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Kac–Ward operators, Kasteleyn operators, and

s-holomorphicity on arbitrary surface graphs
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Abstract. �e conformal invariance and universality results of Chelkak-Smirnov on the

two-dimensional Ising model hold for isoradial planar graphs with critical weights.

Motivated by the problem of extending these results to a wider class of graphs, we de�ne a

generalized notion of s-holomorphicity for functions on arbitrary weighted surface graphs.

We then give three criteria for s-holomorphicity involving the Kac–Ward, Kasteleyn, and

discrete Dirac operators, respectively. Also, we show that some crucial results known to

hold in the planar isoradial case extend to this general setting: in particular, spin-Ising

fermionic observables are s-holomorphic, and it is possible to de�ne a discrete version of

the integral of the square of an s-holomorphic function. Along the way, we obtain a duality

result for Kac–Ward determinants on arbitrary weighted surface graphs.
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1. Introduction

1.1. Motivation. �e Ising model is certainly one of the most famous models

in statistical physics. It was introduced by Lenz in 1920 [32] as an attempt to

understand Curie’s temperature for ferromagnets. It can be de�ned as follows.

Let � be a �nite graph with vertex set V.�/ and edge set E.�/. A spin con�gura-
tion on � is an element � of ¹�1;C1ºV.�/. Given a positive edge weight system

J D .Je/e2E.�/ on �, the energy of such a spin con�guration � is de�ned by

H.�/ D �
X

eD¹u;vº2E.�/

Je�u�v:

Fixing an inverse temperature ˇ � 0 determines a probability measure on the set

�.�/ of spin con�gurations by

��;ˇ .�/ D
e�ˇH.�/

ZJ
ˇ
.�/

;

where the normalization constant

ZJˇ .�/ D
X

�2�.�/

e�ˇH.�/

is called the partition function of the Ising model on � with coupling constants J .

�e name of the model comes from a student of Lenz, Ernst Ising, who proved in

his PhD �esis the absence of phase transition in dimension one, i.e. in the case of

� D Z and Je independent of e. He also conjectured the same behavior in higher

dimensions, a conjecture later disproved by Peierls [38]. Using their celebrated

duality argument, Kramers and Wannier [31] then gave a heuristic derivation of

the critical temperature in the case of the square lattice � D Z
2.

�e rigorous proof of this later result by Onsager in 1944 together with his

exact computation of the partition function [37] led to an explosion of activity

in the �eld. In particular, Kac and Ward [23] tried to �nd a more combinatorial

approach to the results of Onsager. �ey de�ned a matrix KW.�/ with rows and

columns indexed by the set E of oriented edges of the square lattice �, whose

determinant coincides with the square of ZIsing.�/, the high temperature expan-

sion of the Ising partition function on�. However, several arguments in [23] are of

heuristic nature, and some key topological statement turned out not to hold [40].

Since the technicalities raised by a rigorous proof of this equality seemed formi-

dable, the focus shifted to �nding combinatorial methods not involving directly

this Kac–Ward matrix. �is was achieved independently by Hurst-Green [21] and
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Kasteleyn [25] and later improved by Fisher [18]: they related ZIsing.�/ with the

dimer partition functionZdimer.F�/ on an associated Fisher graphF� , and found a

skew-symmetric

adjacency matrixK.F�/ – the associated Kasteleyn matrix – whose Pfa�an gives

Zdimer.F�/. �is method was later extended by Kasteleyn [26] to any planar graph,

and by various authors to the general case of surface graphs [41, 20, 11]. Note that

the �rst direct combinatorial proof of the Kac–Ward formula for any planar graph

was only obtained in 1999 by Dolbilin et al. [14], and recently extended by the

author to surface graphs [7].

�ere are several issues with this Fisher correspondence � 7! F� , the main

one being that it does not preserve crucial geometric and combinatorial properties

of the graph. For example, if � is an isoradial graph, i.e. if each face is inscribed

into a circle of �xed radius, then F� will not be isoradial in general. Also, even if

� is bipartite, i.e. if its vertices split up into two sets B.�/ [W.�/ such that the

edges never link vertices in the same set,F� will not be bipartite. �is is a problem,

since many remarkable statements about the dimer model are known to hold only

for bipartite [29] or isoradial graphs [27]... and yet, they did seem to transfer to

the Ising model [2, 3]. �e explanation to this mystery came in the recent paper of

Dubédat [15]: he (re)discovered another mapping � 7! C� [44], where this time,

C� is always bipartite, and always isoradial if � is. �is new mapping therefore

permits the transfer of the whole power of the dimer technology to the Ising model.

As apparent from its de�nition, the Ising model can be studied on an arbi-

trary abstract weighted graph .�; J /. However, as explained above, the e�ective

computation of its partition function requires the choice of an embedding of �

in a surface. Furthermore, at criticality, the coupling constants J are expected to

correspond to a natural embedding of � such that the model exhibits properties

of conformal invariance and universality at the scaling limit. �is can be stated

in a precise way in (at least) two di�erent settings: the isoradial and biperiodic

cases. If the graph is isoradially embedded in the plane, then there are natural

coupling constants such that the model is critical at inverse temperature ˇ D 1.

(�e �rst rigorous proof of this fact was obtained recently by Lis [35] using Kac–

Ward matrices.) Note that graphs can be isoradially embedded in �at surfaces of

arbitrary genus (with cone-type singularities), and that such a �at metric de�nes

a conformal structure on the surface (see [42]). �erefore, it does make sense to

talk about critical embeddings of graphs in surfaces of arbitrary topology (a situa-

tion �rst considered by Mercat [36]), and to conjecture conformal invariance and

universality of the model at the scaling limit. For example, it is believed that at the
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critical temperature and in the scaling limit, the Ising partition function satis�es

logZJˇc
.�/ ' f jV.�/j C h log jV.�/j C fsc;

where f is the free energy, h depends on the topology and on the singularities of

the metric on †, and fsc is a universal term which only depends on the conformal

structure on †. (We refer to [12] for numerical evidence in the case of triangular

lattices embedded in a genus 2 surface.) If the graph is planar and biperiodic, i.e.

invariant under the action of a lattice L ' Z
2, then the critical temperature can

be determined [33, 10]. (Note that the second reference uses Kac–Ward matrices

once again, as well as the correspondence � 7! C� mentioned above.) Also, the

coupling constants determine a natural conformal parameter for the corresponding

torus C=L, and once again, it is natural to conjecture conformal invariance and

universality at the scaling limit. (See Corollary 3.5 below where we use recent

results on the dimer model [30] to check that logZJ
ˇ
.�/ behaves in the expected

way in this setting.)

In the planar isoradial case, a milestone was reached by Smirnov and coauthors

in a recent series of papers (see the review [16] and references therein). In par-

ticular, Chelkak and Smirnov [6] introduced fermionic observables for the Ising

model on any planar critical isoradial graph, and showed that on bounded domains

with appropriate boundary conditions, they converge to universal and conformally

invariant limits. But why do these authors restrict themselves to planar isoradial

graphs, while the universality and conformal invariance are expected to hold at

criticality on more general graphs? �e problem is that one of the crucial ingre-

dients is a discrete theory of holomorphic functions, and isoradial graphs form

the widest class of graphs on which such a theory works su�ciently well [5]. For

example, a reasonable discrete version of the N@-operator, whose kernel consists of

so-called discrete holomorphic functions, does not seem to exist on non-isoradial

graphs. Moreover, this notion of discrete holomorphicity does not su�ce for the

Ising model: Chelkak and Smirnov therefore introduced a stronger notion, known

as spin, strong, or simply s-holomorphicity. Among the numerous technical re-

sults obtained in [6], we quote the following:

(i) the fact that the fermionic observables are s-holomorphic;

(ii) the possibility to de�ne a discrete version of

h.z/ D Im

Z
f .z/2dz

for s-holomorphic functions;

(iii) the subharmonicity and superharmonicity of h on the original graph and on

its dual.
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In the present paper, we show that, unlike the original notion of discrete holo-

morphicity, the one of s-holomorphicity does extend to the most general case, that

is, to arbitrary weighted graphs embedded in orientable surfaces. Obviously, the

whole theory does not extend, but a surprisingly big amount does. Let us also

point out that our results do not simply consist in known facts extended from the

isoradial to the general case: several statements where previously unknown even

in the isoradial case. �erefore, it is our hope that this article will be of interest

even to the reader that merely wishes to understand why, in the isoradial case,

s-holomorphic functions and fermionic observables are natural objects. Further-

more, our results are particularly appealing not only in the planar isoradial case,

but also in the critical biperiodic case and for graphs isoradially embedded in ar-

bitrary surfaces. �erefore, we hope to be able to use them to eventually prove

conformal invariance and universality results in these more general settings.

1.2. Statement of the results. Our results hold for an arbitrary graph � with

edge weights x 2 Œ0; 1�E embedded in an orientable surface †. At this level of

generality, a geometric tool known as a spin structure is needed, which basically

consists in a vector �eld � on† with zeroes of even index in†n�. �is allows us

to associate to each oriented edge e 2 E an “argument” ae measured with respect

to �. �e cases to keep in mind are the planar and toric ones, where � can be

chosen constant; the argument ae then simply gives the direction of e, in the sense

that the oriented edge e points in the direction of exp.iae/ with respect to �.

Let us parametrize the edge weight xe 2 Œ0; 1� by xe D tan
�
�e

2

�
. �en, we say

that a function F de�ned on the set } D ¹zeºe2E of middle points of the edges

of � is s-holomorphic around the vertex v of � if, for any oriented edge e 2 E

originating at v,

Pr.F.ze/I Œi exp.i.ae C �e//�
� 1

2 /

D Pr.F.ze0/I Œi exp.i.ae0 � �e0//��
1
2 / exp

�
i
2
.ˇe � �e � �e0/

�
;

where Pr.�Iu/ denotes the orthogonal projection onto u � R, e0 2 E is the edge

following e in counterclockwise order around v, and ˇe is the oriented angle

from e to e0. (See De�nition 6 for details.) Note that in the critical isoradial

case, ˇe � �e � �e0 vanishes and the equality above de�nes the usual notion of

s-holomorphicity.

Here is one of our main results. (See �eorem 4.2 and Corollary 4.3 for the

full statement.)
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�eorem. �ere are explicit R-linear injective maps

S W C} �! C
E and T W C} �! C

B.C� /

such that, given F 2 C}, the following are equivalent:

(i) exp. i�
4
/F is s-holomorphic;

(ii) S.F / lies in the kernel of the Kac–Ward operator on �;

(iii) T .F / lies in the kernel of the Kasteleyn operator on C� .

Furthermore, if � is isoradially embedded with critical weights, then there is an
explicit R-linear injective map

T 0 W C} �! C
B.C� /

such that these conditions are equivalent to

(iv) T 0.F / lies in the kernel of the discrete N@-operator on C� .

Note that in the planar isoradial case, the equivalence of (i) and (ii) is due to

Lis [34]. Also, the equivalence of (i) and (iii) can be understood as a generalization

of the “propagation equation” of [6, Section 3.2] (see also [36, Section 4.3] and [15,

Section 4.2]).

Our proof of the equivalence of (ii), (iii), and (iv) relies on explicit relations

between the corresponding operators (Section 3). We believe that some of these

results are of independent interest. In particular, �eorem 3.1, which relates the

Kac–Ward operator on � with the Kasteleyn operator onC� , also immediately im-

plies the following generalized Kramers–Wannier duality. (�e original Kramers–

Wannier duality corresponds to the planar case.)

Corollary. For any weighted graph .�; x/ � † and any character

' W �1.†/ �! C
�;

we get

2jV.�/j
Y

e2E.�/

.1C xe/
�1 det.KW'.�; x//

D 2jV.��/j
Y

e2E.�/

.1C x�
e /

�1 det.KW'.��; x�//;

where the weights x and x� are related by x C x� C xx� D 1.
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In the genus one case, this same �eorem 3.1 allows us to transfer the

recent results of Kenyon, Sun, and Wilson [30] from the dimer to the Ising model.

(See Corollary 3.5 below for the full statement.)

Corollary. Let .�; J / be a weighted �nite toric graph, interpreted as the quotient
of a biperiodic planar graph G by a lattice L ' Z

2, and set �n D G=nL. At the
critical inverse temperature ˇ D ˇc , the Ising partition function on �n satis�es

logZJˇc
.�n/ D n2f .ˇc/C fsc.�/C o.1/;

where f is the free energy per fundamental domain, � 2 H can be explicitly
computed from det.KW'.�1; x//, and fsc.�/ is a universal function of the modular
parameter � which is invariant under modular transformations.

Coming back to s-holomorphicity, the theorem stated above should convince

the reader that this notion is “natural”, as it is linked to the operators appearing

in the theory. But is there any non-trivial example of s-holomorphic functions?

More precisely, does there exist some generalized fermionic observables that are

s-holomorphic? �is is the case, and these observables are basically given by the

cofactors of the Kac–Ward matrix (a fact obtained independently by Lis [34] in

the planar case). For simplicity, we shall only state a corollary and not be very

precise with the de�nitions, referring to �eorem 4.5 for the full statement of the

main result, and to Subsection 4.3 for more details.

Corollary. Given any �xed oriented edge e0 2 E, consider the function Fe0
2 C

}

de�ned by

Fe0
.z/ D

exp
�
i�
4

�

cos
�
�e

2

�
X

�2E.e0;z/

.�1/q�.
0
�
/ exp

�
� i
2

rot�.�/
�Y

e02�

xe0 ;

where z D ze ¤ ze0
, E.e0; z/ denotes the set of subgraphs � consisting in a

collection 0
�

of loops together with one path � from e0 to z, rot�.�/ is the total
rotation angle of the path � (measured with respect to the �xed vector �eld �),
and q� is the quadratic form associated with �. �en, Fe0

is s-holomorphic around
every vertex of � not adjacent to e0.

�ese functions generalize the various spin-Ising fermionic observables intro-

duced in [6, 4]. But this result also has a more direct link to the Ising model.

Indeed, consider a biperiodic planar graph G with edge weights J D .Je/e 2

.0;1/E.G/. From �eorem 4.5 and [10], we immediately get:
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Corollary. �ere exists a non-trivial biperiodic s-holomorphic function on the
weighted graph .G; x/, where xe D tanh.ˇJe/, if and only if ˇ is the critical inverse
temperature for the Ising model on .G; J /.

So, many natural functions are s-holomorphic (except possibly at a couple of

vertices), and the existence of functions that are s-holomorphic everywhere is re-

lated, at least in the case of biperiodic graphs, to criticality.

Finally, we show that the possibility to de�ne a discrete version of h.z/ D

Im
R
f .z/2dz for s-holomorphic functions does extend to our setting (Proposi-

tion 4.9). However, in general, this h is not subharmonic on � as it is in the critical

isoradial case. So this is the point where the extension of the proof of Chelkak

and Smirnov breaks down, and where further original ideas are required. We do

believe however that the theory of generalized s-holomorphic functions initiated

in the present article is a �rst step in this direction.

1.3. Organisation of the article. In Section 2, we present the main objects in-

volved in the article and settle many notations: weighted surface graphs, isoradial

graphs, discrete Laplacians, Kac–Ward operators, Kasteleyn operators, and Dirac

operators are introduced in this order in separate paragraphs.

In Section 3, we exhibit natural relations between these operators. �e most

technical such result is �eorem 3.1, which relates Kac–Ward and Kasteleyn oper-

ators, implies duality statements (Corollaries 3.3 and 3.4), and allows us to transfer

the full dimer technology to the Ising model (Corollary 3.5). �e remaining sub-

sections, which only make sense in the isoradial case, relate the Kasteleyn and

discrete Dirac operators (Proposition 3.6), the discrete Dirac and Laplace opera-

tors (Proposition 3.8), and the discrete Dirac operators on C� and on the double

of � (Proposition 3.9).

Finally, Section 4 contains our main results. In Subsection 4.1, we analyse the

kernel of the Kac–Ward operator (Proposition 4.1). In Subsection 4.2, we give

the de�nition of s-holomorphicity, and building on the results of Section 3, we

prove our three criteria for s-holomorphicity (�eorem 4.2). In Subsection 4.3, we

analyse the cofactors of the Kac–Ward matrix (�eorem 4.5), thus obtaining the

s-holomorphicity of generalized fermionic observables (Corollary 4.7). Finally,

in Subsection 4.4, we show that a discrete version of the integral of the square of

an s-holomorphic function can be de�ned (Proposition 4.9).
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2. �e graphs and operators involved

�e aim of this section is to present the main objects involved in this article, and for

some of them, to recall their role in statistical mechanics. �is section is therefore

purely expository, and does not contain any new result. It is organised as fol-

lows. We �rst introduce the general setup of weighted surface graphs, presenting

in particular the construction of the bipartite graph C� associated to any surface

graph �, which will play a crucial role in this article (Subsection 2.1). �en, we

recall the setup of isoradial graphs embedded in �at surfaces, a particularly inter-

esting and well-studied class of surface graphs. Finally, in Subsections 2.3 to 2.6,

we de�ne the operators that will be studied in the rest of the article: the Laplace,

Kac–Ward, and Kasteleyn operators – de�ned on any weighted surface graph –

and the discrete Dirac operator, de�ned only on isoradial graphs.

2.1. Weighted surface graphs. Let us start by setting up our notations for graphs.

�e set of vertices (resp. edges) of a graph� will be denoted byV.�/ (resp. E.�/).

We shall write E.�/ for the set of oriented edges of�. (Each element ofE.�/ thus

corresponds to two elements of E.�/.) Following [39], we shall denote by o.e/ the

origin of an oriented edge e 2 E.�/, by t .e/ its terminus, and by Ne the same edge

with the opposite orientation. By abuse of notation, we shall also write e 2 E.�/

for the unoriented edge of � corresponding to the oriented edges e; Ne 2 E.�/.

Finally, we shall write E.�/v for the set of oriented edges of � with origin a �xed

vertex v.

By a weighted surface graph, we mean a �nite graph � endowed with edge

weights x D .xe/e2E.�/ 2 Œ0; 1�E.�/, embedded in a compact connected ori-

entable surface † so that the complement of � in † is the disjoint union of topo-

logical discs, which we call faces.
�e dual of a weighted surface graph .�; x/ � † is the weighted surface graph

.��; x�/ � † obtained as follows: each face of � � † de�nes a vertex of ��,

and each edge of � bounding two faces of � � † de�nes an edge between the

two corresponding vertices of ��. More precisely, an oriented edge e 2 E.�/

de�nes e� 2 E.��/, the dual oriented edge obtained by turning the oriented edge

e counterclockwise. (Since † is orientable, this can be done in a consistent way.)

Note that . Ne/� D e�. As for the dual weights x� 2 Œ0; 1�E.�
�/, they are de�ned

via the equality x C x� C xx� D 1. If we use the parametrization x D tan
�
�
2

�

with � 2
�
0; �

2

�
, then � and �� are simply related by � C �� D �

2
. Note that

..��/�; .x�/�/ D .�; x/.
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�e double of .�; x/ � † is the weighted bipartite surface graph .D; y/ D

.D� ; y.x// � † given as follows: as a subset of †, D� D � [ ��, with

vertex set B.D/ [ W.D/, where B.D/ D V.�/ [ V.��/ DW ƒ and W.D/ D

E.�/ \ E.��/ DW }. As for the weighted edges, an edge e of � with weight

xe D tan
�
�e

2

�
will give rise to two edges of D� with weight sin.�e/ and to two

transverse edges of D� with weight cos.�e/. Following [6], we shall denote by

ze 2 } the vertex of D� corresponding to the edge e 2 E.�/. �is is illustrated

in Figure 1.

� D�

ze

tan
�

�e

2

�
sin.�e/ sin.�e/

cos.�e/

cos.�e/

Figure 1. �e weighted bipartite graph D� associated to the weighted graph � .

Following Wu and Lin [44] (see also [13, 15]), we consider another weighted

surface graph .C; y/ D .C� ; y.x// � † associated to a given weighted surface

graph .�; x/ � †. It is obtained as follows: replace each edge e of � by a rectangle

with the edges parallel to e having weight sin.�e/ while the other two edges have

weight cos.�e/. In each corner of each face of � � †, we now have two vertices;

join them with an edge of weight 1. �is is illustrated in Figure 2. Note that

since the surface † is orientable, the graph C� is bipartite. Note also that the

weighted graph .C�� ; y.x�// associated to .��; x�/ is equal to the weighted graph

.C� ; y.x// associated to .�; x/.

� C�

tan
�

�e

2

� sin.�e/

sin.�e/

cos.�e/ cos.�e/

1

1

1

1

Figure 2. �e weighted bipartite graph C� associated to the weighted graph � .
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In our considerations, it will be useful to endow the surface† with a character

of its fundamental group, that is, an element of

Hom.�1.†/;C
�/ D H 1.†IC�/:

If � � † is a surface graph, then such a cohomology class can be represented by

a 1-cocycle on �. Let us recall that, with the notations above, a 1-cochain is a map

' W E.�/ ! C
� such that '. Ne/ D '.e/�1 for all e 2 E.�/. It is called a 1-cocycle

if for each face f of � � †, '.@f / WD
Q
e2@f '.e/ D 1. Multiplying each '.e/

such that o.e/ D v by a �xed element of C� results in another 1-cocycle, which is

said to be cohomologous to '. Equivalence classes of 1-cocycles de�ne the �rst

cohomology group H 1.†IC�/, which only depends on † (and not on �): if † is

a closed surface of genus g, then H 1.†IC�/ ' .C�/2g .

If � is endowed with a 1-cochain ', de�ne the associated 1-cochain

'C W E.C�/ �! C
�

by

'C .w; b/ D

´
'.e/ if .w; b/ runs parallel to e 2 E.�/,

1 else,

as illustrated in Figure 3. Note that if ' is a cocycle, then so is 'C , and they induce

the same cohomology class inH 1.†IC�/. Also, any 1-cochain'D onD� naturally

induces 1-cochains ' on � and '� on ��, as illustrated in Figure 3. Here again, if

'D is a cocycle, then so are ' and '�, and all three induce the same cohomology

class.

e

'.e/ D '. Ne/�1

'2'
�1
4

'1'
�1
3

'1

'2

'3

'4

'.e/

'.e/�1

1

1

1

1 1

1

Figure 3. A given cochain ' on � , and the associated cochain 'C on C� ; a cochain 'D on

D� , and the associated cochains ' on � and '� on ��.

2.2. Isoradial graphs. �e majority of the results of the present article hold

for arbitrary weighted surface graphs, as de�ned above. However, many of these

results take a particularly pleasant form when the graph is isoradially embedded

with critical weights. Let us now recall these concepts.

Consider a collection of planar rhombi of equal side length, say ı, each rhom-

bus having a �xed diagonal e and corresponding half-rhombus angle �e 2
�
0; �

2

�

as illustrated below.
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e

�e

Paste these rhombi together along their sides so that extremities of diagonals are

glued to extremities of diagonals. �ese diagonals then form the edges of a graph

� embedded in a �at surface †, with so-called cone-type singularities in the ver-

tex set V.�/ of � and in the faces of � � †. �e cone angle of the singular-

ity at v 2 V.�/ is given by the sum of the angles of the rhombi adjacent to v

(and similarly for singularities in the faces).

De�nition 1. A graph � is ı-isoradially embedded in a �at surface † if it can be

realized by pasting rhombi of side length ı as above, so that all the cone angles are

odd multiples of 2� . �e corresponding critical weights x D .xe/e2E.�/ are given

by xe D tan
�
�e

2

�
, where �e 2

�
0; �

2

�
denotes the half-rhombus angle associated to

the edge e 2 E.�/.

Note that if † is the (�at) plane, then this de�nition coincides with the usual

notion of isoradial embedding as considered in [27, 6]. It is however more general,

as it allows us to work in surfaces of arbitrary genus.

Given a �at surface†with cone-type singularities, the parallel transport along

a closed loop  in † de�nes an element of SO.2/ D S1 called the holonomy of  .

If all cone-angles are multiples of 2� , then the holonomy can be described by a

homomorphism Hol 2 Hom.�1.†/; S
1/ D H 1.†IS1/. If this homomorphism is

trivial, † is said to have trivial holonomy. (An example of genus g � 1 is given

by the regular 4g-gone with opposite sides identi�ed.) If all cone-angles are odd

multiples of 2� , then the inverse square roots of the holonomy can be described by

S1-valued 1-cocycles on†, which should be thought of as discrete spin structures
on † (see [9, Section 3.1]).

Note that if � is ı-isoradially embedded in a �at surface †, then so is the

dual graph ��, while the associated bipartite graphs D� and C� can be naturally
1
2
ı-isoradially embedded in this same �at surface † (some rhombi of C� being

degenerate). Furthermore, if � is endowed with the critical weights x, then the

associated weights x� on �� are nothing but the critical weights determined by the

corresponding isoradial embedding. Finally, the associated weights y on D� and

C� are simply given by ye D sin.�e/, with �e the half-rhombus angle determined

by the isoradial embedding. �is is illustrated in Figure 4.
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� ��

� �

�

�

��

��

�� ��

Figure 4. If � is isoradially embedded, then so are ��, D� and C� .

2.3. �e discrete Laplace operator. Fix a surface graph � � † endowed with

a 1-cocycle ' W E.�/ ! C
�. �e space CV.�/ can be thought of as a combinatorial

version of the space of complex valued functions on †, and more generally, of

the space of sections of the complex line bundle induced by the class of ' in

H 1.†IC�/. As �rst observed by Eckmann [17] (in the untwisted case), the Laplace

operator on this space can be naturally discretized by an operator �
'
� on C

V.�/,

provided one �xes inner products on the cochain spaces C 0.�IC/ and C 1.�IC/.

Furthermore, if these inner products are diagonal (i.e. given by positive vertex

weights ¹�vºv2V.�/ and edge weights ¹�eºe2E.�/), then this operator takes the

following very simple form (see e.g. [19]): for f 2 C
V.�/ and v 2 V.�/,

.�
'
�f /.v/ D

1

�v

X

eD.v;w/

�e.f .v/ � f .w/'.e//:

Finally, if the surface † is endowed with a Riemannian metric, then a sensible

choice for these weights consists in taking for �v the area of the star of v in �, and

for �e the quotient of the length of e� over the length of e. With the isoradial case

in mind, this leads to the following de�nition.

De�nition 2. Let .�; x/ � † be a weighted surface graph, with weights paramet-

rized by xe D tan
�
�e

2

�
. �e associated discrete Laplace operator is the operator

�
'
� on C

V.�/ de�ned by

.�
'
�f /.v/ D

1

�v

X

eD.v;w/

tan.�e/.f .v/� f .w/'.e//

for f 2 C
V.�/ and v 2 V.�/, where the sum is over all oriented edges of the form

e D .v; w/, and �v D 1
2

P
e2E.�/v

sin.2�e/.

We refer to the recent paper [28] for a beautiful example of the relevance of

this operator in statistical mechanics.
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2.4. �e Kac–Ward operator. To de�ne the next operator, one needs to be able

to measure rotation angles along curves. For planar closed curves, there is a unique

sensible way to do so: one measures the rotation angle of the velocity vector �eld

of the curve with respect to any constant vector �eld on the plane. For curves

embedded in an arbitrary surface, this is more tricky. As it turns out, there is a

standard geometrical tool to do this, which is called a spin structure. We shall not

go into the trouble of recalling their formal de�nition (see e.g. [1, p.55]); let us only

mention that such a spin structure can be given by a vector �eld on†with isolated

zeroes of even index. Let us also recall that the group of orientation-preserving

di�eomorphisms of† acting on the set of spin structures on† de�nes two orbits:

the even spin structures – with so-called Arf invariant equal to 0 –, and the odd
ones, with Arf invariant equal to 1.

So, given a weighted surface graph .�; x/ � †, let us endow † with a Rie-

mannian metric and let us �x a vector �eld � on † with isolated zeroes of even

index in † n �. Also, �x a 1-cochain ' W E.�/ ! C
�.

De�nition 3. �e associated Kac–Ward operator is the operator

KW' D KW'.�; x/

on C
E.�/ de�ned by

.KW' f /.e/ D f .e/� '.e/ xe
X

e02E.�/v

e0¤Ne

exp
�
i
2
˛�.e; e

0 /
�
f .e0/

for f 2 C
E.�/ and e 2 E.�/ with t .e/ D v, the sum being over all e0 2 E.�/

starting where e �nishes, but di�erent from Ne. Here, ˛�.e; e
0/ is the rotation angle

(in radians) of the velocity vector �eld along e followed by e0 with respect to the

vector �eld �, from ze to ze0 . (See Figure 5.)

If the cocycle is trivial, we shall simply denote this operator by KW.�; x/, or

by KW�.�; x/ if we wish to underline its dependence on the spin structure �.

e

e0

ze

ze0

˛�.e; e
0/

Figure 5. �e angle ˛�.e; e
0/ in the planar case.
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�e relevance of this operator for the study of the Ising model is given by the

following facts [7]. It is well-known that the spaceH 1.†I ¹˙1º/ acts freely transi-

tively on the set of spin structures on†. Now, for any 1-cocycle ' W E.�/ ! ¹˙1º,

the determinant of the matrix KW'.�; x/ is the square of a polynomial in the

variables ¹xeºe2E.�/ which only depends on the spin structure determined by the

action of the class of ' on �, and on the surface graph � � † (see Subsection 4.3

for more details). Finally, if det.KW'.�; x//
1
2 denotes the square root with con-

stant coe�cient equal to C1, then the high temperature expansion of the Ising

partition function on � is given by

ZIsing.�; x/ D
1

2g

X

'2H1.†I¹˙1º/

.�1/Arf.'/ det.KW'.�; x//
1
2 ; (1)

where g is the genus of† and Arf.'/ 2 Z2 is the Arf invariant of the spin structure

obtained by the action of ' on �. Note that in the planar case, this equality sim-

ply reads ZIsing.�; x/ D det.KW.�; x//
1
2 ; this is the original Kac–Ward formula;

see [23, 14].

2.5. �e Kasteleyn operator. Recall that a Kasteleyn orientation [24, 25, 26]

on a bipartite surface graphG � † can be understood as a map ! W E.G/ ! ¹˙1º

such that for each face f of G,

!.@f / WD
Y

e2@f

!.e/ D .�1/
j@f j

2 C1:

Two Kasteleyn orientations are called equivalent if they can be related by �ipping

the orientation of all edges adjacent to a �nite number of vertices.

So, �x a bipartite weighted graph .G; y/ � † with vertex set V.G/ D B [W ,

a 1-cochain ' W E.G/ ! C
�, and a Kasteleyn orientation ! on G � †.

De�nition 4. �e associated Kasteleyn operator is the operator

K' D K'.G; y/ W CB �! C
W

de�ned by

.K'f /.w/ D
X

eD.w;b/

'.e/ !.e/ ye f .b/

for f 2 C
B and w 2 W , the sum being over all oriented edges of G of the form

e D .w; b/.
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If the cocycle is trivial, we shall simply denote this operator by K.G; y/, or by

K!.G; y/ if we wish to underline its dependence on the Kasteleyn orientation !.

�e relevance of this operator for the study of the dimer model is given by the

following formula [41, 20, 11]. �e space H 1.†I ¹˙1º/ acts freely transitively on

the set of equivalence classes of Kasteleyn orientations on G � †, and this set is

in equivariant correspondence with the set of spin structures on † [11]. �en, the

partition function of the dimer model on G is given by the formula

Zdimer.G; y/ D
1

2g

X

'2H1.†I¹˙1º/

.�1/Arf.'/ det.K'.G; y//; (2)

where Arf.'/ 2 Z2 denotes the Arf invariant of the spin structure obtained by

the action of ' on the spin structure corresponding to !. Note that in the planar

case, this equality simply reads Zdimer.G; y/ D det.K.G; y//; this is Kasteleyn’s

celebrated theorem [26].

Note that since the spaces C
B and C

W are not identical, the determinant of

the Kasteleyn operators is a priori not well-de�ned. However, we will only be

interested in the case where the number of white and black vertices ofG are equal.

(Otherwise, both sides of the equation displayed above vanish.) In this case, the

determinants are well-de�ned up to a global sign. Since they also change sign

when the Kasteleyn orientation is replaced by an equivalent one, the formula above

should really be understood as holding up to a global sign, or for a good choice

of a Kasteleyn orientation. (One can also simply use absolute values on the right

hand side.)

2.6. �e discrete Dirac operator. Dirac operators can be de�ned on surfaces

endowed with a complex structure and with a Hermitian metric. Let us therefore

consider a bipartite surface graph G � † isoradially embedded in a �at surface

†, together with a �xed nowhere vanishing vector �eld X at the vertices of G.

(See [9, Section 2.1] for a motivation of these assumptions.) Given an oriented

edge e D .v; v0/ of G, we shall write #X .e/ for the oriented angle between X.v/

and e, as illustrated below. Finally, let us write �v D 1
2

P
e2E.G/v

sin.2�e/, and

�x a 1-cochain ' W E.G/ ! C
�.

e

v

v0

#X .e/

X.v/
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De�nition 5. �e associated discrete N@-operator is the operator

N@' D N@
'
G W CB �! C

W

de�ned by

.N@'f /.w/ D
1

�w

X

eD.w;b/

'.e/ exp.i#X.e// sin.�e/ f .b/

for f 2 C
B and w 2 W , while the discrete @-operator

@' D @
'
G W CW �! C

B

is de�ned by

.@'f /.b/ D
1

�b

X

eD.b;w/

'.e/ exp.�i#X.e// sin.�e/ f .w/

for f 2 C
W and b 2 B . Finally the associated discrete Dirac operator is the

operator

=D
'

D =D
'
G D

�
0 �@'

N@' 0

�
W CB ˚ C

W �! C
B ˚ C

W :

Note that if † is the �at plane (with ' D 1 and X a constant vector �eld),

then these de�nitions coincide with the ones of [27, 6]. More generally, if G is

isoradially embedded in a �at surface and ' is a discrete spin structure, then we

get back [9, De�nition 3.9]. It should come as no surprise that a vector �eld is

required: on Riemann surfaces, the @ and N@ operators take values in .1; 0/ and

.0; 1/-forms, respectively. In any case, a function f 2 C
B being discrete holo-

morphic at w 2 W , i.e. satisfying .N@'f /.w/ D 0, is independent of the vector

�eld.

We will be particularly interested in two families of bipartite graphs, namely

the graphsD� and C� associated to an arbitrary isoradial graph � as described in

Subsection 2.1. �e corresponding Dirac operators will be denoted by

=D
'
D D

�
0 �@

'
D

N@
'
D

0

�
and =D

'
C D

�
0 �@

'
C

N@
'
C

0

�
:
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3. Relations between operators

�e aim of this section is to exhibit natural relations between the operators de�ned

in Section 2. A couple of applications are also included, but the most interesting

consequences will be presented in Section 4. More precisely, we begin by show-

ing one of our main results: the fact that the Kac–Ward operator on an arbitrary

surface graph � and the Kasteleyn operator on the associated bipartite graph C�

can be explicitly related (Subsection 3.1). As an immediate consequence, we ob-

tain a Kramers–Wannier type duality result for Kac–Ward determinants. In Sub-

section 3.2, we show that in the isoradial case, the Kasteleyn and discrete Dirac

operators on C� are conjugate. In the next paragraph, we observe that the square

of the Dirac operator on C� is closely related to the discrete Laplace operator on

an associated graph. Finally, in Subsection 3.4, we relate the discrete Dirac op-

erators on C� and on the double D� of �. Note that the results of these last two

subsections will not be referred to in the rest of the paper.

3.1. Kac–Ward versus Kasteleyn operators. In this paragraph, we relate the

Kac–Ward operator on an arbitrary weighted surface graph .�; x/ � † to the

Kasteleyn operator on the associated bipartite graph .C� ; y.x// � †; see �e-

orem 3.1. As an immediate consequence, we obtain an equality between their

respective determinants (Corollary 3.2). Note that such a Kac–Ward determinant

is known to be equal to the Kasteleyn determinant of the associated Fisher graph
(see [7, Proposition 4.6]). However, Fisher graphs are never bipartite, thus not

allowing to use the full power of the dimer model theory. In the present case,

not only is C� bipartite, but Corollary 3.2 immediately implies a generalized

Kramers–Wannier duality for Kac–Ward determinants on arbitrary weighted sur-

face graphs (Corollaries 3.3 and 3.4). �ese statements simultaneously general-

ize [8, �eorem 4.4], which deals with the critical isoradial case, and [10, Corol-

laries 3.3 and 3.4], which deal with the toric case.

To state the main result of this section, we need to introduce several nota-

tions. Let .�; x/ � † be an arbitrary weighted surface graph, † being endowed

with a Riemannian metric, and assume that the edges of � are smoothly embed-

ded in †. Also, let us �x a vector �eld � on † with zeroes of even index in

† n �. For any e 2 E.�/ DW E, write De D exp.iae/, where ae denotes the

oriented angle at ze between � and e. (�e letters D and a stand for “direction”

and “argument,” respectively.) Note the equality D Ne D �De. Given a vertex

v 2 V.�/, let us cyclically order the elements of Ev by turning counterclockwise

around v. (As † is orientable, this can be done in a consistent way.) For e 2 Ev,
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let R.e/ 2 Ev denote the next edge with respect to this cyclic order, and set ˇe D

� C ˛�. Ne; R.e//. By de�nition of ˛� (recall De�nition 3), ˇe is the rotation angle

between e andR.e/measured with respect to the �xed vector �eld � (see Figure 6).

Note the equality DR.e/ D exp.iˇe/De. Finally, set qe D exp
�
i
2
ˇe

�
.

e

R.e/

R2.e/R3.e/

:::

R�1.e/

ˇe

Figure 6. �e rotated edges, and the angle ˇe .

�is allows us to de�ne automorphisms J;R;D and q of the space C
E:

J is simply given by .Jf /.e/ D f . Ne/, while R is de�ned by .Rf /.e/ D f .R.e//.

Finally, we shall writeD for the diagonal automorphism ofCE given by .Df /.e/ D

De f .e/, and similarly for q, for any weight system, and for '. To conclude this

long list of notations, let  B W E ! B WD B.C�/ (resp.  W W E ! W WD W.C�/)

denote the bijection mapping each oriented edge e of � to the unique black (resp.

white) vertex of C� immediately to the right (resp. left) of e, as illustrated in Fig-

ure 7. �ese bijections induce isomorphisms B W CB ! CE and W W CW ! CE.

e D  �1
W
.w/

R.e/
 B.R.e//

 B.e/

 B. Ne/w

Figure 7. �e bijections  B W E ! B and  W W E ! W .
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�eorem 3.1. For any 1-cochain ' W E ! C
�, the following diagram commutes:

C
E

KW'.�;x/ // CE

C
E

I�qR '

OO

C
E

I�i'xJ'

OO

C
E

D
� 1

2 '

OO

C
E

D
� 1

2'

OO

C
B

 B '

OO

K'C .C� ;y/ // CW :

 W'

OO

Before proving this theorem, let us make a couple of remarks. First, note that

the choice of the square root of the operator D has no importance: changing the

sign of the square root of the coe�cientDe (say, on the left-hand side of the dia-

gram) simply amounts to inverting the Kasteleyn orientation of all edges adjacent

to  B.e/, i.e. replacing it with an equivalent Kasteleyn orientation. Also, the de-

pendence of this diagram on the equivalence class of the Kasteleyn orientation is

well-understood. Such equivalence classes are in natural one-to-one correspon-

dence with spin structures on † (see [11, Section 4]), which can be described by

vector �elds with zeroes of even index. Moreover, the paper [11] contains an ex-

plicit construction of such a vector �eld �! from a Kasteleyn orientation !, and

one can check that the diagram above commutes for such an orientation ! and

vector �eld �! .

Proof of �eorem 3.1. We shall start with the most technical part of the demon-

stration, i.e. the computation of the composition .I � i'xJ /�1 KW'.I � qR/.

To achieve this goal, it will be convenient to consider the operator Succ 2 End.CE/

de�ned as follows: if e is an oriented edge with terminus t .e/ D v, then

Succ.f /.e/ D '.e/xe
X

e02Ev

!.e; e0 / f .e0 /;

where

!.e; e0/ D exp
�
i
2
˛�.e; e

0 /
�

for e0 ¤ Ne 2 Ev and !.e; Ne/ D �i . Also, let T 2 End.CE/ be the endomorphism

given by T D Succ C i'xJ . By de�nition, the Kac–Ward operator KW' is equal

to I � T . Now, the operator .I C i'xJ /.I � T / decomposes into

.I C i'xJ /.I � T / D I � Succ C Com;
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where

Com.f /.e/ D .�i'xJT /.f /.e/

D �i'.e/xe.Tf /. Ne/ D �ix2e

X

e02Ev

e0¤e

!. Ne; e0/ f .e0 /

if e has origin o.e/ D v. Let us compute the composition

.I C i'xJ /.I � T /.I � qR/

using the decomposition displayed above. If e has terminus t .e/ D v, then

.Succ.I � qR//.f /.e/ D Succ.f /.e/� Succ.q.R.f ///.e/

D '.e/xe
X

e02Ev

!.e; e0 /.f .e0 / � qe0 f .R.e0 ///

D '.e/xe
X

e02Ev

�
!.e; e0 / � !.e; R�1.e0 // qR�1.e0/

�
f .e0 /

D �2i'.e/xe f . Ne/:

�erefore, we have the equality Succ.I �qR/ D �2i'xJ . Similarly, given e with

origin o.e/ D v,

.Com.I � qR//.f /.e/

D Com.f /.e/ � Com.q.R.f ///.e/

D �ix2e

X

e02Evn¹eº

!. Ne; e0 /.f .e0/ � qe0 f .R.e0 ///

D �ix2e

X

e02Evn¹e;R.e/º

.!. Ne; e0 / � !. Ne; R�1.e0 // qR�1.e0 //f .e
0 /

C ix2e .!. Ne; R
�1.e// qR�1.e/ f .e/� !. Ne; R.e// f .R.e///

D �x2e .I C qR/.f /.e/:

�ese two equalities lead to

.I C i'xJ /.I � T /.I � qR/ D .I � Succ C Com/.I � qR/

D .I � qR/C 2i'xJ � x2.I C qR/

D .1� x2/C 2xi'J � .1C x2/qR:
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�is allows us to determine the operator M ' de�ned by the commuting diagram

C
E

KW'.�;x/ // CE

C
E

I�qR '

OO

M'
// CE:

I�i'xJ'

OO

It is given by

M ' D .I � i'xJ /�1.I � T /.I � qR/

D
1

1C x2
.I C i'xJ /.I � T /.I � qR/

D
1� x2

1C x2
C

2x

1C x2
i'J � qR

D cos.�/C sin.�/i'J � qR;

using the parametrization x D tan
�
�
2

�
of the weights.

Observe that the three maps B ı �1
W ,  B ı N ı �1

W and B ıRı �1
W associate

to a �xed w 2 W the three black vertices of C� adjacent to w, as demonstrated in

Figure 7. �erefore, the operator zK' de�ned by the commuting diagram

C
E M'

// CE

C
B

 B '

OO

zK'
// CW

 W'

OO

is given by the coe�cients

zK
'

wb
D

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

cos.�e/ if the edge .w; b/ is perpendicular to e 2 E;

'.e/i sin.�e/ if .w; b/ is to the left of e 2 E;

�qe if .w; b/ is in the “corner" of e and R.e/;

0 if w and b are not adjacent in C� .

�is is illustrated below.

e

R.e/

'.e/i sin.�e/

'.e/�1i sin.�e/
cos.�e/

cos.�e/

�qe
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In other words, zK' is precisely the Kasteleyn operator of .C� ; y/ associated to the

1-cocycle 'C W E.C�/ ! C
� (recall Figure 3) and to the map Q! W E.C�/ ! S1 �

C
� given by

Q!.w; b/ D

8
ˆ̂̂
<
ˆ̂̂
:

1 if .w; b/ is perpendicular to e 2 E;

i if .w; b/ is to the left of e 2 E;

�qe if .w; b/ is in the corner of e and R.e/.

Extend this map to a 1-cochain Q! W E.C�/ ! S1 by setting Q!.b; w/ D Q!.w; b/�1.

Now, observe that for any face f of C� � †,

Q!.@f / D
Y

e2@f

Q!.e/ D .�1/
j@f j

2 C1:

�is is obvious for the rectangular faces; for the faces corresponding to vertices

of �, use the fact that the angles ˇe add up to 2� around each vertex; for the faces

corresponding to faces of �, use the fact that the angles ˛�.e; e
0/ add up to an

odd multiple of 2� around each face since the vector �eld � has zeroes of even

index. Furthermore, if  denotes a 1-cycle in C� � †, then one easily checks that

Q!./2 D exp.i rot�.// D 1, where rot�./ is the rotation angle of the velocity

vector �eld along the closed curve  with respect to �. �erefore, the S1-valued

1-cochain Q! is cohomologous to a Kasteleyn orientation !. In other words, Q! can

be transformed into ! by a sequence of the following transformation: multiply all

the edges adjacent to a �xed vertex of C� by some complex number of modulus

1. �is de�nes diagonal operators dB and dW such that the following diagram

commutes:

C
B

zK'
// CW

C
B

dB '

OO

K'C .C� ;y/ // CW :

dW'

OO

By connectedness of �, these diagonal operators are unique up to simultaneous

multiplication by a �xed element of S1.

To complete the proof of the theorem, it remains to check that

 B ı dB D D� 1
2 ı  B and  W ı dW D D� 1

2 ı  W

for some well-chosen square root of the operator D. To do so, let us make the

diagonal operators dB D .db/b2B and dW D .dw/w2W more explicit. Focusing

on the rectangular face of C� around the edge e leads to the equations d W .e/ D

˙d B .e/ and d W .e/ D ˙i d B . Ne/. Similarly, looking at the face of C� around
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the vertex v leads to the equations d B .R.e// D ˙q�1
e d W .e/ for all e 2 Ev . In a

nutshell, the operators d2B and d2W are uniquely determined (up to a global rotation)

by the equations

d2 B .e/
D d2 W .e/ D �d2 B . Ne/

and d2 B .R.e//
D exp.�iˇe/d

2
 B .e/

for all e 2 E. By de�nition, the operatorD satis�es the equationsDe D �D Ne and

DR.e/ D exp.iˇe/De. It follows that dB ; dW can be chosen so that

d2
 B .e/

D d2
 W .e/

D D�1
e for all e 2 E. �is is equivalent to the equalities

 � ı d� D D� 1
2 ı  � for � D B;W , and the proof is completed.

�eorem 3.1 easily leads to the following result, which was �rst obtained in the

genus one case by Duminil-Copin and the author [10]. (On how to make sense of

the determinant of the Kasteleyn operator, recall the remark at the end of para-

graph 2.5.)

Corollary 3.2. Given a weighted surface graph .�; x/ � †, there is a Kasteleyn
orientation on C� � † such that

det.KW'.�; x// D 2�jV.�/j
Y

e2E.�/

.1C x2e / det.K'C .C� ; y//

for any 1-cochain ' W E ! C
�.

Proof. First note that

det.I � i'xJ / D
Y

e2E.�/

det

�
1 �i'. Ne/xe

�i'.e/xe 1

�
D

Y

e2E.�/

.1C x2e /:

Also, the partition E D
F
v2V.�/ Ev induces a decomposition

I � qR D
M

v2V.�/

.I � qR/v:

�is leads to

det.I � qR/ D
Y

v2V.�/

det..I � qR/v/ D
Y

v2V.�/

.1�
Q
e2Ev

qe/ D 2jV.�/j;

since
P
e2Ev

ˇe D 2� . Hence, �eorem 3.1 implies that the equality of the corol-

lary holds for any 1-cochain ' up to multiplication by a �xed complex number of

modulus 1. For ' taking values in ¹˙1º, both sides are real; therefore, the equality

holds up to a global sign. One can then choose a Kasteleyn orientation such that

the identity holds.
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Let us now assume that ' W E ! C
� is a 1-cocycle. In this case, one easily

checks that the determinant of KW'.�; x/ only depends on the cohomology class

of ' in H 1.†IC�/. By abuse of notation, we shall also denote such a class by '.

Here is the announced generalized Kramers–Wannier duality.

Corollary 3.3. For any weighted graph .�; x/ � † and any class ' 2 H 1.†IC�/,

2jV.�/j
Y

e2E.�/

.1C xe/
�1 det.KW'.�; x//

D 2jV.��/j
Y

e2E.�/

.1C x�
e /

�1 det.KW'.��; x�//:

Proof. As mentioned in Subsection 2.1, the weighted graph .C�� ; y.x�// associ-

ated to .��; x�/ is equal to the weighted graph .C� ; y.x// associated to .�; x/.

Fix a cocycle 'D on D� as in Figure 3 with '1'
�1
3 D '2'

�1
4 – any class can

be represented by such a cocycle – and consider the associated cocycles ', '�,

'C and .'�/C , who all de�ne the same cohomology class. �e cocycles 'C and

.'�/C are not equal, but cohomologous, and the corresponding transformations

of the Kasteleyn matrices do not change their determinant. Corollary 3.2 together

with the equality 1Cx2

1Cx
D 1C.x�/2

1Cx� then gives the result.

For a cocycle ' W E.�/ ! ¹˙1º, det.KW'.�; x// is the square of a polyno-

mial in the weight variables xe. As the constant coe�cient of this determinant is

equal to 1, we can pick such a square root j KW'.�; x/j
1
2 by requiring its constant

coe�cient to be C1. Taking a closer look at the sign leads to the following duality.

Corollary 3.4. For any weighted graph .�; x/ � † and any ' 2 H 1.†I ¹˙1º/,

2
jV .�/j

2

Y

e2E.�/

.1C xe/
� 1

2 j KW'.�; x/j
1
2

D .�1/A.'/ 2
jV .��/j

2

Y

e2E.�/

.1C x�
e /

� 1
2 j KW'.��; x�/j

1
2 ;

where A.'/ 2 Z2 is the Arf invariant of the spin structure obtained by the action
of ' on �.

Proof. By Corollary 3.3, we only need to determine the sign A.'/ in the equation

above. Let g denote the genus of †. Setting x D 1 (and therefore, x� D 0) leads

to

j KW'.�; 1/j
1
2 D .�1/A.'/2.jV.�

�/jCjE.�/j�jV.�/j/=2

D .�1/A.'/2jV.��/jCg�1;
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using the fact that jV.G/j � jE.G/j C jV.G�/j is equal to the Euler characteristic

�.†/ D 2�2g. Furthermore, the Ising partition functionZIsing.�; x/with weights

x D 1 is nothing but the cardinality of the Z2-vector space of 1-cycles modulo 2

in �. Since � is connected, the dimension of this space is classically equal to

jE.�/j � jV.�/j C 1. �e Kac–Ward formula (1) now implies

2jE.�/j�jV.�/jC1 D ZIsing.�; 1/

D
1

2g

X

'2H1.†I¹˙1º/

.�1/Arf.'/.�1/A.'/2jV.G�/jCg�1;

that is, X

'2H1.†I¹˙1º/

.�1/Arf.'/CA.'/ D 22��.†/ D 22g :

Since the set H 1.†I ¹˙1º/ has precisely 22g elements, this shows that A.'/ D

Arf.'/ for all ', and the corollary is proved.

To illustrate the power of �eorem 3.1, let us �nally show how it allows us to

easily transfer the recent results Kenyon-Sun-Wilson [30] from the dimer to the

Ising model. Consider a locally �nite planar graph G with edge weights

J D .Je/e 2 .0;1/E.G/ and faces that are bounded topological discs. Let us

assume that this weighted graph is biperiodic, i.e. invariant under the action of a

lattice L ' Z
2. For n � 1, let �n denote the �nite weighted toric graph given by

�n D G=nL � T2, and set �1 DW �. Fixing a basis of L, one can identify

H 1.T2IC�/ with .C�/2 so that any 1-cocycle ' W E ! C
� de�nes a pair .z; w/ of

non-vanishing complex numbers. Finally, let us writePn.z; w/D det KW'.�n; x/,

where xe D tanh.ˇJe/, set P1 DW P , and denote by H D
�
Az B
B Aw

�
the Hessian

of P at .1; 1/.

Corollary 3.5. At the critical inverse temperature ˇ D ˇc , the Ising partition
function on �n satis�es

logZJˇc
.�n/ D n2f .ˇc/C fsc1.�/C o.1/;

where f is the free energy per fundamental domain

f .ˇ/ D jV.�/j log.2/C
X

e2E.�/

log cosh.ˇJe/C
1

2.2�i/2

Z

T2

logP.z; w/
dz

z

dw

w
;

� is the modular parameter given by

� D
�B C i

p
AzAw � B2

Aw
;
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and fsc1.�/ is the explicit universal �nite-size correction term given in [30, �eo-

rem 2 (a)], which is invariant under modular transformations.

Proof. Given a cocycle ' W E.�/ ! C� representing a class .z; w/ 2 .C�/2, let us

write Q.z; w/ D detK'C .C� ; y/. (Recall that the cocycles ' and 'C de�ne the

same cohomology class.) Corollary 3.2 now reads

P.z; w/ D 2�jV.�/j
Y

e2E.�/

.1C x2e / Q.z; w/;

and implies that the curves de�ned by P.z; w/ and Q.z; w/ coincide. Since C�

is bipartite, one can apply results of Kenyon, Okounkov, and She�eld [29] and

conclude that this is a special Harnack curve. As demonstrated in [10], it allows

us to show that P.z; w/ is strictly positive on T
2 n ¹.1; 1/º, and vanishes at .1; 1/

if and only if the inverse temperature is critical. Recall that the high temperature

expansion [43] for the Ising model on .�n; J / can be stated as

ZJˇ .�n/ D 2n
2jV.�/j

� Y

e2E.�/

cosh.ˇJe/
�n2

ZIsing.�n; x/;

while the genus one Kac–Ward formula (1) reads

ZIsing.�n; x/ D
1

2
. � Pn.1; 1/

1
2 C Pn.�1; 1/

1
2

C Pn.1;�1/
1
2 C Pn.�1;�1/

1
2 /:

�e conclusion now follows from [30, �eorem 1] in the special case E D
�
n 0
0 n

�
,

applied to the equation above.

Example. Consider the case of the rectangular lattice G with horizontal (resp.

vertical) edges having weight J (resp. K). Fixing the natural fundamental domain

and basis of Z2, we obtain

P.z; w/ D .1C x2/.1C y2/ � x.1� y2/.z C z�1/ � y.1� x2/.w C w�1/;

where x D tanh.ˇJ / and y D tanh.ˇK/. �is leads to

H D

�
�2x.1� y2/ 0

0 �2y.1 � x2/

�
and � D i

s
y.1 � x2/

x.1 � y2/
:

Now, the model is at the critical temperature if and only if x and y satisfy the

equality 1 D xCyCxy. Using the parametrization x D tan
�
�
2

�
and y D tan

�
�
2

�
,

this equation can be written as � C � D �
2
. �is leads to the modular parameter

� D i tan.�/, which de�nes the isoradial embedding of G whose critical weights

are the ones we started with.
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3.2. Kasteleyn versus discrete Dirac operators. Let us now assume that the

graph � is isoradially embedded in a �at surface †, and endowed with the cor-

responding critical weights xe D tan
�
�e

2

�
(recall paragraph 2.2). �en, the asso-

ciated graph C� is also isoradially embedded in †, so one can de�ne a discrete
N@-operator N@

'
C W CB ! C

W as explained in paragraph 2.6. Recall that this dis-

cretization is particularly relevant when the 1-cochain ' is a so-called discrete
spin structure, that is, when it represents one of the 22g inverse square roots of the

holonomy of the �at metric on†. Recall also that this operator N@
'
C depends on the

choice of a vector �eld X at the white vertices of C� ; without loss of generality,

we shall assume that this vector �eld at the vertex w D  W .e/ points towards

 B.e/ 2 B (recall Figure 7).

�e main result of this paragraph is that the Kasteleyn operators associated to

22g non-equivalent Kasteleyn orientations on .C� ; y/ are simultaneously conju-

gate to the discrete N@-operators associated to 22g non-cohomologous discrete spin

structures. �is can be understood as an instructive and explicit special case of [9,

�eorem 4.8], which deals with general bipartite isoradial graphs. (See also [27,

�eorem 10.1] for the planar case).

Proposition 3.6. Given any Kasteleyn orientation ! on C� � †, there exists a
unique discrete spin structure '! W E.C�/ ! S1 such that the following diagram
commutes

C
B K!.C� ;y/ // CW

C
B

exp.� i
2 �B/ '

OO

N@
'!
C // CW ;

exp.� i
2 �W /ı�W'

OO

where the diagonal operators�B D .�b/b2B , �W D .�w/w2B and�W D .�w/w2W

are de�ned by �b D �e if b D  B.e/, �w D �e if w D  W .e/, and
�w D 1

2

P
e2E.C� /w

sin.2�e/. Furthermore, the map ! 7! '! de�nes a bijection
between equivalence classes of Kasteleyn orientations on C� � † and inverse
square roots in H 1.†IS1/ of the holonomy on †.

Proof. Fix f 2 C
B and w 2 W . Following the notations of Figure 7, let us write

e D  �1
W .w/, e0 D R.e/, and b1 D  B.e/, b2 D  B. Ne/, b3 D  B.e

0/ for the three

vertices of C� adjacent to w. By de�nition, we have

�
K!.C� ; y/ ı exp

�
� i
2
�B

��
.f /.w/

D !.w; b1/ exp
�

� i
2
�e

�
cos.�e/f .b1/

C !.w; b2/ exp
�

� i
2
�e

�
sin.�e/f .b2/C !.w; b3/ exp

�
� i
2
�e0

�
f .b3/;
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and

�
exp

�
� i
2
�W

�
ı �W ı N@

'
C

�
.f /.w/

D exp
�

� i
2
�e

�
.'.w; b1/ cos.�e/f .b1/

C '.w; b2/ i sin.�e/f .b2/

� '.w; b3/ exp.i�e/f .b3//:

�erefore, the diagram commutes if and only if the 1-cochain ' W E.C�/ ! S1 is

given by

'.w; bj / D

8
ˆ̂<
ˆ̂:

!.w; b1/ if j D 1;

�i !.w; b2/ if j D 2;

� exp
�

� i
2
.�e C �e0/

�
!.w; b3/ if j D 3.

Using the fact that ! is a Kasteleyn orientation and the fact that the cone angles

of the singularities of † are odd multiples of 2� , one checks that ' is a 1-cocycle.

Furthermore, if  is any closed curve in C� , './�2 is nothing but the holonomy

Hol./. �erefore, ' is a discrete spin structure. �e last statement follows easily

from the de�nitions.

3.3. Dirac versus Laplace operators. In this whole paragraph, we shall assume

that � is a graph isoradially embedded in a �at surface † with trivial holonomy.

On such a surface, one can �x a constant vector �eld X , which we will be using

to evaluate the associated discrete Dirac operators (recall De�nition 5).

�e following relation is well-known in the planar [27] and toric [2] cases. �e

proof is straightforward.

Proposition 3.7. Given any graph � isoradially embedded in a �at surface with
trivial holonomy and any 1-cocycle 'D W E.D�/ ! C

�,

� @
'D

D ı N@
'D

D D �
'
� ˚�

'�

��

as endomorphisms of CB.D/ D C
V.�/ ˚ C

V.��/.

Note that the composition �N@
'D

D ı@
'D

D does not seem to be related to the discrete

Laplace operator in any sensible way. �erefore, it is not clear how to make sense

of the square of the discrete Dirac operator

. =D
'
D/
2 D

�
0 �@

'
D

N@
'
D 0

�2
D

�
�@

'
D

N@
'
D

0

0 �N@
'
D
@

'
D

�
:
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On the other hand, considering the bipartite graph C� instead ofD� leads to a

more symmetrical result, as we now explain. First, note that in the smooth setting,

a direct computation leads to the equality

=D
2

D
�

�@N@ 0

0 �N@@

�
D

�
��iA 0
0 �CiA

�
;

where

A D
@2

@x@y
�

@2

@y@x

vanishes. As we will see, this is re�ected in the discretization by C� .

Given an isoradially embedded graph �, let M denote the (isoradial) graph

dual to D� , as illustrated below. Also, let " denote the orientation of the edges of

M illustrated in the same �gure.

� M D D�
�

Note that C� can be obtained from M by replacing each vertex by a “small” edge

between two vertices. (�is operation is very natural in the setting of discrete com-

plex analysis, see [9, Section 2.2].) Without loss of generality, we shall consider

1-cochains ' on C� that are trivial on the small edges of C� , and use the same

notation ' for the restriction to the edges of M . Finally, we shall denote by A
'
"

the associated normalized '-twisted skew-adjacency operator on C
V.M/. In other

“words,”

.A'"f /.v/ D
1

�v

X

eD.v;v0/

".e/'.e/f .v0/

for f 2 C
V.M/ and v 2 V.M/, the sum being over all edges of M of the form

.v; v0/, with ".e/ D 1 if " orients e from v to v0, and ".e/ D �1 else.

Proposition 3.8. Given any graph � isoradially embedded in a �at surface with
trivial holonomy and any 1-cocycle ' W E.C�/ ! C

� which is trivial on the small
edges of C� ,

. =D
'
C /
2 D

�
�@

'
C

N@
'
C

0

0 �N@
'
C @

'
C

�
D
1

2

�
�

'
M

�iA
'
" 0

0 �
'
M CiA

'
"

�

as endomorphisms of CV.C/ D C
V.M/ ˚ C

V.M/. In particular,

�
�
@
'
C

N@
'
C C N@

'
C @

'
C

�
D �

'
M :
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Proof. By de�nition, for any b 2 B WD B.C�/ and f 2 C
B ,

� .@
'
C ı N@

'
C /.f /.b/

D
�1

2�b

X

eD.b;w/

X

e0D.w;b0/

'.e/'.e0/
sin.�e/ sin.�e0/

sin.�w/ cos.�w/
exp.i.#.e0/ � #.e///f .b0/;

where �w stands for � �1
W
.w/ and # for #X . Let us denote the vertices of C� around

b as illustrated below.

b

w

b1

w1

b2

w2

b0

�

� 0

b3

b4

Also, we shall denote by v (resp. v1; v2) the vertex of M corresponding to b and

w (resp. b1 and w1, b2 and w2). Since ' is a cochain and #. Ne/ � #.e/ D ˙� , the

coe�cient of f .b/ in the formula above is given by

1

2

�
tan.�/C tan.��/C tan.� 0/C tan..� 0/�/

�
;

where �� D �
2

� � as usual. �is coincides with the coe�cient of f .v/ in
1
2
�
'
M .f /.v/. As for the coe�cient of f .b0/, since ' is a cocycle and #.w2; b

0/ �

#.b; w2/ D �
2

while #.w1; b
0/ � #.b; w1/ D ��

2
, it vanishes as expected. Since

' is trivial on the small edges and #.w1; b1/ � #.b; w1/ D � , the coe�cient of

f .b1/ is equal to

�1

2�b
'.b; w1/

cos.�/

cos.�/ sin.�/
exp.i�/ D

�1

2�b
'.v; v1/.tan.��/C i/;

which coincides with the coe�cient of f .v1/ in 1
2
.�

'
M � iA

'
" /.f /.v/. Similarly,

the coe�cient of f .b2/ is equal to

�1

2�b
'.b; w2/

sin.�/

cos.�/ sin.�/
exp.�i��/ D

�1

2�b
'.v; v2/.tan.�/ � i/;
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which is the coe�cient of f .v2/ in 1
2
.�

'
M � iA

'
" /.f /.v/. �e cases of f .b3/ and

f .b4/ are treated similarly, leading to the equation

�@
'
C

N@
'
C D 1

2
.�

'
M � iA'" /:

�e formula for �N@
'
C@

'
C follows, since the coe�cients of N@C and @C are complex

conjugate.

3.4. Comparing discrete Dirac operators. Surprisingly, the discrete Dirac op-

erators =D
'
D on D D D� and =D

'
C on C D C� are also related in a fairly natural

way. To present this result, it is convenient to adopt the following terminology:

we will say that vertices v 2 V.D/ D ƒ [ } and v0 2 V.C / D B [ W are ad-
jacent, denoted v � v0, if they are linked by an edge in the right-hand side of the

illustration below.

V.�/ V .D/[ V.C/

Clearly, any 1-cocycle ' on the graph above naturally induces 1-cocycles 'D onD

and 'C on C . We shall denote by

h
'
DC W CV.D/ �! C

V.C/ and h
'
CD W CV.C/ �! C

V.D/

the associated twisted adjacency operators, i.e. the operators de�ned by

.h
'
DCf /.v

0/ D
deg.v0/

2

X

v0�v2V.D/

'.v0; v/f .v/

and

.h
'
CDg/.v/ D

X

v�v02V.C/

'.v; v0/g.v0/

for f 2 C
V.D/, g 2 C

V.C/, v 2 V.D/ and v0 2 V.C /, where deg.v0/ 2 ¹1; 2º

denotes the number of vertices in V.D/ adjacent to v0.
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Proposition 3.9. Given any graph � isoradially embedded in a �at surface with
trivial holonomy and any 1-cocycle ' as above, the following diagram commutes:

C
V.D/

h
'
DC

��

=D
'D
D // CV.D/

C
V.C/

=D
'C
C // CV.C/;

��1
D

ıh
'
CD

ı�C

OO

where �D D .�v/v2V.D/ and �C D .�v0/v02V.C/ are the usual diagonal opera-
tors.

Proof. Let f be an element of CV.D/. Fixing z 2 } � V.D/, let us denote by

.v1; v2; v3; v4/ the vertices of ƒ around z numbered counterclockwise, and by �

the corresponding half-rhombus angle (assuming v1 and v3 are vertices of the

primal graph �). By de�nition, we have

.h
'
CD ı �C ı =D

'C

C ı h
'
DC /.f /.z/

D
X

z�w2W

X

.w;b/2E.C/

X

b�v2ƒ

'D.z; v/e
i#X.w;b/ sin.�wb/f .v/

D ei#X .v3;v1/
X

j

'D.z; vj / cj f .vj /;

where the coe�cients cj are given by

c1 D i cos.�/C e�i��

D sin.�/;

c2 D sin.�/C iei� D i cos.�/;

c3 D �i cos.�/C iei� D � sin.�/

c4 D � sin.�/C e�i��

D �i cos.�/:

�erefore,

.h
'
CD ı �C ı =D

'C

C ı h
'
DC /.f /.z/ D .�D ı N@

'D

D /.f /.z/

D .�D ı =D
'D

D /.f /.z/:
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Furthermore, �xing v 2 ƒ, we have

.h
'
CD ı �C ı =D

'C

C ı h
'
DC /.f /.v/

D �
1

2

X

v�b2B

X

.b;w/2E.C/

X

w�z2}

'D.v; z/e
�i#X.b;w/ sin.�bw/f .z/

D �
1

2

X

.v;z/2E.D/

'D.v; z/e
�i#X.v;z/.sin.�z/C i cos.�z/C e�i��

z /f .z/

D �
X

.v;z/2E.D/

'D.v; z/e
�i#X.v;z/ sin.�z/f .z/

D �.�D ı N@
'D

D /.f /.v/

D .�D ı =D
'D

D /.f /.v/;

and the proof is completed.

Let us conclude this section with one last summarizing remark. Given any

isoradially embedded graph � � † with critical weights x, Corollary 3.2 and

Proposition 3.6 give the relation between determinants

j KW'.�; x/j2
�

D jK'.C� ; y.x//j
2 �

D jN@
'
C j2;

where
�

D stands for the equality between functions of ' 2 H 1.†IC�/ ' .C�/2g

up to a multiplicative constant. Furthermore, if ' is unitary, i.e. belongs to .S1/2g ,

then N@
'
D and @

'
D are adjoint matrices, which are square if g D 1. Assuming that†

is a torus, Proposition 3.7 therefore leads to

jN@
'
Dj2 D j@

'
D ı N@

'
Dj

�
D j�

'
� ˚�

'
�� j

�
D j�

'
� j2:

(�e last equality is well-known, see e.g. [2].) Finally, Proposition 3.9 seems

to hint at a relation of the form jN@
'
C j

�
D jN@

'
Dj, which would imply the equality

jKW'.�; x/j
�

D j�
'
� j. �is equality actually holds under the conditions stated

above, and only under these conditions, as was proved in [8, �eorem 4.6].

4. Generalized s-holomorphicity

�is section builds on the previous ones to obtain the main results of this arti-

cle. In the �rst two paragraphs, we introduce a notion of s-holomorphicity valid

for any weighted surface graph, generalizing the classical de�nition of Chelkak

and Smirnov [6] which corresponds to the planar isoradial case. Moreover, we
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give three alternative viewpoints on this notion, each involving one of the three

operators (Kac–Ward, Kasteleyn, Dirac) studied in Section 3 (�eorem 4.2 and

Corollary 4.3). In the �nal two subsections, we show that several crucial proper-

ties of s-holomorphic functions on isoradial graphs extend to our setting. First, the

minors of the Kac–Ward matrices are nothing but generalized spin-observables,

which are automatically s-holomorphic (Subsection 4.3). Also, it is possible to de-

�ne a discrete version of the integral of the square of an s-holomorphic function

(Subsection 4.4).

4.1. �e kernel of the Kac–Ward operator. As above, let .�; x/ � † be an

arbitrary weighted surface graph. In this paragraph, we will analyse the kernel

of the associated Kac–Ward operator KW D KW.�; x/, where the 1-cochain ' is

taken to be trivial. (�e discussion below extends to any real-valued cochain, but

the statements become unnecessarily cumbersome.)

First note that the corresponding Kasteleyn operator K! D K!.C� ; y/ re-

stricts to a real operator K!.C� ; y/ W R
B ! RW . �e commutative diagram of

�eorem 3.1 can therefore be completed into

C
E

KW.�;x/ // CE

C
B

.I�qR/ıD
� 1

2 ı B
'

OO

K!.C� ;y/ // CW

.I�ixJ /ıD
� 1

2 ı W
'

OO

R
B
?�

OO

K!.C� ;y/ // RW ;
?�

OO

where the choice of the square root ofD is determined by the Kasteleyn orientation

!.

For e 2 E, let us write

`.e/ D D
� 1

2
e � R D exp

�
� i
2
ae

�
� R;

which does not depend on the choice of the square root of D. By de�nition, both

.D� 1
2 ı  B/.R

B/ and .D� 1
2 ı  W /.R

W / coincide with the real vector subspace

of CE given by

L D ¹f 2 C
E j f .e/ 2 `.e/ for all e 2 Eº:
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Since `. Ne/ D i`.e/, I � ixJ leaves L invariant. Since `.R.e// D q�1
e `.e/, the

same holds for I � qR. �erefore, we obtain the following commutative diagram:

L
KW.�;x/ // L

R
B

.I�qR/ıD
� 1

2 ı B
'

OO

K!.C� ;y/ // RW :

.I�ixJ /ıD
� 1

2 ı W
'

OO

Given any real line ` � C, we shall denote by

Pr.�I `/ W C �! `

the orthogonal projection onto `. We shall also simply write Pr.�Iu/ for the or-

thogonal projection onto the real line u � R generated by u 2 C
�. Following

Lis [34], let us consider the real linear map

S W C} �! L

de�ned by

.SF /.e/ D sin
�
�e

2

�
Pr.F.ze/I `.e//

for F 2 C
} and e 2 E. �e following result generalizes [34, Proposition 2.1],

which deals with the planar isoradial case.

Proposition 4.1. Fix an element F of C} and a vertex v of �. �en, f D S.F / 2

L satis�es .KWf /. Ne/ D 0 for all e 2 Ev if and only if

Pr
�
F.ze/I i exp

�
� i
2
.ae C �e/

��

D Pr
�
F.ze0/I i exp

�
� i
2
.ae0 � �e0/

��
exp

�
i
2
.ˇe � �e � �e0/

�

for all e 2 Ev, where e0 stands for R.e/.

Proof. Using the notations of Subsection 3.1, the �rst statement means that

.J ı KW/.f / vanishes on Ev. Consider the endomorphism of CE given by

.I � qR/x�1. It is clearly an isomorphism (recall the proof of Corollary 3.2),

which splits as a direct sum of automorphisms of CEv according to the partition

E D
F
v Ev. �erefore, we conclude that .J ıKW/.f / vanishes on Ev if and only
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if ..I � qR/x�1J KW/.f / vanishes on Ev. In other words, for all e 2 Ev ,

0 D ..I � qR/x�1J KW/.f /.e/

D x�1
e .KWf /. Ne/ � qe x

�1
e0 .KWf /. Ne0/

D x�1
e

�
f . Ne/ � xe

X

e002Evn¹eº

exp
�
i
2
˛�. Ne; e

00/
�
f .e00/

�

� exp
�
i
2
ˇe

�
x�1
e0

�
f . Ne0/ � xe0

X

e002Evn¹e0º

exp
�
i
2
˛�. Ne0; e00/

�
f .e00/

�

D x�1
e f . Ne/C i exp

�
i
2
ˇe

�
f .e0/ � exp

�
i
2
ˇe

�
x�1
e0 f . Ne0/C if .e/:

�erefore, f D S.F / satis�es .KWf /. Ne/ D 0 for all e 2 Ev if and only if

x�1
e f . Ne/C if .e/ D exp

�
i
2
ˇe

�
.x�1
e0 f .Se0/ � if .e0//

for all e 2 Ev. Using the parametrization xe D tan
�
�e

2

�
of the weights, the de�-

nition of f D S.F /, and the fact that `.e/ and `. Ne/ are orthogonal, the left-hand

side reads

x�1
e f . Ne/C if .e/ D sin

�
�e

2

��1�
cos

�
�e

2

�
f . Ne/C i sin

�
�e

2

�
f .e/

�

D cos
�
�e

2

�
Pr.F.ze/I `. Ne//C i sin

�
�e

2

�
Pr.F.ze/I `.e//

D Pr
��

cos
�
�e

2

�
C i sin

�
�e

2

��
F.ze/I `. Ne/

�

D exp
�
i
2
�e

�
Pr

�
F.ze/I exp

�
� i
2
�e

�
`. Ne/

�

D exp
�
i
2
�e

�
Pr

�
F.ze/I i exp

�
� i
2
.ae C �e/

��
:

Similar considerations for the right-hand side lead to

x�1
e0 f .Se0/ � if .e0/ D exp

�
� i
2
�e0

�
Pr

�
F.ze0/I i exp

�
� i
2
.ae0 � �e0/

��
;

and the proposition follows.
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Note that the left-hand side of the equality in Proposition 4.1 can be written as

Pr
�
F.ze/I i exp

�
� i
2
.ae C �e/

��

D �i exp
�

� i
2
�e

�
D

� 1
2

e Re
�
i D

1
2
e exp

�
i
2
�e

�
F.ze/

�
;

while

Pr
�
F.ze0/I i exp

�
� i
2
.ae0 � �e0/

��

D �i exp
�
i
2
�e0

�
D

� 1
2

e0 Re
�
i D

1
2

e0 exp
�

� i
2
�e0

�
F.ze0/

�
:

�erefore, this equality is equivalent to

Re
�
i D

1
2
e exp

�
i
2
�e

�
F.ze/

�
D ".e/Re

�
i D

1
2

e0 exp
�

� i
2
�e0

�
F.ze0/

�
; (?)

where ".e/ D qeD
� 1

2

e0 D
1
2
e D ˙1 depends on the Kasteleyn orientation !.

4.2. �ree viewpoints on s-holomorphicity. Assume that � is isoradially em-

bedded in the plane with critical weights xe D tan
�
�e

2

�
. If � is chosen to be a

constant vector �eld, then ˇe � �e � �e0 vanishes for all e 2 E. �erefore the

equality in Proposition 4.1 simply reads

Pr.F.ze/I `e;e0/ D Pr.F.ze0/I `e;e0/;

where

`e;e0 D i exp
�

� i
2
.ae C �e/

�
� R

D i exp
�

� i
2
.ae0 � �e0/

�
� R:

�is equality de�nes the fact that exp
�
i �
4

�
F is “s-holomorphic” [6]. Hence, the

equality in Proposition 4.1, or equivalently, the fact of lying in the kernel of the

Kac–Ward operator, should be understood as a generalized s-holomorphicity con-

dition valid for any weighted surface graph. �is motivates the following termi-

nology.

De�nition 6. Let .�; x/ � † be an arbitrary surface graph with weights parametr-

ized by xe D tan
�
�e

2

�
. A function F 2 C

} is called s-holomorphic around v 2

V.�/ if

Pr.F.ze/I Œi exp.i.ae C �e//�
� 1

2 /

D Pr.F.ze0/I Œi exp.i.ae0 � �e0//��
1
2 / exp

�
i
2
.ˇe � �e � �e0/

�

for all e 2 Ev , where e0 stands for R.e/.
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Note that the choice of the square root is irrelevant.

We shall now build on the results of Section 3 to give three viewpoints on

the generalized notion of s-holomorphicity de�ned above. Recall that a Kaste-

leyn orientation ! on C� � † determines a square root D
1
2 D .D

1
2
e /e2E of

D D .De/e2E D .exp.iae//e2E as explained in �eorem 3.1, and that these square

roots satisfy D
1
2

R.e/
D ".e/qeD

1
2
e for all e 2 E, with ".e/ D ˙1. �is allows us to

de�ne

T W C} �! R
B

by

.TF /.b/ D
X

e2Ev

Re."b.e/D
1
2
e sin

�
�e

2

�
F.ze//;

where v 2 V.�/ denotes the vertex of � closest to b 2 B , i.e. v D o.e0/ if

b D  B.e0/, and "b.e/ D ".e0/".R.e0// � � � ".Rk�1.e0// if e D Rk.e0/, 0 � k <

deg.v/. Finally, set T 0 WD exp
�
i
2
�B

�
ı T , where �B D .� �1

B
.b//b2B .

�eorem 4.2. �e maps S W C} ! L, T W C} ! R
B , and T 0 W C} ! T 0.C}/ �

C
B are R-linear isomorphisms such that, for any F 2 C

}, the following are
equivalent:

(i) exp
�
i �
4

�
F is s-holomorphic;

(ii) S.F / 2 L lies in the kernel of the Kac–Ward operator KW.�; x/;

(iii) T .F / 2 R
B lies in the kernel of the Kasteleyn operator K!.C� ; y/.

Furthermore, if � is isoradially embedded in a �at surface†with critical weights,
then these three conditions are equivalent to:

(iv) T 0.F / 2 C
B lies in the kernel of the discrete N@-operator N@

'!

C .

Proof. �e map S W C} ! L is clearly an isomorphism of real vector spaces,

with inverse .S�1f /.z/ D sin
�
�e

2

��1
.f .e/C f . Ne// for f 2 C

E and z D ze 2 }.

By de�nition, exp
�
i�
4

�
F is s-holomorphic if and only if F satis�es the equality

in Proposition 4.1; hence, (i) and (ii) are equivalent by this proposition.

Now, let us de�ne

T0 W C} �! R
B

as the unique R-linear isomorphism such that

.I � qR/ ıD� 1
2 ı  B ı T0 D S:
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By �eorem 3.1 and the discussion in Subsection 4.1, we have the commutative

diagram

C
} S

'
//

T0 **

L
KW.�;x/ // L0

R
B

'

OO

K!.C� ;y/ // RW :

'

OO

�is implies that KW.SF / D 0 if and only if T0.F / lies in the kernel of K!.C� ; y/.

�erefore, it remains to check that T0 coincides with the map T de�ned before the

statement of the theorem (up to a real scalar factor). To do so, �rst observe that the

automorphism I �qR of CE splits as a direct sum
L
v2V.�/.I �qR/v according to

the partition E D
F
v2V.�/ Ev, and that 2.I�qR/�1v D ICqRC� � �C.qR/deg.v/�1.

�is leads to the following computation, where F 2 C
}, b D  B.e/ 2 B and

v D o.e/ 2 V.�/:

2.T0F /.b/ D 2. �1
B ıD

1
2 ı .I � qR/�1 ı S/.F /.b/

D 2D
1
2
e .I � qR/�1v .SF /.e/

D D
1
2
e

deg.v/�1X

kD0

qe � � �qRk�1.e/.SF /.R
k.e//

D
X

e02E

"b.e
0/D

1
2

e0.SF /.e
0/

D
X

e02E

"b.e
0/D

1
2

e0 sin
� �e0

2

�
Pr.F.ze0/I `.e0//

D
X

e02Ev

Re
�
"b.e

0/D
1
2

e0 sin
� �e0

2

�
F.ze0/

�
:

�is shows that the map T D 2T0 is an isomorphism, and that conditions (ii)

and (iii) are equivalent. �e map T 0 D exp
�
i
2
�B

�
ı T being the composition of

two isomorphisms, it is one as well.

Finally, let us assume that � is isoradially embedded in a �at surface † with

weights xe D tan
�
�e

2

�
. By Proposition 3.6, we have the commutative diagram

C
} T

'
//

T 0 **

R
B K!.C� ;y/ // RW

LB

'

OO

N@
'!
C // LW ;

'

OO ;

where LB D exp
�
i
2
�B

�
.RB/ and LW D exp

�
i
2
�W

�
.RW /. �erefore, T .F / lies

in the kernel of K!.C� ; y/ if and only if T 0.F / lies in the kernel of N@
'!

C .
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�is theorem admits the following corollary.

Corollary 4.3. Let sO denote the real vector subspace of C} consisting of func-
tions F such that exp

�
i �
4

�
F is s-holomorphic.

(i) �e map S W C} ! C
E restricts to an R-linear isomorphism

sO ' L \ ker.KW/:

(ii) �e map zT W C} ! R
B de�ned by

. zT F /.b/ D Re
�
i D

1
2
e exp

�
� i
2
�e

�
F.ze/

�

for F 2 C
} and b D  B.e/ 2 B restricts to an isomorphism

sO ' ker.K!/:

(iii) If � is isoradially embedded in a �at surface † with critical weights, then
the map zT 0 W C} ! C

B de�ned by

. zT 0F /.b/ D i D
1
2
e Pr

�
F.ze/I i exp

�
� i
2
.ae � �e/

��

for F 2 C
} and b D  B.e/ 2 B restricts to an isomorphism

sO ' ker.N@
'!

C / \ zT 0.C}/:

Note that in the planar isoradial case, zT .F / is the so-called real spinor associ-

ated to F by Chelkak-Smirnov in [6, Lemma 3.4]. To be more precise, the vertices

of C� play the role of the vertices of the double cover b‡ in [6], the choice of this

double cover, or spin structure [36, De�nition 9], corresponding to the choice

of a Kasteleyn orientation on C� (see [11]). Furthermore, the fact that zT .F / lies

in the kernel of the Kasteleyn operator translates into the propagation equation
[6, equation .3:6/], or the Dirac equation [36, equation .4:5/] (see also [15, Sec-

tion 4.2]). �erefore, the statement (ii) above should be understood as a general-

ized propagation equation, valid for any weighted surface graph.

Proof of Corollary 4.3. �e �rst point follows immediately from �eorem 4.2.

For the second point, it remains to check that the restriction of T to sO coincides

with the map zT (up to a real scalar factor). �is follows from the computation
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below, where we make use of equation .?/ in the fourth equality, and of the nota-

tion e0 D R.e/:

..I � qR/ ıD� 1
2 ı  B ı zT /.F /.e/

D .D� 1
2 ı  B ı zT /.F /.e/� qe.D

� 1
2 ı  B ı zT /.F /.e0/

D D
� 1

2
e . zT F /. B.e//� qeD

� 1
2

e0 . zT F /. B.e
0//

D D
� 1

2
e Re

�
i D

1
2
e exp

�
� i
2
�e

�
F.ze/

�

� qeD
� 1

2

e0 Re
�
i D

1
2

e0 exp
�

� i
2
�e0

�
F.ze0/

�

D D
� 1

2
e Re

�
i D

1
2
e exp

�
� i
2
�e

�
F.ze/

�

�D
� 1

2
e Re

�
i D

1
2
e exp

�
i
2
�e

�
F.ze/

�

D D
� 1

2
e Re

�
D

1
2
e 2 sin

�
�e

2

�
F.ze/

�

D 2 sin
�
�e

2

�
Pr.F.ze/ID

� 1
2

e � R/

D 2.SF /.e/:

As for the third point, it follows from the second one and from the computation

below:

. zT 0F /.b/ D
�
exp

�
i
2
�B

�
ı zT

�
.F /.b/

D exp
�
i
2
�e

�
Re

�
i D

1
2
e exp

�
� i
2
�e

�
F.ze/

�

D i D
1
2
e Pr

�
F.ze/I i exp

�
� i
2
.ae � �e/

��
:

�is concludes the proof.

Let us conclude this paragraph on s-holomorphicity with one �nal result. It is

natural to wonder about the connection between (generalized) s-holomorphicity

and continuous holomorphicity, especially on Riemann surfaces. Obviously, there

is no such relation in full generality when the weights of the graph are not related

to the conformal structure of the underlying surface. In the critical isoradial case

however, it is possible to use Corollary 4.3 above together with �eorems 2.5 and

3.5 of [9] to obtain convergence results. �e precise de�nition of all the objects

involved being quite cumbersome, we refer the reader to [9] for details.
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Corollary 4.4. Let † be a �at surface with cone-type singularities and trivial
holonomy. Consider a sequence �n of graphs ın-isoradially embedded in † with
limn ın D 0, such that all rhombi angles of all these isoradial graphs belong to the
interval Œ�; ���� for some � > 0. Finally, let Fn 2 C}n be a sequence of functions
such that exp

�
i �
4

�
Fn is s-holomorphic (with respect to a constant vector �eld).

(i) Assume that Fn 2 C}n converges to F W † ! C in the following sense: for
any sequence zn 2 }n converging in†, Fn.zn/ converges to F.limn zn/ in C.
�en F is holomorphic in †.

(ii) Assume that all cone angles are odd multiples of 2� and that the discrete
spinors zT 0Fn 2 C

Bn converge to a section  of a �xed spin structure, inter-
preted as a line bundle L ! †. �en,  is a holomorphic spinor.

Proof. Since† has trivial holonomy, it makes sense to talk about a constant vector

�eld on †. With respect to such a vector �eld, the de�nition of s-holomorphicity

for isoradial graphs is the usual one. As in [6, Lemma 3.2], one then checks that

if F 2 C
} is s-holomorphic, then F lies in the kernel of the discrete N@-operator

N@D W CB ! C
W associated with the double graph D� with bipartite structure

B D } and W D V.�/ [ V.��/. �e �rst statement now follows from [9, �eo-

rem 2.5] applied to the bipartite graphsD�n . By Corollary 4.3 above, zT 0Fn lies in

the kernel of the discrete N@-operator N@
'n

Cn
W CBn ! C

Wn associated with the graph

C�n , where 'n is a discrete spin structure on C�n which can be chosen to represent

the �xed spin structure L. �e second statement now follows from [9, �eorem

3.12] applied to the bipartite graphs C�n . (Note that even though some rhombi of

C�n are degenerate, Lemma 2.7 of [9] still holds in this setting, and the theorem

does apply.)

4.3. �e inverse Kac–Ward operator. Let .�; x/ � † be an arbitrary surface

graph, and as before, let us consider a �xed vector �eld � on†with zeroes of even

index in † n �. Recall that the associated Kac–Ward operator

KW D KW� W CE �! C
E

can be de�ned by

.KW� f /.e/ D
X

e02E

KW�.e; e0/f .e0 /
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for f 2 C
E and e 2 E, with coe�cients

KW�.e; e0/ D

8
ˆ̂̂
<
ˆ̂̂
:

1 if e D e0,

�xe exp
�
i
2
˛�.e; e

0 /
�

if o.e0/ D t .e/ but e0 ¤ Ne,

0 else,

with ˛�.e; e
0/ the rotation angle in radians of the velocity vector �eld along e

followed by e0 with respect to the vector �eld �.

As mentioned in Subsection 2.4, its determinant is the square of a polynomial

in the weight variables. �e precise result is most conveniently stated using the

terminology of homology, that we now very brie�y recall. Given a surface graph

� � †, let C0 (resp. C1, C2) denote the Z2-vector space with basis the set of ver-

tices (resp. edges, faces) of � � †. Elements of Ci are called i-chains. Also, let

@2 W C2 ! C1 and @1 W C1 ! C0 denote the boundary operators de�ned in the ob-

vious way. Since @1 ı@2 vanishes, the space of 1-cycles ker.@1/ contains the space

@2.C2/ of 1-boundaries. �e �rst homology space H1.†IZ2/ WD ker.@1/=@2.C2/

turns out not to depend on �, but only on †: it has dimension 2g, where g is the

genus of the closed connected orientable surface †. Note that the intersection of

curves de�nes a non-degenerate bilinear form onH1.†IZ2/, that will be denoted

by .˛; ˇ/ 7! ˛ � ˇ.

We shall also need the following classical result of Johnson [22]: given a vector

�eld � on†with zeroes of even index and a piecewise smooth curve  in† avoid-

ing the zeroes of �, let rot�./ 2 2�Z denote the rotation angle of the velocity

vector �eld of  with respect to �. �en, given a homology class ˛ 2 H1.†IZ2/

represented by the disjoint union of oriented simple closed curves j , the equality

.�1/q�.˛/ D
Y

j

� exp
�
i
2

rot�.j /
�

gives a well-de�ned quadratic form on H1.†IZ2/, i.e. a map

q� W H1.†IZ2/ �! Z2

such that

q�.˛ C ˇ/ D q�.˛/C q�.ˇ/C ˛ � ˇ for all ˛; ˇ 2 H1.†IZ2/.
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�is implies in particular that, for any oriented closed curve  with t ./ transverse

self-intersection points,

� exp
�
i
2

rot�./
�

D .�1/q�./Ct./:

(�is can be checked by smoothing out the intersection points according to the

orientation of  and using the de�nition of q�.)

Coming back to the Kac–Ward determinant, it was showed in [7] that

det
�
KW�

�
D

� X

�2E

.�1/q�.�/x.�/
�2
;

where E denotes the set of 1-cycles in �, that is, the set of subgraphs � of � such

that each vertex of � is adjacent to an even number of edges of �, and x.�/ stands

for
Q
e2� xe. Since q� is well-de�ned in homology, this equality can be rewritten

det.KW�/
1
2 D

X

˛2H1.†IZ2/

.�1/q�.˛/
X

�2E

Œ��D˛

x.�/;

which easily leads to the generalized Kac–Ward formula (1) for

ZIsing D
X

�2E

x.�/:

Let us introduce some more notation. Let z� be the graph obtained from �

by adding the vertex ze in the middle of each edge e 2 E. Given e; e0 2 E,

e ¤ e0, we shall denote by E.e; e0/ the set of subgraphs � � z� that contain the

half-edges .ze; t .e// and .o.e0/; ze0/, that do not contain the half-edges .o.e/; ze/

and .ze0 ; t .e0//, and such that each vertex in V.z�/ n ¹ze; ze0º is adjacent to an even

number of edges of �. Note that E.e; e/ is empty. Given any � 2 E.e; e0/, one

can resolve its crossings to obtain a disjoint union 0
�

t � , where 0
�

consists in a

family of disjoint simple closed curves and � is an oriented simple curve from ze

to ze0 . Note that the complex number .�1/q�.
0
�
/ exp

�
i
2

rot�.�/
�

is unchanged by

merging curves in the family above; therefore, it does not depend on the choice of

the smoothing of �.

De�nition 7. Let

F � W CE �! C
E

be de�ned by

.F �g/.e/ D
X

e02E

F �.e; e0/g.e0/
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for g 2 C
E and e 2 E, with coe�cients

F �.e; e0/ D

8
ˆ̂<
ˆ̂:

X

e…�2E

.�1/q�.�/x.�/ if e D e0,

X

�2E.e;e0/

.�1/q�.
0
�
/ exp

�
i
2

rot�.�/
�
xex.�/ else,

where x.�/ stands for the product of the weights of all the edges of � contained

in �.

We are now ready to state the main result of this paragraph. Note that in the

planar case, it was obtained independently (and announced �rst) by Lis [34].

�eorem 4.5. For any �, KW� ıF � D det.KW�/
1
2 � IdCE .

�e following elementary lemma will be useful.

Lemma 4.6. Let � be a graph containing an edge e1 adjacent to a vertex v of
even degree. For any edge e ¤ e1 adjacent to v, let n�.e1; e/ denote the number
of edges of � adjacent to v strictly between e1 and e (on one given side). �en,P
v2e¤e1

.�1/n�.e1;e/ D 1.

Proof. First note that the degree of v being even, the parity of n�.e1; e/ does not

depend on the choice of the side. Enumerating the edges e1; e2; : : : ; e2d cyclically

around v, we obtain
P
v2e¤e1

.�1/n�.e1;e/ D
P2d
jD2.�1/

j�2 D 1.

Proof of �eorem 4.5. Let � be a �xed vector �eld, that will be dropped from the

notations for simplicity. We need to check that the coe�cients of KW and of F

satisfy the relation
X

e2E

KW.e1; e/F.e; e2/ D ıe1;e2

X

�2E

.�1/q.�/x.�/

for all e1; e2 2 E. We will distinguish three cases.

Let us �rst assume that e1 and e2 coincide. In this case, by de�nition,
X

e2E

KW.e1; e/F.e; e1/

D
X

� 02E
e1…� 0

.�1/q.�
0/x.� 0/

�
X

o.e/Dt.e1/
e¤Ne1

X

�2E.e;e1/

.�1/q.
0
�
/ exp

�
i
2
.˛.e1; e/C rot.�//

�
xe1
xex.�/:
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Given � 2 E.e; e1/, let � 0 (resp.  0
�
) denote the 1-cycle obtained from � (resp. � )

by adding the half-edges .ze1
; t .e1// and .o.e/; ze/. �e assignment � 7! � 0

de�nes a map from E.e; e1/ to the set of 1-cycles containing e1, and it satis�es

xe1
xex.�/ D x.� 0/. Furthermore,

� exp
�
i
2
.˛.e1; e/C rot.�//

�
D � exp

�
i
2

rot. 0
�/

�

D .�1/q.
0
�
/Ct. 0

�
/
:

�e homology class of  0
�

satis�es Œ 0
�
� D Œ0

�
�C Œ� 0�. Since q is a quadratic form,

we get the following equalities modulo 2:

q.0� /C q. 0
�/C t . 0

�/ D q.� 0/C 0� � � 0 C t . 0
�/

D q.� 0/C 0� �  0
� C t . 0

�/

D q.� 0/C n� 0.e1; e/;

where n� 0.e1; e/ denotes the number of edges of � 0 adjacent to

t .e1/ D o.e/ DW v

strictly between e1 and e. Using Lemma 4.6, we get

X

e2E

KW.e1; e/F.e; e1/

D
X

� 02E
e1…� 0

.�1/q.�
0/x.� 0/C

X

� 02E
e12� 0

.�1/q.�
0/x.� 0/

� X

e2� 0

v2e¤e1

.�1/n�0 .e1;e/
�

D
X

� 02E

.�1/q.�
0/x.� 0/

as expected.

Let us now consider the case of e1 ¤ e2 with t .e1/ ¤ o.e2/. By de�nition,

X

e2E

KW.e1; e/F.e; e2/

D
X

� 02E.e1;e2/

.�1/
q.0

�0 / exp
�
i
2

rot.� 0/
�
xe1
x.� 0/

�
X

o.e/Dt.e1/
e¤Ne1

X

�2E.e;e2/

.�1/q.
0
�
/ exp

�
i
2
.˛.e1; e/C rot.�//

�
xe1
xex.�/:
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Given � 2 E.e; e2/, let � 0 (resp.  0
�
) be the subgraph (resp. the oriented curve)

obtained from � (resp. �) by adding the half-edges .ze1
; t .e1// and .o.e/; ze/. �is

de�nes a map from E.e; e2/ to E.e1; e2/ such that xex.�/ D x.� 0/. Furthermore,

� exp
�
i
2
.˛.e1; e/C rot.�/ � rot.� 0//

�
D � exp

�
i
2

rot./
�

D .�1/q./Ct./;

where  is the closed oriented curve obtained by following  0
�

and then �� 0 . Since

its homology class satis�es Œ� D Œ 0
�

C � 0 � D Œ0
�
�C Œ0

� 0�, we have

q.0� /C q./C t ./ D q.0� 0/C 0� � 0� 0 C t ./

D q.0� 0/C n� 0.e1; e/:

�is leads to

X

e2E

KW.e1; e/F.e; e2/

D
X

� 02E.e1;e2/

.�1/
q.0

�0 / exp
�
i
2

rot.� 0/
�
xe1
x.� 0/

�
1 �

X

e2� 0

t.e1/2e¤e1

.�1/n�0 .e1;e/
�
;

which vanishes by Lemma 4.6.

Let us �nally assume that e1 ¤ e2 and t .e1/ D o.e2/ D v, but e1 ¤ e2. (�e

easy case e1 D e2, which uses the fact thatF.e1; e1/ vanishes, is left to the reader.)

�is time, we have

X

e2E

KW.e1; e/F.e; e2/ D exp
�
i
2
˛.e1; e2/

�
xe1

�
X1 CX2 �

X

� 02E
e2…� 0

.�1/q.�
0/x.� 0/

�
;

where

X1 D
X

�2E.e1;e2/

.�1/q.
0
�
/ exp

�
i
2
.�˛.e1; e2/C rot.�//

�
x.�/

and

X2 D �
X

o.e/Dv

e¤Ne1;e2

X

�2E.e;e1/

.�1/q.
0
�
/ exp

�
i
2
. � ˛.e1; e2/

C ˛.e1; e/C rot.�//
�
xex.�/:
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Let us deal with the �rst term. Given � 2 E.e1; e2/, let � 0 2 E (resp.  0
�
) denote the

1-cycle obtained from � (resp. �) by removing the half-edges .ze1;v/ and .v; ze2
/.

We have x.�/ D x.� 0/, while

exp
�
i
2
.�˛.e1; e2/C rot.�//

�
D � exp

�
i
2

rot. 0
�/

�

D .�1/q.
0
�
/Ct. 0

�
/

D .�1/q.�
0/Cn�0 .e1;e2/

as in the �rst step of the proof. �erefore,

X1 D
X

�02E

e1;e2…�0

.�1/q.�
0/Cn�0 .e1;e2/x.� 0/:

Let us now deal with the second term. �is time, let us assign to � 2 E.e; e2/

the 1-cycle � 0 2 E obtained from � by adding the half-edge .v; ze/ and removing

.v; ze2
/. Clearly, xex.�/ D x.� 0/. As before, we obtain

�.�1/q.
0
�
/ exp

�
i
2
.�˛.e1; e2/C ˛.e1; e/C rot.�//

�
D .�1/q.�

0/Cn�0 .e1;e/;

so that

X2 D
X

� 02E
e2…� 0

.�1/q.�
0/x.� 0/

� X

v2e2� 0

e¤Ne1;e2

.�1/n�0 .e1;e/
�
:

Using Lemma 4.6 one last time, we get

X1 CX2 D
X

� 02E
e2…� 0

.�1/q.�
0/x.� 0/

� X

v2e2� 0

e¤Ne1

.�1/n�0 .e1;e/
�

D
X

� 02E
e2…� 0

.�1/q.�
0/x.� 0/:

�erefore, this coe�cient vanishes as well, and the proof is completed.

�is theorem immediately provides us with a wealth of s-holomorphic func-

tions. �ese generalize the spin-Ising fermionic observables of [6] and of [4],

which correspond to the case of critical isoradial graphs embedded in simply-

connected planar domains, and critical square lattices embedded in multiply-con-

nected planar domains, respectively.
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Corollary 4.7. Given any oriented edge e0 2 E pointing in the direction of the
�xed vector �eld, the function Fe0

2 C
} de�ned by

Fe0
.z/ D

exp
�
i �
4

�

cos
�
�e

2

�
X

�2E.e0;z/

.�1/q.
0
�
/ exp

�
� i
2

rot.�/
�
x.�/;

where z D ze ¤ ze0
and E.e0; z/ D E.e0; e/ [ E.e0; Ne/, is s-holomorphic around

every vertex of � not adjacent to e0.

Proof. First note that there is a bijection betweenE.e0; z/ andE.z; Ne0/ D E.e; Ne0/[

E. Ne; Ne0/ reversing the orientation of � . �erefore, for z D ze ¤ ze0
,

Fe0
.z/ D

exp
�
i �
4

�

sin
�
�e

2

�
X

�2E.z; Ne0/

.�1/q.
0
�
/ exp

�
i
2

rot.�/
�
xex.�/

D exp
�
i �
4

�
.S�1f /.z/;

with f 2 C
E de�ned by f .e/ D F. Ne; Ne0/. Observe that since e0 has argument

ae0
D 0, f belongs to L. �erefore, by Proposition 4.1, Fe0

is s-holomorphic

around a vertex v if and only if .KWf /. Ne/ vanishes for all Ne 2 Ev . For v not

adjacent to e0, we have .KWf /. Ne/ D .KW ıF /. Ne; Ne0/ D 0 by �eorem 4.5.

�is theorem also has a direct link to the Ising model. Indeed, consider a locally

�nite planar graph G with edge weights J D .Je/e 2 .0;1/E.G/ and faces that are

bounded topological discs. Let us assume that this weighted graph is biperiodic,

i.e. invariant under the action of a lattice L ' Z
2.

Corollary 4.8. �ere exists a non-trivial biperiodic s-holomorphic function on
the weighted graph .G; x/, where xe D tanh.ˇJe/, if and only if ˇ is the critical
inverse temperature for the Ising model on .G; J /.

Proof. A biperiodic weighted graph .G; x/ as described above is equivalent to

a �nite weighted surface graph .�; x/ D .G=L; x/ embedded in the torus C=L.

In the recent paper [10], Duminil-Copin and the author identi�ed the critical

inverse temperature ˇc for the Ising model on .G; J / as the only value of ˇ such

that det.KW�.�; x// vanishes. �e result therefore follows from �eorems 4.2

and 4.5, using the fact that f de�ned by f .e/ D F. Ne; Ne0/ belongs to L.
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4.4. �e integral of F
2. �e aim of this last paragraph is to show that one of the

most remarkable facts discovered in [6] extends to our setting: the existence of a

discrete version of Im
R
f .z/2dz for s-holomorphic functions.

Let us �x a weighted surface graph .�; x/ � † with weights parametrized

by xe D tan
�
�e

2
/, and let us assume that dual edges e and e� meet orthogonally,

so thatDe� D iDe. Given an s-holomorphic function F 2 C
}, de�neH 2 C

ƒ D

C
V.�/ ˚ C

V.��/ by

H.v/�H.w/ WD 2j Pr.F.z/I Œi exp.i.ae C �e//�
� 1

2 /j2

D 2j Pr.F.z0/I Œi exp.i.ae0 � �e0//��
1
2 /j2

for v 2 V.�/ and w 2 V.��/, with the notations illustrated below. Note that the

equality above follows from the very de�nition of s-holomorphicity.

v w

e

e0

z

z0

Proposition 4.9. �e restriction of H 2 C
ƒ to any simply connected domain in

† is well-de�ned up to an additive constant. Moreover, it satis�es the equation

H.v2/ �H.v1/ D Im.2 cos.�e/De F.ze/
2/

for any v1; v2 2 V.�/ (resp. V.��/) linked by e D .v1; v2/ 2 E.�/ (resp. E.��/).

Proof. Fix z D ze 2 }, and let � D �e denote the corresponding angle. Also, let

.v1; w1; v2; w2/ denote the four vertices in ƒ around z in counterclockwise order

with e D .v1; v2/ 2 E.�/, so that e� D .w1; w2/ 2 E.��/. By de�nition of H

and of De, we have

H.v2/ �H.v1/

D .H.v2/ �H.w2// � .H.v1/ �H.w2//

D 2j Pr.F.z/I Œi exp.i.a Ne � �//��
1
2 /j2

� 2j Pr.F.z/I Œi exp.i.ae C �//��
1
2 /j2

D 2Re..i exp.�i�//
1
2D

1
2

Ne F.z//
2 � 2Re..i exp.i�//

1
2D

1
2
e F.z//

2
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D
F.z/2

2
.i exp.�i�/D Ne � i exp.i�/De/

C
F.z/

2

2
.�i exp.i�/D Ne C i exp.�i�/De/

D cos.�/.�i De F.z/
2 C i De F.z/

2
/

D Im.2 cos.�/De F.z/
2/;

using the fact that D Ne D �De. A similar computation leads to

.H.v2/ �H.w1// � .H.v1/ �H.w1// D Im.2 cos.�/De F.z/
2/:

By simple connectivity, this shows that H is well-de�ned on V.�/ up to an addi-

tive constant. Similarly, one computes

.H.v1/ �H.w1// � .H.v1/ �H.w2// D Re.2 sin.�/De F.z/
2/

and

.H.v2/ �H.w1// � .H.v2/ �H.w2// D Re.2 sin.�/De F.z/
2/:

Since e� D .w1; w2/, �e� D �
2

� � and De� D iDe, we have

H.w2/ �H.w1/ D Im.2 cos.�e�/De� F.z/2/:

�is completes the proof.

Let us conclude this section, and this paper, with one last remark and some

comments about possible future work. In the isoradial case, it is showed in [6]

that H is discrete superharmonic on � and subharmonic on ��. More precisely,

given any vertex v 2 V.�/, let us denote by �1; : : : ; �n the adjacent half-rhombus

angles. �en,

.��H/.v/ D �
1

�v
Q
.n/

�1I:::I�n
.t1; : : : ; tn/;

where Q
.n/

�1I:::I�n
is some explicit quadratic form depending on �1; : : : ; �n, and

t1; : : : ; tn are real numbers. For �1; : : : ; �n > 0with �1C� � �C�n D � , Chelkak and

Smirnov prove that this quadratic form is non-negative, which implies the claim.

It turns out that even in the most general case of an arbitrary weighted sur-

face graph, the equality displayed above still holds, where �� is the associated

discrete Laplacian (De�nition 2). Moreover, Q
.n/

�1I:::I�n
is easily seen to remain

non-negative when the �j ’s add up to an odd multiple of � . �erefore, H remains

discrete superharmonic on � and subharmonic on �� when the weighted graph
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.�; x/ can be isoradially embedded in a �at surface (recall De�nition 1) with the

given weights x coinciding with the corresponding critical ones. �is could pos-

sibly lead to some conformal invariance results in the critical isoradial case in

non-trivial topology. However, the quadratic form Q
.n/

�1I:::I�n
is obviously not non-

negative for arbitrary (positive) values of the parameters �1; : : : ; �n. �erefore,

the discrete superharmonicity of H does not extend in full generality. In partic-

ular, the extension of the results of Chelkak and Smirnov to arbitrary biperiodic

graphs at criticality will require the use of another (less naive) discretization of

the Laplacian.
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