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�e calculation of expectation values

in Gaussian random tensor theory

via meanders

Valentin Bonzom and Frédéric Combes

Abstract. A di�cult problem in the theory of random tensors is to calculate the expecta-

tion values of polynomials in the tensor entries, even in the large N limit and in a Gaussian

distribution. Here we address this challenge for tensors of rank 4, focusing on a family of

polynomials labeled by permutations, which generalize in a precise sense the single-trace

invariants of random matrix models. �rough Wick’s theorem, we show that the Feynman

graph expansion of the expectation values of those polynomials enumerates meandric sys-

tems whose lower arch con�guration is obtained from the upper arch con�guration by a

permutation on half of the arch feet. Our main theorem reduces the calculation of expecta-

tion values to those of polynomials labeled by stabilized-interval-free permutations (SIF)

which are proved to enumerate irreducible meandric systems. �is together with explicit

calculations of expectation values associated to SIF permutations allows to exactly evaluate

large N expectation values beyond the so-called melonic polynomials for the �rst time.
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1. Introduction

Random tensor theory [1] generalizes random matrix theory [2]. A tensor is a

multi-dimensional array, here considered as a random variable. �e observables

are polynomials in the tensor entries invariant under some unitary transformations,

and are the quantities whose expectation values we are interested in.

Tensor models have been �rst introduced in the context of quantum gravity

[3, 4, 5] (some tensor models, known as group �eld theories, provide a �eld theory

framework for loop quantum gravity [6]). Although the interest in tensor models

has thus existed for a long time, it is only a few years ago that important progress

was made, leading to the ability to solve some tensor models exactly in the limit

of large tensor size N , [7, 8, 9]. �is has had several applications: the discovery of

new, non-local, perturbatively renormalizable �eld theories called tensorial �eld

theories [10], the analytical study of the continuum limit and critical phenomena

of dynamical triangulations coupled to matter [11] which con�rmed the behavior

of Euclidean Dynamical Triangulations observed numerically.

�e main results concerning the large N limit of random tensor models are

naturally framed in probabilistic terms [12, 13]. In particular, [12] shows that the

non-i.i.d. distributions considered in random tensor models become Gaussian at

large N , which is a very strong universality result, while [13] proves that the con-

tributions to the expectation value of an observable at large N can be understood

as random branched polymers, in particular in metric terms, this way �nally con-

�rming another expectation from the numerics.

While the theorems about random tensors are obviously probabilistic, the tech-

niques hugely rely on combinatorics. �e reason is that the expectation value of a

polynomial P.T / is expanded using the Feynman expansion onto graphs,

hP.T /i D
X

¹Feynman graphsº

Feynman amplitudes;

(h�i denotes the expectation value), and the calculation therefore necessitates the

understanding of the Feynman graphs and their associated amplitudes. �e Feyn-

man graphs of random tensor models are generically stranded graphs (general-

izing ribbon graphs) [14] and turn out to correspond to triangulations of pseudo-

manifolds [3] whose dimension is the number of indices of the tensor. �is ex-

plains the longstanding di�culty of solving tensor models.

�e breakthrough was to restrict to a particular class of models for which both

the polynomials P.T / and their Feynman graphs can be represented as regular

edge-colored graphs [1, 8] and the Feynman amplitudes depend on basic combi-

natorial properties of the graphs [7]. �e set of colored graphs is much easier to
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handle than the set of stranded graphs, and the subset which dominate the large

N limit is in fact solvable [8, 9, 15]. Actually, those regular colored graphs have

recently been enumerated in the way that is relevant to tensor models in [16]. Fur-

thermore, it has been understood how to relax the colorability requirement in the

case of three indices while still being able to solve the model (large N free energy

in [17] and �rst 1=N correction in [18]). �is is the �rst time resummations of

stranded graphs in a tensor model have been made.

In spite of the classi�cation of [16] (see also [19] for a totally di�erent approach

dealing with a subset of colored graphs), there is no known solution to the problem

of evaluating the expectation value of an arbitrary polynomial, even at large N only

and even in a Gaussian distribution. Using Wick’s theorem, the expectation of a

polynomial in a Gaussian distribution can be formulated as a sum over a �nite but

large number of Feynman graphs (going like nŠ if n is the degree of the polynomial

in T ). Every graph is weighted by a power of N which is determined by a precise

set of cycles (called faces, akin to faces of maps), see section 4.3. in [12]. �e

problem of calculating the large N expectation is that of �nding a closed formula

for the number of graphs which are dominant at large N and it is very di�cult in

general to �nd a characterization of those graphs convenient enough so that they

can be counted (it depends on the polynomial in a non-trivial way in general).

Large N Gaussian expectations are known only for a few families of polyno-

mials. �ere is a single dominant graph (hence expectation 1) for the so-called

melonic polynomials [8, 21]. Other families of polynomials with expectation 1

have been found in [20] (it relies of them having a melonic sub-structure while the

dominant graphs also have to be dominant when restricted to this sub-structure).

Finally, there exist matrix-like observables whose expectations are Catalan num-

bers (they will be described below). In this article, we are able for the �rst time to

provide explicit calculations beyond those cases.

In addition to being interesting on its own right, the Gaussian distribution is

crucial in random tensor theory due to the universality theorem of [12]. It as-

serts that unitary-invariant joint probability distributions (whose cumulants are

uniformly bounded) become Gaussian at large N . �erefore, the calculation of

a large N expectation reduces to that of the Gaussian expectation (the universal

part) and to the calculation of the covariance (which is not universal and depends

of details of the model [8]).

We focus on the following issue: the exact calculation of expectations of some

polynomials of a Gaussian random tensor of rank four and at large N .
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� �e polynomials we study are labeled by (one or two) permutations � 2 Sn,

where 2n is the order of the polynomial. �ey are described in details in Sec-

tion 2. �ey generalize the single-trace invariants of random matrix models

in the sense that the latter have a graphical representation with a single face

while our polynomials have two faces superimposed in a non-trivial way.

� We show in Section 3 that their Feynman expansion is an expansion onto

meandric systems. A meandric system [22] consists of an upper and a lower

planar arch con�gurations joined at the feet of the arches along a horizontal

line so as to form closed non-intersecting curves crossing the horizontal line

2n times. �e meandric systems contributing to the expectation value of a

polynomial are such that the lower arch con�guration is obtained from the

upper one by applying the (one or two) permutations to (half of or all) the feet

of the upper arches. �ese meandric systems are each counted with weight

one, so that hP� .T /i simply enumerates them.

� Our main theorems are in Section 4. We prove that the expectation value of

a polynomial can factorize as a product of expectation values of smaller bits.

�ose smaller bits are polynomials labeled by stabilized-interval-free (SIF)

permutations, which are permutations on Œ1; n� which do not stabilize any

subinterval Œi; j �. Furthermore, the meandric systems contributing to their

Feynman expansion are the irreducible meandric systems, i.e. those which

do not get disconnected after two cuts on the horizontal line.

� Section 5 o�ers applications of our factorization theorem to recover the num-

bers of meandric systems with k components, for k close to the order of the

system (the number of crossings on the horizontal line). We also calculate

the expectation values of polynomials of arbitrary degrees labeled by some

SIF permutations.

As far as we know, this is the �rst time that the SIF permutations, studied

in [23], are related to the irreducible meandric systems, which were introduced

and studied in [24].

�e meandric representation of the Feynman expansion connects the combi-

natorics of random tensor models to a well-known problem of enumerative com-

binatorics. Moreover, it turns out to be very convenient to study the expectation

values and all our proofs are expressed using the meandric representation.

Notation. Since only intervals of integers will be considered, we simply denote

them with the standard notation Œa; b� of real intervals.
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2. Polynomials labeled by permutations

2.1. Invariant polynomials in random tensor theory and their graphical rep-

resentation. Let T be a rank d tensor, with components Ta1���ad
, ai D 1; : : : ; Ni

for i D 1; : : : ; d , and xT its complex conjugate. Random tensor theory has been re-

cently developed for U.N1/�� � ��U.Nd / invariant quantities, in the sense that the

expectation values of invariant functions with respect to an invariant distribution

on T; xT are well-de�ned [8, 12]. �e algebra of invariant functions is generated by

a set of polynomials labeled by connected edge-colored bipartite graphs of degree

d . To build a polynomial PB.T; xT / from a colored graph B , assign a T to each

white vertex, a xT to each black vertex. For each edge with color i 2 ¹1; : : : ; dº,
identify the indices ai in the position i of the two tensors connected by the edge,

and sum over ai . �is way all indices of all T and xT are contracted two by two in

a U.N / invariant way. Some examples at d D 4 are presented in Figure 1.

�e expectation value of a polynomial PB is

hPBi D
Z

d�.T; xT / PB.T; xT /; (1)

where d� is the joint distribution on the tensor entries. In the case N1 D � � � D
Nd D N , the large N limit of invariant distribution has been found in [12] to

be Gaussian, under some conditions that are typically satis�ed in tensor models

where d� is a Gaussian measure perturbed with the exponential of invariant poly-

nomials. In this case, the expectation values have a well-de�ned 1=N expansion,

see a synthesis in [8]. �e case where the sizes Ni are di�erent can lead to di�erent

behaviors in the large Ni limits, detailed in [20] and [28].

We focus on the case N1 D � � � D Nd D N . �e 1=N expansion of an expec-

tation value reads

hPBi D N !.B/
X

k2N

N �k Ck '
large N

N !.B/ ŒG.2/�V=2 C
.G/
0 ; (2)

where the universality theorem for large random tensors [12] allows to factorize

the large N dominant coe�cient C0 in terms of

� the large N , full covariance G.2/ D h
P

¹ai º Ta1���ad
xTa1���ad

i=N (the re-scaling

makes G.2/ of order O.1/ at large N ),

� the half-number of vertices of B , V=2,

� C
.G/
0 2 N which is the leading order Gaussian average of PB , counting the

number of Wick pairings which are dominant at large N .
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Evaluating expectation values therefore requires to calculate G.2/, the observable

scaling !.B/ and the amplitude C
.G/
0 for arbitrary colored graphs. �is is obvi-

ously a di�cult task. In this paper, we will focus on a Gaussian distribution with

G.2/ D 1, at d D 4, and restrict attention to a speci�c family of invariant poly-

nomials for which i/ !.B/ is easily found, i i/ more importantly C
.G/
0 counts the

number of meanders such that the top and bottom arch con�gurations are related

by a permutation.

2.2. �e family of interest. To describe the family of observables we are inter-

ested in, it is useful to introduce the notion of faces.

De�nition 1 (graph faces). Let G be a bipartite connected edge-colored graph of

degree � with colors in ¹1; : : : ; �º. A face of colors .ij / is a connected closed

subgraph with colors in ¹i; j º only. In other words, we get the faces of colors .ij /

by erasing all edges with a di�erent color and looking at the remaining connected

pieces.

In random matrix models, the polynomials associated to connected edge-col-

ored bipartite graphs of degree 2 are the traces tr.MM �/V=2. �e corresponding

graphs are just closed cycles whose edge colors alternate 1 and 2 and with an even

number of vertices V . Equivalently, they possess a single face with colors .12/.

In this article we consider connected bipartite 4-colored graphs (regular of

degree 4) with a single face of colors .12/ and a single face of colors .34/, and we

denote the set of such graphs on 2n vertices Bn. We can represent any of them

starting with the face of colors .12/ drawn as a 2n-gon, and then glue to its vertices

the face with colors .34/ (thereby typically creating crossings inside the 2n-gon).

Examples are provided in Figure 1.

Permutations are useful to label such graphs. �e idea is to consider separately

the face with colors .12/ and the face with colors .34/ with independently labeled

vertices. It is then su�cient to say which white (respectively black) vertex of the

face with colors .34/ is glued to which white (respectively black) vertex of the

face with colors .12/. To do that more precisely, the following de�nition will be

useful.

De�nition 2 (face induced labeling). Given a black (or white) vertex of reference

labeled 1� (or 1ı), a face with colors .ab/ induces a labeling ¹1�; 1ı; : : : ; n�; nıº
of the 2n vertices via the following rule: an edge of color a connects the white

vertex jı to the black vertex j� and an edge of color b connects the white vertex

jı to the black vertex .j C 1/�, for j D 1; : : : ; n (with nC 1 D 1).
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(a) �e only 2-vertex, 4-colored graph.
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(b) �e two 4-vertex graphs in B2.
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(c) A 10-vertex graph.

Figure 1. Examples of graphs with a single face with colors .12/ and a single face with

colors .34/.

�e cyclic group Z=nZ acts on the labelings via the cyclic permutations �p W
i 2 ¹1; : : : ; nº 7! i C p mod n 2 ¹1; : : : ; nº, p D 0; : : : ; n � 1, on both white

and black vertices. Since there are n possibilities for the vertex of reference, the

action of Z=nZ generates the whole set of labelings.
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�e following proposition characterizes graphs in Bn in terms of permutations.

Proposition 1. A graph B 2 Bn can be characterizedby two permutations �ı; �� 2
Sn, up to the left and the right actions of Z=nZ,

.�ı; ��/ 7�! .�p ı �ı; �p ı ��/; p D 0; : : : ; n� 1;

.�ı; ��/ 7�! .�ı ı�k; �� ı�k/; k D 0; : : : ; n� 1:
(3)

�e graph is then denoted B�ı;�� .

Proof. We choose an arbitrary white vertex of reference, denoted 1ı, and use it as

the origin of a labeling of the other vertices induced by the face with colors .12/

(see De�nition 2). �en we choose a second white vertex of reference, denoted

10
ı and use it to get a second labeling of the vertices, this time induced by the

face with colors .34/. �is way, each white vertex gets two labels, say i 0
ı from the

face with colors .34/ and jiı from the face with colors .12/ (and .i 0
�; ji�/ for black

vertices, i D 1; : : : ; n). �e permutations �ı; �� are de�ned by

�ı.i 0
ı/ D jiı and ��.i 0

�/ D ji�: (4)

�ey obviously depend on the choice of the vertices of reference 1ı; 10
ı. If pı C 1

is chosen as the new vertex of reference 1ı, the pair of permutations becomes

.��p ı�ı; ��p ı��/. If the second vertex of reference 10
ı is chosen to be .kC1/0

ı,

the new permutations are .�ı ı�k ; �� ı�k/.

�e other way around, given two permutations �ı; �� on ¹1; : : : ; nº, we can

reconstruct a graph. We draw the vertices and edges of colors 1,2 as a convex

2n-gon and label the vertices as induced by the face with colors .12/ (from an

arbitrary vertex of reference). �en we use �ı; �� to add the colors 3 and 4. We

connect the white vertex �ı.i/ to ��.i/ via an edge of color 3 and to ��.i C 1/

via an edge of color 4, for i D 1; : : : ; n. Obviously the same graph is obtained if

��p ı �ı and ��p ı ��, or �ı ı�k and �� ı�k , are used.

Remark 1. �is labeling of the graphs by .�ı; ��/ uses as a reference the graph

labeled by the identity on white and black vertices. It is a matrix-like observable,

since two adjacent vertices are always connected by both an edge of color 1 and

an edge of color 3, or by both an edge of color 2 and an edge of color 4,
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Bid;id D 1

1

2

2

2

3

3
4

4

4

(5)

�erefore we could de�ne fat-edges, labeled by the pair of colors .13/ or .24/

and corresponding to pairs of indices of T and xT . In a Gaussian distribution, the

corresponding polynomial of order 2n has the same expectation value at all orders

as tr.MM �/n for a random matrix M of size N 2 �N 2 in a Gaussian distribution.

�e e�ect of the permutations �ı; �� is to move around the edges of colors 3

and 4 with respect to the matrix-like graph, by pulling out the vertices of the face

with colors .34/ and dragging them to �ı.i/; ��.i/.

As an example, the 10 vertex graph in Figure 1(c) can be labeled as follows,

(we have used the color code 1=red, 2= black, 3=green, 4=blue),

B�ı;�� D

3 4

1 1

2

2

3 4

5

5

10

10

20

20

30

30 40

40

50

50

; with

´

�ı D .145/.2/.3/;

�� D .12/.35/.4/:
(6)

Proposition 2. Let us denote Bn;ı the set of graphs as in Bn but equipped in

addition with a marked white vertex. �en there is a bijection between Bn;ı and

Sn �Sn�1.

Proof. It parallels the proof of Proposition 1, using the marked vertex as 1ı D 10
ı to

set the labels unambiguously. �us we get �� and �ı as before, but since 1ı D 10
ı,

we always get �ı.1/ D 1ı and then �ı 2 Sn�1.

�e interest of this Proposition lies in the fact that the Schwinger-Dyson equa-

tions, a set of algebraic equations which relate the expectation values of all poly-

nomials to one another, are labeled by regular edge-colored graphs with a marked
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vertex, and are therefore well-labeled by Sn�Sn�1. Instead of Schwinger-Dyson

equations, we will use the Feynman expansion, but more comments on them can

be found in the Conclusion.

2.3. 1=N expansion of Gaussian expectation values. �e Gaussian measure

we consider is

d�G.T; xT / D 1

Z
e�N 2 T � xT dT d xT ; (7)

where T � xT D
P

a1;a2;a3;a4
Ta1a2a3a4

xTa1a2a3a4
, and Z is the normalization.

Note that the power of N in the Gaussian is not the one usually considered

for rank 4 tensors (that would be N 3 instead of N 2). However, it has been shown

in [20] that N 2 makes sense too (and for non-Gaussian joint distributions, the

large N limit is out of the range of applicability of the universality theorem, so

non-Gaussian large N limits can be observed). In anyway, when the joint dis-

tribution is Gaussian as in our case, the scaling is not really relevant. Indeed, if

one introduces S D T=
p

N , the Gaussian becomes e�N 3S � xS , and the expectation

value of PB.S; xS/ simply di�ers from that of PB.T; xT / by a factor N V=2, V be-

ing the degree of PB (number of vertices of the corresponding colored graph).

Since the family Bn of observables we are going to study has a uniform scaling,

i.e. independent of the number of vertices 1, with N 2 in the Gaussian, this choice

appears as the most natural one.

Consider a graph B�ı;�� 2 Bn and the corresponding polynomial P�ı;�� of

degree n in T and in xT . According to Wick’s theorem, the Gaussian average of

P�ı;�� has an expansion onto Wick pairings,

hP�ı;��.T; xT /i D
X

Wick pairings �

N �.�ı;��;�/: (8)

A Wick pairing is a way of associating to each T a di�erent xT . Using a labeling

induced by the face with colors .12/, it can therefore be seen as a permutation

� 2 Sn which associates to each label in ¹1ı; : : : ; nıº a label in ¹1�; : : : ; n�º.
It can be represented graphically via additional edges, say carrying the �ctitious

color 0, between the vertices labeled with iı and �.i/�.

�e labeling induced by the face with colors .12/ together with �ı induces

a second labeling, ¹10
ı; 10

�; : : : ; n0
ı; n0

�º, compatible with the face of colors .34/.

�e label i 0
ı is given to the vertex with label �ı.i/ and the label i 0

� goes to the

vertex with label ��.i/. �is is the labeling induced by the face with colors .34/

with the vertex labeled �ı.1/ chosen as the reference 10
ı. �e Wick pairing is

1However, the leading order coe�cient C0 might vanish.
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also a permutation on this second set of labels: it connects i 0
ı 2 ¹10

ı; : : : ; n0
ıº to

Œ��1
� ı � ı �ı.i/�0� 2 ¹10

�; : : : ; n0
�º.

�e graph B�ı;�� dressed with the additional lines of color 0 representing the

Wick pairing � (they are called propagators in quantum �eld theory) is denoted

G�ı;��;� . It is a connected, bipartite, edge-colored graph with �ve colors. For

instance, there are two such graphs in the expansion of the expectation value of

the graph of Figure 1(b),�
1

1

2 2

3

3

44

�
D

1

1

2 2

3

3

44

0

0

C

1

1

2 2

3

3

44 00

(9)

In addition to faces of colors .ij /, i; j D 1; 2; 3; 4, it also has faces with col-

ors .0i/, i D 1; 2; 3; 4. It turns out that the exponent of N associated to a Wick

pairing � can be expressed as [8, 20]

�.�ı; ��; �/ D
4

X

iD1

f0i � 2`0; (10)

where f0i is the number of faces with colors .0i/ and `0 is the number of edges

with color 0, `0 D n. In the following `i is the number of edges of color i , with

`i D n obviously. We consider the subgraph obtained by erasing from G�ı;��;� the

colors 3 and 4. It is a connected bipartite 3-colored graph with vertices of degree 3

and therefore represents the cell decomposition of a topological orientable surface

whose genus g12.�ı; ��; �/ is given by the classical formula

2�2g12.�ı; ��; �/ D f12 C f01 C f02
„ ƒ‚ …

total # of faces

�.`1 C `2 C `0
„ ƒ‚ …

total # of edges

/C2n D 1Cf01Cf02�`0:

(11)

In the second equality, we have used f12 D 1 and `0 D `1 D `2 D n. Everything

works similarly for the subgraph with the colors 1 and 2 erased. It is a graph with

colors 0,3,4, dual to a triangulation of a topological surface whose genus is given

by

2 � 2g34.�ı; ��; �/ D 1C f03 C f04 � `0: (12)
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�erefore the exponent of N coming from a Wick pairing � is

�.�ı; ��; �/ D 2 � 2g12.�ı; ��; �/ � 2g34.�ı; ��; �/; (13)

and we get a “doubled” 2D topological expansion,

hP�ı;��.T; xT /i D N 2
X

Wick pairings �

N �2g12.�ı;��;�/�2g34.�ı;��;�/: (14)

In particular, the coe�cient Ck of the 1=N expansion in (2) is the number of Wick

pairings such that the sum of genera g12.�ı; ��; �/C g34.�ı; ��; �/ is k=2.

It is possible to express the topological quantities g12.�ı, ��; �/; g34.�ı; ��; �/

in terms of properties of the permutations � and ��1
� ı � ı �ı (and the number

of vertices). Indeed, let us start at a vertex iı and list the vertices we meet when

following the edges of colors 0 and 1:

iı  !1 i�

 !0 ��1.i/ı

 !1 ��1.i/�

 !0 .��1 ı ��1/.i/ı

 !1 .��1 ı ��1/.i/� � � � ;

(15)

where $a means there is an edge with color a. �erefore the number of faces

with colors .01/ is

f01 D z.��1/; (16)

where z.�/ denotes the number of cycles of the permutation. Similarly, following

the colors 0 and 2, one meets the vertices

i�  !2 .i C 1/ı

 !0 �.i C 1/�

 !2 .�.i C 1/C 1/�

 !0 �.�.i C 1/C 1/ı

� � � ;

so that

f02 D z.�1 ı �/: (17)

(Remember that �1 is the cyclic permutation i 7! i C 1 mod n.) With the same

reasoning,

f03 D z.��1
ı ı ��1 ı ��/; f04 D z.�1 ı ��1

� ı � ı �ı/: (18)
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3. �e meandric representation of large N Gaussian expectation values

In the remaining of the article, we re-normalize expectations with 1=N 2, so that

the dominant terms in the Feynman expansion (14) are of order O.1/. Moreover,

all equalities involving expectations are to be understood as large N limits.

3.1. Gaussian expectation values as the enumeration of meandric systems

3.1.1. Meandric systems. We �rst give the classic informal picture of a meander.

Consider a river, oriented from west to east, with 2n bridges. A meander is a

closed, self-avoiding road which crosses all the bridges. A meandric system with

k roads is a set of k non-intersecting meanders. A more formal de�nition is the

following one.

De�nition 3 (meanders and meandric systems). A meander of order n is a closed,

planar, self-avoiding curve (the road) which crosses an in�nite oriented horizontal

line (the river) exactly 2n times (the bridges). �e number of meanders of order

n is denoted Mn.

A meandric system of order n with k components is a set of k non-crossing

meanders all intersecting the same horizontal line, exactly 2n times in total. �e

number of meandric systems with k components and of order n is denoted M
.k/
n .

Two systems are equivalent if there is a homeomorphism of the plane mapping

one to the other.

Another representation of the problem of counting the number of meanders is

the problem of calculating the entropy associated to compact foldings of a polymer

on the plane [25, 30].

We will use the canonical representation, where the river is oriented from west

to east, has 2n marked vertices (black and white ones), the segments of the roads

above and under the river are represented as semi-circular arches (caps and cups)

whose feet are the vertices. An example is provided in Figure 2.

3.1.2. Graphical re-encoding of Wick pairings. �e contributions which dom-

inate the large N limit in the equation (14) are the graphs G�ı;��;� such that the

subgraphs with colors 0,1,2 and with colors 0,3,4 both have vanishing genus. As

usual, this can be formulated as a planarity criterion. First, draw the face with

colors .12/ as a convex 2n-gon and the lines of color 0 on the exterior region,

joining the vertices with labels iı and �.i/�. �e genus g12.�ı; ��; �/ is zero if
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Figure 2. A meandric system of order 3 with two connected components.

and only if this graph is planar. �en proceed similarly with the face with col-

ors .34/, which has to be "unfolded". Draw it as a convex 2n-gon with vertex la-

bels ¹10
ı; 10

�; : : : ; n0
ı; n0

�º. �en the lines of color 0 connect i 0
ı to Œ��1

� ı � ı �ı.i/�0�.

Draw them on the exterior of the 2n-gon. It comes that the genus g34.�ı; ��; �/

vanishes if and only if this graph is planar.

�e drawback of this representation is that we actually need two separate draw-

ings in order to draw both the faces with colors .12/ and with colors .34/ as 2n-

gons. To improve the situation, we can draw the lines of color 0 inside the 2n-gon

with colors .34/, which does not change the equivalence between planarity and

vanishing genus. �en we can identify the two 2n-gons, to get a single one, with

edges of color 0 on the exterior, representing the permutation � , and a copy of the

Wick pairing on the inside representing the permutation ��1
� ı � ı �ı. Finally we

can cut the 2n-gon and stretch it horizontally. In this way we obtain a horizontal

line with semi-circular arches on the upper half plane and on the lower half-plane.

In the following it will be useful to identify permutations with arch con�gura-

tions.

De�nition 4 (permutations and arch con�gurations). A permutation � 2 Sn can

be represented as a (most of the time non-planar) arch con�guration on the set

of 2n ordered vertices .1�; 1ı; : : : ; n�; nı/, by ordering the vertices on a horizontal

line, from left to right, and drawing arches between iı and �.i/�, i D 1; : : : ; n. �e

arches can be drawn all in the upper or lower half-plane. Reciprocally, any arch

con�guration gives rise to a permutation: with the same left-to-right ordering

.1�; 1ı; : : : ; n�; nı/, �.i/ 2 ¹1; : : : ; nº is de�ned as the label of the black vertex

connected via an arch to the white vertex iı.

A permutation � is said to be planar, � 2 PlSn, if its arch con�guration is

planar.

Step by step, our new representation of a Wick pairing � 2 Sn on a graph

B�ı;�� 2 Bn is obtained in the following way.
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� Draw a horizontal line with alternating black and white vertices which get

the labels .1�; 1ı; : : : ; n�; nı/ from west to east.

. . .11 22 nn��� ııı

� �e permutation � is represented in the upper half-plane by semi-circular

arches connecting iı to �.i/�, i D 1; : : : ; n. �e genus g12.�ı; ��; �/ van-

ishes if and only if the arch con�guration is planar (note that this is however

independent of �ı and ��).

1� 1ı iı n� nı� � ��.i/�

� �e permutation ��1
� ı� ı �ı is represented in the lower half-plane by semi-

circular arches connecting iı to Œ��1
� ı� ı�ı.i/��, i D 1; : : : ; n, and planarity

of the arch con�guration is equivalent to g34.�ı; ��; �/ D 0.

1� 1ı iı n� nı

Œ��1
� ı � ı �ı.i/��

�.i/�

� We end up with two arch con�gurations, which form closed roads winding

across a river. In the large N limit, only the planar arch con�gurations sur-

vive, which are exactly meandric systems of order n.

Proposition 3. Let M�ı;�� be the set of meandric systems such that if � 2 PlSn

is the upper arch con�guration, then ��1
� ı� ı�ı is planar too and represents the

lower arch con�guration. We have thus shown that

hP�ı;��i D
large N

jM�ı;�� j: (19)

In matrix model, graphs corresponding to the observables tr.MM �/n have a

single face (with colors .12/) and by following the same reasoning as above, a

Wick pairing is a permutation � 2 Sn or equivalently an arch con�guration.

�e number of planar permutations, describing a planar arch con�guration, is the

Catalan number Cn and indeed the large N evaluation

htr.MM �/ni D Cn; (20)
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is very well-known. However, in our case, the presence of a second face, with

colors .34/, supported on the same set of vertices, makes the evaluation much more

involved and explains the need for two arch con�gurations, and hence meandric

systems in the large N limit. Given �ı; �� and a planar upper arch con�guration

encoded by � , the lower arch con�guration, representing ��1
� ı� ı�ı, is typically

not planar.

�is provides a very simple bound: the number of Wick pairings which con-

tribute at large N is bounded by the number of planar arch con�gurations,

hP�ı;��i � Cn: (21)

3.2. Meandric permutations. Meandric systems can be described by permuta-

tions called meandric permutations [22]. First consider a labeling of the vertices

of the horizontal line, say from left to right, 1; 2; : : : ; 2n, the odd vertices being

the black ones and the even vertices being the white ones. �e roads are also ori-

ented such that they go from bottom to top at each black vertex. �e meandric

permutation � is de�ned as a product of disjoint cycles, one for each road whose

cycle is obtained by listing the vertex labels encountered along the road.

While there is a one-to-one correspondence between meandric systems and

meandric permutations, it is very hard to identify the meandric permutations.

A necessary condition is the following: if � has k cycles, then �2 has 2k cycles,

k of them on the odd labels ¹1; 3; : : : ; 2n � 1º and the others on the even labels

¹2; 4; : : : ; 2nº.
It is easy to relate � to our permutations .�ı; ��; �/.

Proposition 4. Consider a meandric system inM�ı;�� with � 2 PlSn as the upper

arch con�guration. Let � 2 S2n denote the corresponding meandric permutation.

�en

�2.2i � 1/ D .��1
� ı � ı �ı ı ��1/.i/; (22a)

�2.2i/ D .��1 ı ��1
� ı � ı �ı/.i/; for i D 1; : : : ; n. (22b)

�e proof simply tracks the labels along the oriented roads. It has the following

interesting consequence.

Corollary 1. A meandric system in M�ı;�� with � 2 PlSn as the upper arch

con�guration has exactly z.��1
� ı � ı �ı ı ��1/ closed curves, where z denotes

the number of cycles. In the case �ı D id (respectively �� D id), this reduces to

z.��/ (respectively z.�ı/) and is therefore independent of the Wick pairing � .
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3.3. From meanders to Gaussian expectation values. We have shown that the

expectation values of polynomials in a speci�c family can be evaluated as a num-

ber of meandric systems. We would also like to know whether while exploring the

whole family of polynomials we encounter all meandric systems. It turns out to

be the case, in the sense that from a meandric system and a given �ı, it is possible

to reconstruct a graph B�ı;�� and a Wick pairing � .

Proposition 5. For any �xed �ı 2 Sn, there is a one-to-one correspondence

between meandric systems of order n and elements of ¹M�ı;��º��2Sn
.

Proof. An element of ¹M�ı;��º�� is a meandric system characterized by �ı (�xed),

�� and an arch con�guration � . We thus have to show that there exist a unique �

and a unique �� for any meandric system. �e vertices along the horizontal line

are labeled from left to right .1�; 1ı; : : : ; n�; nı/. By following the top arches we

simply read �: �.i/ is the label of the black vertex connected to iı by an upper

arch (see De�nition 4). We proceed similarly with the arches in the lower half-

plane: ��1
� ı � ı �ı.i/ is the label of the black vertex connected to iı by a lower

arch. Since �ı is �xed and � is known from the upper arches, this de�nes ��.

Corollary 2. �e following large N equalities hold for all �ı 2 Sn:

X

��2Sn

hP�ı;��i D
X

k�1

M .k/
n D C 2

n ; (23)

and
X

��2Sn

z.��/Dk

hPid;��i DM .k/
n ; (24)

(since the total number of meandric systems of order n is the square of the Catalan

number Cn).

Proof. We have

X

��2Sn

hP�ı;��i D
X

��2Sn

jM�ı;�� j D j¹M�ı;��º�� j D
X

k�1

M .k/
n (25)

�e �rst equality comes from (19) and the last one is just a translation of Propo-

sition 5 into equations, since
P

k�1 M
.k/
n is the total of meandric systems on 2n

vertices, which �nally evaluates to C 2
n and proves equation (23).

Let mk be a meandric system of order n with k components. From Proposi-

tion 5 there exists a unique permutation �� 2 Sn such that mk 2Mid;�� . Moreover,

from the case �ı D id of Corollary 1, we know that the number of components of
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an element of Mid;�� is the number of cycles of ��, hence k D z.��/. �is proves

equation (24).

Note that in (24) the permutation �ı has to be set to the identity in order to

keep the number of components of the meandric systems in M�ı;�� �xed. Indeed,

in Corollary 1, one sees that the number of components k of a meandric system in

M�ı;�� is not �xed and depends on the permutation � which identi�es the upper

arch con�gurations, as k D z.��1
� ı � ı �ı ı ��1/.

4. Factorization on stabilized-interval-free permutations

In this section we restrict attention to the case �ı D id, and to simplify the notation

we only write �� D � explicitly, like B� ; P� and so on.

In the trivial case we have

hPid.T; xT /i DM .n/
n D Cn: (26)

From the point of view of Wick’s theorem, the Cn contributions come from the

fact that the two 3-colored graphs formed by the all vertices and the edges of colors

0,1,2, and those of colors 0,3,4 are the same. �erefore the expectation value is

the same as for a single-trace invariant in a Gaussian matrix model. In terms of

meandric systems, this means that all the Cn planar arch con�gurations on the

upper half-plane are trivially re�ected in the lower half-plane with respect to the

horizontal line, by the trivial permutation on the vertices: the top and bottom arch

con�gurations are the same. �ey correspond to all the meandric systems with

exactly n loops on 2n vertices.

In the general case, we have the bound (21), but we would like to evaluate the

expectation value exactly, or at least �nd a way to decompose it into smaller bits.

As a �rst step, we will �nd a factorization onto expectation values of polynomials

labeled by connected (or indecomposable) permutations [27]. �en we will use

the cyclic permutation invariance to reduce the number of irreducible blocks to

SIF permutations [23].

De�nition 5 (decomposition into stabilized blocks). Let � 2 Sn and 1 D i1 <

i2 < � � � < ip < ipC1 D n C 1. We say that ¹ij ºj D1;:::;pC1 decomposes � into

(stabilized) blocks if

�
�

Œij ; ij C1 � 1�
�

D Œij ; ij C1 � 1�; for all j 2 Œ1; p�; (27)
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i.e. � stabilizes all the intervals Œij ; ij C1�1�. A permutation which does not admit

any block decomposition, except the trivial one (p D 1, i1 D 1; i2 D n C 1), is

called a connected permutation.

De�nition 6 (decomposition into connected blocks). Let � 2 Sn and 1 D i1 <

i2 < � � � < ip < ipC1 D nC 1. We say that a block decomposition ¹ij ºj D1;:::;pC1

decomposes � into connected blocks if it contains any other block decomposition

¹i 0
j º as a subset, ¹i 0

j º � ¹ij º. If � has a decomposition ¹ij ºj D1;:::;pC1 into connected

blocks, the block permutations �j , de�ned as

�j .k/ D �.k C ij � 1/; for all k 2 Œ1; ij C1 � ij �; j D 1; : : : ; p; (28)

are connected permutations.

De�nition 6 makes sense because when � stabilizes two intervals, it also sta-

bilizes their intersection. �erefore the decomposition into connected blocks is

obtained as

¹ij º D
[

¹i 0
k

º

¹i 0
kº; (29)

and it is unique. In practice, it can be conveniently visualized using Murasaki

diagrams [23].

We are interested in the set M� of meandric systems entering the Wick ex-

pansion of hP� .T; xT /i. When � 2 Sn has a connected block decomposition

¹ij ºj D1;:::;pC1, the set of (ordered) vertices on the horizontal line has a canoni-

cal decomposition into regions

Ij D .ij �; ij ı; : : : ; .ij C1 � 1/�; .ij C1 � 1/ı/: (30)

When there is an upper arch which connects a white vertex to a black vertex

k� 2 Ij , then there is a lower arch connecting the same white vertex to another

black vertex ��1.k/� 2 Ij in the same region (possibly k� itself if it is a �xed

point of �).

�ere are meandric systems whose loops are each restricted to a single region

and never visit two or more of them. �ose meandric systems have the properties

that simply cutting the horizontal line between each region, i.e. after each vertex

.ij C1 � 1/ı, j 2 Œ1; p � 1�, reduces them to p disconnected meandric systems.

�ere is a subset of M� consisting of systems of this type,

M�1
� � � � �M�p

�M� : (31)



462 V. Bonzom and F. Combes

�e number of such systems is the product of the number of systems in each region

Ij where the permutation which relates the upper arch con�guration to the lower

con�guration is �j . �is implies the obvious bound

hP� .T; xT /i �
Y

j

hP�j
.T; xT /i; (32)

�ese meandric systems which get disconnected after one cut of horizontal line

are called 1-reducible in [25].

�e question is then whether there are really many more than the 1-reducible

meandric systems of M�1
� � � � �M�p

contributing to hP� .T; xT /i. �e following

�eorem shows that it barely is the case.

�eorem 1. Let � 2 Sn and 1 D i1 < i2 < � � � < ip < ipC1 D n C 1 such

that ¹ij ºj D1;:::;pC1 decomposes � into connected blocks and let ¹�j ºj D1;:::;p be

the corresponding connected permutations. Let PlSp denote the set of planar

permutations on ¹1; : : : ; pº.
�ere is a bijective map

.M�1
� � � � �M�p

/ � PlSp �!M� ;

which implies

hP� .T; xT /i D Cp

p
Y

j D1

hP�j
.T; xT /i: (33)

�e proof proceeds with a few lemmas ; all the notations are borrowed from

�eorem 1.

Lemma 1. �ere is an injective map

.M�1
� � � � �M�p

/ � PlSp �!M� :

Proof. We consider p meandric systems in M�1
� � � � �M�p

and glue them to-

gether so as to obtain a meandric system of order n in M� , like in Figure 3(a).

We label the vertices .1�; 1ı; : : : ; n1
1�; n1

1ı; 12
�; 12

ı; : : : ; n
p
p�; n

p
pı/ from left to right,

so that .1
j
� ; 1

j
ı ; : : : ; n

j
j �; n

j
j ı/ are the vertices of the region Ij .

Let � 2 PlSp be a planar permutation, like in Figure 3(b), which we are going

to use to create a new meandric system in M� . All upper arches with a white

vertex k
j
j ı 2 Ij di�erent from the last vertex of the region n

j
j ı 2 Ij as a foot are

left unchanged.
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�e p remaining arches connect for each j D 1; : : : ; p the white vertex n
j
j ı to

a black vertex lj �. We cut them and rearrange them so that lj � is now connected

to n
�.j /

�.j /ı
, like in Figure 3(c). �is new arch con�guration is planar.

(a) A collection of �ve meandric systems trivially glued together. We only draw explicitly

the arches with the last white vertex of each block as a foot.

(b) A planar permutation � on the set of blocks of the above meandric systems. We can

consider the white vertices to correspond to the last white vertex of each block.

(c) We use � to re-arrange the arches touching the last white vertex of each block. Clearly

the use of a planar permutation prevents the new arches to cross each other. Since they

only have the last white vertex of each region as white foot, they do not intersect the arches

contained in each region.

Figure 3. From a succession of disconnected meandric systems and a planar permutation

on the blocks, we get a new meandric system.

� Since we started from arch con�gurations each restricted to a region Ij with

n
j
j ı as its last vertex, there is no arch going above the one between lj � and n

j
j ı,

see Figure 3(a). �erefore when it is cut to create two new arches connected

those vertices to other regions, the newly created arches do not cross any of

the arches restricted to the regions Ij .
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� Since � is planar, it induces a planar arch con�guration for the newly created

arches which therefore do not cross each other.

�e upper arch con�guration induces a lower con�guration which for the same

exact reasons is planar too.

Moreover, given an arch con�guration with arches possibly connecting n
j
j ı to

other regions and all other arches connecting black to white vertices of the same

region, we can reconstruct a unique element of .M�1
� � � � � M�p

/ � PlSp. If

n
j
j ı is connected to a region Iq , q ¤ j , there is a single black vertex lj � also

connected outside of Ij . �en we cut those arches to connect lj � to n
j
j ı. �is leads

to a meandric system in M�1
� � � � �M�p

. �e permutation � 2 PlSp is found as

the one which sends n
j
j ı to the white vertex lj � was initially connected to.

It remains to show that the map introduced above is surjective.

Lemma 2. Let � 2 Sn be a connected permutation. �en, for all k 2 Œ1; n � 1�,

there exists l > k, such that

�.l/ � k: (34)

Proof. If there exists k 2 Œ2; n � 1� such that for all l > k, �.l/ > k, then the

interval Œk C 1; n� is stabilized and � is not connected.

Lemma 3. With the same hypotheses as in �eorem 1, for each meandric system

in M� and for each region Ij , there is at most one upper arch which connects a

white vertex of Ij to a di�erent region, and the white vertex can only be the last

vertex of Ij , .ij C1 � 1/ı.

Proof. Assume that there is an upper arch which connects kı, with k 2 Œij ;

ij C1 � 2�, to a black vertex �.k/� in a di�erent region Iq, q ¤ j . For de�nite-

ness, we assume that q > j so that Iq lies to the right of Ij . �en there is also a

lower arch which connects kı to a black vertex ��1.�.k//� of Iq,

Ii

ij

k

ij C1 � 1

��1.�.k// �.k/

Iq

iqC1 � 1

Applying Lemma 2 to the restriction of ��1 to Œij ; ij C1 � 1�, it is found that

there exists a black vertex l� with k < l � ij C1 � 1, whose image ��1.l/� is on

the left of kı, i.e. ij � ��1.l/ � k,
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Ii

ij

k

ij C1 � 1

��1.�.k// �.k/

Iq

iqC1 � 1��1.l/ l

Now we look for the white vertices which can be connected to l� via an upper

arch.

� For planarity reason, there can be no upper arch between any white vertex on

the left of kı and l� since it would cross the arch between kı and �.k/�.

� Similarly, no upper arch can connect l� to any white vertex on the right of

�.k/�.

� If there is an upper arch between l� and a white vertex in Œ.kC1/ı; .ij C1�1/ı�,

then there is a lower arch between this white vertex and ��1.l/� which would

cross the lower arch between kı and ��1.�.k//.

�erefore, the only possibility is to draw an upper arch between l� and a white

vertex mı 2 Œij C1ı; .�.k/�1/ı�. To avoid a crossing in the lower plane, we further

must have ��1.�.k// � m < �.k/. Since both �.�.k//�; �.k/� 2 Iq , we �nd that

mı 2 Iq ; with m < iqC1 � 1; (35)

Ii

ij

k

ij C1 � 1

��1.�.k// �.k/

Iq

iqC1 � 1��1.l/ l m

i.e. mı is not the last white vertex of Iq . �e order of the so far relevant vertices is

ij � ��1.l/ � k < l � ij C1 � 1 < ��1.�.k// � m < �.k/ � iqC1 � 1; (36)

with l D �.m/.
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�anks to (35) we can apply Lemma 2 to the restriction of ��1 to Iq to get that

there exists r 2 Œiq ; m� such that

��1.r/ > m; (37)

Ii Ii

ij

k

ij C1 � 1

��1.�.k// �.k/ iqC1 � 1��1.l/ l m

r ��1.r/

As it is clear from the picture, planarity requires that the white vertex connected

to r� by an upper arch is in Œlı; .m � 1/ı�. �is in turn gives rise to a lower arch

between this white vertex and ��1.r/� > m�. �is clearly breaks planarity in the

lower plane,

Ii Ii

ij

k

ij C1 � 1

��1.�.k//

�.k/

iqC1 � 1��1.l/ l

r

��1.r/

Consequently, there can not be any upper arch connecting Œij ı; .ij C1 � 2/ı� to

another region.

Proof of �eorem 1. Lemma 3 implies that all meandric systems in M� are also

in the image of the map introduced in Lemma 1 and its proof. �erefore this map

is also surjective, which proves �eorem 1.

�anks to �eorem 1, we are left with the problem of determining the expec-

tation values of polynomials labeled by connected permutations. �is is however

not helpful in the limit of large number of vertices since the number of connected

permutations behave as nŠ, [23, 27]. Nevertheless, �eorem 1 may still apply to

some connected permutations, using the fact that a cyclic re-ordering of the labels

does not change the expectation value while it can turn a connected permutation

in a non-connected one. Eventually one is left with stabilized-interval-free per-

mutations whose set of meandric systems ¹M�º�2SIFn
actually corresponds to the

set of 2-irreducible meandric systems.
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De�nition 7 (stabilized-interval-free permutations). We say that a permutation

� 2 Sn is stabilized-interval-free (SIF) if it does not stabilize any subinterval of

Œ1; n�, i.e., for all a � b 2 Œ1; n�,

�.Œa; b�/ ¤ Œa; b�; (38)

except Œa; b� D Œ1; n�. We denote SIFn � Sn the set of SIF permutations.

De�nition 8 (2-Reducible and irreducible meandric system). We say that a me-

andric system is 1-reducible if a single cut on the horizontal line can produce two

disconnected systems, and we say that it is 1-irreducible otherwise. A meandric

system is said to be 2-reducible if it becomes disconnected after two cuts of the

horizontal line, and 2-irreducible otherwise.

�is notion was introduced in [24] (see also [25]). A 2-reducible meandric

system has the structure of Figure 4.

Figure 4. A 2-reducible meandric systems has a sub-system totally restricted to an inner

region and another sub-system which avoids this region. �e two vertical dashed lines

indicate the two cuts which disconnect the two meandric sub-systems.

�eorem 1 has the following extension.

�eorem 2. �e expectation value hP� .T; xT /i can be factorized as a product of

Catalan numbers and expectation values of polynomials labeled by SIF permuta-

tions. �e set ¹M�º�2SIFn
is the set of 2-irreducible meandric systems.

Proof. Assume that � has a connected block decomposition with block permuta-

tions �1; : : : ; �p. If all of them are SIF, there is nothing to prove. Assume that �j

for some j is connected but not SIF. Connectedness of �j 2 S
n

j

j

means that �j
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acts on a region Ij with vertex labels .1
j
� ; 1

j
ı ; : : : ; n

j
j �; n

j
j ı/. For notational conve-

nience, we temporarily drop the superscript label j of the region, so that �j acts

on the set ¹1; : : : ; nj º. As it is not SIF, it stabilizes an interval Œa; b� ¤ Œ1; nj �.

�en †j D ��.a�1/ ı�j ı�a�1 2 Snj
is not connected: it stabilizes Œ1; b�aC1�.

Indeed,

†j .Œ1; b � aC 1�/ D ��.a�1/ ı �j .Œa; b�/

D ��.a�1/.Œa; b�/

D Œ1; b � aC 1�:

(39)

Furthermore this is just a shift of �.a� 1/ on the labels induced by the face of

colors .12/ (with cyclic boundary conditions), so that

P�j
.T; xT / D P†j

.T; xT /: (40)

�erefore, �eorem 1 applies non-trivially (that is with a non-trivially decomposi-

tion onto connected blocks) to �j . We can do so until we are left with SIF permu-

tations only, at which point cyclic shifts cannot turn connected, SIF blocks into

non-connected ones (by de�nition of SIF blocks). �rough successive applica-

tions of �eorem 1, the expectation hP� .T; xT /i becomes a product of expectations

of polynomials labeled by SIF permutations. Meanwhile each application of �e-

orem 1 introduces a Catalan number. �is proves the �rst part of theorem.

�e second part of �eorem 1 states the equivalence between ¹M�º�2SIFn
and

2-irreducible meandric systems. Consider a 2-reducible meandric system in M� .

It contains a meandric system which can be disconnected by two cuts on the hori-

zontal line, like in Figure 4. �is system either sits in a region which starts with a

black vertex .i�; iı; : : : ; j�; jı/ or with a white vertex ..i � 1/ı; i�; : : : ; j�/. In both

cases, the white vertices in that region are connected by upper arches to the black

vertices of ¹i�; : : : ; j�º, and by lower arches to their images ¹��1.i/�; : : : ; ��1.j /�º.
Clearly this set is included in ¹i�; : : : ; j�º, and therefore � stabilizes Œi; j �.

Reciprocally, consider a permutation � 62 SIFn which stabilizes Œa; b�. �anks

to a cyclic relabeling of the vertex labels, we can shift this interval to the left of

the horizontal line, and work with Q� D ��aC1 ı � ı�a�1 which stabilizes Œ1; i �

(i D b � aC 1). Q� is not connected, so there exist 1 < n1 < � � � < np�1 < np D n

which decompose Q� into connected blocks with permutations .�j /j D1;:::;p. �ere

is k such that i D nk � 1 and for simplicity we consider k D 1. �e set M�

can be described as M�1
� � � � �M�p

� PlSp, according to �eorem 1. If 1 is a

�xed point of the planar permutation �, it means that the meandric system from

M�1
is contained in ¹1�; : : : ; n1ıº and no arch connects it to the other systems.

�is is obviously 1-reducible, and upon a cyclic relabeling, it typically becomes
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2-reducible. Now we assume �.1/ ¤ 1 which means that the white vertex n1ı

is connected outside ¹1�; : : : ; n1�º. Consequently, there is another white vertex

nlı outside this region which has an upper arch and a lower arch connected in

¹1�; : : : ; n1�º. �is looks like

1� n1� n1ı

nlı

(41)

�e colored area represents two regions with meandric systems which can not

communicate. Clearly, the two vertical dashed lines indicate places where cuts

can be performed and disconnect the full system into two pieces.

SIF permutations do not allow �xed points and therefore form a subset of the

derangements. Since the number of derangements grows like nŠ=e, this is an im-

provement with respect to the set of connected permutations. It turns out that the

number of SIF permutations also grows like nŠ=e [23]. A more thorough study of

SIF permutations will appear in a subsequent publication.

5. Applications and examples

5.1. Applications of the theorems. We can use �eorems 1 and 2 to calculate

some expectation values easily, and in particular recover analytically the number

of meandric systems M
.n�j /
n with j reasonably small. �ose numbers have been

found in [25], explicitly up to j D 5, and in [26, Appendix E] for j D 6, as well

as the generic form

M .n�j /
n D Cn

2j nŠ.nC 1/Š

j Š .n� j � 1/Š .nC 2j /Š
�2j �2.n/; (42)

where �k is a monic polynomial of order k.

Here we are going to limit ourselves to j D 0; 1; 2. Our approach is to exhaust

all the permutations on Œ1; n� with exactly n� j cycles before summing the corre-

sponding expectation values. �e calculations become increasingly tedious as j

gets larger, but it is clear we can go further than j D 2 with this approach.
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Proposition 6. �e numbers of meandric systems of order n with k D n; n�1; n�2

components are

M .n/
n D Cn; (43a)

M .n�1/
n D n.CnC1 � 2Cn/ D 2

n .n � 1/

nC 2
Cn; (43b)

M .n�2/
n D n

�

CnC3 C
3n � 35

6
CnC2 �

6n � 25

3
CnC1 C 2.n � 1/ Cn

�

D 2
n.n � 1/.n� 2/

.nC 2/.nC 3/.nC 4/
Cn.n2 C 7n � 2/:

(43c)

Proof. Equation (43a). �e only permutation with n cycles is the identity whose

connected block decomposition consists of n blocks which are the identity on

the 1-element sets ¹iº, i D 1; : : : ; n. �eorem 1 gives the expected well-known

answer Cn.

Equation (43b). �e permutations with exactly n � 1 cycles are the transpo-

sitions �ab , for 1 � a < b � n. Since the expectation value is invariant under

conjugation by the cyclic shift �a, we can consider the transposition between 1

and b � aC 1 instead. It has one connected block � 2 Sb�aC1 with cycle decom-

position

� D .1 b � aC 1/.2/ � � � .b � a/; (44)

and n � .b � a C 1/ blocks which are the identity on ¹iº, i D b � a C 2; : : : ; n.

�eorem 1 gives

hP�ab
i D Cn�.b�a/ hP� i: (45)

�e expectation value for � is the same as for the transposition between the �rst two

elements, Q� D .12/.3/ � � � .b � aC 1/, for which �eorem 1 yields hPQ� i D 2Cb�a,

as hP.12/i D 2 for the transposition on two elements. �erefore

hP�ab
i D 2 Cn�.b�a/ Cb�a: (46)

To perform the sum over all transpositions, we use a reasoning that we will later

reproduce in more complicated situations. �e sum over .a; b/ can be organized

as a sum over the gap x D b � a and a sum over the position of a D 1; : : : ; n

implemented using the conjugation by �k on �1 xC1, for k D 0; : : : ; n� 1,

X

a<b

hP�ab
i D ˛

n�1
X

xD1

n�1
X

kD0

hP��kı�1 xC1ı�k
i: (47)

Here ˛ is a symmetry factor which corrects for the fact that each transposition

�ij appears twice in the orbit of �1 j �iC1 under the action of .�k/kD0;:::;n�1 (once
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with a D i; b D j and once with b D i; a D j ), hence ˛ D 1=2. Moreover, since

the action of �k leaves the expectation values invariant, there are n equivalent

positions for a, which means that we can �x a D 1 (k D 0) and extract a factor n.

�us,

M .n�1/
n D

X

�ab

hP�ab
i D n

2

n�1
X

xD1

hP�1 xC1
i D n

2

n�1
X

xD1

2 Cn�x Cx : (48)

Using the standard recursion Cj C1 D
Pj

lD0
Cj �lCl , we get

M .n�1/
n D n .CnC1 � 2 Cn/: (49)

Equation (43c). We distinguish three types of contributions to permutations

with exactly n � 2 cycles.

(1) �ab ı �cd has n� 4 �xed points and transposes a with b and c with d , with a

crossing, e.g. 1 � a < c < b < d � n.

(2) �ab ı �cd has n�4 �xed points and transposes a with b and c with d , without

crossing, e.g. 1 � a < b < c < d � n.

(3) �abc has n � 3 �xed points and contains a 3-cycle .abc/. �ere are two ori-

entations for the cycle, but both leads to the same expectation value.

Case 1. �eorem 1 gives

hP�abı�cd ja<c<b<d
i D 4 Cn�.d�a/ Cd�b Cb�c Cc�a; (50)

where 4 is the expectation value for the permutation � D .13/.24/.

�e sum over a; b; c; d is organized as a sum over the gaps d � b; b � c; c � a

and a sum over the position of a implemented via the conjugation by �k, k D
0; : : : ; n � 1. Since a given permutation �ij ı �kl will appear 4 times in an orbit

(a D i; c D k; b D j; d D l and the three cyclic permutations on a; b; c; d , e.g.

a D k; c D j; b D l; d D i), the symmetry factor is ˛ D 1=4. Conjugations

by �k leave the expectation values invariant, meaning that there are n equivalent

positions for a. Setting a D 1 and factorizing n we get

X

a<c<b<d

hP�abı�cd
i D n

4

n
X

dD4

d�1
X

bD3

b�1
X

cD2

4 CnC1�d Cd�b Cb�c Cc�1: (51)

Using
b�1
X

cD2

Cb�cCc�1 D Cb � 2Cb�1;
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then

d�1
X

bD3

Cd�bCb D CdC1 � 2Cd � Cd�1 � 2Cd�2

and
d�1
X

bD3

Cd�bCb�1 D Cd � 2Cd�1 � Cd�2;

we arrive at

X

a<c<b<d

hP�abı�cd
i D n

n
X

dD4

CnC1�d .CdC1 � 4Cd C 3Cd�1/: (52)

We therefore have to evaluate for p D ˙1; 0,

n
X

dD4

CnC1�d CdCp D CnC2Cp � 2CnC1Cp �
pC3
X

kD1

CnC1Cp�k Ck; (53)

where the number of terms in the last sum is independent of n. �is �nally leads

to
X

a<c<b<d

hP�abı�cd
i D n .CnC3 � 6 CnC2 C 10 CnC1 � 4 Cn/ : (54)

Case 2. �ere are two typical patterns, one where the two transpositions are

separated, e.g. a < b < c < d , and the other where they are nested, e.g. d < a <

b < c. In the nested case we have

hP�abı�cd jd<a<b<c
i D 2 � 2 � Cn�.c�d/ Cc�d�.b�a/ Cb�a: (55)

As before, we �rst keep the distances between the elements which are transposed

�xed and sum over the position of a using the orbit generated by �k . Note that

along an orbit one pattern can be turned into the other. �is implies in particular

that both patterns have the same expectation values. �erefore the symmetry factor

is ˛ D 2=4, where 2 comes from the two patterns and 1=4 from the number of

times a permutation appears. We �x d D 1, extract a factor n, and

X

a<b<c<d

hP�abı�cd
i C

X

d<a<b<c

hP�abı�cd
i

D 2n

n
X

cD4

c�1
X

bD3

b�1
X

aD2

CnC1�c Cc�.b�a/�1 Cb�a:

(56)
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�e absolute positions of a and b are irrelevant and only the gap x D b�a matters.

�ere are c � x � 2 possible positions for a, hence (after the change c  c � 1)
X

a<b<c<d

hP�abı�cd
i C

X

d<a<b<c

hP�abı�cd
i

D 2n

n�1
X

cD3

Cn�c

c�2
X

xD1

.c � 1� x/ Cc�x Cx :

(57)

In the �nal steps, the following formula for i < j < k, j < k � i is used several

times,

k�j
X

xDi

x Ck�x Cx

D 1

2

k�j
X

xDi

x Ck�x Cx C
1

2

k�i
X

yDj

.k � y/ Ck�y Cy;

D k

2

k�j
X

xDj

Ck�x Cx C
1

2

j �1
X

xDi

x Ck�x Cx C
1

2

k�i
X

xDk�j C1

.k � x/ Ck�x Cx;

D k

2
CkC1 � k

j �1
X

xD0

Ck�x Cx C
j �1
X

xDi

x Ck�x Cx:

(58)

On the �rst line, we split the sum into two halves and relabel one of them y D k�x,

On the second line we factorized the common terms, and noted in the third line

that the sum which has a k-dependent number of terms can be done. �e number

of terms in the remaining sums is independent of k. A similar formula holds for

j < i . �is allows to perform the sum over x and then the sum over c, to get
X

a<b<c<d

hP�abı�cd
i C

X

d<a<b<c

hP�abı�cd
i

D n

2
Œ.n� 5/ CnC2 � 2.2n� 9/ CnC1 C 4.n� 3/ Cn�:

(59)

Case 3. �eorem 1 provides the expectation values,

hP�abc ja<b<c
i D hP�acb ja<b<c

i D 4 Cn�.c�a/ Cc�b Cb�a; (60)

with hP.123/i D hP.132/i D 4. To sum over the permutations �abc , we again sum

over the positions of a D 1; : : : ; n using the action of .�k/kD0;:::;n�1 and over the

gaps b � a; c � b. �e symmetry factor is ˛ D 1=3. �erefore,

X

a<b<c

hP�abc
i C hP�acb

i D 2 � 4

3
n

n
X

cD3

c�1
X

bD2

CnC1�c Cc�b Cb�1: (61)
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It is then straightforward to get

X

a<b<c

hP�abc
i C hP�acb

i D 8

3
n.CnC2 � 4 CnC1 C 3 Cn/: (62)

Finally,

M .n�2/
n D

X

a<c<b<d

hP�abı�cd
i C

X

a<b<c<d

hP�abı�cd
i

C
X

d<a<b<c

hP�abı�cd
i C

X

a<b<c

hP�abc
i C hP�acb

i;
(63)

leads to the conclusion.

5.2. Some expectation values for SIF permutations. In all cases �eorems 1

and 2 are applied, the Gaussian expectation values of polynomials labeled by SIF

permutations are eventually needed. In the previous applications, they were per-

mutations on very few elements (for � D .12/; .123/; .13/.24/). Here we study a

family of SIF permutations on an arbitrary number of elements.

Proposition 7. Let �k be the cyclic permutation i 7! iCk mod n on Œ1; n�. �en

for k D 0 mod n, hP�0
i D Cn; (64a)

for k D ˙1 mod n, hP�˙1
i D Motzkin.n/; (64b)

otherwise, hP�k
i D n; (64c)

where Cn and Motzkin.n/ are the Catalan and Motzkin numbers of order n.

Proof. Equation (64b). �˙1 has a single cycle therefore the expectation value

hP�˙1
i counts a number of meanders (a single component). For de�niteness, we

will only consider the case ��1, so that the relevant meanders are such that there

is an upper arch connecting iı to j� if and only if there is a lower arch connecting

iı to ��1
�1.j /� D .j C 1/�.

We aim at a recursion on the degree n of the polynomial and for the time of

the proof we switch to the better adapted notation hP��1
i D mn for ��1 2 Sn.

Let k 2 Œ2; n� and denote mn;k the number of contributing meanders with

an upper arch between 1ı and k�. �ey also have a lower arch connecting 1ı to

.k C 1/�,

1� 1ı 2� k� kı .k C 1/�
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�en we show that the upper arch with 1� as a foot can only connect to kı. Indeed,

�rst note that due to planarity in the upper half plane, no vertex iı for i 2 Œ2; k�1�

can be connected to 1�. Second, if iı, for i 2 Œk C 1; n�, is connected to 1�, then

there is a lower arch which connects iı to 2� and it clearly crosses the lower arch

between 1ı and .k C 1/�,

1�

1ı

2� k� kı .k C 1/�
iı

�erefore there is an upper arch between 1� and kı and a lower arch between 2�

and kı,

1�

1ı

2� k� kı .k C 1/�

It is then easy to see that the number of arch systems allowed in the region

¹2�; 2ı; : : : ; .k � 1/�; .k � 1/�º is precisely mk�2. Indeed, any meanders in M��1

of order k � 2 can be inserted in the region ¹2�; 2ı; : : : ; .k � 1/�; .k � 1/�º by

changing the lower arch connected to 2� to an arch connected to k� instead, and

this works the other way around. Similarly, the number of arch systems allowed in

the region ¹.k C 1/�; .k C 1/ı; : : : ; n�; nıº is mn�k . Consequently, for k 2 Œ2; n�,

mn;k D mk�2 mn�k : (65)

For k D 1, it is even simpler to �nd

mn;1 D mn�1: (66)

To get to mn, it only remains to sum over the position of k,

mn D
n

X

kD1

mn;k D mn�1 C
n

X

kD2

mk�2 mn�k D mn�1 C
n�2
X

pD0

mp mn�2�p: (67)

Together with the initial conditions m0 D m1 D 1, this recursion de�nes the

Motzkin numbers and mn D Motzkin.n/.
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Equation (64c). Let p 2 Œ2; n � 2�. Our strategy is to prove that choosing

�.1/� 2 Œ1; n� completely determines a meandric system. �e following lemma

will be useful.

Lemma 4. Let p 2 Œ2; n � 2�. If a meandric system in M��p
has an upper arch

between 1ı and �.1/� D k� with k � 4 and k C p � nC 3 , then there is also an

upper arch between 2ı and .k � 1/�.

Proof of the Lemma. �e meandric systems in M��p
are such that for every

upper arch between iı and j�, there is a lower arch between iı and .jCp/� mod n,

and reciprocally.

Let k � 4 with k C p � n C 2 for the time being, and consider an upper

arch between 1ı and k� D �.1/�, together with the lower arch between 1ı and

�p.�.1// D .k C p/�,

1ı 2ı k�

.k � 1/� .k C p/�

.k C p � 1/�

�e drawing is made for kCp � n, but everything works the same for kCp > n

with k C p � n 2 ¹1; 2º.
We are going to prove that there must be an upper arch between 2ı and .k�1/�.

Assume that in the upper half plane 2ı is connected to j� ¤ .k � 1/�, and lı ¤ 2ı

to .k � 1/�, with 2 � j � l � k � 1, l � 3, j � k � 2. In the lower half plane,

they induce an arch between 2ı and .j Cp/� � .kCp�2/�, and an arch between

lı and .k C p � 1/�,

1ı

2ı

k�

.k � 1/� .k C p/�

.k C p � 1/�lıj�

.j C p/�

Given that

2 < l < k C p � 1; and 2 < j C p < k C p � 1; (68)
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we �nd that

´

either 2 < l < j C p < k C p � 1; then the lower arches cross each other,

or 2 < j C p � l < k C p � 1; then they do not cross each other.

(69)

Now we focus on the second case, j C p � l ,

1ı

2ı

k�

.k � 1/� .k C p/�

.k C p � 1/�

lı

j� .j C p/�

On the drawing, we have considered kCp�1 � n, but in the case kCp D nC2,

we have to use �p.k � 1/� D .n C 1/� mod n D 1�. It does not change the

arguments below.

Note that due to p � 2 as well as j � 2, j C p � 4. �erefore there exists a

vertex sı 2 Œ3; j C p � 1� which is surrounded in the lower half plane by the arch

between 2ı and .j C p/� and must be connected to 3� via a lower arch,

1ı

2ı

k�

.k � 1/� .k C p/�

.k C p � 1/�

lı

j� .j C p/�sı3�

In the upper half plane, sı is thus connected to �.s/� D ��p.3/� D .3 � p/�

mod n. If p D 2, this is 1� but this cannot be planar in the upper half-plane. So

we are left with the case p � 3 and an upper arch between sı and .n � p C 3/�.

However,

s < k; and �.s/ D n � p C 3 � k C 1 > k; (70)
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the second inequality being due to our starting assumption k C p � nC 2. As a

result, the upper arch between 1ı and �.1/� D k� intersects the upper arch sı and

�.s/� D .n� p C 3/�,

1ı

2ı

k�

.k � 1/� .k C p/�

.k C p � 1/�

lı

j� .j C p/�
sı3�

.n � p C 3/�

�erefore we must have j D k � 1 and l D 2.

In the case k C p D nC 3, equation (70) gives �.s/ D n � p C 3 D k, but

k is already �.s/ so this is impossible. We can also look at this case directly. If

kCp D nC3, then �p.k/ D .kCp/ mod n D 3, meaning that there is lower arch

between 1ı and 3�. �is enforces a lower arch between 2ı and 2� which can not

have other partners. In the upper half-plane that new arch induces an arch between

2ı and ��p.2/� D .2 � p C n/� D .k � 1/� which is the expected result.

Back to equation (64c).

� Lemma 4 directly applies to the cases k � 4 with k C p � nC 3.

� When k C p � n C 4, we can simply �ip the system with respect to the

horizontal line, exchanging the upper and lower half-planes. �is gives an

upper arch between 1ı and k0
� D .k C p � n/� and a lower arch between 1ı

and �n�p.k0/� D .k0 C n � p/�. Since k0 � 4 and k0 C n � p D k � n, we

can apply Lemma 4 to the �ipped meandric system with k0 and �p�n.

� When k D 2 and k D 3, by �ipping the system again to exchange the upper

and lower half-planes, we can work with the permutation �p�n instead of

��p. Setting k0 D k C p � 4, Lemma 4 applies since k0 C .n � p/ D
nC k � nC 3.

� �e last case to analyze is k D 1. If p C 1 � 4, we can proceed just like for

k D 2; 3. If p C 1 D 3, there must be a lower arch between 2ı and 2� which

implies in the upper half-plane an arch between 2ı and n�. �en moving the

pair of vertices .1�; 1ı/ to the far right of the horizontal line, we are again in

position to apply Lemma 4.
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�e result of this analysis is that once k� D �.1/� is chosen, there must be

another arch in the upper half-plane (up to a �ip of the system) below the initial

one. �is gives rise to a recursive process which �lls a region, say ¹1ı; 2�; : : : ; k�º
(up to a rede�nition of k), with arches on top of one another:

1ı k�

.k C p/�

If k is even, then we cyclically shift the vertices so that the pair

..k=2C 1/�; .k=2C 1/ı/

becomes the leftmost pair on the horizontal line. �en the arch between .k=2C1/ı

and .k=2/� becomes an arch between the �rst white vertex and the last black vertex

of the horizontal line:

.k=2C 1/� k� .k=2/ı

which means that the above recursive process applies again, until all arches are

determined.

If k is odd, we cyclically shift the vertices so that the pair ...k C 3/=2/�,

..kC 3/=2/ı/ becomes the leftmost pair on the horizontal line. �e same result is

eventually obtained.

Since k can take n values, the expectation value is simply n.

Motzkin paths. It is well-known that planar arch con�gurations are one-to-one

with Dyck paths. A Dyck path of order 2n is a 2n-step path in the upper half-plane

which starts at .0; 0/, ends at .2n; 0/ and for which only two types of steps are al-

lowed, the north-east step .C1;C1/ and the south-east step .C1;�1/. Given an

arch con�guration over 2n vertices on a horizontal line, oriented west to east, we

list between each pair of consecutive vertices the number of arches which pass.

�is produces a list of .2n � 1/ positive integers .h1; : : : ; h2n�1/ which are inter-

preted as the heights of a Dyck path after the step 1; : : : ; 2n� 1.



480 V. Bonzom and F. Combes

i� iı

(a)

i� iı

(b)

i� iı

(c)

i� iı

(d)

Figure 5. �e four possible patterns at a pair of vertices in the upper half-plane of a meandric

system.

Motzkin numbers are known to count Motzkin paths. A Motzkin path of length

n is a path of n steps in the upper half-plane which starts at .0; 0/ and ends at .n; 0/

with three types of steps, north-east .C1;C1/, south-east .C1;�1/ or east .C1; 0/,

i.e. the horizontal step.

�erefore it is interesting to �nd a bijection between M�˙1
and the set of

Motzkin paths. Consider a meander in M��1
. Looking at a pair .i�; iı/ of ver-

tices, there are four patterns which can arise the upper half-plane, displayed in

Figure 5. In terms of Dyck paths, they represent the four possible combinations

of two successive steps: Figure 5(a) is two steps down, Figure 5(b) two steps up,

Figure 5(c) one up and one down, and �nally Figure 5(d) one down and one up.

However, meanders inM��1
can not contain the pattern in Figure 5(d). Indeed, up

to a cyclic permutation of the vertex labels, we can assume that we are looking at

the leftmost pair of vertices .1�; 1ı/. �en, they are either connected together like

in Figure 5(c), or the white vertex 1ı is connected to some j�, j > 1. In this case,

we know from the proof of equation (64b) in Proposition 7 that 1� is connected by

an upper arch to jı. �erefore when the labels are cyclically shifted, two arches

always connect the pair .i�; iı/ to the two vertices of a pair

..j C i � 1/�; .j C i � 1/ı/ mod n:

�erefore these two arches always point in the same direction, like in Figures 5(a)

and 5(b).

As a consequence, only three patterns in the upper-half plane are allowed. To

�nd Motzkin paths, it is su�cient to just associate with Figure 5(a) the south-east

step, with Figure 5(b) the north-east step and with Figure 5(c) the horizontal step.

�e other way around it is straightforward to show that a Motzkin path gives rise

to a single meander in M��1.
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Conclusion

We have shown in this paper that it is possible to perform calculations of expec-

tation values beyond the so-called melonic sector in the Gaussian random tensor

model. We have considered the family of polynomials in the tensor entries whose

graphical representation possesses a single face with colors .12/ and a single face

with colors .34/. �is generalizes the single-trace invariant of random matrix

models to two faces superimposed on the same set of vertices instead of a single

face. �e expansion of their expectation value onto Feynman graphs is equivalent

to a problem of enumeration of meandric systems whose lower and upper arch

con�gurations are related by a permutation on the arch feet. �eorems 1 and 2

reduce the di�culty to the evaluation on SIF permutations [23], which enumer-

ate the irreducible meandric systems of [24] (see also [25]). In Proposition 7 we

have further evaluated the expectation values of polynomials labeled by some SIF

permutations.

All the proofs of the paper use the meandric representation of the Feynman

expansion which turns out very convenient. However, we want to stress that we

could have used the set of Schwinger-Dyson Equations (SDE) instead. �is is a set

of equations that is derived from the integral expression (1) (see [29]) and general-

izes the Tutte equation for the resummation of planar maps to Feynman amplitudes

in quantum �eld theory. �ose equations have already been used to solve tensor

models at large N in [21], and they also work in the present case. However, we

have decided not to include the proofs using the SDE for two reasons: introducing

them in the case of tensor models is space consuming, and the proofs would be

quite redundant. Indeed, the SDE form an algebraic system on the expectation

values of polynomials. Since it does not rely on the Feynman expansion, it seems

at �rst that solving them does not involve any planarity requirement like the me-

andric representation. However, at large N we can show that only the polynomials

which maximize the number of connected components on the colors .12/ and .34/

contribute (the "freeness" property) and this is actually equivalent to planarity of

the Feynman graphs. �erefore proving our results using the SDE would consist in

repeating the same arguments using "maximal number of connected components

of subgraphs" instead of "planarity".

Nevertheless, the question of going further than our results which rely on direct

combinatorial analysis remains open and could bene�t of the use of the SDE. A

similar question is whether the Gaussian tensor model and its SDE can be useful

to meander theory. It has been shown that random matrix models are useful to

meanders [30]. As for random tensor models, we have shown that some simple

results of meander theory can be recovered, like Proposition 6. But it is far from
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clear that more advanced results can be reproduced, like those of [30, 31]. An

important di�erence in our work is that we have enlarged the set of con�gurations

from planar arch con�gurations to permutations. While this may be useful, it also

means that most expectation values actually vanish since even after reduction by

�eorem 2, we are left with SIF permutations whose number grows like nŠ=e while

the total number of meandric systems grows exponentially, C 2
n � Kn�3.16/n.

�is is already a new piece of information for random tensor models. But it may

be a drawback to progress in meander theory since it seems really di�cult to �nd

necessary and/or su�cient conditions on the permutation � for an expectation

value hP� i to vanish2.
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