted to the notation of integral (2.12).

3.1. Constraint equations for integral (2.12). We first perform the variable change

zN D ˛N; zƒ D ƒ�2=.2˛/; zH D 2H � 1

Q̨ D ˇ=˛; Q̌ D 1 � =˛:
(3.1)

in (2.12). Disregarding here and hereafter factors not depending on �’s, the integral

then takes the form

zN
Y

iD1

Œj Q�i jN e� zN jQ�i j�

Z

zN � zN

D zH�0e� zN trŒ zH zƒC Q̨ log.1� zH/C Q̌ log.1C zH/�

WD
zN
Y

iD1

h

j Q�i jN e� zN jQ�i j
i

ZŒ Q��;

(3.2)

where we let ZŒ Q�� denote the integral (2.12) without the normalization factor.

The Schwinger–Dyson equations for the integral (3.2) follow from the identity

(here all the indices range from 1 to ˛N )

� 1

zN 3

@

@ zƒjk

@

@ zƒli

� 1

zN

�

Z

zN � zN

D zH @

@ zHij

e� zN trŒ zH zƒC Q̨ log.1� zH /C Q̌ log.1C zH/� D 0:

(3.3)

In terms of the eigenvalues Q�i of the matrix zƒ, the corresponding zN equations read

h

� 1

zN 2
Q�i1

@2

@ Q�2
i1

� 1

zN 2

X

i2¤i1

Q�i2

Q�i2 � Q�i1

� @

@ Q�i2

� @

@ Q�i1

�

C Q̨ C Q̌ � 2

zN
@

@ Q�i1

C Q̌ � Q̨ C Q�i1

i

ZŒ Q�� D 0;

(3.4)

We can equivalently write the constraint equations (3.4) in terms of the times

tn D 1

n

X

i

1

Q�n
i

; n � 1: (3.5)

They then becomes the set of Virasoro constraints1

VkZ.ftng/ D 0; k � 0; (3.6)

1The authors were reported by M. Kazarian that the same constraints can be derived by pure combina-

torial means (M. Kazarian and P. Zograf, paper in preparation).
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where, for k D �1; 0; 1; : : : ,

VkŒt � WD �
1
X

mD1

mtm
@

@tmCk

�
k
X

mD1

@

@tm

@

@tk�m

� zN . Q̨ � Q̌ C 1/.1 � ık;0 � ık;�1/
@

@tk

C Œ2 zN .1 � ık;�1/ C ık;�1t1�
@

@tkC1

C zN 2 Q̨ . Q̌ � 1/ık;0:

(3.7)

(Here, for the future use, we have also introduced the operator V�1.)

The operators Vk enjoy the Virasoro algebra

ŒVk; Vl � D .l � k/VkCl ; k; l � �1: (3.8)

3.2. Equivalence to the Hermitian one-matrix model. In [17] it was shown that

the two-logarithm model is equivalent to the Kontsevich–Penner model [15], which

in turn was known (see [16] and [24]) to be equivalent to a Hermitian one-matrix

model. In this paper, we skip the intermediate step and demonstrate the equivalence

between (2.12) and a Hermitian one-matrix model defined as an integral

Z1MMŒf�mg; M� WD
Z

M �M

DY e�V.Y /; V .Y / D
1
X

mD1

�m tr Y m: (3.9)

It is well-known that this integral satisfies the set of Virasoro constraints uniformly

written in the form

LnZ1MMŒf�mg; M� D
°

n
X

mD0

@2

@�m@�n�m

C
1
X

mD1

m�m

@

@�nCm

±

Z1MMŒ¹�mº; M�

D 0; n � �1;

(3.10)

where we have used a convenient notation

@

@�0

Z1MMŒf�mg; M� D �MZ1MMŒf�mg; M�:

In order to establish the correspondence it is necessary to shift the original vari-

able Q�,

�i D Q�i � �; � 2 C; (3.11)

introducing an auxiliary parameter �. We also introduce the new times

�n WD 1

n

zN
X

iD1

1

�n
i

; n � 1; (3.12)
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and the new normalizing factor

N Œ�� WD
zN
Y

iD1

Œ�
zN . Q̌�1/

i e
zN �i � (3.13)

The following set of constraints was found in [17].

Lemma 3.1 ([17]). The normalized integral ZŒ Q��=N Œ�� where Q�i D �i C � satisfies

the set of Virasoro constraints

Lk ŒZŒ Q��=N Œ��� D 0; k D �1; 0; 1; : : : ;

in times (3.12) with

Lk D �
1
X

mD1Cık;�1

m.�m � 2 zN ım;1/
@

@�mCk

�
k�1
X

mD1

@2

@�m@�k�m

C 2 zN ˛KP.1 � ık;0 � ık;1/
@

@�k

� 2' zN
X

mD1Cık;�1

1

.��/m

@

@�kCm

� . zN ˛KP/2ık;0

C zN ˛KP

�

�1 � 2 zN � 2' zN
�

�

ık;�1;

(3.14)

where ˛KP D Q̌ � 1 and ' D �. Q̨ C Q̌ � 1/=2.

Remark 3.2. In order to derive constraints (3.14) the following trick was used in [17]:

constraint equations (3.4) after shift (3.11) were written in the form

1
X

kD1

��k
i LkZŒ Q�� D 0;

where

Lk D VkC1Œ� � C �VkŒ� �

C � zN . Q̨ C Q̌ � 1/
�

.1 � ık;0 � ık;�1/
@

@�k

� . Q̌ � 1/ zN ık;0

�

C �. Q̌ � 1/ zN .�1 � 2 zN /ık;�1; k � �1;

were differential operators in (shifted) times �s and where we let VsŒ� � denote oper-

ators (3.7) upon the substitution t ! � . The “proper” Virasoro operators Lk (3.14)

were finally obtained upon the upper-triangular transformation

Lk D
1
X

sD0

.�1/s

�sC1
LkCs; k � �1:
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We see that in order to perform all these replacements we have to keep � nonzero and

finite.

Lemma 3.3 ([17]). Upon the substitution

�n D �n C 1

n

2' zN
.��/n

� 2 zN ın;1; M D zN ˛KP (3.15)

the Virasoro constraints (3.14) become the Virasoro constraints (3.10) of the Her-

mitian one-matrix model. Because these conditions determine the corresponding

integrals unambiguously, these two models are equivalent.

In terms of the original variables, we have the following lemma.

Lemma 3.4. The generating function F Œftrg; ˇ;  I N �, eq. (1.1), for the Belyi fat

graphs is given by the exact formula

eF Œftr g;ˇ;IN �

D
˛N
Y

iD1

h� 1

2˛
� �j�i j2

��N

e
˛N
�

1

2˛j�i j2
��
�

i

� Z1MM

h

�m D �m C 1

m

. � ˇ/N

.��/m
� 2˛Nın;1; M D �N

i

(3.16)

with �m D 1
m

P˛N
j D1

1
�m

j

where �i C � D 1=.2˛j�i j2/. Here Z1MMŒf�mg; M� is

matrix integral (3.9).

In the next section we demonstrate that this statement enables us to write explicit

formulas for terms of the genus expansion of F provided we know the answer for

the free energy of matrix model (3.9) either in terms of momenta [3] or in terms of

the topological recursion technique of [20], [13], [14], and [1].

Remark 3.5. The shift of variables (3.11) is a convenient technical tool that was used

in [17] for passing to the full half-Virasoro constraint algebra that includes also the

operator L�1. If j � ˛j . O.1=N / we have a hard edge at the origin, which is

specific for the complex matrix model of [5] or the BGW model of [27], and we shall

lose the L�1 Virasoro operator.2 We reconstruct the L�1-operator in the model with

logarithmic potential for the price of unfreezing all times of the hierarchy. And, as

we demonstrate in the next section, the final answers for genus expansion terms do

not depend on the auxiliary parameter �.

2The authors thank A. Mironov for this comment.
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3.3. The genus expansion. An extensive literature is devoted to solving the one-

matrix model (3.9) in the topological (genus) expansion; its free energy F admits a

representation F D
P1

hD0 M 2�2hFh, which can be interpreted as a semiclassical

expansion of a (quasi)stationary statistical theory. As such, in the large-M limit, we

observe a stationary distribution of eigenvalues described by a spectral curve of the

model. In the present paper, as in [17], we assume that this stationary distribution

spans a single interval, and we therefore have a one-cut solution based on a spectral

curve that is just a double cover of the complex plane with two branching points, xC

and x� (a sphere). These two points are determined by the constraint equations for

the so-called master loop equation [25]
I

CD

dw

2�i

V 0.w/
p

.w � xC/.w � x�/
D 0;

I

CD

dw

2�i

wV 0.w/
p

.w � xC/.w � x�/
D 2M;

(3.17)

where the integration contour encircles the eigenvalue domain (the interval Œx�; xC�

in this case) and not other singularities (including possible singularities of V 0.w/).

After the Miwa time transformation (3.15) we obtain for V 0.w/ the expression

V 0.w/ D �2˛N �
˛N
X

iD1

1

w � �i

� . � ˇ/N
1

w C �
(3.18)

and we assume that all �i and �� are situated outside the integration contour. We

can then take the integrals in (3.17) by residues at �i , ��, and infinity. For the first

equation we obtain

�2˛N C
˛N
X

iD1

1
p

.�i � xC/.�i � x�/
C . � ˇ/N

1
p

.p C xC/.p C x�/
D 0

and shifting the branching points

xC C � D x0
C; x� C � D x0

�

and recalling that �i C � D Q�i we obtain the constraint equation solely in terms of
Q�i :

� 2˛N C
˛N
X

iD1

1
q

. Q�i � x0
C/. Q�i � x0

�/

C . � ˇ/N
1

p

x0
Cx0

�

D 0 (3.19)

For the second constraint equation we obtain

� ˛N.x0
C C x0

� � 2�/ C
˛N
X

iD1

Q�i � �
q

. Q�i � x0
C/. Q�i � x0

�/

� ˛N � . � ˇ/N C . � ˇ/N
��

p

x0
Cx0

�

D �2N
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and the term linear in � is just the first constraint equation and thus vanishes. So, the

second constraint equation becomes

. C ˇ � ˛/N � ˛N.x0
C C x0

�/ C
˛N
X

iD1

Q�i
q

. Q�i � x0
C/. Q�i � x0

�/

D 0: (3.20)

We see that, as expected, all the dependence on � disappears from constraint equa-

tions (3.19) and (3.20).

Remark 3.6. Equations (3.19) and (3.20) exactly coincide with the respective first

and second constraint equations in equation (2.14) of [17] upon the substitution

� �! Q�; N �! ˛N; ˇ � ˛ �! 1 � =˛ � ˇ=˛;

c �! .ˇ � /2=4˛2; b=a �! �x0
C � x0

�; c=a �! x0
�x0

C:
(3.21)

The answer for F0 (formula (2.16) in [17]) obtained from these constraint equations

therefore coincides (up to the normalization factor
Q˛N

iD1Œj Q�i jN e�˛N jQ�i j�) with the

genus zero contribution to generating function (1.1).

3.3.1. Genus-zero term. It follows from Remark 3.6 that the genus-zero term F0

of our generating function (1.1) upon the substitutions (3.21) and (3.1) coincides with

F0 found in [17] with the added normalization term
P˛N

iD1ŒN log Q�i � ˛N Q�i �. In

terms of variables x0
˙; Q� the corresponding expression reads

F0 D 1

4
.ˇ2N 2 C 2N 2/ logŒ.x0

C � x0
�/2�

C N 2.˛ � ˇ � /
h

jˇ �  j log
� x0

C C x0
� � 2

p

x0
Cx0

�

x0
C C x0

� C 2
p

x0
Cx0

�

�

C
x0

C C x0
�

2

i

C N 2
h˛2

8
.x0

C C x0
�/2 C ˛jˇ �  j

q

x0
Cx0

� � .ˇ � /2

4
logŒx0

Cx0
��
i

C N

˛N
X

iD1

(

ˇ C 

2
log j Q�i j C g. Q�i / � Q�i

C ˛ � ˇ � 

2
log

�

Q�i �
x0

C C x0
�

2
C g. Q�i /

�

� jˇ �  j
4

log

g. Q�i / �
Q�i .x0

CCx0
�/

2
p

x0
Cx0

�

C
p

x0
Cx0

�

g. Q�i / C
Q�i .x0

CCx0
�/

2
p

x0
Cx0

�

�
p

x0
Cx0

�

)

� 1

4

˛N
X

i1;i2D1

log
h

g. Q�i1/g. Q�i2/ C Q�i1
Q�i2 �

Q�i1 C Q�i2

2
.x0

C C x0
�/ C x0

Cx0
�

i

(3.22)
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where we have introduced the notation

g. Q�i / WD
q

. Q�i � x0
C/. Q�i � x0

�/:

It is easy to see that in the domain of large Q�i , the expansion in (3.22) contains

only negative powers of Q�: the linear and the logarithmic in Q�i terms vanish in this

domain.

3.3.2. Higher genus expressions. All higher genus corrections to the Hermitian

one-matrix model can be written in terms of moments Mr and Jr (see [3]) of the

potential:

Mr D
I

CD

dw

2�i

V 0.w/

.w � xC/rC1=2.w � x�/1=2
; (3.23a)

Jr D
I

CD

dw

2�i

V 0.w/

.w � xC/1=2.w � x�/rC1=2
; r � 1: (3.23b)

Using representation (3.18), we obtain for the moments the following expressions

Mr D
˛N
X

iD1

1

. Q�i � x0
C/rC1=2. Q�i � x0

�/1=2
C . � ˇ/N

.�1/r

.x0
C/rC1=2.x0

�/1=2
(3.24a)

and

Jr D
˛N
X

iD1

1

. Q�i � x0
C/1=2. Q�i � x0

�/rC1=2
C . � ˇ/N

.�1/r

.x0
C/1=2.x0

�/rC1=2
; (3.24b)

with r � 1. After substitution (3.24), the answer for Fh for generating function (1.1)

is given by that of the standard Hermitian one-matrix model. We have thus proved

the following lemma

Lemma 3.7. In terms of moments (3.24), every term Fh corresponding to the genus

h > 0 has a polynomial form for higher h, see [3],

Fh D
X

rs>1;qs>1

hr1 : : : rmI q1 : : : ql j r q pih

Mr1
� � � MrmJq1

� � � Jql

M r
1 J

q
1 jx0

C � x0
�jp

; h > 1;

(3.25)

and, see [4],

F1 D � 1

24
logŒM1J1jx0

C � x0
�j4�: (3.26)

Here hr1 : : : rmI q1 : : : ql j r q pih are finite (for a fixed h) sets of rational numbers

given by the topological recursion technique for the standard Hermitian one-matrix

model; see [13]. They are subject to restrictions

m C l � r � q D 2 � 2h;

m
X

sD1

.r1 � 1/ C
l
X

sD1

.qs � 1/ C p D 4h � 4; p � h � 1:
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Using topological recursion we can effectively calculate the numbers hr1 : : : rmI
q1 : : : ql j r q pih. The quantity jx0

C � x0
�j, which is often denoted by d , is the

length of the interval of eigenvalue support. Formulas (3.25), (3.26), and (3.24) thus

describe generating function (1.1) in all orders of the genus expansion.

4. Spectral curve and topological recursion

In this section, we directly derive the spectral curve without appealing to a matrix

model with external fields. For this, we shrink all solid-line cycles assigning just

the original times tr to the obtained 2r-valent vertices of the field B , xB . The gener-

ating function (1.1) is then described by the matrix-model integral over rectangular

.N � ˇN /-matrices B:

ZŒt � D
Z

N �ˇN

DB D xB e�N trŒB xB�CN
P1

rD1
1
r tr trŒ.B xB/r �; (4.1)

which, using the Jacobian from Appendix A under assumption that ˇ >  , can be

reduced to the N -fold integral over positive xk :

ZŒt � D
Z 1

0

dx1 : : : dxN Œ�.x/�2
N
Y

kD1

x
.ˇ�/N

k
e

�N
1
P

rD1

N
P

kD1

1
r

.ır;1�tr /xr
k
: (4.2)

This integral is again a Hermitian one-matrix model with a logarithmic term in the

potential

ZŒt � D
Z

N �N

DX�0e
�N tr

� 1
P

rD1

1
r .ır;1�tr /Xr �.ˇ�/ log X

�

; (4.3)

We have thus obtained another representation of generating function (1.1).

Lemma 4.1. Generating function (1.1) can be presented as a Hermitian one-matrix

model integral (4.3) with a logarithmic term in the potential.

Because we have reduced the original problem to a mere Hermitian one-matrix

model integral, we can directly apply a standard topological recursion procedure [13]

(see also [10] where it was generalized to the case of rational functions V 0.x/). We

let

U 0.x/ WD N

1
X

rD1

.ır;1 � tr/xr�1 (4.4)

denote the polynomial part of the potential with times tr with the shifted first time.

The hyperelliptic spectral curve is a sphere with two branching points x0
C and x0

�
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whose positions are determined by the standard constraints (3.17) in which

V 0.x/ D U 0.x/ � N.ˇ � /

x
; M D N: (4.5)

Constraints (3.17) then become

I

CD

dw

2�i

U 0.w/
p

.w � x0
C/.w � x0

�/
D N.ˇ � /

p

x0
Cx0

�

; (4.6a)

I

CD

dw

2�i

wU 0.w/
p

.w � x0
C/.w � x0

�/
D N.ˇ C /; (4.6b)

i.e., precisely constraints (3.19) and (3.20) after the inverse Miwa transformation.3

The y-variable of the topological recursion is given by the integral over the contour

that encircles the eigenvalue support and the point x,

y.x/ WD
I

C
Œx0

�;x0
C

�
[fxg

dw

2�i

V 0.w/
p

.x � x0
C/.x � x0

�/

.w � x/
p

.w � x0
C/.w � x0

�/
; (4.7)

which can be evaluated by residues at infinity and at w D 0 (due to the presence of a

pole term in V 0.w/) The result reads

y.x/ D
�

res1

h U 0.w/

.w � x/
p

.w � x0
C/.w � x0

�/

i

C N.ˇ � /
p

x0
Cx0

�

�
q

.x � x0
C/.x � x0

�/

(4.8)

The genus expansion for h � 1 has the same form as in Lemma (3.7) with the

moments given by the standard integrals taken by residues at infinity and at w D 0:

Mr D reswD1

h U 0.w/

.w � x0
C/rC1=2.w � x0

�/1=2

i

C . � ˇ/N
.�1/r

.x0
C/rC1=2.x0

�/1=2

(4.9a)

and

Jr D reswD1

h U 0.w/

.w � x0
C/1=2.w � x0

�/rC1=2

i

C . � ˇ/N
.�1/r

.x0
C/1=2.x0

�/rC1=2
;

(4.9b)

with r � 1. The term F0 has the general form [9] (for the number of eigenvalues

equal t0N )

F0 D �1

2

Z

C
Œx0

�;x0
C�

y.x/V .x/ � �t0; (4.10)

3The term .ˇ C / in the r.h.s. of the second equation is not a misprint.
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where � is the Lagrange multiplier most conveniently obtained as the limit of the

integral

� D lim
ƒ!C1

�

Z ƒ

x0
C

y.x/dx � V.ƒ/ � t0 log ƒ
�

: (4.11)

5. Generating functional for clean Belyi morphisms

5.1. The model. A clean Belyi morphism is a special class of Belyi pairs .C; f /

that have profile .2; 2; : : : ; 2; 1; 1; : : : ; 1/ over the branch point 1 2 CP 1. This

means that all dotted cycles (in Figure 1) have either lengths 2 (no ramification) or 4

(simple ramification). In [19] the authors demonstrated that the generating function

for ramifications of sort .2; 2; : : : ; 2/ satisfies the topological recursion relations with

the spectral curve .x D z C z�1I y D z/.

In this section, we demonstrate that the matrix model corresponding to clean Belyi

morphisms is just the Kontsevich–Penner model [15], which is in turn equivalent [16]

to the Hermitian one-matrix model with a general potential.

We thus have to calculate the generating function (1.1) in which the sum ranges

over only clean Belyi morphisms. In terms of the diagrammatic technique of Section 2

this means that we count only dotted cycles of lengths 2 and 4. Counting cycles of

length 2 reduces to a mere changing of the normalization of the h xR Ri-propagators:

so that the propagator becomes

h xR Ri � 1

N

ıi1;i2ık1;k2

1 � ˇj�i1j2

and the corresponding quadratic form gets an external field addition:

� N trŒ xRR.1 � ˇjƒj2/�: (5.1)
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The new interaction vertex arises from the dotted cycles of length four:

ƒ xƒ

ƒxƒ

ˇ � 1
2
Nˇ trŒ xRRƒxƒ xRRƒxƒ�

where the factor 1=2 takes into account the symmetry of the four-cycle.

We therefore have that the generating function F is the logarithm of the integral

Z

DR D xR eN trŒ� xRR.1�ˇ jƒj2/C 1
2 ˇ xRRjƒj2 xRRjƒj2�; (5.2)

where we integrate over rectangular complex .N �˛N /-matrices R. We first rescale

the integration variable R ! Rƒ, which results in the integral

˛N
Y

iD1

j�i j�2N

Z

DR D xR eN trŒ� xRR.jƒj�2�ˇ/C 1
2 ˇ xRR xRR�: (5.3)

Performing now the same chain of transformations as in Section 2, we obtain even-

tually that integral (5.3) is equivalent to the Hermitian one-matrix model integral

˛N
Y

iD1

j�i j�2N

Z

˛N �˛N

DH�0eN trŒ�H.ƒ�2�ˇ/C.�˛/ log HC 1
2

ˇH 2�: (5.4)

Lemma 5.1. The generating function for clean Belyi fat graphs – (1.1) with ramifi-

cation profiles .2; : : : ; 2; 1; : : : ; 1/ at the point 1 – is the matrix-model integral (5.4).

This matrix-model integral is the (original) Kontsevich–Penner matrix model; see [15]

and [16].

Remark 5.2. If we demand the ramification profile at the point 1 to be just .2; 2; : : : ; 2/

(no dotted two-cycles are allowed), then in order to obtain the corresponding gener-

ating function we must merely replace ƒ�2 � ˇ by ƒ�2 in (5.4).

From now on, for simplicity, we restrict ourselves to the case of ramification

profile .2; 2; : : : ; 2/ at the point 1.
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5.2. Solving integral (5.4). That the Kontsevich–Penner matrix model integral (5.4)

is equivalent to the Hermitian one-matrix model integral (3.9) is well known. This

equivalence was established using the Virasoro constraints in [16] or using explicit

determinant relations in [24]. We recall here the logic of [24].

We begin with the standard eigenvalue representation for integral (3.9),
Z

dy1 : : : dyM Œ�.y/�2e�
P1

kD1

PM
iD1 �kyk

i (5.5)

in which we again perform the Miwa change of variables with the Gaussian shift,

�k D 1

k

N
X

j D1

1

�k
j

C 1

2
ık;2: (5.6)

Summing up the terms in the exponential into logarithms, we transform integral (5.5)

to the form

Z

dy1 : : : dyM Œ�.y/�2
M
Y

iD1

N
Y

j D1

.�j � yi /

N
Y

j D1

��M
j e� 1

2

PM
iD1 h2

i :

We now use that �.y/
QM

iD1

QN
j D1.�j � yi / D �.y; �/=�.�/, where �.y; �/

is the Vandermonde determinant of the set of variables yi and �j , write each of the

determinants �.y; �/ and �.y/ as determinants of the Hermitian polynomials Hs .x/,

where s ranges from 0 to M C N �1 and x are either yi or �j in the first determinant

and s ranges from 0 to M � 1 and x are yi in the second determinant. Because the

Hermitian polynomials are orthogonal with the measure e� 1
2

x2
, we can integrate out

all the y-variables; the remaining expression will be the determinant of the .N � N /-

matrix kHM Cj1�1.�j2
/k, j1; j2 D 1; : : : ; N , and the original integral (5.5) thus

takes the form

N
Y

j D1

��M
j

1

�.�/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

HM .�1/ HM .�2/ : : : HM .�N /

HM C1.�1/ HM C1.�2/ : : : HM C1.�N /

:::
::: : : :

:::

HM CN �1.�1/ HM CN �1.�2/ : : : HM CN �1.�N /

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(5.7)

On the other hand, we obtain the same ratio of determinants multiplied by e
� 1

2

P

j �2
j

if we consider the N -fold integral

Z

dx1 : : : dxN

�.x/

�.�/

N
Y

j D1

xM
j e

PN
j D1.xj �j C 1

2 x2
j

/
(5.8)

because
R

dx xsex�C 1
2

x2 D e� 1
2

�2
Hs.�/. Expression (5.8) is nothing but the

Kontsevich–Penner integral, so we obtain the relation between two matrix integrals
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of different sizes:

Z

N �N

DX etrŒX�C 1
2 X2CM log X� D

M
Y

j D1

Œ�M
j e

� 1
2 �2

j �

Z

M �M

DY e
�

1
P

kD1

�k tr Y k

; (5.9)

with

�k D 1
k

N
P

j D1

1

�k
j

C 1
2
ık;2:

After a simple algebra, we come to the following lemma.

Lemma 5.3. The generating function (1.1) for the clean Belyi morphisms with the

ramification profile .2; 2; : : : ; 2/ at the point 1 is given by the following Hermitian

one-matrix model integral for  � ˛ ' O.1/:

ZŒt I ; ˇ� D
˛N
Y

iD1

j�i j�2N

Z

M �M

DY e
�

1
P

kD1

tk
k

.�1/k tr Y k� N
2ˇ

tr Y 2

; (5.10)

with

tk D
˛N
P

iD1

�2k
i ; M D . � ˛/N:

Because this integral is also equivalent to Kontsevich–Penner matrix model (5.4) –

with the external field term ƒ�2 instead of ƒ�2 � ˇ, – it also belongs to the GKM

class thus being a tau function of the KP hierarchy.

Remark 5.4. Note again that the above correspondence is valid only in the 1=N

asymptotic expansion and only when  � ˛ ' O.1/. If  � ˛ . O.1=N / the above

correspondence fails because in this case we must take into account that we integrate

in formula (5.4) over positive definite matrices, contrary to formula (5.9) in which

no restriction on integration domain is assumed. So, again, the case  D ˛ is special

and must be treated separately.

6. A general case of two-profile Belyi morphisms

Combining the techniques of Secs. 2 and 4 we now address the most general case of

Belyi morphisms with the given profiles at two branching points: infinity and 1. We

take these profiles into account in two different ways: at infinity we, as in Section 4,

introduce the times tm responsible for the profile whereas the times at 1 will be taken

into account by introducing, as in Section 2, the external field ƒ with

ts D trŒ.ƒxƒ/s� D
N
X

kD1

j�kj2s : (6.1)

We then have the following statement.
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Lemma 6.1. The generating function

F Œft1; t2; : : : g; ft1; t2; : : : g; ˇI N � D
X

�

1

jAut �jN
2�2gˇn2

n1
Y

iD1

tri

n3
Y

kD1

tsk
(6.2)

of Belyi morphisms in which we have two sets of ramification profiles: ftr1
; : : : ; trn1

g
at infinity and fts1

; : : : ; tsn3
g at 1 is given by the integral over complex rectangular

.ˇN � N /-matrices B and xB

ZŒt; t� WD eF Œftg;ftg;ˇ IN � D
Z

N �ˇN

DB D xB e�N trŒB xB�CN
P1

mD1
1
m tm trŒ.B xB xƒƒ/m�;

(6.3)

where the times ts are given by (6.1).

Performing the same operation as in (4.1)–(4.3), we obtain that integral (6.3) is

equal to the integral over Hermitian positive definite .N � N /-matrix X with the

external matrix field zƒ D jƒj�2:

ZŒt; � � D
N
Y

kD1

j�kj�2ˇN

Z

N �N

DX�0e
N tr

�

�X jƒj�2C
1
P

mD1

tm
m XmC.ˇ�/ log X

�

;

(6.4)

Integral (6.4) is again a GKM integral [24]; after integration over eigenvalues xk of

the matrix X it takes the form of the ratio of two determinants,

ZŒt; � � D
N
Y

kD1

j�kj�2ˇN











@k1�1

@ Q�k1�1

k2

f . Q�k2
/











N

k1;k2D1

�. Q�/
; (6.5)

where

f . Q�/ D
Z 1

0

xN.ˇ�/e
�Nx Q�CN

1
P

mD1

tm
m xm

: (6.6)

Because any GKM integral (in the proper normalization) is a � -function of the KP hi-

erarchy, and for a model with the logarithmic term in the potential it was demonstrated

in [27], we immediately obtain the following theorem.

Theorem 6.2. The exponential eF Œftg;ftg;IN � of generating function (6.2) modulo the

normalization factor
QN

kD1
j�k j�2ˇN is a � -function of the KP hierarchy (that is, it

satisfies the bilinear Hirota relations) in times ts given by (6.1).
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7. Conclusion

We have proved that generating functions for numbers of three different types of Belyi

morphisms are free energies of special matrix models all of which are in the GKM class

thus being tau functions of the KP hierarchy. Besides this, it is interesting to establish

other relations between, say, generating function (1.1) for clean Belyi morphisms and

the free energy of the Kontsevich–Penner matrix model, which is known (see [12],

[28], and [18]) to be related to the numbers of integer points in moduli spaces Mg;n of

curves of genus g with n holes with fixed (integer) perimeters; the very same model

is also related [12] by a canonical transformation to two copies of the Kontsevich

matrix model expressed in times related to the discretization of the moduli spaces

Mg;n. It is tempting to find possible relations between these discretizations, cut-and-

join operators of [32], and Hodge integrals of [23].

Of course, the possibility of using GKM techniques when studying enumeration

problems for Belyi morphisms deserves more detailed studies; we consider this note

a first step in exploring this perspective field of knowledge.

It is also interesting to clarify the role of cut-and-join operators of [23] and [32]

in the matrix-model context. After this text was completed, an interesting paper [2]

extending the formalism of cut-and-join operators to the case of generalized Hurwitz

numbers has appeared.

Appendix A. Deriving the Jacobian of transformation (2.8)

The invariant measure DU DV in the vicinity of the unity becomes the measure

DH D zH DP D xP . For d xRi;k we then obtain

d xRi;k D
°

d Nmiıi;k C idHi;k Nmk C imid zHi;k; k � ˛N
ˇ

ˇ

ˇ Nmi dPi;k�˛N ; k > ˛N
±

:

(A.1)

The elements dmi appear only for i D k with the unit factor, so we have to calculate

only “non-diagonal” differentials DR D xR. For i < k � ˛N we have

d xRi;k D idHi;k Nmk C i Nmid zHi;k; d xRk;i D idH �
i;k

Nmi C i Nmkd zH �
i;k

;

dRk;i D �idHi;kmi � imkd zHi;k; dRi;k D �idH �
i;k

mk � imi d zH �
i;k

:
(A.2)

Combining the columns in these relations, we obtain

d xRi;k ^ dRk;i D dHi;k ^ d zHi;kŒmk Nmk � mi Nmi �;

d NRk;i ^ dRi;k D dH �
i;k

^ d zH �
i;k

Œmi Nmi � mk Nmk �;
1 � i < k � ˛N; (A.3)
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and we obtain that

˛N
^

i;kD1
d xRi;k ^ dRk;i D DH ^ D zH ^

˛N
Y

iD1

dmi ^ d Nmi

Y

1�i<k�˛N

Œjmi j2 � jmk j2�2:

(A.4)

For the remaining part we merely obtain from (A.1) that

^
iD1;:::;˛N

kD˛NC1;:::;N

d xRi;k ^ dRk;i D DP ^ D xP
˛N
Y

iD1

jmi j2.�˛/N ; (A.5)

so we finally obtain formula (2.9) for the Jacobian of transformation (2.8).
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