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Analyticity results for the cumulants

in a random matrix model

Razvan G. Gurau and �omas Krajewski

Abstract.�e generating function of the cumulants in random matrix models, as well as

the cumulants themselves, can be expanded as asymptotic (divergent) series indexed by

maps. While at �xed genus the sums over maps converge, the sums over genera do not.

In this paper we obtain alternative expansions both for the generating function and for the

cumulants that cure this problem. We provide explicit and convergent expansions for the

cumulants, for the remainders of their perturbative expansion (in the size of the maps) and

for the remainders of their topological expansion (in the genus of the maps). We show that

any cumulant is an analytic function inside a cardioid domain in the complex plane and we

prove that any cumulant is Borel summable at the origin.
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1. Introduction

Random matrix theory [1, 2] studies probability laws for matrices. �ey were
introduced more than half a century ago to model the energy spectra of large nuclei
and have later proven to be ubiquitous in physics and mathematics. Applications
to mathematics range from combinatorics of maps to free probability while in
physics, beyond energy spectra of heavy nuclei, random matrices can be used to
describe disordered systems and discretized models of random surfaces.

�e application of random matrices to random surfaces and 2d quantum grav-
ity [3] relies on the combinatorics of maps. �e matrix integrals arising in random
matrix theory depend on (at least) two parameters: a coupling constant � and the
size of the matrix, N . A formal expansion in the parameter � of such matrix inte-
grals yields generating functions for maps of arbitrary genus. �e coupling con-
stant � measures the size of the map (the number of its edges), while the parameter
1=N turns out to measure the genus of the map. While this formal expansion is
extremely successful in enumerating both maps of �xed size and arbitrary genus
and maps of �xed genus and arbitrary size, it does not provide an estimation of
the matrix integral because it does not converge.

�is phenomenon is well understood. From a combinatorial standpoint, the
divergence of this formal series is due to the proliferation of maps: while the maps
of �xed genus are an exponentially bounded family, maps of arbitrary genus are
not. At the analytical level, this re�ects the fact that � D 0 lies on the boundary
of the analyticity domain of the generating function.

One can analyze in some depth these formal power series. Restricting to a �xed
order in 1=N one obtains convergent series enumerating maps of �xed genus. �is
yields the celebrated 1=N expansion for random matrices [4] (see also [5, 6, 7] for
rigorous mathematical results on this expansion). �e series at �xed genus exhibit
a critical behavior at some critical value �c of the coupling constant and a formal

sum over random surfaces of arbitrary genus can be obtained by taking the so
called double scaling limit � ! �c; N ! 1 while keeping .�c � �/N 5=4 �xed.
�e precise status of the 1=N series is somewhat involved. Usually the 1=N series
is taken as an asymptotic series: while each order in 1=N is well understood, the
rest term is usually di�cult to control.

Analytical control over the rest term has been achieved in the region of strictly
convex potential (see for instance [8] and references therein). �is region corre-
sponds to a stable perturbation <� � 0 or to an unstable but small perturbation
(such that the perturbation potential is always dominated by the quadratic part and
absolute convergence of the matrix integral is ensured). However, one would like
to exert some same kind of analytic control over the rest term of the 1=N series
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also outside the region of strictly convex potential. �is is due to the following
two facts.

� When considering the interpretation of a matrix integral as a generating func-
tion of maps, <� � 0 corresponds to an alternating sum over maps. A gen-
uine sum over maps is obtained only for <� < 0. Moreover, the critical point
�c (at which the �xed genus series become critical) lies far on the negative
real axis (for bipartite quadrangulations for instance �c D � 1

12
). In order to

study the behavior of the matrix integral in the critical regime one needs to
control the rest term close to this critical point.

� In the region <� < 0, instanton e�ects e
� 1

j�j are expected to play a very
important role. As they correspond to non trivial solutions of the classical
equations of motion, they correspond precisely to the region where the per-
turbation potential equals the quadratic part, hence outside the strictly convex
potential region.

In this paper we focus on the analyticity of the cumulants in a speci�c random
matrix model. Building on results in random tensor theory [9, 10] and on the
Loop Vertex Expansion (LVE) introduced in [11] we establish, for any cumulant,
an explicit expansion which is convergent for � in the cardioid domain:

� 2 C; 4j�j < cos2
�arg �

2

�

:

We further provide explicit convergent expressions for the remainder in the ex-
pansion in � and as a by product we prove that any cumulant is Borel summable
in � uniformly in N .

More importantly, we provide explicit expressions for the remainder in the 1=N

expansion of any cumulant which is absolutely convergent in the cardioid domain:

� 2 C; 12j�j < cos2
�arg �

2

�

:

We emphasize that this domain goes well outside the strictly convex potential
region. Our paper is thus a �rst step towards the rigorous study of the instanton
e�ects and of the critical regime in matrix models. However, work still remains to
be done: in order to access these e�ects, one needs to �nd analytic continuations
of our explicit formulae which hold all the way up to the negative real axis (and
up to � 1

12
).

�is paper is divided into four parts. In Section 2 we introduce some nota-
tion and state our main results. In Section 3 we introduce the intermediate �eld
representation which we subsequently use for the proofs of our results which are
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performed in Sections 4 and 5. Some technical details are collected in the appen-
dices.

2. Statement of the main results

Matrix integral and normalization. In this paper, we consider the Gaußian
matrix model with a quartic perturbation. �e generating function of its cumulants
is de�ned by the integral over complex N � N matrices M :

ZŒJ; J �I �; N � D N

D
; (1)

where

N D
Z

dM exp
°

� Tr.MM �/ � �

2N
Tr.MM �MM �/

C
p

N Tr.JM �/ C
p

N Tr.MJ �/
±

and

D D
Z

dM exp
°

� Tr.MM �/ � �

2N
Tr.MM �MM �/

±

:

�e source J is itself a N � N complex matrix and J � is its adjoint. �e
cumulants of the quartic model are obtained by taking derivatives of logZ with
respect to J and J � evaluated at J D J � D 0.

A Taylor expansion in �, J and J �, followed by the evaluation of the Gaußian
integral, expresses Z as a sum over ribbon Feynman graphs (or combinatorial
maps). �e normalization in N has been chosen in such a way that the amplitude
of a ribbon graph is N �.G/, with �.G/ the Euler characteristic of the graph (i.e.
the Euler characteristic of a surface of minimal number of handles in which G

can be embedded). Since we are only interested in the cumulants, we divide the
integral by its value at J D J � D 0.

�e measure dM is the standard Lebesgue measure on matrices suitably nor-
malized in such a way that ZŒJ; J �I �; N � D 1 for � D 0 and J D J � D 0,

dM D �N
Y

1�i;j �N

dRe.Mij /d Im.Mij /:

In this paper, we are interested in establishing analyticity properties of the
cumulants in the variable �.
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�e analyticity of ZŒJ; J �I N; �� is fairly easy to establish using conventional
techniques. However, in order to study the analyticity of logZŒJ; J �I N; ��, these
techniques have to be supplemented by a detailed study of the zeros of ZŒJ; J �� in
the complex domain, which is a harder problem.

Loop Vertex Expansion (LVE) graphs and their amplitudes. �e LVE is
based on combinatorial maps with cilia. A cilium is a half edge hooked to a vertex.
A combinatorial map is a graph with a distinguished cyclic ordering of the half
edges incident at each vertex. Combinatorial maps are conveniently represented
as ribbon graphs whose vertices are disks and whose edges are ribbons (allowing
one to encode graphically the ordering of the half edges incident at a vertex).

De�nition 1 (LVE graphs and corners). A LVE graph .G; T / is a connected ribbon
graph G with labels on its vertices having furthermore

� a distinguished spanning tree T � G,

� a labeling of the edges of G not in T (loop edges in physics parlance),

� at most one cilium per vertex.

A LVE tree is a LVE graph without cycles.
A corner of a LVE graph .G; T / is a pair of consecutive half edges attached to

the same vertex.

1 2 3

4

loop 1

loop 2

cilium

Figure 1. A LVE graph with one cilium and one broken face (coloured in grey).
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We denote K.G/, V.G/, E.G/ and F.G/ the sets of cilia, vertices, edges and
respectively faces of G. �e edges of G not in T are called loop edges and we
denote L.G; T / D E.G/ � E.T / the set of loop edges. �e faces of G are parti-
tioned between the faces which do not contain any cilium (which we sometimes
call internal faces) and the ones which contain at least a cilium which we call
broken faces. We denote B.G/ the set of broken faces of G. Each broken face
corresponds to a puncture in the Riemann surface in which G is embedded, and
the Euler characteristic of the graph G is

�.G/ D jV.G/j � jE.G/j C jF.G/j � jB.G/j D 2 � 2g.G/ � jB.G/j

where jX j denotes the cardinality of X and g.G/ is the genus of the graph G.
Let us consider a LVE graph .G; T / with vertices labeled 1; : : : ; jV.G/j. We

associate to every edge e of the tree T a weakening parameter te 2 Œ0; 1�. For any
two vertices i and j of the graph G we de�ne

.CT /ij D inf
®

te
ˇ
ˇ e in the unique path P

T
i$j in T joining i and j

¯

;

and the in�mum is 1 if i D j . We arrange .CT /ij in a (symmetric) V.G/ � V.G/

matrix CT . �e matrix CT is a positive matrix. �is statement is non trivial and
its proof can be found in [12] or [13].

To any real, positive, symmetric n � n matrix .Cij /1�i;j �n we associate a uni-
tary invariant normalized Gaußian measure d�C .A/ on n random N �N Hermit-
ian matrices A D .A1; : : : ; An/ de�ned by its covariance:

Z

d�C .A/ Ai jabAj jcd D Cij ıad ıbc ;

Z

d�C .A/ D 1; (2)

where Ai jab and Aj jcd are the matrix elements of the matrices Ai and Aj . �is
Gaußian measure can be represented as a di�erential operator. Indeed, denoting

Tr
h @

@Ai

@

@Aj

i

D
X

a;b

@

@Ai jab

@

@Aj jba

;

@

@Ai jab

D 1

2

� @

@ReAi jab

� i
@

@ImAi jab

�

;

the Gaußian expectation of any function F.A1; : : : An/ is
Z

d�C .A/ F.A1; : : : An/ D Œe
1
2

P

ij Cij Tr
�

@
@Ai

@
@Aj

�

F.A1; : : : An/�Ai D0:

To every loop edge e 2 L.G; T / we associate a parameter se 2 Œ0; 1�. As the
loop edges are labeled 1; : : : jL.G; T /j, we will denote s1; : : : sjL.G;T /j the param-
eter associated to the edge 1; : : : jL.G; T /j. Note that for the loop edge e D .i; j /

the parameter se and the weakening factor .CT /ij are completely unrelated.
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We associate to every LVE graph .G; T / the amplitude A.G;T /ŒJ; J �; �; N �

de�ned as a Gaußian integral over jV.G/j Hermitian matrices A D .Ai/1�i�jV.G/j

(each one of size N � N ):

A.G;T /ŒJ; J �I �; N �

D .��/jE.G/jN jV.G/j�jE.G/j

jV.G/jŠ
Z

1�s1�����sjL.G;T /j�0

Y

e2L.G;T /

dse

Z

Œ0;1�

Y

e2E.T /

dte

� Y

eD.i;j /2L.G;T /

inf
e02P T

i$j

te0

�

Z

d�sjL.G;T /jCT
.A/

Y

f 2F .G/

Tr
° �!

Y

c2@f

�

1 � i

r

�

N
Aic

��1

.JJ �/�c

³

;

(3)

where

�
�!
Y

c2@f

is the oriented product around the corners c on the boundary @f of the

face f ;

� ic is the label of the vertex the corner c belongs to;

� �c D 1; 0 depending on whether c is followed by a cilium (1) or not (0).

We refer to Appendix C for some examples of LVE graphs and their ampli-
tudes.

�e Gaussian measure d�sjL.G;T /jCT
.A/ can also be written as the di�erential

operator:
Z

d�sjL.G;T /jCT
.A/F.A/

D Œe

sjL.G;T /j
2

P

ij Œinf
.k;l/2P T

i$j

tkl � Tr
�

@
@Ai

@
@Aj

�

F.A/�Ai D0:

In the case of a LVE graph which is just a tree, G D T , we will use the short-
hand notation AT ŒJ; J �I �; N � � A.T;T /ŒJ; J �I �; N �. �e amplitude simpli�es
drastically in this case: there are no integrals over the s parameters (and sjL.G;T /j

is set to 1), the product over in�ma in the second line is empty (hence set to 1),
and only one trace is obtained (as trees have only one face).
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Constructive expansions of the generating function. Let C be the cardioid
domain in the complex plane (see Figure 2),

C D
°

� 2 C with 4j�j < cos2
�arg �

2

�±

;

where we choose the determination �� < arg � < � of the argument (hence the
argument has a cut on the negative real axis).

Im �

Re �
1

4

Figure 2. Analyticity domain in the complex � plane.

Our �rst result is a convergent expansion of logZŒJ; J �I �; N � as a sum over
LVE trees.

�eorem 1 (Tree expansion). For any � 2 C, there exists �� > 0 depending on �

such that for kJJ �k < �� the logarithm of ZŒJ; J �I �; N � is given by the absolutely

convergent expansion

logZŒJ; J �I �; N � D
X

T LVE tree

AT ŒJ; J �I �; N �: (4)

In order to compare the tree expansion of �eorem 1 with the conventional
perturbative expansion, it is necessary to further expand some of the loop edges.
�e following theorem is obtained by recursively adding loop edges to the LVE
trees.



Analyticity results for the cumulants in a random matrix model 177

�eorem 2 (Perturbative expansion with remainder). For any � 2 C, there exists

�� > 0 depending on � such that, for kJJ �k < ��,

logZŒJ; J �I �; N �

D
X

G ciliated ribbon graph
jE.G/j�n

.��/jE.G/jN �.G/

j Aut.G/j
Y

f 2B.G/

TrŒ.JJ �/c.f /� C RnŒJ; J �I �; N �;

(5)

where c.f /is the number of cilia in the broken face f and the perturbative re-

mainder at order n is a convergent sum over LVE graphs with at least n C 1 edges

and at most n C 1 loop edges

RnŒJ; J �I �; N �

D
X

.G;T / LVE graph
jE.G/jDnC1

A.G;T /ŒJ; J �I �; N � C
X

T LVE tree
jE.T /j�nC2

AT ŒJ; J �I �; N �:

Note that the �rst term in (5) involves a sum over ribbon graphs (not LVE
graphs) and reproduces the perturbative expansion over maps. �e remainder is
made of the more involved LVE graphs and its amplitude involves further non
trivial Gaußian integrations. In particular, the ribbon graphs in the perturbative
expansion do not carry labels on their vertices: this is the origin of the factor

1
j Aut.G/j

(where Aut.G/ is the cardinal of the group of permutations of the labels
on the vertices that preserves the adjacency relations of the graph). Alternatively,
one could also work with labeled ribbon graphs and divide by jV.G/jŠ.

Since we are dealing with random matrices of size N , it is also possible to or-
ganize the expansion in powers of 1

N
. Such an expansion is governed by the genus

of the ribbon graphs, as a graph with Euler characteristic �.G/ scales like N �.G/.
Contrary to the standard perturbative expansion, the expansion over graphs of
�xed genus g has a �nite ( 1

12
) radius of convergence, as can be easily seen from

their asymptotic behavior [14]. In particular, �c D � 1
12

is the critical point, instru-
mental in constructing the double scaling limit. �is motivates the introduction of
the following cardioid (see Figure 3):

zC D
°

� 2 C with 12j�j < cos2
�arg �

2

�±

: (6)

�e shift from the factor 4 for C to 12 for zC re�ects the fact that the radius of
convergence of the sum over ribbon graphs of �xed genus is 1

12
while the radius

of convergence of the sum over trees is 1
4
.
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Im �

Re �

1

4

1

12

�c CzC

Figure 3. Analyticity domain of the topological expansion.

�eorem 3 (Topological expansion with remainder). For any � 2 zC, there exists

�� > 0 depending on � such that for kJJ �k < �� the logarithm of ZŒJ; J �I �; N � is

logZŒJ; J �I �; N �

D
� X

G ciliated ribbon graph
g.G/�g

.��/jE.G/jN 2�2g.G/�jB.G/j

j Aut.G/j
Y

f 2B.G/

TrŒ
�

JJ �
�c.f /

�
�

C zRg ŒJ; J �I �; N �;

(7)

where the order g topological remainder is given by the absolutely convergent

expansion

zRg ŒJ; J �I �; N � D
X

.G;T / LVE graph with
g.G/ D g C 1 and g.G � eL.G;T // D g

A.G;T /ŒJ; J �; �; N �;

where G�eL.G;T / is the graph obtained by removing the loop edge with the highest

label.

�is expansion is also obtained by a recursive addition of loop edges to a tree,
but with a stop rule which takes into account the topology: one iteratively adds
loop edges as long as the genus of the LVE graph .G; T / does not exceed g.

Cumulants. �e main objects of interest in this paper are the cumulants (con-
nected correlation functions).
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De�nition 2 (Cumulants). �e cumulant of order 2k is the derivative

Ka1b1c1d1;:::;akbkckdk
.�; N /

D @2

@J �
a1b1

@J
c1d1

� � � @2

@J �
akbk

@J
ckdk

logZŒJ; J �I �; N �

ˇ
ˇ
ˇ
ˇ
J DJ �D0

:

Here J �
ab

is the complex conjugate of Jab , so that .J �/ab D J �
ba

. Note that
all the derivatives of logZ which are not of this form vanish. For example, the
order 2 cumulant is

Kabcd .�; N / D @2

@J �
ab

@J
cd

logZŒJ; J ��

D N.hMabM �
cd i � hMabihM �

cd i/:

�e normalization is chosen in such a way that the contribution of a genus g

graph with b broken faces scales as N 2�2g�b , corresponding to the Euler charac-
teristic of a surface with punctures.

Due to the unitary invariance of the matrix model, the cumulants have a spe-
ci�c form. For any permutation of k elements � 2 Sk , let us write C.�/ the
integer partition of k associated to the cycle decomposition of � and jC.�/j the
number of cycles it contains. Let us also denote by …k the set of integer parti-
tions of k (recall that a partition � 2 …k is an increasing sequence of j�j integers
0 < k1 � � � � � kj�j such that k1 C � � � C kj�j D k). To any integer partition of k

we associate a trace invariant:

Tr�.X/ D Tr.Xk1/ : : : Tr.Xkp /:

As we will see below, the cumulants are written in terms of the Weingarten
functions Wg.���1; N / [15, 16]. �ese functions arise when integrating over uni-
tary matrices U.N / with the invariant normalized Haar measure. Denoting U �

ab

the complex conjugate of Uab we have [15]

Z

dU Ua1b1
: : : Uakbk

U �
c1d1

: : : U �
cl dl

D ıkl

X

�;�2Sk

ıa�.1/c1
: : : ıa�.k/ck

ıb�.1/d1
: : : ıb�.k/dk

Wg.���1; N /:



180 R. G. Gurau and �. Krajewski

�e functions Wg.�; N / only depends on the cycle structure of � . For low values
of n, the Weingarten functions read

Wg..1/; N / D 1

N
; Wg..1; 1; 1/; N / D N 2 � 2

N.N 2 � 1/.N 2 � 4/
;

Wg..1; 1/; N / D �1

N 2 � 1
; Wg..1; 2/; N / D �1

.N 2 � 1/.N 2 � 4/
;

Wg..2/; N / D �1

N.N 2 � 1/
; Wg..3/; N / D 2

N.N 2 � 1/.N 2 � 4/
:

Let us choose a permutation � 2 Sk whose cycle decomposition reproduces
the contribution of the broken faces to the amplitude of a LVE graph. Speci�cally,
if there are b D jB.G/j broken faces with k1; : : : ; kb cilia, we choose � to have a
cycle decomposition of the form

� D .i1
1 : : : i1

k1
/ : : : .ib

1 : : : ib
kb

/:

�is permutation de�nes a labeling of the cilia in such a way that the product of
traces over the broken faces can be expressed as

Y

1�m�b

Tr
h

JJ �

�!
Y

1�r�km

X im
r

i

D
X

1�p1;q1����N

Y

1�l�k

.JJ �/pl ql
X l

ql p�.l/
;

where X l is the product of the resolvents

�

1 � i

r

�

N
Aic

��1

located on the corners separating the cilia labeled l and �.l/. Similarly, for the
F.G/�B.G/ unbroken faces we denote by Y m the product of the resolvents around
the unbroken face labeled m.

Proposition 1. �e amplitude of a LVE graph in eq. (3) expands in trace invariants

as

A.G;T /ŒJ; J �; �; N � D
X

�2…k

A
�
.G;T /.�; N / Tr�.JJ �/;
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with

A�
.G;T /.�; N /

D .��/jE.G/jN jV.G/j�jE.G/j

jV.G/jŠ
Z

1�s1�����sjL.G;T /j�0

Y

e2L.G;T /

dse

Z
Y

e2E.T /

dte

� Y

eD.i;j /2L.G;T /

inf
e02P T

i$j

te0

� Z

d�sjL.G;T /jCT
.A/

X

�;�2Sk
C.�/D�

X

1�p1;:::;pk�N

Wg.���1; N /
Y

1�m�F .G/�B.G/

TrŒY m�
Y

1�l�k

X l
p�.l/p�.l/

:

(8)

If the LVE graph .G; T / is reduced to a tree we use the shorthand notation
A�

T .�; N / instead of A�
.T;T /

.�; N /.

Proposition 2 (Scalar cumulants). �e order 2k cumulants can be written as a

sum over partitions of k and over two permutations of k elements:

Ka1b1c1d1;:::;akbkckdk
.�; N /

D
X

�2…k

K�.�; N /
X

�;�2Sk

Y

1�l�k

ıcl ;a
��� ��1.l/

ıdl ;b
��� ��1.l/

;

where �� and �� are arbitrary permutations such that ��.��/�1 has a cycle struc-

ture corresponding to the partition � and the scalar cumulants K�.�; N / are given

by the expansion

K�.�; N / D
X

T LVE tree with k cilia

A
�
T .�; N /:

Choosing any other pair of permutations �� and �� leads to an identical result,
after reorganizing the sum over � and � . K�.�; N / only depends on the partition
� and not on the index structure of Ka1b1c1d1;:::;akbkckdk

.�; N / which explains
why we call it scalar cumulant.

�e main goal of this paper is to establish some analyticity results as well as
bounds for the scalar cumulants K�.�; N / regarded as functions of � inside a
cardioid with N considered as a parameter.
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Constructive expansions for cumulants. Our �rst result states that the expan-
sion of K�.�; N / as a sum over trees yields an analytic function of � 2 C.

�eorem 4 (Analyticity and bound for cumulants). �e series

K�.�; N / D
X

T LVE tree with k cilia

A
�
T .�; N /;

de�nes an analytic function of � 2 C. Moreover, each term in this sum is bounded

(for N large enough) as

jA�
T .�; N /j � N 2�j�jj�jjE.T /j .kŠ/2 22k

�

cos
� arg �

2

��2jE.T /jCk jV.T /jŠ
; (9)

where j�j is the number of integers in the partition � of k (number of cilia).

By further expanding loop edges on each tree, we obtain a perturbative expan-
sion with a well controlled remainder. In order to identify the graphs contributing
to K�.�; N /, we say that a ciliated ribbon graph has broken faces corresponding to
� if the partition of the cilia de�ned by the broke faces agrees with the partition � .

�eorem 5 (perturbative expansion with remainder). �e perturbative expansion

of the cumulants reads:

K�.�; N / D
X

G ribbon graph with k cilia
broken faces corresponding to � and jE.G/j � n

.��/jE.G/jN �.G/

j Aut.G/j C R�;n.�; N /:

�e perturbative remainder R�;n.�; N / is a sum over LVE graphs with k cilia, at

least n C 1 edges and at most n C 1 loop edges,

R�;n.�; N / D
X

.G;T / LVE graphs with broken structure corresponding to �

jE.G/j�nC1 and jL.G;T /j�nC1

A
�
.G;T /.�; N /:

�e perturbative reminder is analytic for � 2 C and for any � 2 C and N large

enough it obeys the bound:

jR�;n.�; N /j � N 2�j�j
� 23k�1kŠ

�

cos
� arg �

2

��k

�

.n C 1/Š
� 4j�j

�

cos
� arg �

2

��2

�nC1

0

B
B
B
@

4j�j
�

cos
�

arg �

2

��2

�

1 � 4j�j
�

cos
�

arg �
2

��2

�nC2
C 2kCnC2

1

C
C
C
A

:
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Borel summation for cumulants. �e previous expansion de�nes an asymp-
totic expansion of the cumulants. Indeed, let us collect the contribution of all
graphs of a given order in

a�;n.N / D
X

G ribbon graph with k cilia
broken faces � and jE.G/j D n

N �.G/

j Aut.G/j ;

so that for � 2 C the bound on R�;n.�; N / implies

lim
�!0

ˇ
ˇ
ˇ
ˇ
ˇ

K�.�; N / �
P

k�m�n.��/ma�;m.N /

�n

ˇ
ˇ
ˇ
ˇ
ˇ

D 0:

However, the series
P

n a�;n�n is divergent which means that K�.�; N / is
not analytic at the origin. From a combinatorial point of view, the divergence
of the series is due to the occurrence of too many graphs at a given order in n.
Nevertheless,

P
a�;n.N /�n contains all the information required to reconstruct

K�.�; N / through the Borel summation procedure. �e latter is based on the
following theorem.

For any R > 0, letDR be the disc of radius R tangent at the origin (see Figure 4)

DR D
°

� 2 C

ˇ
ˇ
ˇ Re

� 1

�

�

>
1

R

±

;

and let †� be the half strip (see Figure 4 for a representation of DR and †R)

†� D
°

s 2 C

ˇ
ˇ
ˇ distance.s;RC/ <

1

�

±

:

�eorem 6 (Nevanlinna and Sokal [17]). Let R > 0 and F!.�/ be a family of

analytic functions on the disc DR depending on some parameter ! 2 �. If there

exists a sequence an.!/ of functions of ! 2 � obeying, for any n, � 2 DR and

! 2 � the uniform bound:

ˇ
ˇ
ˇF!.�/ �

n
X

mD0

am.!/�m
ˇ
ˇ
ˇ < C�nC1j�jnC1.n C 1/Š; (10)

with C and � two positive constants that do not depend on !, then the series

B!.s/ D
1

X

nD0

an.!/

nŠ
sn;

has radius of convergence ��1 and can be analytically continued in the strip †� .

Moreover, there exists a constant B such that, for any s 2 †� and ! 2 �, we have

jB!.s/j � Be
s
R :
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R ��1

DR †�

Figure 4. Domain of analyticity of F and of its Borel transform B .

Finally, for any � 2 DR, F!.�/ is given by the absolutely convergent integral

F!.�/ D
Z 1

0

ds B!.s/e� s
� : (11)

If the assumption of �eorem 6 are ful�lled, F! is said to be Borel summable
at � D 0, uniformly in !. In this case, F! can be uniquely recovered from the
coe�cients an.!/ using its Borel transform s 7! B!.s/ and eq. (11).

For any � 2 DR � C,
�

cos arg �

2

�

� 2�1=2 and there exists R such that the
perturbative reminder in �eorem 5 is bounded as in eq. (10).

Corollary 1 (Borel summability). �e rescaled cumulants N �2Cj�jK�.�; N /

(with j�j the number of parts in the partition �) are Borel summable in � at the

origin, uniformly in N , so that

K�.�; N / D
Z 1

0

ds e� s
�

� X

n�k

a�;n.N /

nŠ
sn

�

;

in a disc included in C tangent to the imaginary axis at the origin and independent

of N .

Topological expansion for cumulants. �e Taylor expansion at the origin of
the cumulants leads to ribbon graphs drawn on surfaces with boundary. �e Eu-
ler characteristic of a surface determines the power of N . �is is known as the
topological expansion. While it is well known that the contributions of Feynman
graphs of �xed genus are analytic functions in a disk of �xed radius 1

12
, less is
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known about the remainder. We state an analyticity results and a bound for the
remainder.

�eorem 7 (topological expansion). �e cumulants K�.�; N / are expanded in

inverse powers of N as

K�.�; N / D
g

X

hD0

N 2�2h�j�jK�;h.�/ C zR�;g.�; N /;

where K�;h.�/ is a sum over ciliated ribbon graphs of genus h whose broken faces

correspond to the partition � , convergent for j�j < 1
12

:

K�;h.�/ D
X

G ribbon graph with
genus h and broken faces corresponding to �

.��/jE.G/j

j Aut Gj :

�e topological remainder zR�;g.�; N / is a sum over LVE graphs with broken faces

corresponding to � , genus g C 1 and such that, if we remove the loop edge of

highest label, we get a genus g graph

zR�;g .�; N / D
X

.G;T / LVE graphs with broken faces corresponding to �

g.G/DgC1 and g.G�ejL.G;T /j/Dg

A
�
.G;T /.�; N /:

�is series converges for � 2 zC and in this domain the topological reminder is

bounded by

j zR�;g.�; N /j � N 2�2.gC1/�j�j 23kkŠ
�

cos
� arg �

2

��k
C 00

gC1

� 12j�j
�

cos
� arg �

2

��2

�2gC2

.4g C k C 1/Š
�

1 � 12j�j
�

cos
�

arg �

2

��2

�4gCk
;

with C 00
g a constant depending only on the genus.

3. Intermediate �eld representation

To begin with, we introduce the intermediate �eld A (a N � N Hermitian matrix)
and write the quartic interaction as a Gaußian integral:

exp

²

� �

2N
Tr.MM �MM �/

³

D
Z

dA exp

´

�1

2
Tr.A2/ C i

r

�

N
Tr.M �AM/

µ

;
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where the integral is over Hermitian N �N matrices and is assumed to be normal-
ized. �e new �eld A propagates with the trivial Gaußian measure and the four
valent interaction is traded for a three valent interaction involving an A �eld and
a M and a M � �eld. �is is illustrated in Figure 5.

A ()

Figure 5. Intermediate �eld representation.

.

�e generating function is thus

ZŒJ; J �I �; N � D
Z

dMdA exp
°

� 1

2
Tr.A2/ � Tr

h

M �
�

1 � i

r

�

N
A

�

M
i

C
p

N Tr.JM �/ C
p

N Tr.MJ �/
±

;

(12)

�e integral over the original matrices M and M � is a (non normalized) Gaußian

integral with covariance
�

1 � i
q

�
N

A
�

˝ 1. Taking into account that

det
h�

1 � i

r

�

N
A

�

˝ 1
i

D
h

det
�

1 � i

r

�

N
A

�iN

D exp
°

N Tr log
�

1 � i

r

�

N
A

�±

;

we obtain

ZŒJ; J �I �; N � D
Z

dA exp
°

� 1

2
Tr.A2/ � N Tr log

�

1 � i

r

�

N
A

�

� N Tr
h

J
�

1 � i

r

�

N
A

��1

J �
i±

:

(13)

We thus have three di�erent expressions (1), (12) and (13) for the generating
function of the cumulants logZŒJ; J �I �; N �. �eir Feynman graph expansions
are constructed as follows.

�e expression (12) involves two types of �elds A and M so that the Feynman
graphs have two types of edges. �e M edges (solid edges) are oriented from
M � to M since M is a complex matrix while the A edges (wavy edges) are not
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because A is Hermitian. �ere are 3-valent vertices corresponding to Tr.M �AM/

and univalent vertices, also viewed as extra half-edges (external legs in the physics
literature) corresponding to Tr.JM �/ and Tr.MJ �/. Note that all the variables we
integrate over are matrices so that we have a cyclic ordering at each vertex and
the Feynman graphs are ribbon graphs. We embed the trivalent vertices turning
in the clockwise direction so that the A edges are on the right when we follow the
orientation of the M edges.

M � M AA

A

M �M

M �J M J �

Figure 6. Propagators and interaction.

Integrating over A in (12) before proceeding to the perturbative expansion,
we recover the integral (1). Its Feynman rules involve only the M edges (which
are oriented) as well as an even number of univalent vertices (external legs) and
tetravalent vertices. �e latter involve two incoming edges and two outgoing ones,
alternating in cyclic order around the vertex.

Integrating over M in (12) before proceeding to the perturbative expansion,
we recover the integral (13). Its Feynman rules involve the A edges and two types
of vertices of arbitrary valence (see Figure 7).

() ()

Figure 7. Intermediate �eld vertices.
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�e �rst one is an ordinary ribbon vertex, arising from the term Tr log
�

1�i
q

�
N

A
�

.

�e second one comes from the coupling to the source Tr J
�

1� i
q

�
N

A
��1

J �. It is
a ribbon vertex with a cilium on a corner (the insertion of the source).
We illustrate the three representations for a graph contributing to the order 2
cumulant in Figure 8.

Variable M . Variables M and A. Variable A.

()()

Figure 8. �ree equivalent graphs contributing to the order 2 cumulant.

�e perturbative expansion can be performed either starting from (1) or starting
from (13), using

�

1 � i

r

�

N
A

��1

D
1

X

nD0

�

i

r

�

N

�n

An

and performing the Gaußian integral over A.
Comparing the two perturbative expansion for the order 2 cumulant yields the

following bijection.

Proposition 3. �e intermediate �eld representation yields the following bijection

8

ˆ̂
<

ˆ̂
:

connected alternating
2-in 2-out ribbon

graphs with n vertices
and 2m external edges

9

>>=

>>
;

()

8

<

:

connected ribbon
graphs with n edges

and m ciliated vertices

9

=

;
:

�is bijection can be described explicitly as follows. Starting with a connected
alternating 2-in 2-out ribbon graph with n vertices and 2m external edges, we ob-
serve that its faces come in three types. If the face does not contain an external
edge, either it is on the left or it is on the right of all the edges which bound it.
We color the �rst kind of faces in black and the second kind white. If a face is
broken, then it contains an even number of external edges that are alternatively
incoming and outgoing. �e pieces of the face comprised between two consec-
utive external edges are either on the left or on the right of all the edges which
bound them. We color these pieces of faces in black and respectively in white.
We join pairs of incoming and outgoing external edges separated by black pieces
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of broken faces into cilia. �e black faces (ciliated or not) de�ne the vertices of the
intermediate �eld graphs. Two such vertices are joined by an intermediate �eld
edge if and only if the associated faces meet at vertex.

Conversely, given a intermediate �eld graph, we expand its vertices into (black)
faces, and we cut the cilia into two. We then form tetravalent vertices by contract-
ing the intermediate �eld edges.

�is construction is a generalization of the medial graph construction to graphs
with external edges (or equivalently, cilia). Indeed, if there is no cilium on the A

graph, then the associated M graph is its medial graph. �e basic features of this
bijection are summarized in Table 1.

Table 1. Matrix model graphs – intermediate �eld graphs correspondence.

matrix model intermediate �eld
vertex edge

black face vertex
white face face

edge corner
pair of external legs cilium

Let us end this section by giving two consequences of the intermediate �eld
representation of the matrix model.

First, the number of planar graphs with n vertices contributing to the order 2
cumulant (2-point function in physics parlance) can be evaluated explicitly us-
ing the Schwinger–Dyson equation for the intermediate �eld. �e details of this
computation are relegated to the Appendix A and the result is

2 � 3n

n C 2
Cn with Cn D .2n/Š

nŠ2.n C 1/
.Catalan numbers/:

�is is nothing but the number of planar bipartite quadrangulations with n quad-
rangles, rooted at an edge. Bipartiteness means that the vertices of the quadran-
gulation are colored in black and white and the edges only connect vertices of
di�erent colors. �e M graph is the dual of the quadrangulation. �e black/white
coloring of the faces of the M graph induces an orientation of the M edges in
such a way that all the M vertices are alternating 2-in 2-out.

�e intermediate �eld graphs are in bijection with bipartite quadrangulations
with m marked edges. �e intermediate �eld graph is obtained by connecting the
pair of black vertices on each quadrangle by an wavy A edge (and adding a cilium
for every incidence of a marked edge at a black vertex). We thus obtain:
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Proposition 4. �ere is a bijection

8

ˆ
<̂

ˆ̂
:

bipartite
quadrangulations with n

faces of genus g having
m marked edges

9

>
>=

>>;

()

8

<

:

connected ribbon graphs
of genus g with n edges

and m cilia

9

=

;
:

Dual quadrangulation. Ciliated graph.

Figure 9. Bijection between bipartite quadrangulations with marked edges and ribbon
graphs with cilia.

Second, the intermediate �eld can be used to study the analyticity properties
of Z. We �rst have the following bound.

Lemma 1. Writing � D �ei� with � > 0, we have








�

1 � i

r

�

N
A

��1




 � 1

cos
�

�
2

� ; (14)

where k � k denotes the operator norm.
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Proof. To prove the lemma, it is convenient to factor
p

� and write

�

1 � i

r

�

N
A

��1

D 1p
�

Z 1

0

d˛ exp
°

� ˛
1p
�

C ˛
ip
N

A
±

;

therefore, the operator norm is bounded by








�

1 � i

r

�

N
A

��1




 � 1

j
p

�j

Z 1

0

exp
°

� ˛Re
� 1p

�

�±




 exp

°

˛
iAp
N

±






D 1

cos
�

�
2

� :

We can then rewrite (13) as

ZŒJ; J �I N; �� D
Z

dA
exp �

°
1
2

Tr.A2/ C N Tr J
�

1 � i
q

�
N

A
��1

J �
±

h

det
�

1 � i
q

�
N

A
�iN

;

and use Lemma 1 to show that this integral is convergent for � 2 .��; �/. As the
integrand is analytic for � 2 .��; �/ we have the following result.

Proposition 5. ZŒJ; J �I N; �� is analytic in � on the cut plane C � R
�.

However, analyticity of ZŒJ; J �I N; �� in the cut plane does not imply analyt-
icity of its logarithm, as ZŒJ; J �I N; �� may have zeros. In the next section we will
see that in order to establish an analyticity result for the logarithm one needs to
work some more.

4. Proofs of the theorems regarding the generating function

In this section, we establish the constructive �eorems 1, 2, and 3 regarding the
generating function of the cumulants.

4.1. �e Loop Vertex Expansion (proof of �eorem 1). �e basic ingredient
in establishing the constructive theorems stated in Section 2 is the loop vertex
expansion, introduced by Rivasseau in [11]. Starting with (13), we expand the
exponential as a power series, convergent if � 2 C � R

�,

ZŒJ; J �� D
1

X

nD0

.�1/n

nŠ

Z

d�.A/
h

N Tr log
�

1 � i

r

�

N
A

�

C N Tr J
�

1 � i

r

�

N
A

��1

J �
in

;
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where d�.A/ D dA exp �1
2

Tr.A2/ is the normalized Gaußian measure on Her-
mitian matrices (and we dropped the arguments � and N of Z in order to simplify
the notation).

We then use the replica trick and replace (for the term of order n) the integral
over a single matrix A by integral over a n-tuple of N � N Hermitian matrices
A D .Ai/1�i�n. �e replicated Gaußian integral is performed with a normalized
Gaußian measure d�C .A/ with a degenerated covariance Cij D 1. Recall that for
any real positive symmetric matrix Cij the Gaußian integral is

Z

d�C .A/ Ai jabAj jcd D Cij ıad ıbc ;

where Ai jab denotes the matrix element in the row a and column b of the matrix
Ai . �e Gaußian integral with a degenerated covariance, is equivalent to inserting
n�1 Dirac distributions ı.A1�A2/ � � � ı.An�1�An/, since all the n�1 matrices A1�
A2, : : : ,An�1�An span the kernel of Cij . �is can easily be seen by regularizing the
covariance as Cij C �ıij and letting � ! 0. Equivalently, at the perturbative level,
the uniform covariance generates all the edges (with the appropriated weights) in
the Feynman graph expansion that connect the various replicas together.

�e generating function then reads

ZŒJ; J �� D
1

X

nD0

.�1/n

nŠ

Z

d�C .A/

n
Y

iD1

h

N Tr log
�

1 � i

r

�

N
Ai

�

C N Tr J
�

1 � i

r

�

N
Ai

��1

J �
i

:

Remark that the Gaußian measure can alternatively be written as the di�erential
operator:

Z

d�C .A/ F.A/ D Œe
1
2

P

i;j Tr
�

@
@Ai

@
@Aj

�

F.A/�Ai D0:

We now apply the Bridges–Kennedy–Abdessalam–Rivasseau forest formula
(see Appendix B). We start by replacing the covariance Cij D 1 by Cij .x/ D xij

(and xij D xj i ) evaluated at xij D 1 for i ¤ j and Ci i .x/ D 1. �en ZŒJ; J �� is
given as a sum over forests:

ZŒJ; J �� D
X

F labeled forest

.�1/n

nŠ

Z 1

0

Y

.i;j /2F

dtij

� Y

.i;j /2F

@

@xij

�

A;
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where

A D
² Z

d�C.x/.A/

n
Y

iD1

h

N Tr log
�

1 � i

r

�

N
Ai

�

C N Tr J

�

1 � i

r

�

N
Ai

��1

J �
i³ˇ

ˇ
ˇ
ˇ
xij DvF

ij

;

and where n is the number of vertices of F , i and j label the vertices of the forest,
there is one weakening parameter tij per edge .i; j / of the forest and

vF
ij D

8

<

:

inf.k;l/2P F
i$j

tkl if P F
i$j exists,

0 if P F
i$j does not exist.

where P F
i$j is the unique path in F joining i and j (and the in�mum is set to 1

if i D j ). �e Gaußian measure can alternatively be written as the di�erential
operator:

Z

d�C.x/.A/F.A/ D Œe
1
2

P

i;j xij Tr
�

@
@Ai

@
@Aj

�

F.A/�Ai D0:

In order to extract the logarithm we use the following lemma.

Lemma 2. Let W.T / be a weight associated to a tree T , independent of the labels

of its vertices and de�ne the weight of a forest W.F / to be the product of the

weights of its trees (connected components). �en, as formal series,

log
X

F labeled forests

W.F /

jV.F /jŠ D
X

T labeled trees

W.T /

jV.T /jŠ ;

with jV.F /j and jV.T /j the number of vertices in F and T .

Proof. �is identity is equivalent to

X

F labeled forests

W.F /

jV.F /jŠ D exp
X

T labeled trees

W.T /

jV.T /jŠ ;

which follows by expanding the right hand side using the multinomial formula,
and taking due care of the relabeling of the vertices.

As both the di�erential operator and the Gaußian measure factor over the trees
in the forest F we obtain

logZŒJ; J �� D
X

T labeled trees

.�1/n

nŠ

Z 1

0

Y

.i;j /2T

dtij

� Y

.i;j /2T

@

@xij

�

B
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and

vT
ij D inf

.k;l/2P T
i$j

tkl ;

where

B D
² Z

d�C.x/.A/

n
Y

iD1

h

N Tr log
�

1 � i

r

�

N
Ai

�

C N Tr J
�

1 � i

r

�

N
Ai

��1

J �
i³ˇ

ˇ
ˇ
ˇ
vT

ij

where P T
i$j is the unique path in the tree T joining i and j . Starting from the

expression of the Gaußian integral as a di�erential operator it is immediate to see
that

@

@xij

� Z

d�C.x/.A/F.A/

�

D
Z

d�C.x/.A/ Tr
h @

@Ai

@

@Aj

i

F.A/:

�is di�erential operator acts on two vertices (i and j ) and generates an edge
connecting them. Taking into account that

@

@Ai jab

�

1 � i

r

�

N
Ai

��1

cd
D

���

N

��

1 � i

r

�

N
Ai

��1

ca

�

1 � i

r

�

N
Ai

��1

bd
;

we observe that a resolvent operator

�

1 � i

r

�

N
Ai

��1

is associated to each corner of a vertex. Multiple derivatives acting on the same
vertex (corresponding to multiple edges hooked to it) can act on either of the cor-
ners of the vertex and split it into two. �e logarithm of Z becomes thus a sum
over plane trees and the source terms JJ � correspond to cilia decorating some of
the vertices of the trees. We thus obtain

logZŒJ; J �� D
X

T
LVE tree

AT ŒJ; J �; �; N �;

and

AT ŒJ; J �; �; N � D .��/jE.T /jN jV.T /j�jE.T /j

jV.T /jŠ

Z 1

0

Y

e2E.T /

dte

Z

d�CT
.A/ Tr

h �!Y

c2@T corner

�

1 � i

r

�

N
Aic

��1

.JJ �/�c

i

;

(15)
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where ic is the label of the vertex the corner c is attached to, �c 2 ¹0; 1º depending
on whether the corner c is followed (�c D 1) or not (�c D 0) by a source insertion
and the covariance CT is

.CT /ij D inf
.k;l/2P T

i$j

tkl

and the in�mum is set to 1 if i D j .

We have thus established the expansion (4) in �eorem 1. In order to establish
�eorem 1 it remains to study the domain on which the expansion (15) is conver-
gent.

We �rst bound the amplitude of each tree using Lemma 1:

ˇ
ˇ
ˇ Tr

h �!Y

c2@T corner

�

1 � i

r

�

N
Aic

��1

.JJ �/�c

iˇ
ˇ
ˇ

� N
�!Y

c2@T corner








�

1 � i

r

�

N
Aic

��1




kJJ �k�c

� N kJJ �kk

�

cos
� arg �

2

��2.jE.T /jCk/
;

(16)

where k denotes the number of cilia of the tree.

�en we bound the number of LVE trees with a given number of edges and
cilia.

Lemma 3 (counting LVE trees). �e number of LVE trees with n edges and k cilia

N.n; k/ D .2n C k � 1/Š .n C 1/Š

.n C k/Š .n C 1 � k/Š kŠ

� 22nCk�1 .n � 1/Š
.n C 1/Š

.n C 1 � k/Š kŠ
;

Proof. �e number of LVE trees with n C 1 vertices and k cilia on a �xed set
of vertices labeled i1; : : : ; ik is .2nCk�1/Š

.nCk/Š
(see [9]). To obtain N.n; k/ one simply

multiplies the latter by the possible choices of k vertices among n C 1. �e bound
follows by the binomial formula .2nCk�1/Š

.nCk/Š .n�1/Š
� 22nCk�1.



196 R. G. Gurau and �. Krajewski

Consequently, the sum over LVE trees is bounded by
ˇ
ˇ
ˇ
ˇ

X

LVE tree

AT ŒJ; J �; �; N �

ˇ
ˇ
ˇ
ˇ

�
1

X

nD0

nC1
X

kD1

N 2j�jnkJJ �kk

.n C 1/Š
�

cos
� arg �

2

��2nCk
22nCk�1 .n � 1/Š

.n C 1/Š

.n C 1 � k/Š kŠ

� N 2

1
X

nD0

22n�1j�jn
�

cos
� arg �

2

��2n

�

1 C 2kJJ �k
cos

� arg �

2

�

�nC1

:

(17)

Each AT ŒJ; J �; �; N � is analytic in the cut plane C � R
�. Furthermore, For

every � inside the cardioid:

C D
°

� 2 C; 4j�j < cos2
�arg �

2

�±

;

it is possible to �nd a �� > 0 such that,

4j�j
�

cos
� arg �

2

��2

�

1 C 2��

cos
� arg �

2

�

�

< 1;

hence �eorem 1 follows.
Remark furthermore that for � 2 C and kJJ �k < ��, logZŒJ; J �� is analytic

in �.

4.2. Perturbative expansion with remainder (proof of �eorem 2). Our start-
ing point is eq. (15):

logZŒJ; J �� D
X

T
LVE tree

AT ŒJ; J �; �; N �;

and

AT ŒJ; J �; �; N � D .��/jE.T /jN jV.T /j�jE.T /j

jV.T /jŠ

Z 1

0

Y

e2E.T /

dte

Z

d�CT
.A/ Tr

h �!Y

c2@T corner

�

1 � i

r

�

N
Aic

��1

.JJ �/�c

i

;

and the Gaussian measure d�CT
.A/ can also be written as

Z

d�CT
.A/ F.A/ D Œe

1
2

P

ij

�

inf
.k;l/2P T

i$j

tkl

�

Tr
�

@
@Ai

@
@Aj

�

F.A/�Ai D0:
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A Taylor expansion at �rst order with an uniform parameter of the Gaussian mea-
sure leads to

e
1
2

P

ij Œinf
.k;l/2P T

i$j

tkl � Tr
�

@
@Ai

@
@Aj

�

D e
s
2

P

ij

�

inf
.k;l/2P T

i$j

tkl

�

Tr
�

@
@Ai

@
@Aj

�
ˇ
ˇ
ˇ
sD1

D 1 C
Z 1

0

ds1

h d

ds
e

s
2

P

ij .inf
.k;l/2P T

i$j

tkl / Tr
�

@
@Ai

@
@Aj

�
i

sDs1

D 1 C
Z 1

0

ds1C e

s1
2

P

ij

�

inf
.k;l/2P T

i$j

tkl

�

Tr
�

@
@Ai

@
@Aj

�

;

where

C D 1

2

X

ij

. inf
.k;l/2P T

i$j

tkl / Tr
h @

@Ai

@

@Aj

i

:

�e term with the Gaussian measure set to 1 corresponds to setting all the
replicated �elds Ai D 0. Consequently all the resolvents in the trace are replaced
by the identity and the trace becomes just a trace over a product of the external
sources.

�e rest term is more involved. �e new derivatives with respect to the repli-
cated �elds Ai and Aj act on the resolvents in the trace. As before, a 1

2
Tr

�
@

@Ai

@
@Aj

�

operator creates a ribbon edge and brings an overall factor ��
N

. As the edge con-
nects two vertices already present in the tree, the new edge is necessarily a loop
edge. �e sums over i and j yields a sum over all the possible ways to add such
a loop edge to the tree T , hence we obtain a sum over all the LVE graphs .G; T /

one can build over T having jL.G; T /j D 1 loop edges.

Iterating L times we obtain

AT ŒJ; J �; �; N � D
X

G

.G;T / LVE graph; jL.G;T /j�L�1

.��/jE.G/jN �.G/

jV.T /jŠ
Y

f 2B.G/

TrŒ.JJ �/c.f /�

Z 1

0

Y

e2E.T /

dte

� Y

eD.i;j /2L.G;T /

inf
.k;l/2P T

i$j

tkl

� Z

1�s1�����sjL.G;T /j�0

Y

e2L.G;T /

dse

C
X

G
.G;T / LVE graph; jL.G;T /jDL

A.G;T /ŒJ; J �I �; N �;
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where

A.G;T /ŒJ; J �I �; N � D .��/jE.G/jN jV.G/j�jE.G/j

jV.G/jŠ

Z

1�s1�����sjL.G;T /j�0

Y

e2L.G;T /

dse

Z

Œ0;1�

Y

e2E.T /

dte

� Y

eD.i;j /2L.G;T /

inf
e02P T

i$j

te0

�

Z

d�sjL.G;T /jCT
.A/

Y

f 2F .G/

Tr
° �!

Y

c2@f

�

1 � i

r

�

N
Aic

��1

.JJ �/�c

±

:

yielding the expression eq. (3) for the amplitude of an LVE graph.

We prove �eorem 2 by induction on n. We start with the tree expansion in (4)

and select the unique LVE tree without any edge. �is tree is a single vertex with
one cilium (the vertex without a cilium is absent because of the normalization
ZŒ0; 0; �; N �). We perform an expansion up to L D 1 loop edges for this term. All
the other LVE trees with edges are included in the rest term. We obtain

logZŒJ; J �� DN TrŒJJ �� C
X

G
.G;T / LVE graph; jV .G/jD1; jL.G;T /jD1

A.G;T /ŒJ; J �I �; N �

C
X

T LVE tree
E.T /�1

AT ŒJ; J �; �; N �:

As the trees with exactly one edge are LVE graphs themselves we can move them
to the �rst rest term and write

logZŒJ; J �� DN TrŒJJ �� C
X

G
.G;T / LVE graph; E.G/D1

A.G;T /ŒJ; J �I �; N �

C
X

T LVE tree
E.T /�2

AT ŒJ; J �; �; N �;

reproducing eq. (5) for n D 0. �e �rst term in this expression is the contribution
of an ordinary Feynman graph (without any resolvents). If we write the theory
in terms only of M , this graph has two univalent vertices J and J � connected by
an edge. �e second term is the amplitude for a LVE graph with one vertex, one
cilium and one edge (which can either be a loop edge or a tree edge). �e last term
is the contribution of all the LVE trees with at least two edges.
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Let us assume that the theorem has been established up to order n hence the
perturbative remainder at order n, RnŒJ; J �; �; N � is the sum of two terms:

R0
nŒJ; J �; �; N � D

X

.G;T / LVE graph
jE.G/jDnC1

A.G;T /ŒJ; J �; �; N �;

R00
nŒJ; J �; �; N � D

X

T LVE trees
jE.T /j�nC2

AT ŒJ; J �; �; N �:

�e trees contributing to R00
n having at least n C 3 edges give exactly R00

nC1

(where we omit the arguments in order to simplify the notation). �e trees having
exactly n C 2 edges are transferred to R0

nC1. Now consider the LVE graphs in
R0

n. �e amplitude of each of these graphs is written as a Gaußian integral with
covariance sjL.G;T /jCT . For each of these graphs we expand one more loop edge
using

e

sjL.G;T /j
2

P

ij .inf
.k;l/2P T

i$j

tkl / Tr
�

@
@Ai

@
@Aj

�
ˇ
ˇ
ˇ
sD1

D 1 C
Z

sjL.G;T /j�sjL.G;T /jC1�0

dsjL.G;T /jC1

�1

2

X

ij

. inf
.k;l/2P T

i$j

tkl / Tr
h @

@Ai

@

@Aj

i�

e

sjL.G;T /jC1
2

P

ij .inf
.k;l/2P T

i$j

tkl / Tr
�

@
@Ai

@
@Aj

�

:

�e rest terms are all collected to yield the remaining terms in R0
nC1, as they are

all LVE graphs of order n C 2, with the correct amplitude.
It remains to check that the evaluation of the new explicit terms reproduces

exactly the perturbative evaluation of the amplitude of the graphs with exactly
E.G/ D n C 1 edges. As all the Ai ’s are set to zero in the explicit terms, the
product of traces yields just

N jF .G/j�jB.G/j
Y

f 2B.G/

TrŒ.JJ �/c.f /�:

�e integral over the loop parameters se can be trivially performed:
Z

1�s1�����sjL.G;T /j�0

Y

e2L.G;T /

dse D 1

jL.G; T /jŠ :

Since there are precisely jL.G; T /jŠ ways to label the loop edges, the sum becomes
a sum over graphs with unlabeled loop edges. We are left with ciliated ribbon
graphs with labels on their vertices and a distinguished spanning tree.
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�e integral over the weakening parameters te is more subtle (see [18]). A Hepp
sector ˛ in a graph G is a total order of the edges of G. For any Hepp sector ˛, the
dominant tree T .˛/ in the sector is obtained by iteratively choosing the highest
edges in the sector which do not form cycles. It turns out ([18]) that for �xed G

and T the integral over the parameters te is the percentage of Hepp sectors of G

in which the tree T is dominant. �e following lemma is then trivial.

Lemma 4. For any vertex labeled graph G,

X

T �G

T spanning tree

Z
Y

e2E.T /

dte

� Y

eD.i;j /2L.G;T /

inf
e02P T

i$j

te0

�

D 1:

Collecting these two results together, the explicit terms are a sum over vertex
labeled ciliated ribbon graphs with exactly n C 1 edges. Taking into account the
amplitude does not depend on the labeling of the vertices, we collect together all
the terms corresponding to di�erent labellings of the same ribbon graph and use

1

jV.G/jŠ
X

labellings of V.G/

.��/jE.G/jN �.G/
Y

f 2B.G/

TrŒ.JJ �/c.f /�

D .��/jE.G/jN �.G/

j Aut.G/j
Y

f 2B.G/

TrŒ.JJ �/c.f /�;

where jAut Gj corresponds to the order of the group of permutations of the vertices
that leave the graph invariant to obtain the explicit terms in eq. (5).

Finally, the analyticity of the remainder is obvious since R0
nŒJ; J �; �; N � is a

�nite sum of analytic functions in C � R
� and R00

nŒJ; J �; �; N � is bounded by the
bound in eq. 17, hence converges and is analytic under the same hypothesis.

4.3. Topological expansion (proof of �eorem 3). In the expansion �eorem 2,
we have recursively added loop edges to the trees irrespective of the genus of the
graph .G; T / we obtained. In order to prove the topological expansion �eorem 3,
we use the same algorithm, except that we stop adding loop edges to a graph if its
genus reaches g C 1. We thus obtain

logZŒJ; J �I �; N �

D
X

G ciliated ribbon graph

jE.G/j�n and g.G/�g

.��/jE.G/jN 2�2g.G/�B.G/

j Aut.G/j
Y

f 2B.G/

Tr
h�

JJ �
�c.f /

i

C zRg;nŒJ; J �I �; N � C zR0

g;nŒJ; J �I �; N � C zR00

nŒJ; J �I �; N �;

where now there are three classes of remainder terms.
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�e �rst remainder term is made of LVE graphs with less than nC1 edges such
that the addition of the last loop edge (with label jL.G; T /j) increases the genus
form g to g C 1:

zRg;nŒJ; J �I �; N � D
X

.G;T / LVE graph with jE.G/j�nC1

g.G/DgC1 and g.G�ejL.G;T /j/Dg

A.G;T /ŒJ; J �I �; N �:

�e second remainder term is a summation over LVE graphs with nC1 edges and
genus less than g:

zR0
g;nŒJ; J �I �; N � D

X

.G;T / LVE graph with

jE.G/jDnC1 and g.G/�g

A.G;T /ŒJ; J �I �; N �:

Finally, the last remainder term is a sum over LVE trees with at least n C 2 edges
on which the loop generating algorithm has not yet been applied:

zR00
nŒJ; J �I �; N � D

X

T LVE tree

jE.T /j�nC2

AT ŒJ; J �I �; N �:

In order to take the limit n ! 1, we bound the LVE amplitudes as well as the
number of graphs contributing to the remainders.

To bound the LVE amplitude in eq. (3) we observe that the latter is a product
over faces of traces of products of resolvents. Bounding each trace as j Tr.O/j �
N kOk and using Lemma 1 for the norm of the resolvents, we get

jA.G;T /ŒJ; J �; �; N �j

�
Z

Y

e2E.T /

dte

� Y

eD.i;j /2L.G;T /

inf
e02P T

i$j

te0

�

N jF .G/jCjV.G/j�jE.G/jj�jjE.G/j

jV.G/jŠjL.G; T /jŠ

� 1

cos
� arg �

2

�

�2E.G/Ck

kJJ �kk:

�is bound is very similar to the one of the tree amplitude (16), except that we get
one factor of N for each internal face G and the integral over loop parameters se

yields a factor 1
jL.G;T /jŠ

. Note that we have left the integral over the weakening pa-
rameters te since it allows to cancel the choice of the spanning tree. Let us denote
by QN.g; n; k/ the number of ribbon graphs with unlabeled vertices having genus
g, n edges and k cilia. Using Proposition 4 and noticing that 1

jL.G;T /jŠ
cancels the
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labeling of the loop edges, we get

X

.G;T / LVE graph with k cilia

jE.G/jDn and g.G/Dg

Z
Y

e2E.T /

dte

� Y

eD.i;j /2L.G;T /

inf
e02P T

i$j

te0

�

1

jV.G/jŠjL.G; T /jŠ

D
X

G ribbon graph with labeled vertices

jE.G/j D n and g.G/ D g

1

jV.G/jŠ

� zN.g; n; k/:

�e inequality (instead of an equality) in the last line comes from the possibility to
have di�erent labellings of the vertices leading to the same unlabeled graph (this
is also the origin of the factor 1=j Aut.G/j in the explicit terms).

Now we need a bound on zN.g; n; k/. We obtain all graph with k cilia by adding
k � 1 cilia to a graph with 1 cilia. Relaxing the condition that there is at most one
cilium per vertex to the condition that two cilia are not adjacent, in a graph with
n > 0 edges and 1 cilium, there are 2nC1�2 D 2n�1 corners on which we can add
the second cilium (the graph has 2n C 1 corners, but the 2 corners adjacent to the
�rst cilium are forbidden). When adding the new cilium we create a new corner,
but the two corners adjacent to the new cilium (which are distinct since n > 0)
are forbidden. �erefore, there are 2n � 2 corners on which we can add a third
cilium and so on up to the last cilium for which we have 2n� .k �1/ D 2nC1�k

available corners �erefore,

zN.g; n; k/ �

k�1 terms
‚ …„ ƒ

.2n � 1/ : : : .2n C 1 � k/

kŠ
zN.g; n; 1/

� .2n/Š

kŠ.2n � k/Š
zN.g; n; 1/;

where we have divided by kŠ since all the cilia are indistinguishable (i.e. adding
cilia on the same corners but in a di�erent order leads to the same graph). Note
that we only obtain an inequality since adding cilia to di�erent graphs can lead to
the same ciliated graph.

�e number of genus g graphs with n edges and a single cilium is equal to the
number of rooted bipartite quadrangulations (due to the bijection in Proposition 4
applied to maps with one marked edge) which is known [14].
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Lemma 5. �e number zN.g; n/ of rooted maps with n edges and genus g has the

asymptotic behavior
zN.g; n/ �

n!1
Cg12nn

5
2 .g�1/;

with Cg a constant that only depends on the genus.

Consequently, there is a constant C 0
g such that, for n large enough zN.g; n/ D

zN.g; n; 1/ � C 0
g12nn

5
2 .g�1/, so that

zN.g; n; k/ � C 0
g12nn

5
2 .g�1/ .2n/Š

kŠ.2n � k/Š
: (18)

We thus obtain the bound
X

.G;T / LVE graph with

jE.G/jDn and g.G/Dg

jA.G;T /ŒJ; J �; �; N �j

�
nC1
X

kD1

N 2�2g j�jn
� 1

cos
� arg �

2

�

�2nCk

kJJ �kk .2n/Š

kŠ.2n � k/Š
zN.g; n/

� C 0
g12nn

5
2 .g�1/N 2�2g

� j�j
cos2

� arg �

2

�

�n�

1 C kJJ �k
cos

� arg �

2

�

�2n

;

where we have extended the sum over k from 0 to 2n (instead of n C 1) and used
the binomial formula.

For every � 2 zC, there exists �� > 0 such that

� j�j
cos2

� arg �

2

�

��

1 C ��

cos
� arg �

2

�

�2

D � <
1

12
:

We choose kJJ �k � ��. We then have the following bounds:

� we bound the term

zRg;nŒJ; J �I �; N � D
X

.G;T / LVE graph with jE.G/j�nC1

g.G/DgC1 and g.G�ejL.G;T /j/Dg

A.G;T /ŒJ; J �I �; N �:

by a sum over graphs of genus g C 1 having at most n C 1 edges:

jzRg;nŒJ; J �I �; N �j � C 0
gC1N 2�2.gC1/

nC1
X

mD0

m
5
2 g.12 �/m;

which is convergent as n ! 1 while keeping N �xed;
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� we bound the term

zR0
g;nŒJ; J �I �; N � D

X

.G;T / LVE graph with

jE.G/jDnC1 and g.G/�g

A.G;T /ŒJ; J �I �; N �:

by

jzR0
g;nŒJ; J �I �; N �j � N 2

� g
X

hD0

C 0
h

N 2h
.n C 1/

5
2 .h�1/

�

.12 �/nC1;

hence this term goes to zero when sending n ! 1 while keeping N �xed’

� as the sum over LVE trees is convergent, the last reminder term

zR00
nŒJ; J �I �; N � D

X

T LVE tree

jE.T /j�nC2

AT ŒJ; J �I �; N �;

also goes to zero when sending n ! 1 while keeping N �xed;

�is achieves the proof of �eorem 3.

5. Proofs of the theorems regarding the cumulants

5.1. Cumulants and their structure (proofs of Propositions 1 and 2). Before
establishing the Proposition 1 we detail some properties of the Weingarten func-
tions.

Lemma 6 (convolution inverse). For N > k and any permutations �; � 2 Sk,

one has

X

�2Sk

N jC.���1/jWg.���1; N / D

8

<

:

1 if � D � ,

0 otherwise,

where jC.�/j is the number of cycles in the decomposition of � .

Proof. For any permutation �,

X

a;c

� k
Y

iD1

ıa�.i/ci

� Z

dU Ua1b1
: : : Uakbk

U �
c1d1

: : : U �
ckdk

D
X

a;c

� k
Y

iD1

ıa�.i/ci

� X

�;�2Sk

� k
Y

iD1

ıa�.i/ci
ıb�.i/di

�

Wg.���1; N /
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implies

� k
Y

iD1

ıb�.i/di

�

D
X

�;�2Sk

N jC.���1/j
� k

Y

iD1

ıb�.i/di

�

Wg.���1; N /:

Applying this equality for b�.i/ D di D i the left hand side is non zero only for
� D � and in this case it equals 1.

In our context, the Weingarten functions are used in order to write any unitary
invariant homogeneous polynomial of degree k of a N � N Hermitian matrix H

as a linear combination of products of traces of powers of H . Let P be such a
polynomial:

P.H/ D
X

1�p1;q1;:::;pk ;qk�N

Ap1;q1;:::;pk ;qk
Hp1q1

� � � Hpkqk
;

with P.UH U �/ D P.H/ for any U 2 U.N /.

Lemma 7 (expansion over trace invariants). Any unitary invariant degree k ho-

mogeneous polynomial can be written as

P.H/ D
X

�2…k

P� Tr�.H/;

with

P� D
X

�;�2Sk

C.�/D�

X

1�p1;:::;pk�N

Ap1p�.1/;:::;pkp�.k/
Wg.���1; N /

and the trace invariant (that only depend on the cycle structure C.�/) are

Tr�.H/ D
X

1�a1;:::;ak�N

Ha1a�.1/
: : : Haka�.k/

:

In particular, if P is already a trace invariant associated to the partition �0

then P� D 1 if � D �0 and 0 otherwise.
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Proof. Due to unitary invariance of P we have

P.H/ D
Z

ŒdU � P.UH U �/

D
X

1�p1;q1;����N

Ap1;q1;:::;pk ;qk

� k
Y

iD1

Upi ai
U �

qi bi
Hai bi

�

D
X

�;�2Sk

� X

1�p1;q1;����N

Ap1;q1;:::;pk ;qk

k
Y

iD1

ıp�.i/qi

�

� k
Y

iD1

ıa�.i/bi
Hai bi

�

Wg.���1; N /:

If P is the trace invariant associated to �0 D .k1; : : : kj�0j/ then

Ap1;q1;:::;pk ;qk
D 1

P

�2Sk

C.�/D�0

1

X

�2Sk

C.�/D�0

k
Y

iD1

ıqi p�.i/

and

P� D
X

�;�2Sk

C.�/D�

� X

1�p1;:::;pk�N

1
P

�2Sk

C.�/D�0

1

X

�2Sk

C.�/D�0

k
Y

iD1

ıp�.i/p�.i/

�

Wg.���1; N /

D 1
P

�2Sk

C.�/D�0

1

X

�2Sk

C.�/D�0

X

�;�2Sk

C.�/D�

N jC.���1/j Wg.���1; N /:

By the convolution inverse identity, the sum over � enforces � D � and the lemma
follows.

We choose a permutation � 2 Sk whose cycle decomposition reproduces the
contribution of the broken faces to the amplitude of a LVE graph,

� D .i1
1 : : : i1

k1
/ � � � .ib

1 : : : ib
kb

/;

if there are b D jB.G/j broken faces with k1; : : : ; kb cilia. Denoting X l the prod-
uct of the resolvents in between the cilia l and �.l/ and Y m the product of the
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resolvents around the unbroken face labeled m the amplitude can be written as

A.G;T /ŒJ; J �; �; N �

D .��/jE.G/jN jV.G/j�jE.G/j

jV.G/jŠ

Z

1�s1�����sjL.G;T /j�0

Y

e2L.G;T /

dse

Z
Y

e2E.T /

dte

� Y

eD.i;j /2L.G;T /

inf
e02P T

i$j

te0

�

Z

d�sjL.G;T /jCT
.A/

Y

1�m�B.G/

Tr
h

JJ �

�!
Y

1�r�km

X im
r

i Y

1�m�F .G/�B.G/

TrŒY m�:

�is is a degree k homogeneous polynomial which is invariant under the unitary
transformation J ! UJ and J � ! J �U �. Indeed, because of the invariance of
d�CT

.A/ the transformation of J can be compensated by a transformation on the
matrices A1; :::; An. �erefore, we may apply Lemma 7 to expand it over trace
invariants,

A.G;T /ŒJ; J �; �; N � D
X

�2…k

A
�
.G;T /.�; N / Tr�.JJ �/;

with

A
�
.G;T /.�; N /

D .��/jE.G/jN jV.G/j�jE.G/j

jV.G/jŠ

Z

1�s1�����sjL.G;T /j�0

Y

e2L.G;T /

dse

Z
Y

e2E.T /

dte

� Y

eD.i;j /2L.G;T /

inf
e02P T

i$j

te0

� Z

d�sjL.G;T /jCT
.A/

X

�;�2Sk
C.�/D�

X

1�p1;:::;pk�N

Wg.���1; N /
Y

1�m�F .G/�B.G/

TrŒY m�
Y

1�l�k

X l
p�.l/p�.l/

:

�is proves Proposition 1.

In order to prove Proposition 2, we use the expression of logZŒJ; J �; �; N �

from �eorem 1. As the sum over LVE trees is convergent we can derive term by
term with respect to the sources. Before deriving we express the amplitude of a
LVE tree as in Proposition 1. Proposition 2 follows from the remark that for any
two permutations �; � 2 Sk such that ���1 has cycle decomposition correspond-
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ing to the partition � , we have

Tr�.JJ �/ D
X

1�p1;q1 ����N

Y

1�l�k

Jpl ql
J �

p
���1.l/

ql

D
X

1�p1;q1 ����N

Y

1�l�k

Jpl ql
J �

p�.l/q�.l/
;

hence the derivative with respect to the sources is

@k

@Ja1b1
� � � @Jakbk

@k

@J �
c1d1

� � � @J �
ckdk

Tr�.JJ �/

D
X

�;�2Sk

X

1�p1;q1����N

Y

1�l�k

ıa�.l/;pl
ıb�.l/;ql

ıc�.l/;p�.l/
ıd�.l/;q�.l/

;

and summing over pl and ql we obtain

@k

@Ja1b1
� � � @Jak bk

@k

@J �
c1d1

� � � @J �
ckdk

Tr�.JJ �/

D
X

�;�2Sk

Y

1�l�k

ıcl ;a
����1.l/

ıdl ;b
����1.l/

:

5.2. Constructive theorems for cumulants (proofs of �eorems 4 and 5). In
order to prove the constructive theorem for the cumulants we need to bound the
amplitude in eq. (8). �e contribution of the unbroken faces and of the broken
faces are made of products of resolvents. �e summation over the indices repro-
duces a product of jC.���1/j traces for the broken faces and F.G/ � B.G/ traces
for the unbroken faces.

We bound the Weingarten functions using the following lemma.

Lemma 8. For N large enough,

jWg.�; N /j <
22k

N 2k�jC.�/j
:

�is lemma can be deduced from the asymptotic behavior of the Weingarten
functions [15, 16].

We bound the norm of the resolvents using Lemma 1 (recall that we have a
resolvent per corner and there are 2jE.G/jCk corners on a LVE graph with jE.G/j
edges and k cilia). Taking into account that each trace produces a factor of N we
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obtain
ˇ
ˇ
ˇ
ˇ
Wg.���1; N /

X

1�p1;:::;pk�N

Y

1�m�f �b

TrŒY m�
Y

1�l�k

X l
pl p

��1.l/

ˇ
ˇ
ˇ
ˇ

� 22kN jC.���1/jCjC.���1/j�2kCF .G/�B.G/

�

cos
� arg �

2

��2E.G/Ck
:

In order to bound the scaling in N of the amplitude of a LVE graph we use the
following Lemma [9].

Lemma 9. Let � and � two permutations of k elements. �en, the numbers of

cycles in the decompositions of � , � and �� obey

jC.�/j C jC.�/j � k C jC.��/j:

Proof. We will prove the following more general inequality: for any three permu-
tations �; � and � of k elements we have

jC.���1/j C jC.��/j � k C jC.��/j:

Let us represent k white vertices labeled 1 to k and k black vertices labeled 1 to
k. We connect the white vertex p with the black vertex �.p/ and the black vertex
q with the white vertex �.q/. �e cycles of �� are the cycles made of alternating
� and � edges (the connected components of this graph).

If there exists a p such that ��.p/ ¤ p we compare jC.���1/j C jC.��/j with
jC.� Q��1/j C jC. Q��/j where

Q�.q/ D

8

ˆ̂

<̂

ˆ̂
ˆ
:

�.q/ for q ¤ ��1.p/; �.p/;

�.�.p// D ���.q/ for q D ��1.p/;

p D ��1.q/ for q D �.p/:

:

�e number of cycles of �� goes up by one:

jC.��/j D 1 C jC. Q��/j;

while the number of cycles of ���1 can not decrease by more than one (looking
at the graph corresponding to � and ��1 we see that the change from � to Q� can at
most collapse two connected components into one). As jC.���1/j D jC.���1/j
we conclude that

jC.���1/j C jC.��/j � jC.� Q��1/j C jC. Q��/j;

and now Q��.p/ D p. Iterating we obtain

jC.���1/j C jC.��/j.jC.���1/j C jC.��/j/�D��1 D k C jC.��/j:



210 R. G. Gurau and �. Krajewski

A double application of Lemma 9 leads to

jC.���1/j C jC.���1/j � k C jC.���1/j � 2k C jC.�/j � jC.�/j;

and taking into account that jC.�/j D j�j (the number of integers in the parti-
tion �) and jC.�/j D jB.G/j is the number of broken faces, we arrive at

jA�
.G;T /.�; N /j � 22k.kŠ/2j�jjE.G/jN jV.G/j�jE.G/jCjF .G/j�j�j

�

cos
� arg �

2

��2jE.G/jCkjV.G/jŠ.jE.G/j � jV.G/j C 1/Š
(19)

In particular, for a tree we have

ˇ
ˇ
ˇ
ˇ
A

�
T .�; N /

ˇ
ˇ
ˇ
ˇ

� 22k.kŠ/2j�jjE.T /jN 2�j�j

�

cos
� arg �

2

��2jE.T /jCk jV.T /jŠ
:

�is establishes �eorem 4.

In order to prove �eorem 5 we apply the same algorithm as before and obtain
the perturbative series with remainder

R�;n.�; N / D
X

.G;T / LVE graph
jE.G/jDnC1 and jK.G/jDk

A
�
.G;T /.�; N / C

X

T LVE tree
jE.T /j�nC2 and jK.T /jDk

A
�
T .�; N /;

where K.G/ denotes the number of cilia of G. In order to bound this remainder
we use eq. (19) and bound separately the contributions of the trees and of the LVE
graphs with loop edges.

�e contribution of trees with E.T / � n C 2 edges is bounded

ˇ
ˇ
ˇ

X

T LVE tree
jE.T /j�nC2 and jK.T /jDk

A
�
T .�; N /

ˇ
ˇ
ˇ �

X

n0�nC2

N.n0; k/
22k.kŠ/2j�jn0

N 2�j�j

�

cos
� arg �

2

��2n0Ck
.n0 C 1/Š

�e number of LVE trees with n0 edges and k cilia N.n0; k/ has been evaluated in
Lemma 3 and we get

ˇ
ˇ
ˇ

X

T LVE tree

jE.T /j�nC2 and jK.T /jDk

A
�
T .�; N /

ˇ
ˇ
ˇ

� N 2�j�j23k�1kŠ
�

cos
� arg �

2

��k

X

n0�nC2

.n0 � 1/Š

.n0 C 1 � k/Š

22n0 j�jn0

�

cos
� arg �

2

��2n0 :



Analyticity results for the cumulants in a random matrix model 211

At �xed k the ratio .n0�1/Š
.n0C1�k/Š

is a polynomial in n0 so that the series on the right

hand side is convergent for 4j�j < cos2 arg �

2
. It can be rewritten as

X

n0�nC2

.n0 � 1/Š

.n0 C 1 � k/Š

22n0 j�jn0

�

cos
� arg �

2

��2n0

D
X

m�0

.m C n C 1/Š

.m C n C 3 � k/Š

� 4j�j
�

cos
� arg �

2

��2

�mCnC2

;

and, as n � 1 � k (as the LVE trees have at most a cilium per vertex) we have
mŠ � .m C n C 3 � k/Š, hence

ˇ
ˇ
ˇ

X

T LVE tree

jE.T /j�nC2 and jK.T /jDk

A
�
T .�; N /

ˇ
ˇ
ˇ

� N 2�j�j23k�1kŠ
�

cos
� arg �

2

��k
.n C 1/Š

X

m�0

�
m C n C 1

m

�� 4j�j
�

cos
� arg �

2

��2

�mCnC2

D N 2�j�j23k�1kŠ
�

cos
� arg �

2

��k
.n C 1/Š

�
4j�j

�

cos
�

arg �

2

��2

�nC2

�

1 � 4j�j
�

cos
�

arg �

2

��2

�nC2
:

Denoting by n0 the number of edges in a spanning tree (so that the graph has
n0 C1 vertices) and n00 the number of loop edges of a LVE graphs with loop edges,
the contribution to the rest term of these graphs is bounded by

ˇ
ˇ
ˇ

X

.G;T / LVE graph

jE.G/jDnC1 and jK.G/jDk

A
�
.G;T /.�; N /

ˇ
ˇ
ˇ

�
X

n0Cn00DnC1

N.n0; n00; k/
22k.kŠ/2j�jn0Cn00

N 2�j�j

�

cos
� arg �

2

��2n0C2n00Ck
.n0 C 1/Š.n00/Š

;

where N.n0; n00; k/ is the number of LVE graphs with n00 loop edges, n0 C1 vertices
and k cilia.

�e following lemma is an immediate consequence of the counting of LVE
graph with given number of vertices, cilia and loop edges performed in [9].

Lemma 10 (counting LVE graphs). �e number of LVE graphs with n0C1 vertices,

n00 loop edges and k cilia reads

N.n0; n00; k/ D .2n0 C 2n00 C k � 1/Š.n0 C 1/Š

.n0 C k/Š2n00
kŠ.n0 C 1 � k/Š

:
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Proof. First notice that that the number of LVE graphs with n0 C1 vertices, k cilia
on a speci�c set of vertices and n00 loop edges reads [9]

�

2.n0 C n00/ C k � 1/
�

Š

2n00
.n0 C k/Š

:

�en, we obtain N.n0; n00; k/ by counting the con�gurations of vertices that can
carry cilia, so that

N.n0; n00; k/ D
�

2.n0 C n00/ C k � 1
�

Š

2n00
.n0 C k/Š

� .n0 C 1/Š

.n0 C 1 � k/ŠkŠ

D .2n0 C 2n00 C k � 1/Š.n0 C 1/Š

.n0 C k/Š2n00
kŠ.n0 C 1 � k/Š

:

Using the binomial bound

1

.n0 C k/Š.n00/Š
� 2n0Cn00Ck

.n0 C n00 C k/Š

and the trivial inequality
1

.n0 C k � 1/Š
� 1;

we arrive at
ˇ
ˇ
ˇ
ˇ

X

.G;T / LVE graph
jE.G/jDnC1

A
�
.G;T /.�; N /

ˇ
ˇ
ˇ
ˇ

� 23kCnC1kŠj�jnC1N 2�j�j.2n C k C 1/Š
�

cos
� arg �

2

��2nC2Ck
.n C k C 1/Š

X

n0Cn00DnC1

1:

Another use of the binomial formula shows that .2nCkC1/Š
.nCkC1/Š

� 22nCkC1nŠ so that

ˇ
ˇ
ˇ

X

.G;T / LVE graph
jE.G/jDnC1 and jK.T /jDk

A
�
.G;T /.�; N /

ˇ
ˇ
ˇ � 24kC3nC2kŠj�jnC1N 2�j�jnŠ.n C 2/

�

cos
� arg �

2

��2nC2Ck
:

Since n C 2 < 2.n C 1/,this also implies

ˇ
ˇ
ˇ
ˇ

X

.G;T / LVE graph
jE.G/jDnC1 and jK.T /jDk

A
�
.G;T /.�; N /

ˇ
ˇ
ˇ
ˇ

� 24kC3nC3kŠj�jnC1N 2�j�j.n C 1/Š
�

cos
� arg �

2

��2nC2Ck
:
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Summing up the two bounds we obtain

jR�;n.�; N /j

� N 2�j�j23k�1kŠ
�

cos
� arg �

2

��k
.n C 1/Š

�
4j�j

�

cos
�

arg �

2

��2

�nC2

�

1 � 4j�j
�

cos
�

arg �

2

��2

�nC2

C 24kC3nC3kŠj�jnC1N 2�j�j.n C 1/Š
�

cos
� arg �

2

��2nC2Ck

D N 2�j�j
� 23k�1kŠ

�

cos
� arg �

2

��k

�

.n C 1/Š
� 4j�j

�

cos
� arg �

2

��2

�nC1

�

4j�j
�

cos
�

arg �

2

��2

�

1 � 4j�j
�

cos
�

arg �

2

��2

�nC2
C 2kCnC2

�

:

�is establishes �eorem 5.

5.3. Topological expansion for the cumulants (proof of �eorem 7). �e proof
of �eorem 7 proceeds along the same lines as that of �eorem 5, except that the
perturbative expansion involves contributions of all graphs up to genus g and the
remainder contains graphs of genus g C 1. As before, the main idea is to express
the contribution of Feynman graphs and LVE in terms of trace invariants.

Starting with eq. (7), we collect terms homogeneous of degree k in JJ �. �e
�rst term is obviously written as a sum of trace invariants

X

G ribbon graph with k cilia

broken faces corresponding to � and g.G/ � g

.��/jE.G/jN �.G/

j Aut.G/j
Y

f broken face

�

JJ �
�c.f /

D
X

G ribbon graph with k cilia

broken faces corresponding to � and g.G/ � g

.��/jE.G/jN �.G/

j Aut.G/j Tr�.JJ �/:

After derivation with respect to the sources, it yields a contribution to K�;g.�; n/

of the form
X

G ribbon graph with k cilia

broken faces corresponding to � and g.G/ � g

.��/jE.G/jN �.G/

j Aut.G/j ;
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which is just the sum over Feynman graph of genus less than g and broken faces
corresponding to � . Recall that the number of graphs of genus g with n edges is
bounded as in (18):

zN.g; n; k/ � C 00
g 12nn

5
2 .g�1/ .2n/Š

kŠ.2n � k/Š
:

Accordingly, the series
P

n
zN.g; n; k/zk converges for jzj < 1

12
.

Consider now the remainder zR�;g.�; N /, containing only genus g C 1 LVE
graphs and express it in terms of trace invariants:

zR�;g.�; N / D
X

.G;T / LVE graphs with broken faces corresponding to �

g.G/DgC1 and g.G�ejL.G;T /j/Dg

A
�
.G;T /.�; N /:

We bound each LVE graph as in (19). Since this bound only depends on the
graph G and not on the choice of the spanning tree T , we use Lemma 4 to get

ˇ
ˇ zR�;g .�; N /

ˇ
ˇ �

1
X

nD2.gC1/

zN.g C 1; n; k/
22k.kŠ/2j�jjnjN 2�2.gC1/�j�j

�

cos
� arg �

2

��2nCk

hence

ˇ
ˇ zR�;g.�; N /

ˇ
ˇ

� N 2�2.gC1/�j�j 23kkŠ
�

cos
� arg �

2

��k
C 00

gC1

1
X

nD2.gC1/

n
5
2 .g�1/Ck

� 12j�j
�

cos
� arg �

2

��2

�n

D N 2�2.gC1/�j�j 23kkŠ
�

cos
� arg �

2

��k
C 00

gC1

� 12j�j
�

cos
� arg �

2

��2

�2gC2

�
X

m�0

.m C g C 1/
5
2 .g�1/Ck

� 12j�j
�

cos
� arg �

2

��2

�m

:

Bounding

.m C g C 1/
5
2 .g�1/Ck � .m C g C 1/3gCk � .m C 4g C k C 1/Š

mŠ
;
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we obtain the rough bound

zR�;g.�; N /j

� N 2�2.gC1/�j�j 23kkŠ
�

cos
� arg �

2

��k
C 00

gC1

� 12j�j
�

cos
� arg �

2

��2

�2gC2

.4g C k C 1/Š
�

1 � 12j�j
�

cos
�

arg �

2

��2

�4gCk
:

�is achieves the proof of �eorem 7.

Appendixes

A. Schwinger–Dyson equations for the intermediate �eld

In this Appendix, we derive the explicit formula for the order 2 cumulant in the
large N limit using the Schwinger–Dyson equation for the intermediate �eld. �is
allows us to express it as an explicit power series collecting all the planar graphs,
with two external legs in the matrix model formulation or, equivalently, with one
cilium in the intermediate �eld representation. �is result is classical and goes
back to Koplik, Neveu and Nussinov [19] which treated the �4 interaction without
recourse to the intermediate �eld.

Let us collect all planar graphs contributing to the order 2 cumulant in the
power series

G.�; q/ D
X

m;n

Gm;nqm�n;

with Gm;n the number of connect planar graphs with n vertices (intermediate �eld
edges or equivalently, matrix vertices Tr.MM �MM �/ ) and m boundary matrix
lines. �e indeterminate q only appears in the formulation of the Schwinger–
Dyson equation and the order 2 cumulant is recovered in the limit q ! 1.

It obeys the planar Schwinger–Dyson equation

G.�; q/ D q C �qG2.�; q/ C �q2 G.�; q/ � G.�; 1/

q � 1
: (20)

Graphically, this equation can be derived as follows. Starting from the incoming
M line, there are three possibilities, see Figure 10.
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D C

C

Figure 10. Schwinger–Dyson equations in the intermediate �eld representation.

� We do not meet an interaction with the intermediate �eld so that the graph
reduces to a single matrix line (�rst term in Figure 10 and (20)).

� �e removal of the �rst AMM � vertex we encounter disconnects the graph
(second term in Figure 10 and (20)).

� �e graph remains connected after the removal of the �rst vertex encountered
(third term in Figure 10 and (20)). In this case, we have to keep track of the
various possibilities of attaching the intermediate �eld line on the external
boundary of the graph. �is is the origin of the q-derivative term

G.�; q/ � G.�; 1/

q � 1
D

X

m�1;n�0

Gm;n

� m�1
X

kD0

qk
�

�n;

since the insertion of the A line encloses k M -lines for 0 � k � m � 1.

At lowest order in n, the explicit expressions of Gn.q/ D
P

m Gm;nqn read

G0.q/ D q;

G1.q/ D q2Œ2�q;

G2.q/ D 2q4Œ2�q C q2.Œ2�q C Œ3�q/;

G3.q/ D q5.Œ2�q/2 C 4q5Œ2�q C 2q3.Œ2�q C Œ3�q/

C 2.Œ4�q C Œ5�q/ C .2Œ2�q C 2Œ3�q C Œ4�q/;

with Œn�q D qn�1
q�1

.
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�e planar Schwinger–Dyson equation (20) G.1; �/ is quadratic in G.q/ and
can be used to determine G.q/ in terms of the variables q and � and of G.1; �/

treated as an independent variable

G.q; �/ D q�1��q2 �
p

.q�1��q2/2 � 4�q.q�1/Œq.q�1/��q2G.1; �/�

�q.q�1/
;

where we have retained the solution with a well de�ned limit at � D 0.
In order for G.q/ to be analytic in q and �, G.1; �/ which is itself a series in �,

must be such that the polynomial under the square root has a double root in q. �is
polynomial reads

.�2 � 4� C 4�2G.1; �//q4 C .6� � 4�2G.1; �//q3 C .1 � 2�/q2 � 2q C 1;

and its discriminant factorizes as

�4.1 � �G.1; �//2.1 � G.1; �/ � 16� C 18�G.1; �/ � 27�2G2.1; �//:

Discarding the solution G.1; �/ D 1
�
, the solution of the quadratic part yields the

planar contribution to the order 2 cumulant

G.1; �/ D �1 C 18� � .1 � 12�/3=2

54�2
:

Its expansion as a power series in � reads

G.1; �/ D
X

n

2 � 3n

n C 2
Cn�n with Cn D .2n/Š

nŠ2.n C 1/
:

�is reproduces the counting of planar ribbon graphs with one cilium, or equiva-
lently, rooted, bipartite quadrangulations.

B. �e BKAR forest formula

In this appendix, we brie�y review the Brydges-Kennedy-Abdesselam-Rivasseau
(BKAR) forest formula [12] which allows us to expand logZŒJ; J �; �; N � as a sum
over trees.

Let � be a function of R
n.n�1/

2 whose arguments uij are associated to the edges
of the complete graph on n vertices labeled ¹1; 2; : : : ; nº. �e following theorem
yields an expansion of �.1; : : : ; 1/ as a sum over forests with n labeled vertices.
Recall that a forest is a subset of edges of the compete graph that does not contain
any cycle.
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For every forest F , let us denote (if it exists) P F
i$j the unique path in the forest

F joining the vertices i and j .

�eorem 8 (Brydges–Kennedy–Abdesselam–Rivasseau). Let � W R
n.n�1/

2 ! C

be a smooth, su�ciently derivable function. �en

�.1; : : : ; 1/ D
X

F forest

Z 1

0

Y

.i;j /2F

duij

� @jE.F /j�
Q

.i;j /2F @xij

�

.vF
ij /;

where vF
ij is given by

vF
ij D

8

<

:

inf.k;l/2P F
i$j

ukl if P F
i$j exists,

0 otherwise,

and jE.F /j is the number of edges in the forest F .

�is theorem is a broad generalization of the fundamental theorem of calculus,
to which it reduces when n D 2. Indeed, in this case there are two forests on the
complete graph with 2 vertices (thus with a single edge, see Figure 11) and we get

�.1/ D �.0/ C
Z 1

0

dt12

� @�

@x12

�

.t12/

�e �rst term corresponds to the empty forest (jE.F /j D 0) and the second one
to the full forest (jE.F /j D 1).

1 2
,

1 2

Figure 11. �e two forests built on two vertices.

For n D 3, we have seven forests (see Figure 12) and we get

�.1; 1; 1/ D �.0; 0; 0/ C
Z

Œ0;1�

dt12

� @�

@x12

�

.t12; 0; 0/

C
Z

Œ0;1�

dt23

� @�

@x23

�

.0; t23; 0/

C
Z

Œ0;1�

dt13

� @�

@x13

�

.0; 0; t13/

C
Z

Œ0;1�2
dt12dt23

� @2�

@x12@x23

�

.t12; t23; inf.t12; t23//
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C
Z

Œ0;1�2
dt12dt13

� @2�

@x12@x13

�

.t12; inf.t12; t13/; t13/

C
Z

Œ0;1�2
dt23dt13

� @2�

@x23@x13

�

.inf.t23; t13/; t23; t13/:

12

3
,

12

3
,

12

3
,

12

3
,

12

3
,

12

3
,

12

3

Figure 12. �e seven forests built on three vertices.

�e �rst term corresponds to the empty forest, the next three to the forests with
one edge and the last three to the forests with two edges.

In quantum �eld theory, the main interest of this formula lies in the fact that it
provides an expansion for the partition function with sources ZŒJ � as a sum over
forests. Its logarithm is then readily computed as a convergent sum over trees.

C. Some examples of LVE graphs and their amplitudes

Here we illustrate how the LVE graph amplitude (3) is computed on a few exam-
ples. We use a double line representation for the intermediate �eld instead of a
wavy line, ! .
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PSfrag

1 2 3

4

Figure 13. A LVE tree.

For the tree in Figure 13, the amplitude reads

A

1 2 3

4

D N.��/4

3Š

Z

0

dt12dt23dt24

Z

d�C .A/

Tr
h�

1 � i

r

�

N
A3

��1�

1 � i

r

�

N
A2

��1�

1 � i

r

�

N
A4

��1

�

1 � i

r

�

N
A2

��1�

1 � i

r

�

N
A1

��1

JJ �
�

1 � i

r

�

N
A1

��1

�

1 � i

r

�

N
A2

��1�

1 � i

r

�

N
A3

��1

JJ �
i

;

with covariance matrix

C D

0

B
B
B
@

1 t12 inf.t12; t23/ inf.t12; t24/

t12 1 t23 t24

inf.t12; t23/ t23 1 inf.t23; t24/

inf.t12; t24/ t24 inf.t23; t24/ 1

1

C
C
C
A

:

1 2 3

loop 1

loop 2

Figure 14. A planar LVE graph.
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For the planar LVE graph in Figure 14, the amplitude reads

A

1 2 3

loop 1

loop 2

D N �1.��/4

3Š

Z 1

0

ds1

Z s1

0

ds2

Z

0

dt12dt23dt24 inf.t12; t23/t23

Z

d�s2C .A/

Tr
h�

1 � i

r

�

N
A3

��1�

1 � i

r

�

N
A1

��1

JJ �

�

1 � i

r

�

N
A1

��1�

1 � i

r

�

N
A2

��1�

1 � i

r

�

N
A3

��1

JJ �
i

Tr
h�

1 � i

r

�

N
A1

��1�

1 � i

r

�

N
A2

��1�

1 � i

r

�

N
A3

��1i

Tr
h�

1 � i

r

�

N
A2

��1�

1 � i

r

�

N
A3

��1i

;

with covariance matrix

s2C D s2

0

@

1 t12 inf.t12; t23/

t12 1 t23

inf.t12; t23/ t23 1

1

A:

1 2 3

loop 1

loop 2

Figure 15. A non planar LVE graph.
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For the non planar LVE graph in Figure 15, the amplitude reads

A

replacements

1 2 3

loop 1

loop 2

D N �1.��/4

3Š

Z 1

0

ds1

Z s1

0

ds2

Z

0

dt12dt23dt24 inf.t12; t23/

Z

d�s2C .A/

Tr
h�

1 � i

r

�

N
A1

��1�

1 � i

r

�

N
A2

��1�

1 � i

r

�

N
A2

��1�

1 � i

r

�

N
A1

��1

�

1 � i

r

�

N
A3

��1�

1 � i

r

�

N
A2

��1�

1 � i

r

�

N
A2

��1

�

1 � i

r

�

N
A3

��1�

1 � i

r

�

N
A1

��1

JJ �
i

;

with covariance matrix

s2C D s2

0

@

1 t12 inf.t12; t23/

t12 1 t23

inf.t12; t23/ t23 1

1

A : (21)

D. Analyticity domain for the vector model

In the case of the vector model, the cardioid can be extended to reach the real
negative axis. �is result is not new, see [20]. An argument similar to ours, based
on the LVE and contour rotation can also be found in [13].

�e cumulants of the vector model are de�ned by the generating WŒJ; J �� D
logZŒJ; J �� with

ZŒJ; J �� D
Z

dˆ exp �
°

ˆ�ˆ C �

2N

�

ˆ�ˆ
�2 C

p
N ˆ�J C

p
N J �ˆ

±

where ˆ 2 C
N is a N component vector and ˆ�ˆ D jˆ1j2 C � � � C jˆN j2. As for

the matrix model, the integral is normalized such that ZŒJ; J �� D 1 at � D 0. �e
sources J and J � are also N component complex vectors.

�e vector model admits an intermediate �eld representation based on

exp � �

2N

�

ˆ�ˆ/2 D
Z

dA exp �
°1

2
A2 � i

r

�

N
Aˆ�ˆ

±
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where the integral is over a real scalar A. �us, the Gaußian integral over ˆ can
be performed

ZŒJ; J ��

D
Z

dˆdA exp �
°1

2
A2 C

h

ˆ�
�

1 � i

r

�

N
A

�

ˆ
i

C
p

N ˆ�J C
p

N J �ˆ
±

D
Z

dA exp �
°1

2
A2 C N log

�

1 � i

r

�

N
A

�

C NJ �J
�

1 � i

r

�

N
A

��1±

Let us notice two di�erences with respect to the matrix integral eq. (13): �ere
is no power of N in front of the resolvent and A and J �J are scalars, so that they
can be commuted. However, the perturbative expansion of the vector model in the
intermediate �eld also involves ribbon graphs, even if all quantities are scalars.
�is is so because the interaction vertices are based on resolvents, which have a
cyclic ordering of their half edges.

�en, we perform the loop vertex expansion and expand logZŒJ; J �� over cil-
iated ribbon trees

logZŒJ; J ��

D
X

T tree

N.��/.jE.T /j/.J �J /k

jV.T /jŠ

Z

dt

Z

d�CT
.A/

n
Y

iD1

�

1 � i

r

�

N
Ai

��li

;

where n is the number of vertices of T , k the number of cilia and li the number of
corners attached to vertex i . �is expression has the same domain of convergence
as the matrix integral, stated in �eorem 1.

However, the domain of analyticity can be enlarged. To proceed, let us write
the powers of the resolvent as

�

1 � i

r

�

N
A

��l

D 1

�.l/.
p

�/l

Z 1

0

d˛ ˛l�1 exp �˛
° 1p

�
� ip

N
A

±

Inserting this representation in the integral over replicas yields

Z

d�CT
.A/

n
Y

iD1

�

1 � i

r

�

N
Ai

��li

D
Z 1

0

Q

i d˛i

Q

i ˛
li �1
i

.
p

�/2n�2Ck
Q

i �.li /

Z

d�CT
.A/ exp�

X

i

° ˛ip
�

� i˛iAip
N

±

:
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�e main simpli�cation in the vector model case is that the integral over the repli-
cas is Gaußian and can be performed explicitly

Z

d�CT
.A/ exp�

X

i

° ˛ip
�

� i˛i Aip
N

±

D exp �
° X

i

˛ip
�

C
X

i;j

Cij ˛i j̨

2N

±

:

�erefore, the loop vertex expansion of the vector model reads

logZŒJ; J �� D
X

T

N.�1/.n�1/.J �J /k

nŠ.
p

�/k
Q

i �.li /

Z

dt

Z

d˛
Y

i

˛
li �1
i exp

�
° X

i

˛ip
�

C
X

i;j

Cij ˛i j̨

2N

±

where we recall that the sum runs over ribbon trees with n labeled vertices and k

cilia and that li is the number of corners attached to vertex i .
Next, we write � D �ei�and rotate the ˛i integrations by an angle �

2
in their

complex planes, ˛i ! ei �
2 ˛i . �is is possible since the integrand is holomorphic

in all the ˛i but requires that the integrand goes to 0 on the arcs ˛i D Rei� with
� 2 Œ0; �

2
� and R ! C1. �is last condition imposes that the real part of the

argument of the exponential be always positive. A su�cient condition is to im-
pose that the linear and quadratic terms are separately positive, cos. ���

2
/ > 0 and

cos � > 0. After rotation of the contour, the generating function of the cumulants
is expanded as

logZŒJ; J ��

D ei� .2n�2Ck/
2

X

T

N.�1/.n�1/.J �J /k

nŠ.
p

�/k
Q

i �.li /
Z

dt

Z

d˛
Y

i

˛
li �1
i exp �

°

e
i
2 .���/

X

i

˛ip
�

C ei�
X

i;j

Cij ˛i j̨

2N

±

:

Let us emphasize that none of the terms in the sum over trees depend on �.
We may therefore conveniently choose � to enlarge the domain of analyticity. To
this aim, let us bound the exponential as

ˇ
ˇ
ˇ exp �

°

e
i
2 .���/

X

i

˛ip
�

C ei�
X

i;j

Cij ˛i j̨

2N

±ˇ
ˇ
ˇ

D exp �
°

cos ���
2

X

i

˛ip
�

C cos �
X

i;j

Cij ˛i j̨

2N

±

� exp �
°

cos ���
2

X

i

˛ip
�

±
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since the covariance is a positive matrix. Now we perform the integral over the
Schwinger parameters ˛i

j logZŒJ; J ��j �
X

T

N j�j.n�1/.J �J /k

nŠ cos2n�2Ck
�

���
2

� :

Since we have to stay away from the critical half line � D ˙� , the best bound
(given the conditions imposed by the positivity of the argument of the exponential
in the contour rotation) is obtained for � D � for � 2 Œ��

2
; �

2
� � D �

2
for � 2 Œ0; �

2
�

and � D ��
2

for � 2 Œ��
2

; 0�. �erefore, the generating function is bounded as

j logZŒJ; J ��j �
X

T

N j�j.n�1/.J �J /k

nŠ
for � 2

�

� �

2
;
�

2

�

ˇ
ˇ logZŒJ; J ��

ˇ
ˇ �

X

T

N j�j.n�1/.J �J /k

nŠ
�

cos
�

j� j
2

� �
4

��2n�2Ck
for � 2

�

� �; ��

2

�

[
��

2
; �

�

Finally, an argument similar to the one presented in Section 4.1 and leading to
�eorem 1 establishes the following analyticity theorem for the vector model.

�eorem 9 (Constructive theorem for the vector model). Cumulants are analytic

functions of � inside the curve

C
0 D

°

�ei� with 4� < 1 for � 2 Œ
��

2
;
�

2
�

and 4� < cos2
� j� j

2
� �

4

�

for � 2
h

� �; ��

2

i

[
h�

2
; �

i±

with cut on the negative real axis.

C
0 is limited by a portion of a circle and two portions of cardioids, rotated by

angles ˙�
2

as illustrated on Figure 16.

Note that the analyticity domain intersects the negative real axis, on which the
function has a cut because � D ˙� has to be excluded.

Acknowledgements. Both authors thank V. Rivasseau for very fruitful discus-
sions and the Erwin Schrödinger Institute for hospitality during the program
“Combinatorics, Geometry and Physics.” �. Krajewski also thanks the Centre de
Physique �éorique at Ecole Polytechnique for hospitality and University Paris-
Nord for support.



226 R. G. Gurau and �. Krajewski
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Figure 16. Analyticity domain for the vector model.
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