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Tensor models from the viewpoint of matrix models:

the cases of loop models on random surfaces

and of the Gaussian distribution
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Abstract. Two direct connections between random tensors and random matrices are dis-

cussed in this article. In the �rst part, we introduce U.�/ matrix models which generate

fully packed, oriented loops on random surfaces. �e latter are found to be in bijection

with a set of regular edge-colored graphs. It is shown that the expansion in the number

of loops is organized like the 1=N expansion of rank-three tensor models. Recent results

on tensor models are applied in this context. For example, con�gurations which maximize

the number of loops are precisely the melonic graphs of tensor models and a scaling limit

which projects onto the melonic sector is found. �is approach is generalized to higher-rank

tensor models, which generate loops with fugacity � on triangulations in dimension d � 1.

In the second part, we introduce singular value decompositions to evaluate the expectations

of polynomial observables of Gaussian random tensors. Performing the integrals over the

unitary group leads to a notion of e�ective observables which expand onto regular trace

invariants. We show that both asymptotic and exact new calculations of expectations can

be performed this way.
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Introduction

Matrix models have been very useful to generate and study random geometries in

two dimensions. At large matrix size N , the 1=N expansion is a topological ex-

pansion, labeled by the genus of the random discrete surfaces. In the large N limit,

only planar maps on the sphere survive. �ese maps encode discrete geometries

of �uctuating surfaces, making them very important in physics. A famous ap-

plication is two-dimensional gravity coupled to conformal matter (central charge

c < 1); see [1].

Tensor models allow to extend those ideas to random geometries with more

than two dimensions [2, 3, 4]. �eir Feynman expansion is a sum over discretized

(pseudo-)manifolds in dimension d and it possesses a 1=N expansion [5, 6]. A

continuum limit exists, �rst found in [7], which can be coupled to (non-unitary)

critical matter [8, 9], leading to di�erent universality classes.

�e progress obtained in the �eld of tensor models in the last years are due

to the discovery that tensor models with a U.N /d symmetry naturally generate

regular, edge-colored graphs (dual to triangulations of pseudo-manifolds) [6].

�ose graphs, in contrast with the stranded graphs initially considered in [2], are
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amenable to analytical investigation. A combinatorial classi�cation has been re-

cently obtained, [10]. In the same time, tensor models with quartic interactions

have been re-formulated as matrix models, [11, 12]. Both approaches have led to

a double-scaling limit and more generally to a good understanding of the singu-

larities at �xed order in the 1=N expansion. �e double scaling limit has been

extended to models beyond the quartic interactions in [13] using a typical tool of

matrix models, the loop equations.

It thus appears that matrix model techniques can be useful in tensor models.

Formulating tensor models as matrix models also opens the possibility of using

the combinatorial techniques (or even maybe already existing results) on maps.

However a precise study of the relationships between tensor and matrix models

has not appeared yet. �is is the program we start in the present article.

It was not obvious at �rst that matrix models techniques would be of any

use. In particular, diagonalization and eigenvalues (together with the saddle point

method or orthogonal polynomials) are among the most e�ective tools in random

matrix models and they are not available for random tensors. Also the fact that

U.N /d -invariant random tensors become Gaussian at large N [14], and are thus

very di�erent from large N matrix models, tends to establishing a clear distinction

between matrices and tensors.

However those arguments are no longer relevant thanks to the intermediate

�eld method which turns quartic models into multi-matrix models. In addition,

there are two simple ideas which establish a direct connection between matrices

and tensors, which we present and exploit in this article. �ey enable to understand

the position of tensor models with respect to matrix models. Following those two

ideas one after the other, we o�er a novel presentation of random tensor models,

in which results from tensor models are applied to matrix models and the other

way around.

Section 1 is based on the observation that a collection of matrices M1; : : : ; M�

may be packaged into a tensor of rank three and size N � N � � , whose �rst two

indices are matrix indices while the third one is the label of the matrix. When the

joint probability distribution on the matrices is of the form e�V for a polynomial

potential V that is U.�/-invariant, then we have a tensor model in disguise. We

therefore introduce a family of U.�/ models which is shown to generate random

surfaces dressed with con�gurations of oriented loops. We describe the bijection

between the observables and the Feynman graphs of those U.�/ models and their

corresponding tensor models.

All known 1=N expansions in tensor models rely on the degree of the Feynman

graphs dual to the triangulations. It was originally introduced in [15] to exhibit a



4 V. Bonzom and F. Combes

1=N expansion for tensor models for the �rst time. �e degree was de�ned as a

sum of genera of ribbon sub-graphs which are generated by matrix models em-

bedded in the tensor theory [16]. It controls the balance between the number of

faces and the number of vertices and reduces to the genus in two dimensions. �e

dominant triangulations of tensor models at large N are those with vanishing de-

gree and are known as melonic triangulations [7, 6], which have a speci�c, highly

curved, geometry. �ey have been recently matched to random branched poly-

mers [17], meaning that the continuous geometry is that of the continuous random

tree. Melonic graphs are the ones which maximize the number of faces at �xed

number of vertices [7].

In the U.�/ models, it turns out that the number of loops at �xed genus of the

random surfaces, �xed numbers of edges and vertices, is counted by the degree

of the 4-colored graph representative of the Feynman graph. �is provides a new

combinatorial interpretation of the degree. In particular, melonic graphs are those

which maximize the number of loops. It also makes clear how the large N , mel-

onic behavior of tensor models arise from a matrix model when � ! 1. We

then apply the classi�cation of edge-colored graphs from [10] to the quartic U.�/

model to get a classi�cation of its loop con�gurations. Finally, the double scal-

ing limit of tensor models is found to resume consistently the most critical loop

con�gurations.

�e intermediate �eld transformation is also performed on the quartic U.�/

models, leading to a two-matrix model. To our knowledge, this two-matrix model

has never been studied in the matrix model literature and we do not even know

its large N free energy. It generates graphs formed by two maps glued together at

their vertices (at least at one of them for the whole graph to be connected). �ose

graphs, also called nodal surfaces do have already appeared in the literature [18]

and they may be well suited for a combinatorial analysis.

Section 2, we introduce the second direct connection between random tensors

and matrices. Splitting the set of d indices of the tensor into two sets, we can con-

sider the tensor as a (typically rectangular) matrix of size N p � N d�p and then

use the singular value decomposition. However, tensor models are not U.N p/ or

U.N d�p/ invariant, meaning that the integrals over the angular degrees of free-

dom are non-trivial. When they can be performed at �xed singular values, an

e�ective theory on the singular values is obtained.

Although it is a simple idea, it is only the �rst time that it is applied explicitly

to tensor models. As a �rst step in this program, we consider here the case of the

calculation of expectations of polynomial observables in a Gaussian distribution.

�e angular integrals are integrals of polynomials in the unitary matrix elements
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and the formula of [19] can be applied. In concrete situations where the degree

of the polynomial is not too large, exact results are obtained. We also show that

large N behaviors can be extracted using the diagrammatic method of [20] on a

family of observables which generalize the melonic ones (basically, trees, like in

the melonic case, formed by the gluing of matrix trace-invariants).

In addition to providing so far unexplored relationships between random ten-

sors and matrices, this approach shows the di�culties faced in random tensor

theory in the familiar context of matrix models. But it also sets a frame in which

these challenges may be handled, as discussed in the conclusion.

Finally, Appendix A investigates the possibility of interpolating matrix and

tensor models, a question often asked, or more generally interpolating various

tensor models. We use for instance a tensor of size N � N � � � � � N ˇ where ˇ

runs in Œ0; 1�. �is completes the analysis of [21] of tensor models with distinct

index ranges. It is found that there are only two large N behaviors in those models,

ˇ D 0 and ˇ 2 .0; 1�. �e reason is that for ˇ D 0 we have a tensor model of rank

d � 1 but as soon as ˇ > 0 each face of colors .0; d/ contributes to the large N

scaling. However, the 1=N corrections are typically found to depend on ˇ, but we

do not know if this a�ects the continuum limits.

1. �e degree expansion in completely packed loop models

on random surfaces

1.1. Loop model on random surfaces. Matrix models are known to generate

discretized random 2D surfaces. Each term of the action has the form tr.AA�/n,

where A is a complex matrix, and creates ribbon vertices of degree 2n. A ma-

trix model generates random surfaces through the Wick theorem which connects

these ribbon vertices together via ribbon lines. Following the recipe of [22],

the random surfaces can be decorated with oriented loops in the following way:

let ¹Ai ; A
�
i ; i D 1; : : : ; �º be a set of decorated matrices, and rewrite the terms

tr.AA�/n with various matrix labelings. We allow terms of the form

Vn;�.¹Ai ; A
�
i º/ D

X

˛1;:::˛n

ˇ1;::;ˇn

tr.A˛1
A

�

ˇ1
A˛2

A
�

ˇ2
� � � A˛n

A
�

ˇn
/

n
Y

kD1

ı˛k ;ˇ�.k/
; (1)

where � is a permutation of ¹1; : : : ; nº (there are obviously redundancies in this

parametrization). Such terms can be interpreted as n lines meeting, and possibly

crossing, at a 2n-valent ribbon vertex. �e incoming line in position k (corre-

sponding to A˛k
) crosses the vertex and go out in position �.k/ (corresponding
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to A
�
˛�.k/

). �is is pictured in Figure 1. We call the drawing associated to � the

link pattern labeled by � .

ab

c d

(a) Interpretation as crossing loops on

the ribbon vertex generated by the term

tr AaA
�

b
AbA

�
cAd A

�
aAcA

�

d
.

ab

c

d

(b) Interpretation as non-crossing loops

of the term tr AaA
�

b
AbA

�
aAcA

�
cAd A

�

d
.

Figure 1. Interpretation in terms of loops on ribbon vertices of the labeled matrix model.

�e loops are naturally oriented from A˛ towards A
�
˛ .

In this model, the most general action reads

S.¹Ai ; A
�
i º/ D

�
X

iD1

tr AiA
�
i C

X

.n;�/

Vn;� .¹Ai ; A
�
i º/; (2)

where the sums typically run over a �nite set of terms only. In the Feynman ex-

pansion, propagators connect ribbon vertices so as to form random (orientable)

surfaces, as usual in matrix models. Moreover, each half-line of a ribbon vertex

carries a (incoming or outgoing) line with index i D 1; : : : ; � , and these half-lines

are connected by propagators to create loops. Each propagator between two ver-

tices identi�es their label i D 1; : : : ; � . As a result, there is a free sum per loop,

giving rise to a factor � , hence a factor �L for the whole ribbon graph, L being its

number of loops.

�e free energy of the model admits the expansion

F D N 2f D � ln

Z �
Y

iD1

dAi dA
�
i exp

�

� N

�
S.¹Ai ; A

�
i º/

�

D
X

connected
ribbon graphs G

1

s.G/
N 2�2g.G/�E�V �L;

(3)
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where s.G/ is a symmetry factor, E is the number of edges, V of vertices, F of

faces and L of loops. �e 1=N expansion of the free energy is, as usual, the genus

expansion, where the genus g is

2 � 2g.G/ D F � E C V: (4)

It is worth noting that two kinds of con�gurations may happen:

� CPL con�gurations, where all loops are self and mutually avoiding. �e

name ‘CPL’ comes from the Completely Packed Loop model. In what fol-

lows, we will see that these CPL con�gurations have a dominant role. �ey

are generated by gluings of link patterns with no crossing, like on Figure 1b,

i.e. planar patterns up to rotations and re�ection,

� Con�gurations with crossings, where at least one loop crosses itself or an-

other loop.

1.2. Mapping to colored graphs and the degree expansion of tensor models.

We will map the Feynman graphs of our matrix model to a family of edge-colored

graphs which we now introduce.

1.2.1. Colored graphs and their degree

De�nition 1. A �-colored graph is a regular bipartite graph (say, with black and

white vertices) where each edge carries a color from the set ¹1; : : : ; �º and such

that the vertices have degree � and the edges incident to a vertex all have distinct

colors.

Some graphs are given in Figure 2. If 2p denotes the number of vertices in such

a graph, the total number of edges is �p, and the number of edges of any given

color is simply p. Furthermore, coloring gives an additional structure, which pro-

vides in particular a natural notion of faces. A face with colors .a; b/ 2 ¹1; : : : ; �º
is a closed path with alternating colors a and b. �e total number of faces of a

graph G is F.G/ D
P

a<b Fab , where Fab is the number of faces with colors a; b.

De�nition 2. Let � � 3 be an integer, G be a connected, �-colored graph with

2p vertices and � be a cycle on ¹1; : : : ; �º. �e jacket J associated to � is the

connected ribbon graph which contains all the faces of colors .�q.1/; �qC1.1//

for q D 0; : : : ; � � 1 in G. �erefore the number of faces in J is given by fJ D
2 � 2gJ C �p � 2p, where gJ is the genus of J . We de�ne the degree !.G/ 2 N
of G as the sum of the genera of the jackets.
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Figure 2. Graphs on six vertices with 3 colors.

One gets an (over-)counting of faces by summing the formulas of the genus

over all jackets, leading to the following theorem.

�eorem 1. Let G be a �-colored graph with 2p vertices. �e number of faces

and vertices are related to the degree as follows,

F � .� � 1/.� � 2/

2
p D � � 1 � 2

.� � 2/Š
!.G/: (5)

For a 3-colored graph,

2 � 2!.G/ D F � p D F � 3p C 2p;

where 3p is the total number of lines. �erefore the degree then reduces to the

well-known formula of the genus. �e degree was introduced for 4-colored graphs

in [15], and generalized in [5].
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�e colored graphs generated by a model of a single random tensor of rank d ,

Ta1���ad
, are obtained from the following Feynman rules. A bubble is a connected

d -colored graph, with colors 1; : : : ; d , like in Figure 2. It generalizes the notion

of ribbon vertex used in two dimensions [6]. Propagators then create edges which

connect black vertices to white vertices. We assign the color 0 to these edges.

Each vertex thus receives an edge of color 0 in addition to the d other edges of

its bubble. �erefore the Feynman graphs are .d C 1/-colored graphs with colors

¹0; : : : ; dº built by gluing some bubbles, as in Figure 3.

Figure 3. �is is a .3 C 1/-colored graphs, obtained by connecting bubbles (in solid lines)

via propagators (dashed lines, with the color 0).



10 V. Bonzom and F. Combes

Bubbles are colored graphs and therefore have a degree. Applying the degree

formula (5) to a Feynman graph G with d C 1 colors and to all its bubbles ¹B�º,
it comes

d
X

aD1

F0a � .d � 1/.p � b/ D d � 2
h 1

.d � 1/Š
!.G/ � 1

.d � 2/Š

X

�

!.B�/
i

: (6)

�e quantity into square brackets is a positive integer, which is zero if and only if

!.B�/ D 0 for each bubble together with !.G/ D 0.

�e large N limit of tensor models is dominated by graphs which maximize

the number of faces at �xed number of vertices and bubbles. �ey are therefore

the graphs whose degrees vanish as well as the degrees of their bubbles. Such

bubbles and Feynman graphs are called melonic.

De�nition 3. A closed melonic graph with � colors is built by recursive insertions

of .� � 1/-dipoles, i.e. two vertices connected by � � 1 lines inserted on any line,

starting from the closed graph on two vertices. �e .� � 1/-dipole is represented

in Figure 4, as well as a melonic graph.

�eorem 2. �e colored graphs of degree ! D 0 are the melonic graphs.

�is theorem was proved in [7].

Figure 4. On the left is a .D�1/-dipole with external color c. A 2-point (i.e. with two open

half-edges) melonic graph on 4 colors is represented on the right. It is built by recursive

insertions of 3-dipoles. A closed graph is obtained by connecting the two external open

half-edges.

We say that a melonic graph has melons only on the colors a1; : : : ; ak if it can

be constructed by dipole insertions on edges of colors a1; : : : ; ak only.
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Edge-colored graphs have been recently classi�ed according to their degree

in [10].

1.2.2. �e corresponding tensor model. In this section, we explain why our

matrix model can be written as a tensor model. Note that not all multi-matrix

models are tensor models in disguise, since the action of a tensor model for a

tensor of size N1 � � � � � Nd is required to be U.N1/ � � � � U.Nd /-invariant, as we

explain.

Let Ta1���ad
be the entries of a tensor T , with ai D 1; : : : ; Ni for i D 1; : : : ; d ,

and xTa1���ad
for its complex conjugate. �e algebra of polynomials in the entries of

T and xT which are invariant under the fundamental action of U.N1/�� � ��U.Nd /,

that is

Ta1���ad
7�!

X

b1;:::;bd

U
.1/

a1b1
� � � U

.d/

ad bd
Tb1���bd

; (7)

where U .1/; : : : ; U .d/ are d independent unitary matrices (of di�erent sizes), and

similarly for the complex conjugate xT , is generated by a set of polynomials la-

beled by bubbles. Recall that bubbles here are connected, edge-colored graphs

with d colors. �e correspondence between invariant polynomials and bubbles

works as follows. Let B be a bubble. To each white (respectively black) vertex

of B we associate a T (respectively xT ). An edge of color c 2 ¹1; : : : ; dº between

a white vertex and a black vertex means that the indices in the position c of the

corresponding T and xT are identi�ed and summed over (from 1 to Nc). �e poly-

nomial labeled by B can be written explicitly. Let W be the set of white vertices,

B the set of black vertices and E the set of edges. We identify an edge e 2 E via

the black vertex and the white vertex it connects and its color, thus e D .w; b; c/

with w 2 W; b 2 B. �en the polynomial, denoted B.T; xT /, is

B.T; xT / D
Y

k2W

X

ik
1

;:::;ik
d

Y

l2B

X

j l
1

;:::;j l
d

Tik
1

���ik
d

xTj l
1

���j l
d

Y

eD.w;b;c/2E
ıiw

c ;j b
c

: (8)

To write the matrix action (2), de�ned from the set of matrices ¹Ai ; A
�
i ºiD1;:::;� ,

as a tensor action, we make the quite obvious ansatz,

Ta1a2a3
D

�

Aa3

�

a1a2
; xTa1a2a3

D
�

A�
a3

�

a2a1
: (9)

It remains to check that the matrix potential has the required invariance, that is

that each Vn;� .¹Ai ; A
�
i º/ de�ned in (1), is actually an invariant polynomial labeled

by a 3-colored bubble. �e above de�nitions of T and xT shows that the matrix

element of a product .AaA
�

b
/a1b1

is exactly
P

a2
Ta1a2a

xTb1a2b, i.e. a contraction
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along the second index. Similarly, .A
�

b
Aa/b2a2

D
P

a1
xTa1b2bTa1a2a is a con-

traction on the �rst index. Finally,
P�

iD1.Ai/a1a2
.A

�
i /b2b1

D
P

a3
Ta1a2a3

xTb1b2a3

creates the contraction along the third index. �e action (2) is thus really a sum

over invariant polynomials labeled by bubbles, and the quadratic part is obviously
P�

iD1 tr AiA
�
i D

P

a1;a2;a3
Ta1a2a3

xTa1a2a3
.

It is also interesting to proceed graphically. �ere is a straightforward mapping

between the link patterns, i.e. the ribbon vertices of the matrix model, and bubbles

with 3 colors and a single face of colors .1; 2/, as shown in Figure 5. One draws an

(unknotted) circle around the ribbon vertex, such that the intersections between the

circle and the loop lines (labeled 1; : : : ; �) give rise to the vertices of the bubble

(say an outgoing line gives a white vertex, and an incoming line gives a black

vertex). �e segments on the circle are given alternating colors 1 and 2. �ere are

two possible choices to do that, and we choose the color 1 when going clockwise

from a black to a white vertex. �e loop lines which cross the ribbon vertex are

then given the color 3, and they indeed connect white to black bubble vertices.

ab

c d

7�!
ab

c d

7�!

1

1

1

1

2

2

2

2

3

3

3

3

Figure 5. �e map from ribbon vertices with loop lines to 3-colored bubbles.

Note that our ribbon vertices do not generate all 3-colored bubbles, but only

those with a single face of colors .1; 2/. �is is because they come from single

trace invariants in the matrix model.
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Conversely, given a 3-colored bubble with a single face of colors .1; 2/, one

gets a unique ribbon vertex with loop lines. �e ribbon vertex is determined by

the face with colors .1; 2/: there is one open ribbon line per vertex of the bubble.

Each line of color 3 connects a black and a white bubble vertex and corresponds

to an oriented loop line going through the ribbon vertex.

�e planar patterns, used to build CPL con�gurations, are exactly the bubbles

which are melonic with melonic insertions on the colors 1 and 2 only. �is set of

bubbles has been studied in [23] where it is shown to be in one-to-one correspon-

dence with non-crossing partitions of ¹1; : : : ; pº up to rotations and re�ections.

As an example, those on 4 vertices correspond to the terms Vn;� with n D 2.

�ere are only two permutations on two elements, hence two 3-colored graphs

with a single face of colors .1; 2/ which we denote B1 and B2, and corresponding

to the identity � D .1/.2/ and the transposition � D .12/ (in cycle notation).

Graphically, we have

VnD2;�D.1/.2/ D
�

X

i;j D1

tr.AiA
�
i Aj A

�
j / D D

1

1

22 3 3 ; (10a)

and

VnD2;�D.12/ D
�

X

i;j D1

tr.AiA
�
j Aj A

�
i / D D 11

2

2

3 3 : (10b)

�erefore, we get a tensor model whose free energy expansion is (3). �is im-

plies that if we could solve exactly the matrix models de�ned by the potentials (1),

we would in fact get the exact solution of some rank-three tensor models, with ten-

sors of size N �N �� (for which the 1=N expansion is organized according to the

genus of subgraphs with colors 0,1,2 while the degree partially controls the 1=�

expansion, as we are going to see).

1.2.3. �e mapping. �e fact that the initial matrix model �ts in the frame of

tensor models suggests the existence of a bijection between the random surfaces

decorated with loops and the .3C1/-colored Feynman graphs of the tensor model.

From the correspondence between the ribbon vertices Vn;� and the bubbles estab-

lished above, this bijection is quite trivial: only propagators have to be added. �e

edges of the ribbon graphs are simply mapped to edges of color 0, which indeed

connect black to white vertices.

�is allows to evaluate the number of faces, edges, vertices and loops of the

matrix Feynman graphs in terms of faces, vertices and bubbles of the correspond-

ing 4-colored graphs, as summarized in the Table 1.
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Table 1. �e correspondence between the characteristics of the random surfaces with loops

and the characteristics of the corresponding colored graphs.

Loops model graphs 4-colored graphs

Faces: F �! Faces of colors (0,1), (0,2): F01 C F02

Edges: E �! Vertexes: p

Vertexes: V �! Bubbles of color (1,2,3): b

Loops: L �! Faces of colors (0,3): F03

�e slightly non-trivial is to �nd a relation between the genus of the random

surfaces and the degree of the colored graphs. Being 3-colored, the bubbles them-

selves can be interpreted as ribbon graphs. �is is done by clockwise-ordering the

edges of colors 1,2,3 around each white vertex, and counterclockwise-ordering

them around each black vertex (then thickening the edges if desired). �e degree

of a bubble is then the genus of that discrete surface, !.B/ D g.B/, and it is

a measure of the amount of crossing of the loop lines at a given ribbon vertex.

Obviously, the melonic bubbles are the planar ones.

Using this correspondence, the degree of a .3C1/-colored graph, equation (6),

reads

F C L � 2.E � V / D 3 � !.G/ C 2
X

�

g.B�/;

Since the genus of the ribbon graph �xes the number of faces at �xed number of

edges and vertices, through equation (4), the number of loops L can be extracted

as a function of the degree, of the genus of the subgraph of colors (0,1,2), the

genera of the bubbles, and of the numbers of edges and vertices

L D E � V C 1 C 2g.G/ � !.G/ C 2
X

�

g.B�/: (11)

�is loop counting formula is the main outcome of the mapping. To complete

the loop counting, we prove that the quantity !.G/ � 2
P

� g.B�/ � 2g.G/ � 0,

and identify the con�gurations for which it vanishes. We use the obvious bound

L < F , which together with (11) implies that

!.G/ � 2
X

�

g.B�/ � 2g.G/ > �1 C 2g.G/: (12)

�is means that if g.G/ � 1, then the left hand side is strictly positive. Only the

case g.G/ D 0 remains. �en we �nd

!.G/ � 2
X

�

g.B�/ D 1

3
!.G/ C 2

3

�

!.G/ � 3
X

�

g.B�/
�

: (13)
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In addition to !.G/ � 0 as part of the �eorem 1, it can be proved that ! �
3

P

� g.B�/, which is a particular case of the Lemma 7 in [24].

We summarize the consequences of this analysis in the following proposition.

Proposition 1. �e number of loops on a random discrete surface G decorated

with oriented loops visiting all edges once (and such that the orientations on the

edges around each vertex alternate), made of the gluing of V link patterns ¹B�º�

via E edges satis�es

L D 1 C E � V C 2g.G/ � !.G/ C 2
X

�

g.B�/;

where !.G/ is the degree of the corresponding .3C1/-colored graph. Furthermore

� �e graphs of degree zero are those which maximize the number of loops at

�xed number of edges and vertices (and the link pattern at each vertex is

planar).

� �ey are planar, !.G/ D 0 H) g.G/ D 0.

� At �xed genus, �xed numbers of edges and vertices of each allowed type, the

degree measures how far G is from the con�guration which maximizes the

number of loops.

We also note that the formula (11) can be used to get a bound on the maximal

degree of the colored graphs built from 3-colored bubbles with a single face of

colors 1,2. Since L � 1, it comes (using the notation of colored graphs)

!.G/ � p � b C 2g.G/ C 2
X

�

g.B�/: (14)

Let us illustrate a bit the melonic sector in the special case where only the

terms with n D 2 are kept in the action (2). �is leaves only the two link patterns,

or the two 3-colored graphs (both planar), of the equation (10). In this model, all

melonic insertions come from inserting appropriately one of these two bubbles on

any edge of color 0. Assuming the edge of color 0 corresponds to a ribbon edge

with a loop going up north, the two possibilities are

0

0

0

1

1

22 3 3 D
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and

0

0

0

11

2

2

3 3 D :

We see that a melonic insertion adds one loop, one ribbon vertex and one ribbon

edge (and does not change the genus). By contrast, a non-melonic insertion on an

edge of color 0 would be

0

0 0

11

2

2

3 3 D

which would not create a new loop.

In the section which follows, we solve explicitly the melonic sector (! D 0)

and further use the recent classi�cation of colored graphs [10] to organize the 1=�

expansion.

1.3. Scaling limits. Using the counting of loops obtained in equation (11), the

free energy writes

N 2f D
X

connected

ribbon graphs

�N

�

�2�2g.G/

.��/E�V �3�!.G/ 1

s.G/
:

�is shows three contributions to the exponent of � . �ose with the genus and

with E � V are not relevant since these quantities are controlled by N and �.

Consequently, the degree ! labels the expansion in the number of loops.

1.3.1. Large � limit. Furthermore, it is possible to build a scaling limit which

projects the loop model onto the melonic sector. To project onto the melonic

family, the limit � ! 1 is required. To ensure the limit is well-de�ned, we

must scale � with � as follows: �� D Q�, where Q� is kept �nite. We also scale N

with � , and for convenience set their ratio to 1, � D N . �e rescaled free energy
Qf D f

�
D f

N
then reads

N 3 Qf D N 2f D
X

4-colored
connected graphs

N 3�!.G/ Q�E�V 1

s.G/
; (15)
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It is �nite in the large N , large � limit, and its leading order in the 1=N expansion

consists of melonic graphs.

It is interesting to perform the rescaling directly in the matrix integral (and

setting � to N everywhere),

N 3 Qf D � ln

Z N
Y

iD1

dAi dA
�
i exp

�

� N 2

Q�
S.¹Ai ; A

�
i º/

�

: (16)

�e factor N 2 in front of the action is exactly the standard scaling for a random

tensor of rank-three and size N 3. �is is natural in this scaling limit, since there

are � D N matrices, each of size N � N .

We can write the solution quite explicitly in the large N limit [14, 6]. Indeed,

large random tensors in a unitary-invariant distribution (invariant under (7)) are

subjected to a universality theorem, stating that all large N expectations are Gauss-

ian, with the covariance being the large N 2-point function. For an invariant poly-

nomial B.T; xT / of degree pB in T , this gives

1

N
hB.T; xT /i D N �!�.B/.CBG

pB

2 C O.1=N //;

where

G2 D lim
N !1

D

T � xT
E

=N D lim
N !1

h
N

X

iD1

tr.AiA
�
i /i=N:

!�.B/ � 0 and it vanishes if and only if B is melonic, meaning that melonic

bubbles of the action are the only relevant ones at large N . �erefore, only the

terms of the type Vn;� in (2) with � corresponding to a planar link pattern survive.

Moreover, CB is the leading order number of Wick contractions and for a melonic

bubble turns out to be 1 only. �is way,

1

N
hVn;�planar.¹Ai ; A

�
i º/i D Gn

2 :

All large N calculations thus boil down to the leading order 2-point function. It is

found thanks to the Schwinger–Dyson equation

X

a1;a2;iD1;:::;N

Z

Y

i

dAi dA
�
i

@

@.Ai/a1a2

..Ai/a1a2
e�N 2S.¹Ai ;A

�

i
º/=Q�/ D 0;

which after making the derivatives explicit and using the universality to close the

system leads to the equation

Q� � G2 �
X

n;planar �

n Gn
2 D 0;
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which is polynomial as long as the action contains a �nite collection of planar link

patterns. It is a standard result that one then gets a square-root singularity for G2

when approaching the critical value of Q�, i.e. G2 � . Q�c � Q�/1=2. �erefore the

singular part of the free energy behaves as Qf � . Q�c � Q�/2�
 with 
 D 1=2. �e

regime where Q� is close to Q�c is called the continuum limit.

1.3.2. �e 1=� expansion. �anks to the 1=N expansion, we can work at �xed

genus. We can then take advantage of the recent classi�cation of edge-colored

graphs according to their degree [10] to organize the 1=� expansion.

�is classi�cation relies on the fact that only 2-point subgraphs and 4-point

subgraphs can generate in�nite family of graphs of constant degree1. Once re-

placed by “reduced” 2-point and 4-point functions, there exists only a �nite num-

ber of graphs of given degree. �ose reduced graphs are called schemes in [10].

In the following, we restrict the potential to n D 2, leaving only room for the

bubbles B1; B2 introduced in (10). (�is reduces the source of 4-point functions;

otherwise we would have for instance a 6-point bubble with an arbitrary 2-point

function between two of its vertices also play the role of an e�ective 4-point bub-

ble, and so on2). We recall the loop counting formula specialized to this case (i.e.

with E D 2V and planar link patterns),

L D V C .3 � !.G// � .2 � 2g.G//:

�erefore the degree measures how far a loop con�guration is from the one which

maximizes the number of loops for a �xed number of vertices and a �xed genus.

�e Schwinger–Dyson equation on G2 simply reads

� � G2 � 4G2
2 D 0;

hence

G2 D
p

1 C 16� � 1

8
;

with G2 � � for small �. �e critical point which de�nes the continuum limit is

�c D �1=16.

1 We remind the reader that tensor model at large N are dominated by Gaussian contribu-

tions, i.e. 2-point functions, while the �rst 1=N correction only involves 2-point and 4-point

functions, [25, 13].

2 �e reference [10] studies the whole set of colored graphs, which is somewhat simpler than

focusing on the set of graphs generated by a given but arbitrary set of bubbles, except if this set

is simple enough. �is is the case for graphs built from quartic interactions (n D 2 here), and

this is the choice made in [11].
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Given an arbitrary .3C 1/-colored graph built from the bubbles of type B1; B2

glued along edges of color 0, one �rst reduces the purely melonic 2-point sub-

graphs, as the one in Figure 4 (this is done recursively by identifying 2-cut edges;

the order does not matter, as proved in [10]). Arbitrary melonic insertions do not

change the degree, and so does this reduction. �is way, we have to consider only

melon-free graphs, while all melonic insertions are completely accounted for by

simply using G2.�/ as the new propagator, i.e. G2 becomes the weight associated

to edges of color 0.

Second, one identi�es chains. In our model, chains are simply sequences of

quartic bubbles glued in a chain-like manner,

. . .

cc c0

where c; c0 are 1 and/or 2. �ose chains have to be maximal, so they have 4 half-

edges of color 0 as external edges. �ere are two types of chains.

� �ose built from a sequence of a single bubble, either B1 or B2, and called

unbroken chains. In terms of ribbon graphs and loops, an unbroken chain

takes the form

with two possible orientations. It is clearly planar.

�e generating function of unbroken chains with a weight �2=� on each bub-

ble and G2.�/ on each edge of color 0 is

Cu.�/ D
X

n�1

.�2/n .G2.�//2.n�1/

�n

D � 2

� C 2.G2.�//2
:

� �ose which contain both bubbles B1; B2 and called broken chains. �e gen-

erating function of broken chains is found by considering the one of arbitrary

chains, with arbitrary 4-point bubbles (bubbles hence receiving the weight

�2 � 2=�, to account for the two possible types of bubbles at each time), and
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subtracting the generating functions of the two unbroken chains,

Cb.�/ D
X

n�1

.�4/n .G2.�//2.n�1/

�n
� 2Cu.�/

D � 4

� C 4.G2.�//2
C 4

� C 2.G2.�//2

D 8.G2.�//2

� C 2.G2.�//2

1

� C 4.G2.�//2
:

Chains can be arbitrarily long with no change in the degree of the melon-free

graphs. We have to make sure that does not change the genus of the random surface

neither. It is clear for the unbroken chains. As for the broken ones, if a bubble Bi

is inserted somewhere in an unbroken subchain of type i , including at an end, this

does not change anything. So we are left with the case where a bubble B1, for

instance, is inserted in a subchain of bubbles B2. Because the full chain is broken,

there is another bubble B1 somewhere, say on the right of the chain,

. . . . . .

11 22

where we have marked the added bubble in a bounding box. We have to evaluate

the variation of the genus of the subgraph with colors 0,1,2 between before and

after the insertion. Clearly, the number of ribbon edges changes by 2 and the

number of ribbon vertices (i.e. bubbles) by 1. �erefore �.E � V / D 1. To �nd

the variation of the number of faces, it is more convenient to use the representation

as an edge-colored graph rather than as a ribbon graph. �e number of faces of

the surface is F D F01 C F02. �e face of colors .0; 2/ which arrives from the top

left leaves on the bottom left, and that was already the case before the insertion

because the chain is broken. �ere is however a new face of colors .0; 2/, which

goes around the bubble of type B2 on the right of the bounding box. �erefore

�F02 D 1. Moreover, there is no new face of colors .0; 1/, so �F01 D 0. �e

variation of the genus is thus �2�g D �.F � E C V / D 0, meaning that the

genus is independent of the length of the chain.

As a consequence, it is safe to simply contract chains into “boxes” called bro-

ken or unbroken chain-vertices with two incident edges of color 0 on one side

of the box and two on the opposite side, and weight them with the generating

functions Cb.�/ or Cu.�/ respectively. We obtain this way the set of schemes,
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i.e. melon-free graphs with chain-vertices representing arbitrarily long chains.

�e key result of [10] is then the �niteness of the number of schemes at any �xed

degree.

Let s be a scheme with p � 2 black vertices, ˛ unbroken chain-vertices and ˇ

broken chain-vertices. �en the generating function of colored graphs, rooted on

an edge of color 0, with scheme s is

Gs.�/ D .G2.�//p .Cu.�//˛ .Cb.�//ˇ :

To get the free energy of the model (or rather its 2-point function), one substitutes

�� instead of �. �en the 2-point function at genus g has the expansion

G
.g/
2 .�/

D G2.��/ ıg;0

C
X

!�1

�3�!
X

schemes s

!.s/D!;g.s/Dg

.�2/˛8ˇ .G2.��//pC2ˇC1

.�� C 2.G2.��//2/˛Cˇ .�� C 4.G2.��//2/ˇ
;

where the sum over schemes at �xed genus and degree is �nite. Here we have

isolated the purely melonic part, which corresponds to the empty scheme with no

vertices.

Of course, to complete the analysis, it is necessary to know how the degree

of a scheme behaves as a function of the number of chains. Again, this was done

in [10]. If a chain-vertex is separating, i.e. if after its removal and after connecting

the half-edges of color 0 together on each side of the chain vertex we get two

connected components, then the degree of the graph is simply the sum of the

degrees of both connected components. For an non-separating, unbroken chain

of type i , such that there are two di�erent faces of colors .0; i/ going through

the chain, the degree is the degree of the graph with the chain removed plus one,

meaning such a chain contribute to a factor 1=� . In all other situations, a chain

brings in a factor 1=�3.

A corollary of this analysis is the double scaling regime. First notice that the

critical point de�ning the continuum limit is �� D �1=.16�/. �e generating

function Cu.��/ of unbroken chains is �nite at criticality. However, the generating

function of broken chains is singular. Indeed, its denominator contains

�� C 4.G2.��//2 D ��� G2.��/
p

1 � �=�� :

�erefore a scheme with ˇ broken chains diverges as .1 � �=�� /ˇ=2 at criticality.

�e idea of the double scaling limit is to pick up the terms of arbitrary degree

which maximize the divergence.
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�e answers provided in [10] for generic edge-colored graphs and in [11] in

the special case of quartic melonic interactions coincide. We consider a rooted,

binary tree with a single loop attached to every leaf. For each such tree, we get an

edge-colored graph of the model by replacing the edges with broken chains which

are glued together at the vertices in the obvious way, while the loops on the leaves

represent unbroken chains. �ose loops break melonicity and were called cherries

in [11]. Since all broken chains are separating, the degree is simply the number of

unbroken ones, ! D n. Moreover, the binary-tree structure of broken chains is

the way to maximize the divergence at �xed number of cherries. �e number of

broken chains grows linearly as two times the number of cherries, so each such

graph receives a factor ��n=
p

1 � �=��
2n

. �is shows that the optimal balance is

reached by introducing x D �.1 � �=�� / and sending � ! 1; � ! �� while x is

kept �xed.

Using the same technique as in [10] to extract the behavior of the degree as

a function of the chain-vertices, the graphs of the double-scaling regime can be

shown to be planar. Indeed, one breaks up the cherry trees into isolated vertices,

edges which represent broken chains, and loops attached to the leaves and analyze

the genus of each piece (found to vanish in all cases).

�e resummation of this family is quite simple to perform3. It has a square-root

singularity in x that is likely to lead to a branched polymer phase.

1.4. Another bijection and the intermediate �eld method. We have shown a

bijection between the ribbon graphs with oriented loops generated by the matrix

model (3) and the edge-colored graphs of tensor models whose interactions are

labeled by bubbles with a single cycle of colors .1; 2/. In the case the potential is

restricted to the two quartic terms in equation (10), there is a bijection between the

graphs of the tensor model and a family of maps. It was �rst observed in [26] in

quartic melonic models, and generalized to tensor models with arbitrary quartic

interactions in [12]. Algebraically, this bijection corresponds to the intermediate

�eld method. Here, we �rst present the bijection, then the corresponding interme-

diate �eld theory.

Note that the bubbles used in the quartic case, equation (10), have four vertices

with a canonical partition in pairs. A canonical pair of vertices consists of those

connected by a multiple edge (here two edges including the one of color 3). �e

two pairs are connected by two edges of color i (here 1 or 2) and we have labeled

3 Compared to [11], one has to set D D 3 when D enters the degree, but D D 2 in the

equations for criticality since we have only two quartic bubbles and not three.
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the bubble by that color (B1 and B2). We are now going to represent Bi as an edge

of color i , as if the canonical pairs of vertices were contracted to single points.

Furthermore, each white/black vertex has an incident edge of color 0. �is

means that every edge of color 0 belongs to a single closed cycle made of alter-

nating edges of color 0 and multiple edges. We map those cycles to vertices, while

preserving the cyclic ordering of the bubbles. In our model, those vertices corre-

spond to the faces of color .0; 3/, i.e. the loops. �rough this process, we represent

every colored graph as a map, since the ordering around each vertex matters, with

edges of colors 1 or 2.

For such a map, there are two canonical submaps, M1 and M2, which respec-

tively correspond to the submaps containing only the edges of color 1 and 2. �e

faces of colors .0; i/ in the Feynman graph of the tensor model are mapped to the

faces of the map Mi . Moreover, the bubbles are mapped to edges and the loops to

vertices.

Remarkably, many problems in tensor models become quite simple when for-

mulated in this way. For instance, the dominance of the melonic sector: the ques-

tion is how to maximize the number of loops at �xed number of ribbon vertices.

After the mapping, it becomes how to maximize the number of vertices at �xed

number of edges; the answer clearly being trees, which indeed are the represen-

tatives of the melonic edge-colored graphs. Further, the double scaling regime

presented in the previous section is dominated by Motzkin trees (i.e. trees whose

nodes can have zero, one or two children), such that there always is at least one

change of color between two vertices of degree three, and with loops of arbitrary

length and of a �xed color attached to the leaves.

Since we exhibited a bijection to maps, there may be a matrix model which

generates them with the correct amplitudes. �is works through the intermediate

�eld method which transforms the initial matrix model (3) with n D 2 into a

two-Hermitian-matrix model. Here it is useful to introduce independent coupling

constants �1; �2 and consider

ZN;� .�1; �2/

D
Z �

Y

iD1

dAi dA
�
i e

�N.
P

i tr Ai A
�

i
C�1 tr

P

i;j Ai A
�

i
Aj A

�

j
C�2 tr

P

i;j Ai A
�

j
Aj A

�

i
/
:

We can re-write each quartic term via a Gaussian integral over an auxiliary, Her-

mitian matrix,

e
�N �1 tr

P

i;j Ai A
�
i

Aj A
�
j D

Z

dM1 e�N tr M 2
1

�2iN
p

�1 tr
P

i M1Ai A
�
i ;
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up to irrelevant constants, and similarly for the other quartic term. �e partition

function is then

ZN;� .�1; �2/ D
Z

dM1 dM2

�
Y

iD1

dAi dA
�
i ee;

where

e D �N tr
�

M 2
1 C M 2

2 C
X

i

AiA
�
i

�

� 2iN
p

�1 tr M1

X

i

AiA
�
i

� 2iN
p

�2 tr M2

X

i

A
�
i Ai :

(17)

Performing the Gaussian integral on the � matrices Ai , one gets,

ZN;� .�1; �2/

D
Z

dM1 dM2 e�N tr.M 2
1 CM 2

2 /�� tr ln.I˝I�2i
p

�1M1˝I�2i
p

�2I˝M2/:
(18)

If the logarithm is expanded onto powers of M1; M2, it is clear that we have a

generating function for the maps described above.

We are not aware of a solution of this model for arbitrary �1; �2; � in the liter-

ature. Nevertheless, setting �2 D 0, one gets

ZN;� .�1; 0/ D
Z �

Y

iD1

dAi dA
�
i e

�N.
P

i tr Ai A
�

i
C�1 tr

P

i;j Ai A
�

i
Aj A

�

j
/

D
Z

dM e�N tr M 2�N� tr ln.I�2i
p

�1M1/:

(19)

One recognizes here the generalized Penner model with a quadratic potential. We

refer to [27] for an analysis with an arbitrary polynomial, at all genera, using the

loop equations. In the case of the quadratic potential, the Penner model with cou-

pling � on the logarithmic part is equivalent to the quartic matrix model with �

matrices, which can actually be solved directly. For instance, a rectangular matrix

of size N � �N can be formed, Ca1˛ D .Ai/a1a2
with the “fat” index ˛ D .a2; i /.

�en the action is simply tr CC � C �1 tr.CC �/2, and the partition function can

be evaluated using techniques developed for rectangular matrix models, like the

orthogonal polynomials in [28] (and see [29] for an application to tensor models).
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As far as we know, the quartic case with �2 D 0 is the only situation where

a model of the generic class we have introduced has been solved. However, it

should be emphasized that already the quartic model with �2 ¤ 0 is very di�erent.

In particular, for �2 D 0, the distinction between broken and unbroken chains

disappears and all chains become singular at the critical point.

2. Gaussian expectations in random tensor theory

�e �rst part of this article relied on the simple observation that a set of matri-

ces with a unitary symmetry among them can be seen as a tensor equipped with

independent unitary transformations on its indices. �ere is another simple way

to relate tensor to matrices, which is to consider a tensor as a (typically rectan-

gular) matrix between a subset of indices to the subset of the other indices. For

a tensor on d indices, seen as a linear form on
Ld

iD1 Vi , one picks up a sub-

set C D ¹i1; : : : ; ijCjº � ¹1; : : : ; dº and denote its complement ¹k1; : : : ; kd�jCjº D
¹1; : : : ; dºnC. One de�nes M as a linear application from

Ld�jCj
pD1 Vkp

to
LjCj

j D1 Vij .

Of course, there are multiple ways to choose C, but depending on the observ-

ables one is interested in, some choices are better than others. We recall that a

basis of observables is formed by the polynomials B.T; xT / labeled by bubbles.

Loosely speaking, a “good” choice of the subset C relative to B.T; xT / is one that

minimizes the degrees of freedom entering B . A natural way of separating the de-

grees of freedom of T; xT is to use the singular value decomposition with respect

to C, i.e. M D UDV , where U; V are unitary and D is made of a square diago-

nal matrix completed with some rows or columns of zeros. For a few families of

polynomials B , the choice of C is obvious, e.g. when there exists one such that

B.T; xT / D B.D/ is a function of the singular values only.

�is situation however requires to focus on polynomials of the form tr.MM �/n

which we call necklaces. �eir bubbles consist of single cycles on 2n vertices

connected by two types of multiple edges, those with colors in C and those with

colors in the complementary subset (see example in Figure 6).

Generically, a polynomial B.T; xT / D B.U; V; D/ depends on all the degrees of

freedom of the singular value decomposition. �is is simply because a polynomial

invariant under the action of U.N1/ � � � � � U.Nd / is generically not invariant

under U.
QjCj

j D1 Nij / � U.
Qd�jCj

pD1 Nkp
/. Note that the Gaussian measure however

is independent of the angular matrices U; V , i.e. T � xT D tr MM � for any choice

of C. �erefore the Gaussian expectation of a polynomial reads

hB.T; xT /i D 1

Z

Z

d�.¹�iº/ e�N d�1
P

i �2
i

Z

dU dV B.U; V; ¹�iº/:
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1

2

3 4

5

Figure 6. �is is the necklace on �ve colors with C D ¹3; 5º and 6 vertices.

Here ¹�i � 0º denotes the set of singular values, d�.¹�iº/ the measure inherited

from the change of variables, while dU; dV are the Haar measures on unitary

matrices of the appropriate sizes.

�is provides a notion of e�ective polynomial of B with respect to C which is

a function over the singular values,

BC.¹�iº/ D
Z

dU dV B.U; V; ¹�iº/: (20)

�en, the expectation of B is just the expectation of BC in the complex Gauss-

ian Wishart ensemble (also known as the Laguerre ensemble, from the family of

relevant orthogonal polynomials for this measure). �e integral over the angular

variables results in an expansion onto U.
QjCj

j D1 Nij / � U.
Qd�jCj

pD1 Nkp
/-invariants,

BC.¹�iº/ D
X

k

X

l1;:::;lk

c
.B/

l1;:::;lk
.N1; : : : ; Nd /

�

X

i1

�
2l1

i1

�

� � �
�

X

ik

�
2lk

ik

�

;

and therefore

hB.T; xT /i D
X

k

X

l1;:::;lk

c
.B/

l1;:::;lk
.N1; : : : ; Nd /

D�

X

i1

�
2l1

i1

�

� � �
�

X

ik

�
2lk

ik

�E

Laguerre
:

Taking all the tensor indices to have range N , the expectation of the product of

single-trace invariants factorizes as the product of the expectations in the large N

limit. �ere are two possible cases,

D

X

i

�2l
i

E

D htr.MM �/li �N !1

8

<

:

1 if jCj ¤ d � jCj;

Catl if jCj D d � jCj:
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�e symbol � here also means up to some power of N and Catl is the l-th Catalan

number. When the matrix is rectangular, it is quite unbalanced since the ratio of

its dimensions goes to either zero or in�nity, and as a result a single Wick contrac-

tion survives at large N . When C (or its complement) is a singlet, it means that

B is a cycle of melons inserted on a �xed color and the result follows from [14].

In the other cases, it is an application of the results of [21] to the Gaussian dis-

tribution (which rely on the fact that there is a melonic subgraph which visits all

the vertices). Only when M is a square matrix one recovers the familiar Catalan

numbers of Gaussian matrix models.

Several methods have been developed to deal with integrals over the unitary

group, [30, 31]. For our purpose, since the function B.U; V; ¹�iº/ is polynomial

in the matrix elements of U; U �; V; V �, the following formula [19] seems to be the

most natural to perform the integral (20),

Z

U.N /

dU Ua1˛1
� � � Uan˛n

xUb1ˇ1
� � � xUbnˇn

D
X

�;�2Sn

ıa1;b�.1/
� � � ıan;b�.n/

ı˛1;ˇ�.1/
� � � ı˛n;ˇ�.n/

WgN .���1/:
(21)

� and � run over the symmetric group on n elementsSn, and WgN is a Weingarten

function over Sn.

In principle, this provides a way to compute the e�ective polynomial BC, and

there even exists a diagrammatic expansion which enables to control the scaling

with N of the various terms involved in the sums over permutations [20]. Yet in

practice, the number n of matrix elements of U (and similarly for V ) cannot be too

large as the sum over permutations becomes unmanageable for relatively large n.

We now set d D 4 and C D ¹2; 4º and illustrate the method on two examples:

a simple, but exact calculation, and a large N behavior on a family of observables.

We write

Ta1a2a3a4
D Ma1

a3

a2
a4

;

where a column of tensor indices represents a index of M with range N 2. �ere-

fore MM � D UD2U � is a N 2 � N 2 matrix V1 ˝ V3 ! V1 ˝ V3.

2.1. A simple, exact calculation. If B is a bubble in which the edges of color 2

and 4 always connect the same vertices, then the associated polynomial is a func-

tion of MM �. Moreover, the edges of color 2 count the degree in MM �. We con-

sider the following bubble, with k edges of color 2 on the top and l at the bottom
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of the drawing,

1 1
3

3

2 2

4 4

D tr1.tr3.MM �/k tr3.MM �/l/

D
N

X

a1;a3;b1;b3D1

.MM �/k
a1
a3

b1
a3

.MM �/l
b1

b3

a1

b3

;

(22)

using an obvious partial trace notation. By writing

MM � D UD2U �

with D2 D diag.¹�˛2
˛4

º/, we �nd

X

Ua1
a3

˛2
˛4

�2k
˛2
˛4

U
�
˛2
˛4

b1
a3

Ub1

b3

ˇ2

ˇ4

�2l
ˇ2

ˇ4

U
�

ˇ2

ˇ4

a1

b3

(23)

�e integral over U.N 2/ is simple enough since there are only two permutations

on two elements,
Z

U.N 2/

dU Ua1
a3

˛2
˛4

Ub1

b3

ˇ2

ˇ4

xU b1
a3

˛2
˛4

xUa1

b3

ˇ2

ˇ4

D WgN 2.12/.ıa1;b1
C ıa3;b3

ı˛2;ˇ2
ı˛4;ˇ4

/

C WgN 2.2/.ıa3;b3
C ıa1;b1

ı˛2;ˇ2
ı˛4;ˇ4

/:

Only the cycle structure of the arguments of the Weingarten functions is retained

(they are class functions), so that 12 is the (class of the) identity and 2 the (class

of the) transposition. Moreover,

WgN 2.12/ D 1

N 4 � 1
and WgN 2.2/ D � 1

N 2.N 4 � 1/
:

Performing the sums, it comes

X

a1;b1;a3;b3

Z

U.N 2/

dU Ua1
a3

˛2
˛4

Ub1

b3

ˇ2

ˇ4

xU b1
a3

˛2
˛4

xUa1

b3

ˇ2

ˇ4

D N

N 2 C 1
.1 C ı˛2;ˇ2

ı˛4;ˇ4
/;

which is the tensor that has to be contracted with the singular values. Eventually

we arrive at

BC.¹�˛2
˛4

º/ D N

N 2 C 1

��

X

˛2;˛4

�2k
˛2
˛4

��

X

ˇ2;ˇ4

�2l
ˇ2

ˇ4

�

C
X

˛2;˛4

�2kC2l
˛2
˛4

�

D N

N 2 C 1
.tr.MM �/k tr.MM �/l C tr.MM �/kCl /:
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�e large N limit of the expectation can be easily extracted. Normalizing the

Gaussian with a covariance 1=N 2, the double-trace term dominates (each trace

bringing up a factor N 2) and factorizes, so that

hB.T; xT /i D
large N

N 3 Catk Catl :

(�e scaling factor N 3 is due to the fact that the bubble has a single cycle with

colors .1; 2/ and two cycles of colors .3; 4/, see [21].)

2.2. Large N behavior. When the degree of the polynomial in U (and/or V )

which has to be integrated is large, an exact result becomes di�cult to extract and

largely depend on the combinatorics of the initial bubble. Even the asymptotics

seems di�cult to evaluate. However, in some cases, the method can lead to the

large N limit.

We consider a family of observables built in the following way. We �rst de�ne

the open necklace of color i as the necklace with a line of color i cut into two

halves (see Figure 7). �en the construction starts with a necklace of length k1.

A random edge of color 1 or 3 is deleted and instead an open necklace of the

appropriate color is attached so as to get a bipartite graph. On this new graph, a

randomly chosen edge of color 1 or 3 is removed and replaced by an open necklace

of the same color. �e family of interest in this section consists of graphs built by

continuing this process recursively a �nite number of times.

1

2

3

4 1

2

3

4

Figure 7. On the left is a necklace and on the right an open necklace of color 1.

To avoid redundancies in the construction, one can consider the rooted observ-

ables. �e construction starts with an open necklace of color 1. �en the process

of piling up open necklaces is similar, except that after an insertion on the color i ,
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further insertions on the newly created edge of this color and incident to the black

vertex of the inserted open necklace are forbidden. All other edges of color 1 and 3

are called active edges. �is way, there is a partial order between the open neck-

laces used to build up the observables. A necklace (a child) is smaller than another

one (a parent) if it is inserted on an active edge of the other one. Every necklace

(but the root one) has a single parent.

�ere is a simple bijection between the set of such rooted observables and a

family of rooted, corner-labeled, plane trees. It is a generalization of the bijection

between melonic graphs and trees, explained in [7], in the sense that the case of

melonic graphs with melons on the colors 1 and 3 only will be recovered by remov-

ing the labels on the trees. �e tree associated to an observable simply represents

the relations of partial order between the necklaces. Vertices correspond to open

necklaces and edges of color 1 and 3 represent the child/parent relationships. Note

that a typical necklace however has several edges of color 1 and 3 so that further

decorations are required to keep track of the speci�c edges on which insertions

are performed. One de�nes the distance between two edges incident to the same

vertex and both connected to children of this vertex as the number of edges of

color 2 which separate the two insertions on the necklace corresponding to this

vertex. �e distance at a vertex v between an edge connected to a children of this

vertex and an edge connected to the parent of v is the number of edges of color 2

around the necklace corresponding to v between the edge incident to a black ver-

tex which goes to the parent necklace and the edge on which the insertion of the

children necklace is performed. In the tree, those distances are included by pre-

serving the cyclic ordering of the insertions around each vertex, so that they label

the corners. An example is given in Figure 8.

�e bubble considered in the equation (22) is represented by the tree with two

vertices and a single edge of color 1 between them. It has two corners, one with

label k and one with label l . (�e necklace itself could be seen as the tree consist-

ing of a single vertex, which has no corner, although an integer is needed for the

length.) If C.T/ denotes the set of corners of the tree T, V.T/ its set of vertices,

and ¹kcºc2C.T/ the set of integers attached to the corners of T, the total length

around the vertex v 2 V.T/ is

kv D
X

c around v

kc :

�en

hBT.T; xT /i D
large N

Y

v2V.T/

Catkv
: (24)
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To prove this, we will show that the removal of a leaf with label l and its

incident edge in the tree amounts to factorizing the Catalan number Catl . Zooming

on the explicit dependence of BT at such a leaf, say with incident edge of color 1,

we have

BT D
N

X

a1;b1D1

Œtr3.MM �/l �a1b1
Œf .MM �/�b1a1

D
X

Ua1
a3

˛2
˛4

�2l
˛2
˛4

xU b1
a3

˛2
˛4

Œf .UD2U �/�b1a1
:

Here f is a matrix-valued function corresponding to chopping o� the leaf and

half the incident edge.

1

11

2

3

3

3

4

Figure 8. �is represents a typical necklace within an observable, which is mapped to a

vertex of the corresponding tree. If we assume the edge connected to the parent is the open

one incident to the black vertex and of color 1 on the left, then the distances labeling the

corners (going counter-clockwise) read 3, 2, 0, 1, 3, 0. �e �nal 0 is only here when there

is a necklace insertion on the open edge of color 1 on the left, incident to the white vertex.

To perform the integral over U , we use the diagrammatic method of [20]. First,

one gets a diagram corresponding to the integrand and then the expansion of the

integral (21) is obtained as a sum over decorations of this diagram by additional

edges (akin to Wick contractions of Feynman diagrams). �e matrix element of

U is represented by an edge between a black vertex (corresponding to the left

indices, of colors 1, 3) and a white vertex (corresponding to the right indices, of

colors 2, 4). For xU , the edge is simply decorated with a star. �e matrix elements

of powers of D2 are represented as edges with a box on them. Finally the indices
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of colors 1, 3 are drawn explicitly as half-edges. �is way,

N
X

˛2;˛4D1

Ua1
a3

˛2
˛4

�2l
˛2
˛4

xUb1

b3

˛2
˛4

D

?

a1

a3

b1

b3

Nv1 v1 v2 Nv2 :

�e integral is performed using (21) and n denotes the number of matrix elements

of U . Each term in the resulting sum over permutations �; � 2 Sn is represented

as a diagram obtained from the one of the integrand by adding a dashed edge for

each Kronecker delta. �e permutation � (respectively �) is thus represented by

dashed edges connecting black (respectively white) vertices two by two. Each

diagram is then weighted with the Weingarten function WgN 2.���1/.

Consider a diagram where Nv1 and v1 are not connected to Nv2 and v2, but rather

to other vertices from other parts of the tree, as in the left of Figure 9. �e rectangle

there stands for an arbitrary con�guration of the remaining dashed edges. We are

going to compare this situation to another diagram obtained from it by cutting

the four dashed edges in halves and reconnecting them as on the right of Figure 9

(all dashed lines which are not drawn are untouched). We want to compare their

amplitude as a function of N . �e N -dependence is found by counting the number

of independent sums of range N after applying (21). �ere are several types of

independent sums which can all be tracked diagrammatically.

� Each cycle consisting of alternating dashed edges and edges of color 1 (resp.

3) corresponds to a sum over an index with the color 1 (resp. 3), hence it

brings a factor N . �e number of such cycles is denoted F1 (resp. F3).

� Each cycle consisting of alternating dashed edges and edges with a box cor-

responds to a sum over indices with the colors 2 and 4, hence it brings a

factor N 2. �e number of such cycles is denoted F�.

� �e Weingarten function WgN 2.���1/ is a function of the cycle structure of

���1, which we write .1p12p2 � � � npn/ (meaning pj cycles of length j , with
P

j jpj D n). Each cycle is represented in the diagram as a cycle consisting

of alternating dashed edges and edges of U and xU . �e number of cycles

is denoted F0 D
P

j pj . Moreover, the Weingarten function asymptotically

behaves as

WgN 2.1p12p2 � � � npn/ D
large N

.N 2/F0�2n

n
Y

j D1

h

.�1/j �1 Catj �1

ipj

:

�at implies that each cycle comes with a factor N 2.
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We can now evaluate the variation of all those quantities between the left and the

right of Figure 9.

� �e two dashed lines incident to the black vertices on the left are parts of

either one or two cycles with color 1 (depending on the details inside the

rectangle) which gives two or one cycles on the right, hence jıF1j � 1.

� �e two dashed lines incident to the black vertices on the left belong to one

cycle with color 3, which splits into two cycles on the right, ıF3 D 1.

� �e two dashed lines incident to the white vertices on the left belong to one

cycle of type “box”, which splits into two cycles on the right, ıF� D 1.

� �e four dashed lines on the left can either belong to two di�erent cycles of

the permutation ���1 (one going along the edge . Nv1v1/ and the other along

. Nv2v2/) or to the same one. On the right, we have a cycle . Nv1v1v2 Nv2/ and at

least another one in the rectangle. �us, ıF0 � 0.

�erefore the amplitude for the diagram on the right bounds the one for the di-

agram on the left by at least a factor N 2ıF� D N 2. �is means that for every

con�guration like the left hand side of Figure 9, there is an associated con�gu-

ration which is enhanced. �e same conclusion is reached by means of similar

arguments if instead of the left hand side of Figure 9 there is a dashed edge be-

tween v1 and v2 or between Nv1 and Nv2.

?

11
3

Nv1 v1 v2 Nv2 ?

11
3

Nv1 v1 v2 Nv2

Figure 9. �e solid, non-colored edges represent matrix elements of U , and xU with a

star, edges with boxes represent singular values. Contractions of indices of colors 1, 3

are represented with edges incident to black vertices and the dashed edges correspond to

the Kronecker deltas induced by the permutations �; � in (21). �e vertices v1; v2; Nv1; Nv2

represent the matrix indices on a leaf of a tree and the rectangle contains the rest of the tree.

�e diagram on the right is obtained from the one of the left by cutting the dashed edges

which are drawn and reconnecting them so that v1 is connected to v2 and Nv1 to Nv2.
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As a conclusion, it comes that all dominant contributions to the angular in-

tegral have a dashed edge between v1 and v2 and one between Nv1 and Nv2, which

�xes one value of � and one value of � . It forces ���1 to have a �xed point and

this cycle contributes to a trivial factor 1 of the Weingarten function. �erefore,

up to factors of N ,

Z

U.N 2/

BT.U; ¹�iº/dU D
Z

U.N 2/

dU
X

Ua1
a3

˛2
˛4

�2l
˛2
˛4

xU b1
a3

˛2
˛4

Œf .UD2U �/�b1a1

D
large N

�

X

˛2;˛4

�2l
˛2
˛4

�

Z

U.N 2/

dU
X

a1

Œf .UD2U �/�a1a1
:

�e expectation of this product factorizes at large N , so that

X

˛2;˛4

�2l
˛2
˛4

D N 2 Catl

and the trace of f .MM �/ is simply the bubble polynomial labeled by the tree

T n .leaf, incident edge/, where the two corners incident to the edge on the parent

vertex are merged and their labels added. An induction from the leaves to the root

leads to (24).

Conclusion

�e motivation of this article is to connect tensor models to matrix model tech-

niques which could in the near future lead to a better understanding of the full

structure of tensor models (to complete the analysis of singularities of the gener-

ating function, to get exact results at all orders in the 1=N expansion, to investigate

the question of integrability of tensor models, etc.).

With this in mind, the present article has been devoted to a novel presentation

of random tensor models, from the view of matrix models. �e two major parts,

sections 1 and 2, are both based on really simple observations: i) that a tensor of

size N � N � � can be seen as a set of � matrices, ii) that a tensor can be seen as

a (typically rectangular) matrix with one index being a p-uple of tensor indices

and the other index a .d � p/-uple (d being the total number of indices). In both

cases, unitary transformations and symmetries play a major role.

In section 1, this observation allows to interpret models for tensors of size

N �N �� whose interactions have a single cycle of colors .1; 2/ as U.�/-invariant

matrix models. We describe this correspondence through a bijection between

edge-colored graphs and random surfaces decorated with oriented loops and show
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that the degree, which organizes the 1=N expansion of tensor models, here orga-

nizes the expansion with respect to the number of loops on the random surfaces,

via the equation (11). �at provides a new, combinatorial interpretation of the

degree.

We have taken this as an opportunity to review the most recent results on ten-

sor models applied in the context of the loop models. �is approach also unrav-

els the challenges faced by random tensor theory. It is emphasized that to our

knowledge there is no known solution to those models (e.g. for the large N free

energy at �nite �), beyond a very particular case which corresponds to a Penner

model. Beyond this case, the most generic and explicit result is the classi�cation

of edge-colored graphs according to their degree, due to Gurau and Schae�er [10]

which as we have explained in section 1.3 classi�es the loop con�gurations at �xed

genus and number of edges according to the number of loops. �ere is moreover

a double-scaling limit which sums consistently the most singular (at criticality)

loop con�gurations. We hope that the relationship we have established between

tensor models and loop models can lead to fruitful cross-fertilization.

While we have focused in section 1.3 on the scaling limits, further connections

between matrix and tensor models have been reviewed in section 1.4, based on the

Hubbard–Stratanovich (intermediate �eld) transformation. It reveals that melonic

quartic tensor models generate maps formed by maps with di�erent edge colors

glued together at vertices (or by duality, at the center of their faces), [11] (see

also [26] for a constructive analysis (Borel summability) of this model and [12]

for an extension of those ideas to arbitrary quartic models). In the case of two edge

colors, those maps have already appeared under the name of nodal surfaces in [18]

as multicut solutions of the one-matrix model4. It has been further observed that

such maps could be generated in a Givental-like fashion5.

In the section 2, we have embedded our tensor on a matrix space, but the poly-

nomials of interest in tensor theory do not have a group of unitary symmetries as

large as the matrix trace-invariants. As a consequence, a typical tensor observable

depends on the angular degrees of freedom in addition to the singular values of

the matrix. In a Gaussian distribution, integrating the observable over its angu-

lar variables leads to a notion of e�ective observable which writes as a sum of

products of traces. �is approach enables exact calculations in concrete cases as

shown in section 2.1.

4 Obviously the multicut solution satis�es the loop equations of the 1-matrix model and is not

a solution of quartic tensor models which correspond to a di�erent evaluation of the generating

function of nodal surfaces.

5 We are indebted to Bertrand Eynard for pointing this out and we would like to thank

Stéphane Dartois for sharing his progress on such a re-formulation of tensor models.
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We have shown in section 2.2 that in more complicated cases (i.e. when the

degree of the polynomial to be integrated over the unitary group can be arbitrar-

ily large) asymptotic calculations may still be possible. �is was illustrated on a

family of observables built from matrix trace-invariants glued together in a tree-

like fashion. As well-known, the large N limit of tensor models (equipped with

their standard scaling) with melonic interactions is Gaussian [14]: from a matrix

viewpoint, it is as if the singular values all localize at the minimum of the po-

tential [29, 23]. �e method used here in 2.2 allows to evaluate expectations for

non-melonic observables, ones for which the distribution of singular values has a

non-vanishing width. �is is a new addition to the toolbox for random Gaussian

tensors, complementing the meander approach of [32] which �ts a di�erent set of

observables.

An open challenge is to take the exponential of such observables, so as to

get non-melonic, non-Gaussian measures, which as shown in [21] do have non-

Gaussian large N limit (but whose entropy exponents are still unknown). Even

the simplest integral over U.N / in the Gaussian case was shown to be of degree

4, implying that the exponential is not of the Itzykson-Zuber type. It may be

that techniques not considered in the present paper work, like the one developed

in [33], and this will be investigated elsewhere.

We believe that viewing tensor models as matrix models constitutes an inter-

esting research road and places tensor models in a frame where powerful tools are

available. In particular, the intermediate �eld method turns quartic tensor mod-

els into matrix models which generate generalizations of nodal surfaces. Either

techniques developed for matrix models, such as the topological recursion [34],

or combinatorial approaches, could lead to new results. Among the combinatorial

approaches, bijective methods akin to Schae�er’s bijection for planar quadrangu-

lations could be useful to solve the large N limit (i.e. the planar sector) of the

two-matrix model (18), while algebraic methods have proved helpful to probe

maps at arbitrary genus [35, 36].

A. Interpolating 1=N expansions in tensor models

We have shown in section 1 that the U.�/ loop models are tensor models in disguise

whose ordinary scaling with N is recovered when the number of matrices scales

as the size of the matrices. Yet, other choices of scalings might make sense and the

question is then whether they bring new behaviors or not. To answer this question,

we show in A.1 that it is indeed possible to set � D N ˇ with ˇ 2 Œ0; 1�, or in other

words to work with a random tensor of size N � N � N ˇ .
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We will then generalize this approach to tensors of higher ranks, equipped with

the standard scaling of tensor models in section A.2, and with the new scaling

introduced in [21] in section A.3. Generally, some tensor indices have range N

and others have range N ˇ , or they all have range N but the powers of N in the

action are ˇ-dependent. In all cases it is found that as soon as ˇ > 0 the behavior is

the same as for ˇ D 1 and only ˇ D 0 is di�erent. However, the amplitude of the

Feynman graphs depend on ˇ-dependent linear combinations of degrees and/or

genera of subgraphs. As a consequence, the order in which the 1=N corrections

appear depends on ˇ.

A.1. Intermediate scalings in the loop models. �e scaling in front of the ac-

tion has to be N 1Cˇ instead of N in (3). �e loop fugacity being N ˇ , a Feynman

graph receives a factor N ˇL. �erefore the exponent of N in a Feynman graph is

F C ˇL � .1 C ˇ/.E � V /: (25)

�is leads to the free energy

N 2Cˇ f D
X

connected
4-colored graphs

N ˇ.3�!.G//C.1�ˇ/.2�2g.G// Q�E�V 1

s.G/
:

As expected it scales extensively, with the number of degrees of freedom N 2Cˇ ,

so that f is �nite at large N . For ˇ D 0, the standard scaling of matrix models is

reproduced. As soon as ˇ > 0, since both quantities ˇ!.G/ and .1 � ˇ/g.G/ are

positive, the large N limit projects onto graphs such that !.G/ D g.G/ D 0. �is

de�nes the same large N limit as for ˇ D 1, dominated by the CPL con�gurations

which are melonic.

Yet, while the leading order at large N is the same for all ˇ > 0, the higher

orders in the 1=N expansion depend on the value of ˇ: if two graphs G1 and

G2 are such that g.G1/ < g.G2/ and !.G1/ > !.G2/, then, when ˇ D 0, G1

contributes to a lower order than G2, as it has a lower genus, but when ˇ reaches

1, the contribution of G2 dominates, for the degree of G1 is higher. Between these

two situations, there is a value of ˇ,

0 < ˇ D !.G1/ � !.G2/

2.g.G2/ � g.G1// C !.G1/ � !.G2/
< 1;

such that both graphs contribute at the same order. Such graphs do exist, an ex-

ample is given in Figure 10.
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(a) Graph G1 with !.G1/ D 4 and

g.G1/ D 1.
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(b) Graph G2 with !.G2/ D 5 and

g.G2/ D 0.

Figure 10. �e graph G1 (on the left) dominates the graph G2 (on the right) as long as

ˇ < 1
3
. �ey contribute to the same order when ˇ D 1

3
, then for higher values of ˇ, G2

dominates.

�us, if intermediate scalings with ˇ > 0 do not show any ˇ-dependence at

leading order, higher orders do depend on ˇ.

�e single trace invariants of the matrix action correspond to polynomials as-

sociated to 3-colored bubbles with only one face of colors .1; 2/. It is also possible

to introduce bubbles with more faces of colors .1; 2/, provided they are appropri-

ately scaled in the action according to their number of faces (similarly, to de�ne

a matrix action with multi-trace invariants, i.e. disconnected loops, these terms

must be re-scaled by 1=N to the number of traces).

A.2. Tensor models for tensors of size N � � � � � N � N ˇ

A.2.1. �e standard scaling. Bubbles and colored graphs are the ingredients

to build random tensor models. To each bubble, an invariant polynomial in the

tensor entries can be built, and the Feynman graphs of tensor models are precisely

colored graphs built from the bubbles. We provide here a brief summary of their

construction.

Let I be a �nite set, and ¹Biºi2I be a set of bubbles. We denote Bi .T; xT /

the corresponding invariant polynomials, for T a tensor of size N d . �e tensor

action is

S.T; xT / D T � xT C
X

i2I

ti Bi .T; xT /: (26)
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where T � xT D
P

Ti1���id xTi1���id is the quadratic part. �e partition function Z and

the free energy f are

Z D e�f D
Z

dT d xT exp
�

� N d�1

�
S.T; xT /

�

: (27)

�e free energy admits the expansion onto connected graphs G. �e Feynman

rules require to connect the vertices of bubbles (which carry T s and xT s) with

lines corresponding to the bare covariance. Giving these lines the �ctitious color

0, the connected Feynman graphs are precisely .d C 1/-colored graphs. Such

a graph G is made of bi bubbles of type i 2 I . Its total number of bubbles is

b D
P

i2I bi , its number of vertices is 2p, and it contains F0a faces with colors

.0; a/. �e N -dependence of the amplitude of such a graph comes with a factor

N d�1 per bubble, a factor N �.d�1/ per line of color 0 (there are p of them), and

there is a free sum per face of colors .0; a/ which brings a factor N . �us the

exponent of N in the amplitude of G is
P

a F0a � .d � 1/.p � b/. Using the

formula (6), the following expansion holds

f D
X

connected
.d C 1/-colored graphs G

N
d� 2

.d�1/Š
!.G/C 2

.d�2/Š

P

i2I bi !.Bi / 1

s.G/
�p�b

Y

i2I

.�ti/
bi :

As explained in [6], a �-colored graph is dual to a triangulation of a .� � 1/-

dimensional pseudo-manifold. �is is done by assigning a simplex of dimension

� � 1 to each vertex, and for any line which connects two vertices, we glue the

corresponding simplices along some of their faces6 �erefore the bubbles used in

the action (26) are dual to simplices of dimension d � 1. By taking the topolog-

ical cone over the dual triangulation to a bubble, one creates a chunk of space in

dimension d . As .d C 1/-colored graphs, the Feynman graphs of the expansion

of the free energy are dual to triangulations of d -dimensional pseudo-manifolds.

�ey are obtained from the chunks dual to the bubbles by gluing them along some

faces (which correspond to the lines of color 0).

A.2.2. Interpolating scaling. Suppose that we have a tensor model which gen-

erates .d C 1/-colored graphs, with bubbles which have a single connected com-

ponent of colors 1; : : : ; d � 1. In the expansion of the free energy, there is a single

subgraph with colors 0; 1; : : : ; d �1 for each Feynman graph. �ese sub-graphs are

dual to triangulations of dimension d � 1. �e last index of the tensor, in position

d , creates faces with colors 0; d . If it has a range ad D 1; : : : ; � , we can interpret

6 �e gluing is unambiguous thanks to the coloring [6].
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those faces as loops on d -colored graphs (with colors 0; 1 : : : ; d � 1). �e color d

of each bubble corresponds to a portion of a loop which goes through the chunk

dual to the bubble. Loops are then obtained when the chunks are glued. �erefore

the triangulations of dimension d generated by such a tensor model can be seen

as triangulations in dimension d � 1 decorated with loops. �is is the extension

of the correspondence exhibited in section 1.

Let G be a .d C 1/-colored Feynman graph with 2p vertices, bi bubbles Bi ,

i 2 I and b D
P

i2I bi the total number of bubbles in G. Its degree !d .G/ counts

the total number of faces with colors .0; a/ for all a D 1; : : : ; d . �e degree

!d�1.G/ of the d -colored subgraph with colors 0; : : : ; d � 1 counts the number

of faces with colors .0; a/ for a D 1; : : : ; d � 1. �erefore, applying (6) to these

two graphs, we can extract the number of faces F0d , i.e. the number of loops on

the triangulation dual to the subgraph with colors 0; 1; : : : ; d � 1,

F0d D p � b C 1 � 2

.d � 1/Š
!d .G/ C 2

.d � 2/Š

X

i2I

bi !d .Bi/

C 2

.d � 2/Š
!d�1.G/ � 2

.d � 3/Š

X

i2I

bi !d�1.Bi/:

�is is the generalization to arbitrary d of the counting of loops (11) at d D 3.

Here !d .Bi/ is the degree of the bubble Bi and !d�1.Bi / the degree of its sub-

bubble with colors 1; : : : ; d � 1.

We consider a tensor with components Ta1���ad
with aj D 1; : : : ; N , where

j D 1; : : : ; d � 1, and ad of range �N ˇ for ˇ 2 Œ0; 1�. We set the scaling in front

of the action to N d�2Cˇ instead of N d�1 in (27). For each Feynman graph G, the

exponent of N is

d�1
X

iD1

F0i C ˇF0d � .d C ˇ � 2/.p � b/

D ˇ
�

d � 2
!d .G/

.d � 1/Š
C 2

X

i2I

bi!d .Bi /

.d � 2/Š

�

C .1 � ˇ/
�

d � 1 � 2
!d�1.G/

.d � 2/Š
C 2

X

i2I

bi !d�1.Bi /

.d � 3/Š

�

:

For ˇ D 0, we obviously recover the scaling of the rank d � 1 tensor model,

dominated at large N by graphs which are melonic on the colors 0; 1; : : : ; d � 1,

!d�1.G/ D !d�1.Bi / D 0. In particular, the bubbles need not be melonic on all

the colors in the sense that the lines of colors d can be placed in any possible way in

the bubbles ¹Biº. �e only dependence of the amplitude on them is through �F0d .
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But as soon as ˇ > 0, the leading order requires !d .G/ D !d .Bi / D 0 too, which

means that this restricts to the melonic .d C 1/-colored graphs.

Nevertheless, the higher orders may depend on ˇ, according to the balance

between the degree of the subgraphs of colors .0; 1; : : : ; d � 1/ and .0; 1; : : : ; d /,

just like in the case d D 3 of section A.1. To understand at which level ˇ plays a

role, the classi�cation of edge-colored graphs can be applied. Clearly, the melonic

2-point subgraphs on d C 1 colors are also melonic on the colors .0; : : : ; d � 1/.

�e chains on d C1 colors can be either chains or melonic subgraphs on the colors

.0; : : : ; d �1/. �erefore the reduction used in [10] from colored graphs to schemes

via melon removals and chain contractions is unchanged (and the singularities

of the generating function is still controlled by the number of broken chains on

the colors .0; : : : ; d C 1/). �is means that the way varying ˇ shu�es the 1=N

expansion has to be investigated at the level of the schemes themselves, which

requires an analysis beyond the present article.

A.3. Other scalings of tensor models

A.3.1. Probing sub-graphs. Other scalings have been proved to lead to a well-

de�ned large N limit [21]. �e idea is to probe the colored graphs not in terms of

their degree, but in terms of the degrees of subgraphs carrying di�erent subsets

of colors. For instance, for d � 5, we can split the set of colors ¹1; : : : ; dº into

two subsets with at least two colors, D1 D ¹1; : : : ; d1º and D2 D ¹d1 C 1; : : : ; dº,
with 2 � d1 � d � 2. We can relate the degree of a .d C 1/-colored graph G

to the degree of the subgraph GD1
with colors 0; 1; : : : ; d1 and the degree of the

subgraph GD2
with colors 0; d1 C 1; : : : ; d ,

d � 2
� 1

.d � 1/Š
!.G/ � 1

.d � 2/Š

X

i2I

bi!.Bi /
�

D
d

X

aD1

F0a � .d � 1/.p � b/

D
d1

X

aD1

F0a � .d1 � 1/.p � b/ C
d

X

aDd1C1

F0a� .d � d1 � 1/.p � b/ � .p � b/

D d � 2
� !.GD1

/

.d1 � 1/Š
�

X

i2I

bi!.Bi;D1
/

.d1 � 2/Š

�

� 2
� !.GD2

/

.d � d1 � 1/Š
�

X

i2I

bi!.Bi;D2
/

.d � d1 � 2/Š

�

� .p � b/:

(28)
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Here Bi;D1
; Bi;D2

are the sub-bubbles of the bubble Bi with colors in D1; D2.

�erefore the di�erence between scaling with the degree of G and scaling with

the degrees of the subgraphs is a term N �.p�b/. Since the amplitude of graphs also

displays a term �p�b , this suggests to scale � like N , � D N Q� with Q� �nite. Con-

sequently, the scaling in front of the action in (27) becomes N d�1=� D N d�2= Q�.

�is provides the intuition of the new 1=N expansion presented in [21]. To be

precise, it is however necessary to be more careful due to the fact that sub-bubbles

and subgraphs might have several connected components while the bubbles and

the graphs themselves are connected. �is forces to re-scale some bubbles in the

action to avoid unboundedness of the free energy,

Z

ŒdT d xT � exp �N d�2

Q�

�

T � xT C
X

i2I

N 2�n.Bi;D1
/�n.Bi;D2

/ ti Bi .T; xT /
�

;

where n.Bi;D1;2
/ is the number of connected components of the subgraphs with

colors in D1;2 of Bi .

�is process can be repeated to probe more than two types of subgraphs, as

long as the corresponding subsets of colors contains at least two colors.

�is approach in fact enables to de�ne tensor models for ‘rectangular’ tensors,

of size N
D1

1 � � � � � N
DL

L , where
PL

lD1 Dl D d and Dl � 2 is the number of

indices with range Nl ; see [21].

However a question left unanswered in [21] is what happens for a tensor which

has a single index which scales independently of all the others. Indeed, if an index,

say in position k, has range � , it creates in the Feynman graphs a factor �F0k and

the number of faces F0k cannot be packed into a genus or a degree. We have

actually solved this problem in the previous sections, interpreting the .d C 1/-

colored graphs as triangulations in dimension d � 1 decorated with loops.

A.3.2. From random matrices to random tensors of size N 2
� N 2ˇ . �e

above scalings de�ne tensor models with ‘slices’ of colors, each slice having a

parameter Ni . In [21], the case where they all scale together at the same rate N

was emphasized. Here we investigate the case where they do not have the same

rate with N . For instance, we can interpolate between d D 2 (matrix model, or

2-colored bubbles) and d D 4 (4-colored bubbles) by taking a tensor of rank 4 and

using the standard scaling on the matrix part (i.e. the colors (1,2)) and a scaling

N ˇ on the colors (3,4), with ˇ 2 Œ0; 1�.

We consider 4-colored bubbles which have only one connected components

on the colors 1,2 and on the colors 3,4 (we can make sense of the model for arbi-

trary bubbles if we scale them in the action with a factor N 1Cˇ�F12�ˇF34 , using
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techniques developed in [21]). �e scaling in front of the action has to be N 1Cˇ .

�is way, the exponent of N for a .4 C 1/-colored graph G in the Feynman expan-

sion of the free energy is

F01 C F02 C ˇ.F03 C F04/ � .1 C ˇ/.p � b/

D .2 � 2g012.G// C ˇ.2 � 2g034.G//:

For ˇ D 0, this is obviously a standard one-matrix model, dominated by planar

graphs at large N . As soon as ˇ > 0, the leading order graphs are those whose

subgraphs with colors 0,1,2 and with colors 0,3,4 both have vanishing genus, just

like in the case ˇ D 1. But once again, the higher orders do depend on the actual

value of ˇ.

A.3.3. Interpolating scaling at �xed tensor size. �e 1=N expansions for rect-

angular tensors introduced in [21] are all well-de�ned in the particular case of

‘square’ tensors, when ai D 1; : : : ; N for all indices. �erefore it should be pos-

sible to interpolate them, and investigate the intermediate regimes.

For a rank 4 tensor of size N �N �N �N , we have at our disposal the standard

scaling summed up in §A.2.1 (with a factor N 3 in front of the action), but also a

scaling based on two color slices D1 D ¹1; 2º; D2 D ¹3; 4º for which the Feynman

graphs scale with the genera of the sub-graphs with colors 0; 1; 2 and those with

colors 0; 3; 4 (the factor in front of the action is N 2).

�e ˇ-dependent free energy is de�ned by

fˇ D � ln

Z

ŒdT d xT � exp

� N 2Cˇ
�

T � xT C
X

i2I

N ˇ.2�n.Bi;D1
/�n.Bi;D2

// ti Bi .T; xT /
�

:

To keep things simple, we are going to assume that the action is a superposition

of bubble polynomials ¹Biºi2I for bubbles which have a single face with colors

.1; 2/ and a single face with colors .3; 4/ (i.e. a single connected component on

the colors 1,2, n.Bi;D1
/ D 1 and on the colors 3,4, n.Bi;D2

/ D 1).

�e Feynman expansion generates .4 C 1/-colored graphs. Each face of colors

.0; a/, a D 1; 2; 3; 4, brings a factor N , while an insertion of the bubble Bi brings

N 2Cˇ and a line of color 0 (p of them) gives N �.2Cˇ/. By writing the total number

of faces as ˇ
P

a F0a C .1 � ˇ/
P

a F0a, and writing

2 C ˇ D 3ˇ C 2.1 � ˇ/;
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we see that the exponent of N in a (connected) Feynman graph reads

4
X

iD1

F0i � .2 C ˇ/.p � b/

D ˇ
�

4
X

iD1

F0i � 3.p � b/
�

C .1 � ˇ/
�

4
X

iD1

F0i � 2.p � b/
�

D ˇ
�

4 � 2
!.G/

.4 � 1/Š
C 2

X

i2I

bi!.Bi /

.4 � 2/Š

�

C .1 � ˇ/.2 � 2g012.G/ C 2 � 2g034.G//:

Here g012 (resp. g034) is the degree of the sub-graph GD1
with colors .0; 1; 2/

(resp. GD2
with colors .0; 3; 4/). For ˇ D 0 this coincides with the new 1=N

expansion proposed in [21], and for ˇ D 1 with the standard rank 4 tensor model

scaling. For any ˇ > 0, the leading order contributions are graphs with vanishing

degree !.G/ D 0. �erefore only the case ˇ D 0 is not dominated by melonic

graphs only (but by the larger set of graphs which are planar on 0; 1; 2 and planar

on 0; 3; 4). As usual, the higher orders do depend on ˇ.
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