
Ann. Inst. Henri Poincaré Comb. Phys. Interact. 2 (2015), 229–262
DOI 10.4171/AIHPD/18

A solution to the combinatorial puzzle

of Mayer’s virial expansion
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Abstract. Mayer’s second theorem in the context of a classical gas model allows us to write

the coe�cients of the virial expansion of pressure in terms of weighted two-connected

graphs. Labelle, Leroux and Ducharme studied the graph weights arising from the one-

dimensional hardcore gas model and noticed that the sum of these weights over all two-

connected graphs with n vertices is �n.n�2/Š. �is paper addresses the question of achiev-

ing a purely combinatorial proof of this observation and extends the proof of Bernardi for

the connected graph case.
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1. Introduction

�is paper considers (multivariate) generating functions of the form

1
X

nD1

zn

nŠ

X

G2HŒn�

Qw.G/se.G/; (1.1)

where H indicates a subclass of graphs. e.G/ is the number of edges of a graph
G. Œn� indicates that the graph has vertex set ¹1; � � � ; nº DW Œn� and Qw is a speci�ed
positive graph weight. �e exponents of the variables z and s indicate the size of
the vertex set, respectively, the number of edges.

When evaluating (1.1) at s D �1, there are some remarkable cancellations,
leading, in some cases, to simple formulæ for the coe�cients. �is paper gives
combinatorial explanations for the class of two-connected graphs in particular.
Two-connected graphs are those graphs for which we can remove any vertex and
its incident edges and the resulting graph remains connected.

�ere are four cases of (1.1) used in Mayer’s theory of cluster and virial ex-
pansions, depending on the class of graphs considered and the weights. �e sum
is either over connected graphs, denoted by C, or two-connected graphs, denoted
by B. �e weights are either those for a discrete hard core gas, often referred to as
the one-particle hard core gas, or for a continuum one-dimensional hard core gas,
also named the Tonks gas. For the discrete gas, the goal is to count the number
of graphs; for the continuum model, the coe�cients are given by the volume of a
polytope associated with the graph G. We write a graph G as the ordered pair of
its vertex set and edge set as .V .G/; E.G//.

We de�ne the polytope corresponding to the graph G as

…G WD ¹.x/Œ2;n� 2 R
n�1j jxi � xj j < 1 for all ¹i; j º 2 E.G/º; (1.2)

with x1 D 0. We use the notation

.x/Œ2;n� WD .x2; � � � ; xn/:

Mayer, in [17], established important connections between weighted graph gen-
erating functions and expansions in statistical mechanics. �ese connections are
also presented in the framework of combinatorial species of structure in the work
of Ducharme, Labelle and Leroux [8, 16], Leroux and Kaouche [14] and Faris [9].

�e results of Mayer are that the weighted sum over connected graphs gives
the pressure as a function of activity and the weighted sum over two-connected
graphs is related to the virial expansion of pressure expanded in terms of density.
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�e two formulæ are

ˇP.z/ D

1
X

nD1

zn

nŠ

X

G2CŒn�

w.G/ (1.3)

and

ˇP.�/ D � �

1
X

nD2

.n � 1/
�n

nŠ

X

G2BŒn�

w.G/; (1.4)

where w.G/ is the graph weight speci�ed by the particular model.
�e answers for the four cases are given by the formulæ for the connected graph

discrete case:
X

G2CŒn�

.�1/e.G/ D .�1/n�1.n � 1/Š (1.5)

and for the connected graph continuum case:

X

G2CŒn�

.�1/e.G/ Vol.…G/ D .�1/n�1nn�1: (1.6)

�ere are also formulæ for the two-connected discrete case:

X

G2BŒn�

.�1/e.G/ D �.n � 2/Š (1.7)

and the two-connected graph continuum case:

X

G2BŒn�

.�1/e.G/ Vol.…G/ D �n.n � 2/Š: (1.8)

For the discrete cases the results are straightforward computations. For the con-
tinuum case, derivations are given in [8]. �e statistical mechanical background
is explained in full detail in Section 2.

It is tempting to try and �nd a simple combinatorial interpretation that explains
the cancellations in a direct way. �is was posed as a challenge in the paper of
Ducharme, Labelle and Leroux [8]. In the connected graph cases, this was done
by Bernardi [4]. �e approach was to use an involution that exhibits the result of
the almost perfect cancellation as a contribution from the �xed points of the invo-
lution. �e �xed points were identi�ed as increasing trees in the discrete case and
rooted trees in the continuum case. �e purpose of this paper is to present simi-
lar derivations for the two-connected graph cases. As always this is considerably
more complicated.
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�e concept of using an involution to understand the cancellations is natural.
Recall the formula that, for any �nite non-empty set X ,

X

S�X

.�1/jS j D 0: (1.9)

In order to prove this, we show we have the same number of sets with even cardi-
nality as we do of odd cardinality. One approach is to pair sets di�ering by one
element. �is pairing idea is captured by the involution. In this example, the in-
volution is de�ned by �rst �xing a singleton subset of X , say ¹iº, and taking the
symmetric di�erence ‰ W S 7! S�¹iº.

If we consider a �xed vertex set Œn� for a graph, then a graph G is determined
precisely by its edge set E.G/, which is a subset of the collection of unordered
pairs in Œn�, denoted Œn�.2/. We can also use this symmetric di�erence operation
on the edge set for graphs. An important complication is that we consider par-
ticular subsets for which taking the symmetric di�erence with a �xed edge will
not su�ce, since the removal or addition of the edge may take us outside of the
prescribed collection of subsets. We need to �nd an e�cient way of choosing an
edge based on the graph we are considering so that we obtain a pairing that will
not take us outside of the prescribed collection.

In Section 3, we present the combinatorial structures that give the interpreta-
tions of the cancellations in the two-connected case. Sections 4 and 5 give the
proofs of the one particle hard core and the Tonks gas case respectively. In the lat-
ter, the decomposition of polytopes into unimodular simplices attributed to Lass
is given so that it may be proved as an extension of the previous case. We provide
an interpretation why 2n � 3 should appear as the number of edges in Section 6.

From the perspective of statistical mechanics, the motivation for understanding
such cancellations is to be able to adapt the understanding to models where more
complicated weights are used. Indeed, the key idea is to emulate what is done
for the connections between connected graphs and trees and understand how to
modify these in this context.

�e �rst parallel to draw is that the involution of Bernardi �ts within a gen-
eral concept of externally and internally active elements of a set with a matroid
structure as given by Björner and Sokal [7, 23]. �e idea to emphasise here is that
this allows the set of connected graphs to be partitioned into subsets, indexed by
trees. When we consider graphs with the partial order de�ned by bond inclusion,
the blocks in this partition are Boolean. �at is, each set has a tree � as minimal
graph and a corresponding maximal graph R.�/, all graphs with edge set E such
that E.�/ � E � E.R.�// are included in the set in the partition. �is form
of a partition lends itself well to performing estimates on the cluster coe�cients.
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�is was actually realised earlier by Penrose [21] in the speci�c case of connected
graphs. Understanding this partition into Boolean subsets also gives rise to an
alternative involution. It is intriguing to realise that the general construction does
not include the Penrose construction as a subcase. �ese ideas are addressed in
Section 7.

�is combinatorial understanding is also closely linked to the tree-graph iden-
tities of Brydges Battle and Federbush [5, 6, 2, 3], for which a symmetric ver-
sion is provided by Abdesselam and Rivasseau [1] and a matroid generalisation
by Faris [10]. �ese identities allow estimations to be made on these coe�cients,
since we may express the sum over connected graphs as a sum over trees with
modi�ed weights. A greater goal is to extend these to partially ordered sets where
a matroid structure may not be present.

Interest in providing such bounds on the virial expansion coe�cients has re-
cently been renewed with the papers by Pulvirenti and Tsagkarogiannis [22] and
Morais and Procacci [19], which use the Canonical Ensemble as a method of
achieving bounds. �e paper by Jansen [13] suggests that at high temperatures the
radius of convergence should be improved: actual improvements on the bounds of
Lebowitz and Penrose [15] have been proposed recently [24].

2. �e two models from statistical mechanics

In a classical gas system of n indistinguishable interacting particles in a vessel
ƒ � R

d with only two-body interactions and no external potential, we may write
the Hamiltonian as

H.p; q/ D

n
X

iD1

p2
i

2m
C

X

1�i<j �n

'.qi ; qj /; (2.1)

where q represents the generalised coordinates and p the conjugate momenta. �e
canonical partition function of the gas model is

Z.ƒ; ˇ; n/ D
1

nŠ

n
Y

iD1

�Z

ƒ

dd qi

Z

Rd

dd pi

�

exp.�ˇH/: (2.2)

Integrating out the Gaussian integrals for the momenta, we obtain a factor 1
�n ,

where � is the thermal wavelength. �e partition function is therefore

Z.ƒ; ˇ; n/ D
1

nŠ�n

n
Y

iD1

�Z

ƒ

dd qi

�

Y

1�i<j �n

exp.�ˇ'.qi ; qj //: (2.3)
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�e Mayer trick [17], allows us to rewrite the canonical partition function in terms
of weighted graphs. �e �rst stage is to de�ne the Mayer f -function:

f .qi ; qj / WD exp.�ˇ'.qi ; qj // � 1: (2.4)

We realise that the product of exponentials in (2.3) may be rewritten as
Y

1�i<j �n

exp.�ˇ'.qi ; qj // D
Y

1�i<j �n

.1 C f .qi ; qj //

D
X

G2GŒn�

Y

.i;j /2E.G/

f .qi ; qj /;
(2.5)

where GŒn� is the set of simple graphs (no multiple edges or loops) on n points.
We write a graph G D .E.G/; V .G//, where E.G/ � Œn�.2/ is the edge set and
V.G/ D Œn� is the vertex set. �is motivates the graph weight

W.G/ D

n
Y

iD1

�Z

ƒ

dd qi

�

Y

.k;l/2E.G/

f .qk; ql/: (2.6)

We can therefore write the partition function as

Z.ƒ; ˇ; n/ D
1

nŠ�n

X

G2GŒn�

W.G/: (2.7)

In order to obtain the grand canonical partition function we sum

„.ƒ; ˇ; z/ D

1
X

nD0

zn�nZ.�; ˇ; n/; (2.8)

where z D eˇ� the activity and � is the chemical potential. In terms of graphs,
we write this as

„.ƒ; ˇ; z/ D

1
X

nD0

zn

nŠ

X

G2GŒn�

W.G/ DW GW .z/: (2.9)

�e pressure is de�ned to be

ˇP D lim
jƒj"1

1

jƒj
log „.ƒ; ˇ; z/: (2.10)

If we de�ne the new weight w.G/ D limjƒj"1
1

jƒj
W.G/, then the pressure func-

tion can be written in terms of connected graphs

ˇP D Cw.z/ D

1
X

nD1

zn

nŠ

X

G2CŒn�

w.G/: (2.11)
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�is is the content of Mayer’s First �eorem [17] and is explained in the paper [8].
�e density � is

� D z
@

@z
ˇP D C�

w.z/; (2.12)

where C� denotes a rooted connected graph. From Mayer’s Second �eorem [17]
or by the Dissymmetry �eorem [8], we are able to obtain a series expansion for
pressure in terms of density, in which the coe�cients are, up to a prefactor, the
w-weighted two-connected graphs,

ˇP D � �

1
X

nD2

.n � 1/�n

nŠ

X

G2BŒn�

w.G/: (2.13)

One may also consult the book by McCoy [18] for an explanation of the derivation
of these two theorems.

2.1. One particle hard core gas. �e potential for a one-particle hard core gas
is

'.qi ; qj / D 1; (2.14)

so that exp.�ˇ'.qi ; qj // D 0 and f .qi ; qj / D �1. �e grand canonical partition
function is

„.z/ D 1 C z: (2.15)

�e statistical mechanical relationships give pressure and density as

ˇP D log.1 C z/; (2.16)

� D
z

1 C z
: (2.17)

We may invert (2.17), to obtain

z D
�

1 � �
(2.18)

and substitute for z in (2.16), to obtain

ˇP D � log.1 � �/: (2.19)

�e two series expansions derived from statistical mechanics are

ˇP D

1
X

nD1

.�1/n�1zn

n
; (2.20)

ˇP D

1
X

nD1

�n

n
: (2.21)
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If we compare these two power series with (2.11) and (2.13) respectively, using
the graph weight w.G/ D .�1/e.G/, where e.G/ is the number of edges in graph
G, we obtain

X

G2CŒn�

.�1/e.G/ D .�1/n�1.n � 1/Š (2.22)

and
X

G2BŒn�

.�1/e.G/ D �.n � 2/Š: (2.23)

2.2. Continuum hard core gas – Tonks gas. For a continuum hard core gas in
one dimension with diameter 1, the potential is

'.qi ; qj / D

8

<

:

1 if jqi � qj j < 1;

0 otherwise.
(2.24)

�e exponential and Mayer f -functions are

exp.�ˇ'.qi ; qj // D

8

<

:

0 if jqi � qj j < 1;

1 otherwise,
: (2.25)

f .qi ; qj / D

8

<

:

�1 if jqi � qj j < 1;

0 otherwise.
(2.26)

We therefore have the graph weight

w.G/ D .�1/e.G/

Z

Rn�1

Y

¹i;j º2E.G/

�.jxi � xj j < 1/ dx2 � � � dxn; (2.27)

where x1 D 0 and � is the indicator function.

In [8], this is interpreted as a the volume of a convex polytope …G in R
n�1.

�e polytope is de�ned by

…G D ¹.x/Œ2;n� 2 R
n�1jjxi � xj j < 1 for all ¹i; j º 2 E.G/ x1 D 0º:

We use the notation Œ2; n� D ¹2; 3; � � � ; nº and .x/Œ2;n� D .x2; � � � xn/.
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Hence the graph weight may be written as

w.G/ D .�1/e.G/ Vol.…G/: (2.28)

�e derivation of the cluster and virial expansions, using statistical mechanics, are
more di�cult in this case, but they are done in [8] and we achieve

ˇP D W.z/ D

1
X

nD1

.�n/n�1zn

nŠ
(2.29)

ˇP D
�

1 � �
D

1
X

nD1

�n; (2.30)

where W.z/ is the Lambert W -function.
If we compare these to the results of Mayer’s First and Second �eorems, (2.11)

and (2.13), we obtain the combinatorial relationships
X

G2CŒn�

.�1/e.G/ Vol.…G/ D .�1/n�1nn�1 (2.31)

X

G2BŒn�

.�1/e.G/ Vol.…G/ D �n.n � 2/Š: (2.32)

3. Results

�e results of this article are the combinatorial interpretations of the cancellations
in the alternating sums of weighted two-connected graphs.

�eorem 3.1 (combinatorial identity from the one-particle hard-core model). �e

di�erence of two-connected graphs with an even number of edges and an odd

number of edges is given by the following formula:
X

G2BŒn�

.�1/e.G/ D �.n � 2/Š: (3.1)

�is is proved through an involution ‰, given in Section 4, which e�ectively
pairs graphs di�ering by only one edge, leaving some small collection of graphs
�xed, which give the .n � 2/Š factor.

�e �xed graphs are formed from an increasing tree on the vertex set Œn � 1�

with the vertex n adjacent to every other vertex. �e number of increasing trees
on Œn � 1� is .n � 2/Š. �e tree has n � 2 edges and we add n � 1 edges from the
vertex labelled n to achieve 2n � 3 edges. �is gives the de�nite minus sign and
the combinatorial factor.
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De�nition 1. An increasing tree is a labelled tree on which the sequence of vertex
labels along all paths from the vertex labelled 1 to the leaves form increasing
sequences. An example of such a graph is shown in Figure 1.

1

2

3

4

5

6

7

8

9

11

10

Figure 1. An Increasing Tree on 11 vertices.

�eorem 3.2 (combinatorial identity from the continuum hardcore gas). When

each graph is additionally weighted by a polytope volume, we achieve the follow-

ing identity:
X

G2BŒn�

.�1/e.G/ Vol.…G/ D �n.n � 2/Š: (3.2)

�is is proved through a collection of involutions .‰h/h2Zn�1 . �e index h is
related to the partition of the polytopes into areas of equal volume attributed to
Lass in [4, 8]. �e meaning of h is explained in subsection 5.1. �e �xed points of
these involutions occur only when h is of the form .0; � � � ; 0; �1; � � � ; �1/, meaning
that any edge is possible. �ere are precisely n possibilities of these sequences,
which corresponds to the n positions of the last zero.

�e particular h provides a bijection � W Œn� ! Œn� on which the �xed graphs
correspond to an increasing tree (given by the order �.i/ < �.j / if and only if
i < j ) on the labels ¹�.1/; � � � ; �.n � 1/º. �is is paired with every edge from
�.n/ to the vertices ¹�.1/; � � � ; �.n � 1/º.

�e number of these increasing trees on n � 1 vertices is .n � 2/Š and hence
we obtain the factor n.n � 2/Š. We notice that these graphs are on 2n � 3 edges as
above, which provides the minus sign.

Remark 1 (complications for two-connected graphs). �e two-connected case is
necessarily more complicated than the connected case. First of all, minimal two-
connected graphs do not all have the same number of edges for a �xed number of
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vertices as trees (minimal connected graphs) do. Simply removing edges appro-
priately down to a minimal graph cannot provide a combinatorial understanding
as there will still be sign di�erences to take care of. Furthermore, the sign of the
factor is constant - the number of edges must always be odd for whatever value of
n we take.

4. �e hardcore one particle gas – proof of �eorem 3.1

As indicated in the introduction, the proof of �eorem 3.1 is done through an
involution. To explain how the involution ‰ provides the combinatorial factor
through the number of �xed points, we use the manipulations of Bernardi [4],
where we know that the involution either adds an edge, removes an edge or leaves
the graph �xed. We have that

X

g2BŒn�

.�1/e.g/ D
X

g2BŒn�

.�1/e.‰.g//; (4.1)

since ‰ is a bijection. �e sum of these is therefore

2
X

g2BŒn�

.�1/e.g/ D
X

g2BŒn�

..�1/e.g/ C .�1/e.‰.g///

D 2
X

g2BŒn�j‰.g/Dg

.�1/e.g/:

�e �xed points of the involution thus give us the combinatorial factor.
�is section describes the involution and proves it does what is required.
For graphs, the analogous operation to symmetric di�erence explained in the

introduction is the operation ˚. G ˚ e is the graph .V .G/; E.G/�¹eº/.
�e speci�c task of the proof of both identities is to identify for each graph

a unique edge that we can add or remove. �is has to be done in a consistent
and e�cient manner. Consistent in the sense that if we identify eG as the unique
edge in G, then we want eG˚eG

D eG so that ‰ is an involution. It needs to be
e�cient in the sense that the only graphs it leaves �xed are those that provide
the combinatorial factor relevant for the alternating sum. We do not want further
cancellations to consider.

In each graph G, we consider the vertex labelled n. When the vertex n is
adjacent to every vertex, we realise that the collection of two-connected graphs
with this property may be identi�ed with the collection of connected graphs on
the vertex set Œn � 1�. Bernardi [4] has already provided an involution on this set
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that we can use in this case to obtain cancellations, since they will all come with
the same prefactor .�1/n�1 from the n � 1 edges from the vertex labelled n. We
thus �rstly introduce the involution of Bernardi and make rigorous the connection
between connected graphs on Œn � 1� and the particular subset of two-connected
graphs where n is adjacent to every other vertex.

For those graphs where the vertex labelled n is not adjacent to every other
vertex, we may use the two-connected property of the graph to �nd an edge suit-
able for the involution. �is is done through using a corollary due to Whitney of
Menger’s theorem and introducing a de�nition of permissible edges. We empha-
sise how these combine to give a complete involution and that the only contribu-
tions arise from the Bernardi involution.

Firstly, we de�ne the neighbourhood of a vertex i in a graph G.

De�nition 2 (neighbourhood). For a graph G and a vertex i , we de�ne the neigh-
bourhood of i in G as

NG.i/ WD ¹j 2 V.G/j ¹i; j º 2 E.G/º:

We de�ne the lexicographic order on edges e 2 Œn�.2/ by

¹i; j º < ¹k; lº if

8

<

:

min¹i; j º < min¹k; lº;

or min¹i; j º D min¹k; lº and max¹i; j º < max¹k; lº:

For a subset S of a totally ordered set, we de�ne

S>e WD ¹x 2 S j x > eº:

For a graph G D .V .G/; E.G// and an edge e, we de�ne

G>e WD .V .G/; E.G/>e/

with respect to the lexicographic order above.
We give here Bernardi’s involution on connected graphs, since it used for the

two-connected graph version. We write it for the vertex set Œn � 1� as this is the
form in which it will be used.

De�nition 3 (Externally Active Edge). An edge e 2 Œn � 1�.2/ is externally active
for the graph G 2 CŒn � 1�, if there is a path in G>e between the endpoints of e.

If a connected graph G has an externally active edge, we de�ne �G to be the
maximal such edge.
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De�nition 4 (Bernardi’s involution [4]). �e involution

‰B W CŒn � 1� �! CŒn � 1�

de�ned by Bernardi [4], is given by

‰B W G �!

8

<

:

G ˚ �G if G has an externally active edge,

G otherwise.
(4.2)

�e result of the involution is the following lemma.

Lemma 4.1 (Bernardi [4]). Under the involution ‰B , only increasing trees are

kept �xed.

We introduce the following notation to simplify the formulation of the connec-
tion between two-connected graphs with vertex set Œn�, where the vertex labelled
n is adjacent to every other vertex, and connected graphs with vertex set Œn � 1�.

i) For a graph G D .V .G/; E.G//, we denote by G n ¹iº, the graph

.V .G/ n ¹iº; E.G/ n ¹¹i; j ºj j 2 V.G/º/:

ii) We denote the subset of two-connected graphs on vertex set Œn� with vertex
n adjacent to all other vertices by B�Œn�.

De�nition 5. We de�ne the mapping

� W B�Œn� ! CŒn � 1�;

by
� W G 7! G n ¹nº:

We emphasise that removing a vertex and its incident edges from a two-connected
graph leaves a connected graph and so de�ning the codomain of � as CŒn � 1� is
�ne.

Lemma 4.2. �e map � W B�Œn� ! CŒn � 1� is a bijection.

Proof. Firstly it is injective. If �.G/ D �.H/, this means E.G/ \ Œn � 1�.2/ D

E.H/ \ Œn � 1�.2/ and since G and H 2 B�Œn�, the remaining elements of E.G/

and E.H/, namely ¹¹i; nºj i 2 Œn � 1�º, are the same and so G D H . �is is
surjective, since for any connected graph on Œn � 1�, if we add the vertex labelled
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n and all edges ¹i:nº such that i 2 Œn � 1�, the resulting graph is two-connected.
If we consider removing any vertex i ¤ n from this new graph we see that every
vertex is connected to every other vertex via n. If n is removed then it is connected
by de�nition and hence it is two-connected.

We de�ne the inverse map of � to be �.

De�nition 6 (internally disjoint paths). A path is an alternating sequence of ver-
tices and edges in a graph v0e0v1 � � � ek�1vk, which begins and ends with a ver-
tex. �e edges are written in terms of the preceding and following vertices: ei D

¹vi ; viC1º. Two paths v0e0v1 � � � ek�1vk and Qv0 Qe0 Qv1 � � � Qel�1 Qvl are internally dis-
joint if the only common vertices or edges are the endpoints v0 D Qv0 and vk D Qvl .

For an edge ¹i; j º the endpoints are de�ned as the vertices i and j .
�e following result in the case k D 2 is used to �nd an edge in each graph

where NG.n/ ¤ Œn � 1�, by using the fact that we have two internally disjoint
paths between n and some a 2 Œn � 1� n NG.n/. �is is a classical theorem of
Whitney [25] based upon Menger’s �eorem.

�eorem 4.3 (Whitney [25]). A graph G is k-connected if and only if every pair

of vertices is connected by k internally disjoint paths.

We introduce the notion of permissible edges as those edges which have both
endpoints in the neighbourhood of a vertex i and can easily be understood as a
chord in the graph G, when we neglect any edges in .NG.i//.2/. We will focus on
the case when i D n.

De�nition 7 (permissible edges). Given a (two-connected) graph G and a vertex
i 2 V.G/, such that NG.i/ [ ¹iº ¤ V.G/, we de�ne an edge e 2 Œn�.2/ to be
.G; i/-permissible if the following condition holds.

� �ere exists an a 2 V.G/n.NG.i/[¹iº/, such that we have two vertex disjoint
paths a ! i , intersecting each once in NG.i/. �e intersection vertices are
the endpoints of e.

If a two-connected graph G with V.G/ D Œn� has a .G; n/-permissible edge,
then we denote the largest such edge in lexicographical ordering by "G .

Lemma 4.4. For every G 2 BŒn� n B�Œn�, we have a .G; n/-permissible edge.
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Proof. We know that S WD Œn�1�nNG.n/ ¤ ;, because we are outside of B�Œn�.
If we choose some a 2 S , then we know by �eorem 4.3 we have two internally
disjoint paths between the vertices labelled a and n. Both paths must hit NG.n/ at
some point. When they �rst hit NG.n/, then they could go straight to n and so each
path need only intersect NG.n/ in one place. �is provides us with a permissible
edge and so "G is well de�ned for every G 2 BŒn� n B�Œn�.

De�nition 8 (involution ‰). We de�ne the involution ‰ W BŒn� ! BŒn� through
Bernardi’s involution ‰B and the permissible edge concept.

i) If NG.n/ D Œn � 1�, we consider the graph G n ¹nº. �is is a connected graph
and we may apply Bernardi’s involution to this subgraph and retain the vertex
n and its incident edges.

�is can be written as

‰jB�Œn� WD � ı ‰B ı �:

ii) If NG.n/ ¤ Œn � 1�, then we de�ne the involution

‰ W G 7�! G ˚ "G :

�e �rst point to emphasise is that due to the bijection between B�Œn� and
CŒn � 1�, we are able to obtain cancellations for these graphs in the same way as
Bernardi. We are left with increasing trees on the set Œn � 1� and the vertex n

adjacent to every other vertex.
We still need to prove that ‰ is indeed an involution.

Lemma 4.5. ‰ is an involution and its image is contained within BŒn�.

Proof. �e fact this is true for ‰jB�Œn� follows from the proof of Bernardi.
If an edge is permissible, we note that it is a chord in a cycle within the graph G.

If we add an edge to a two-connected graph it remains two-connected.
We prove below that if we remove a chord from a two-connected graph, then

it remains two-connected.
We denote the chord we are considering by c D ¹i; j º, the original graph

by G and the graph .V .G/; E.G/ n ¹cº/ by H . We prove H is two-connected by
considering the e�ect of removing a vertex from H . �ere are two cases.

i) H n ¹iº and H n ¹j º are connected as they are the same graphs as G n ¹iº and
G n ¹j º respectively, which are connected since G is two-connected.
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ii) If we consider another vertex k. We assume for contradiction that the graph
H n ¹kº is not connected. We know G n ¹kº is connected and the only dif-
ference is that we have the additional edge c. �is would then imply that i

and j are in di�erent connected components in H n ¹kº. We know that i and
j appear in a cycle in H . �is means if we remove one vertex then we still
have a path between i and j , hence we obtain a contradiction unless H n ¹kº

is connected.

�e collection of permissible edges depends only on edges within

S WD Œn � 1� n NG.n/;

between S and NG.n/ and edges involving n. Adding or removing a permissible
edge does not change the available edges on which one can make the two internally
disjoint paths. Hence the collection of permissible edges for G and G ˚"G are the
same. �is means that the largest elements in each set are the same i.e. "G˚"G

D

"G . �erefore it is an involution.

Hence, ‰ is an involution and has only �xed points in the set B�Œn�. �e �xed
points are those given by Bernardi as increasing trees on the vertex set Œn�1� with
n adjacent to all vertices in Œn � 1�.

5. �e Tonks gas – Proof of �eorem 3.2

In order to deal with the polytope volume weights, we decompose the polytopes
into simplices. �is �rst appeared in [8] and is used in [4] to prove the connected
graph case. �is splitting of polytopes into unimodular simplices is attributed to
Lass.

5.1. Polytopes and simplices. �is subsection explains how this splitting of the
polytopes into simplices is used to construct the involution for the continuum case.
�ese ideas are important in reducing the case of the Tonks gas to the one particle
hard core model.

�e key idea is to split R
n�1 into .n � 1/-simplices of equal volume. We then

realise that a polytope either fully contains a simplex, intersects only on the bound-
ary of the simplex or is disjoint from the simplex. �e sum is then reorganised so
that we may sum over each simplex on the outside and then undertake the alter-
nating sum on the restricted set of graphs whose associated polytopes contain the
simplex considered.
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Consider .x/Œ2;n� 2 R
n�1 and let hi be the integer part of xi and 0 � wi < 1

be the fractional part such that hi C wi D xi . Let

� W Œ2; n� �! Œ2; n�

be a bijection. We may de�ne the simplex �.h; �/, by the set of x with integer part
h and whose fractional parts satisfy

w�.2/ < w�.3/ < � � � < w�.n/:

�is simplex has volume 1=.n � 1/Š.
�e condition jxi � xj j < 1 is equivalent to hi � hj 2 ¹0; sign.wj � wi /º.

We therefore have that �.h; �/ � …G if and only if for all ¹i; j º 2 E.G/, we have
that hi � hj 2 ¹0; sign.��1.j / � ��1.i//º with h1 D 0 and �.1/ D 1.

Lemma 5.1. For any graph G 2 GŒn�, the value .n�1/Š Vol.…G/ counts the pairs

h 2 Z
n�1 and � 2 Sn�1 such that �.h; �/ is a subpolytope of …G .

We may rearrange the sums over connected or two-connected graphs of the
graph weights by �rst casting the sum as a sum over the pairs .h; �/ and sym-
metrising the weight over isomorphic graphs. �e symmetrisation procedure can
be understood by considering a permutation � of Œ2; n� and de�ning for any vec-
tor h D .h2; � � � ; hn/ 2 Z

n�1, �.h/ D .h�.2/; � � � ; h�.n//. For any graph G with
labels in Œn�, the graph �.G/ is the graph, with the same vertex set and satis�es
¹�.i/; �.j /º 2 E.�.G// () ¹i; j º 2 E.G/.

Lemma 5.2 (symmetrisation). �.h; �/ � …G if and only if �.��1.h/; Id/ �

…�.G/ for any permutation � of Œ2; n�.

Proof. �is equivalence can be elucidated by rewriting w D ��1.h/ and
H D �.G/. �is allows us to rewrite the latter statement as

�.w; Id/ � …H :

�is implies, for the entries in vector w, that

wk � wl 2 ¹0; sign.l � k/º for all ¹k; lº 2 E.H/:

Since ¹i; j º 2 E.G/ () ¹�.i/; �.j /º 2 E.H/, we may rewrite this as

w�.i/ � w�.j / 2 ¹0; sign.�.j / � �.i//º for all ¹i; j º 2 E.g/:

We make the identi�cation that hi D w�.i/ to see that we get precisely the state-
ment that �.h; �/ � …G .
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We let H denote either C or B and then we rewrite
X

h2Zn�1 G2HŒn�
�.h;�/�…G

.�1/e.G/ D
X

h2Zn�1 G2HŒn�

�.��1.h/;Id/�…�.G/

.�1/e.G/

D
X

h2Zn�1 G2HŒn�
�.h;Id/�…G

.�1/e.��1.G//

D
X

h2Zn�1 G2HŒn�
�.h;Id/�…G

.�1/e.G/

(5.1)

We may therefore, understand the weight as

X

G2HŒn�

w.G/ D
X

G2HŒn�

.�1/e.G/ Vol.…G/

D
1

.n � 1/Š

X

h2Zn�1�2Sn�1

such that �.h;�/�…G

.�1/e.G/

D
X

h2Zn�1 G2HŒn�
�.h;Id/�…G

.�1/e.G/:

(5.2)

We de�ne the centroid of the vector h, by Nh D . Nh1; � � � ; Nhn/, where Nhi D hi C i�1
n

and Nh1 D 0. We de�ne Kh as the graph on Œn� where the edges are all pairs ¹i; j º

such that j Nhi � Nhj j < 1. We de�ne HhŒn� WD ¹G 2 HŒn�jE.G/ \ E.Kh/ D E.G/º

where H can be replaced by C or B.

�e �nal sum indicates that we need to count pairs h and G such that �.h; Id/ �

…G . �at is that the centroid Nh 2 …G , since Nh is in the interior of �.h; Id/. �is
can be recast as: for Nh 2 …G , we require that

j Nhi � Nhj j < 1 for all ¹i; j º 2 E.G/: (5.3)

We can, therefore, rewrite our sum as

X

h2Zn�1

X

G2HhŒn�

.�1/e.G/ (5.4)

we can thus consider the total sum as �rst a sum over the subset of graphsHhŒn� for
each h and add the results. �is leads to considering separate ‰h W BhŒn� ! BhŒn�

which are involutions and �nding their �xed points.
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5.2. �e involutions ‰h. We de�ne an involution ‰h for each h 2 Z
n�1 on the

set BhŒn� of two connected graphs, which are compatible with the vector h. We
note that, by the de�nition of BhŒn�, edges with j Nhi � Nhj j > 1 are forbidden. We
call an edge ¹i; j º such that j Nhi � Nhj j < 1 allowed.

In order to make the connection with the proof in the discrete case, we indicate
a bijection �h related to the particular h that provides a suitable relabelling of
the vertices to allow for an e�cient application of the lemmas of Section 5 to a
relabelled graph. We reframe the consequences of these lemmas in the context of
the allowed edges. It is important to check that an edge we may want to add or
remove by the prescription in Section 5 is allowed within the speci�c collection
of graphs BhŒn�. It is then proved that when we have a non empty set of forbidden
edges, all terms cancel. In the case when the set of forbidden edges is empty, we
obtain the exact values taken by h and everything reduces to the discrete gas case
with a relabelling.

We have a de�nite order on the entries of Nh, since each entry has a di�erent
fractional part. We de�ne a re-ordering of the set Œn�, through a bijection

�h W Œn� �! Œn�:

�is re-ordering is de�ned through the order for the entries of Nh:

Nh�h.1/ < Nh�h.2/ < � � � < Nh�h.n/:

�e re-ordered lexicographic order on edges is given by

¹�h.i/; �h.j /º < ¹�h.k/; �h.l/º

if

´

min¹i; j º < min¹k; lº

or min¹i; j º D min¹k; lº and max¹i; j º < max¹k; lº
:

Instead of considering .G; n/-permissible edges, we consider .G; �h.n//-per-
missible edges since it makes the formulation of the involution easier.

Lemma 5.3. All edges e 2 NG.�h.n//.2/ are allowed.

Proof. We realise that for all i 2 NG.�h.n// we

Nh�h.n/ � 1 < Nhi < Nh�h.n/

and so for every pair i; j 2 NG.�h.n//, j Nhi � Nhj j < 1 and hence the edge is allowed
in BhŒn�.

Corollary 5.4. All .G; �h.n//-permissible edges are allowed.
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Lemma 5.5. If NG.�h.n// D �h.Œn � 1�/, then BhŒn� D BŒn� and h is of the form

of an initial sequence of zeroes with remaining entries �1.

Proof. By lemma 5.3, all edges in �h.Œn � 1�/.2/ are allowed. �e edges ¹�h.n/; j º

for all j 2 �h.Œn � 1�/ are already in the graph and so cannot be forbidden. Hence
every edge is allowed and so BhŒn� D BŒn�.

Since Nh1 D 0, this means Nhi 2 .�1; 1/ for all i . We also note that if Nhj < 0,
then Nhk < 0 for all k > j . �is arises from the fact that the entries of h are
restricted to ¹�1; 0º. For a negative entry we will have Nhj D �1 C j �1

n
, which

is not within distance 1 of the value 0 C k�1
n

for any k > j . �is means that h

is of the special form of an initial sequence of zeroes with the remaining entries
�1.

De�nition 9. We de�ne the set B�h Œn� as the collection of two-connected graphs
where �h.n/ is adjacent to all other vertices. We have the corresponding maps �h

and �h between B�h Œn� and CŒŒn� n ¹�h.n/º�, which are the same as in Section 5,
except we are removing the vertex �h.n/ instead of n.

Formally, we can write these bijections as a conjugation with �h, when inter-
preted as its action on graphs. In this case:

�h WD �h ı � ı ��1
h (5.5)

�h WD �h ı � ı ��1
h (5.6)

De�nition 10. We de�ne the modi�ed Bernardi involution ‰B;h as in Section 5,
except G>e is interpreted in the sense of the re-ordered lexicographic ordering
and for �G to be maximal externally active edge we use this ordering too. �is can
also be simply written using the graphical label conjugation:

‰B;h WD �h ı ‰B ı ��1
h (5.7)

�e largest (using the re-ordered lexicographic order) .G; �h.n//-permissible
edge is denoted by "G;h.

De�nition 11. We de�ne ‰h as the involution on BhŒn�, de�ned by

i) If NG.�h.n// D �h.Œn � 1�/, then we may use a modi�ed version of Bernardi,
since all edges are possible in Bh.

‰hj
B�h Œn� WD �h ı ‰B;h ı �h
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ii) Otherwise, we have a permissible edge and can perform the involution

‰h W G 7�! G ˚ "G;h:

‰h retains the property of being an involution on two-connected graphs as in
Section 5.

We are thus left with only those graphs that have NG.�h.n// D �h.Œn � 1�/

and are increasing with respect to the re-ordered lexicographic order. �e only h

vectors that contribute are those with an initial sequence of zeros followed by �1s.
�ere are n possibilities of these sequences, since the �nal 0 can appear in any of
the entries h1 � � � hn.

Lemma 5.6. �e permutation �h related to the h-vector with hj D 0 for 1 � j � s

and hk D �1 for k > s takes the special form

�h W i 7�! i � s mod n:

Proof. We observe that the entry NhsC1 has the smallest value so s C 1 7! 1.
We then note that the following entries are negative and are in increasing order.
�e preceding entries are also in increasing order but are positive. Hence we have
�h.s C k/ D k for 0 � k � n � s and �h.i/ D n � s C i for 1 � i � s � 1, which
can be written in the form in the lemma for brevity.

Hence we have a precise collection of two-connected graphs. We have the
examples from Section 5 with these linear relabellings.

Lemma 5.7. For n � 5, the �xed graphs are all distinct.

Proof. We indicate that there are no labelled graph automorphisms of the form
of �h described above for the increasing trees on Œn � 1� with n adjacent to every
vertex. �e �rst observation is that �h has no �xed vertex labels. We know the
degree of the vertex labelled n is n � 1. If we were to have an automorphism with
no �xed labels, then we require another vertex of the same degree to send n to.
�is means we need a vertex in the increasing tree adjacent to all other vertices in
the increasing tree.

When a tree has at least three vertices, only one vertex can be adjacent to the
rest, since if we have two vertices adjacent to all vertices we have them adjacent
to each other and some third vertex. �is creates a 3-cycle contradicting the fact
a tree is acyclic. Furthermore, in this increasing tree, this vertex can only be the
vertex labelled 1 or 2. For any k 2 Œ3; n � 1�, k cannot be attached to both 1 and
2, or else we will have a 3-cycle, as we always have the edge ¹1; 2º.
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We therefore require that the graph automorphism exchanges the labels of the
two vertices. �e automorphisms are translations and since n 7! 1 or n 7! 2,
we have to translate by 1 or 2, but then the vertex labelled 1 or 2 would not be
relabelled as n as we would require. Hence �h is not an automorphism for any
of the prescribed graphs and so the collection of these graphs for n � 5 are all
distinct.

6. �e structure of two-connected graphs

In this section, we indicate how the structure of two-connected graphs indicates
the importance of graphs with 2n � 3 edges. Firstly, we explain some preliminary
concepts about block cutpoint trees and then use these to explain why minimal
two-connected graphs, that is a two-connected graph, such that the removal of an
edge renders the graph no longer two-connected, on n vertices have at most 2n�4

edges.

6.1. �e block cutpoint tree. In this section, we introduce the notion of a block
cut-point tree and state a result relating the number of vertices in the individual
blocks to the number of vertices in the whole graph. We use the notation a to
denote the collection of trees.

� An articulation point in a connected graph is a vertex, which when it and its
incident edges are removed, renders the graph disconnected. A synonym that
is frequently used is a cutpoint.

� A two-connected graph is a connected graph without articulation points.

� A block is a maximal two-connected subgraph of a connected graph. Maxi-
mal in terms of edges and vertices it includes.

�e block cutpoint tree (bc-tree) associated to a connected graph G is a (bipartite)
graph where the vertices represent the articulation points and the blocks in a con-
nected graph. An edge, between an articulation point and a block, is present in
this graph, when an articulation point is contained in a block. It is a tree, since if
there were a cycle in this graph then the cycle itself would have been a block. An
example of a block cutpoint tree is shown in Figure 2.

De�nition 12 (the centre of a tree). To de�ne the centre of a tree formally, we
de�ne �rst the eccentricity ".v/ of a vertex v as the minimal graph distance of v to
a leaf. �is may be formally written as ".v/ WD min¹dH .v; l/j deg.l/ D 1º, where
dH indicates the Hamming or graph distance in the tree.
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�e centre of a tree is the collection of vertices at which the maximum eccen-
tricity is attained. �is can either be two neighbouring vertices or a single vertex.
In the former case, we often call the edge between the vertices the centre of the
tree.

Remark 2 (an algorithmic interpretation of the centre of the tree). One can apply
the function f W a ! a, which for any given tree, removes all leaves and the edges
incident to the leaves. Formally, we can write this as

f W .V .�/; E.�// 7�! .V .�/ n L; E.�/ n .L � V.�///; (6.1)

where
L WD ¹i 2 V.�/ j deg.i/ D 1º;

the collection of leaves.
Repeated application of f , gives a sequence of trees, .f n.�//n2N0

which be-
comes constant either when we have a single vertex or the empty graph. In the
case of the single vertex, this is the centre of the tree. For the empty graph, the
penultimate step will have been two vertices and an edge. �is edge or the pair of
vertices is de�ned as the centre.

A bc-tree is bipartite with all leaves in one set (the blocks). It therefore has a
unique centre, since the eccentricity of the articulation points will be odd and the
eccentricity of the blocks will be even so two neighbours cannot have the same
maximum eccentricity. Since we have a unique vertex at the centre of the bc-tree,
we may de�ne a digraph arising from the bc-tree, where the edge is oriented to
point away from the centre. An example is displayed in Figure 3.

Figure 2. An example of a bc-tree Figure 3. �e associated digraph
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Lemma 6.1 (block decomposition). If we decompose a connected graph on n

vertices into its block structure and let I index the collection of blocks and .ki /i2I

be the sequence of block sizes, then we have the equality

X

i2I

.ki � 1/ D n � 1: (6.2)

Proof. �e key idea is to indicate what vertex we omit inside each block on the left
hand side of (6.2). �e digraph gives an (essentially) unique prescription of the
missing vertex in each block and in which block an articulation point is counted.

�e digraph comprises of two types of directed edge .B; a/ and .a; B/, where a

indicates an articulation point and B a block. �e arrow points from the �rst entry
to the second entry. Since there is a unique path from the centre to every other
vertex, every vertex has precisely one edge in which they are the second entry.

�ere are two key cases.

i) The centre is an articulation point. For a block, B , the unique
vertex we neglect on the left hand side of (6.2) is the articulation point, a,
where .a; B/ is the directed edge in the digraph.

Every articulation point, ˛, except the centre appears in an edge .ˇ; ˛/,
for which it is the second entry, meaning it is enumerated in the left hand
side of (6.2) in precisely one block. �e central articulation point is the only
neglected vertex, which gives the right hand side of (6.2).

ii) The centre is a block. In this case every block, except the centre, can
be given the prescription as for the �rst case. For the central block, we can
choose precisely one of its neighbours to neglect. All articulation points in
this case have an edge in which they are the second entry and so are counted,
excepting the articulation point identi�ed by the central block. �erefore, we
have (6.2).

6.2. �e importance of 2n � 3 edges. To understand why the two-connected
graphs on n vertices with 2n � 3 edges play a special role, we �rst indicate that
two-connected graphs with at least this number of edges cannot be minimal.

Given a graph G on the vertex set Œn�, we denote by d1, the degree of the vertex
labelled 1.

Lemma 6.2. Two-connected graphs on n vertices with � 2n � 3 edges are not

minimal, that is they necessarily have a chord.

Proof. �is is done by induction on the number of vertices n.
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�e cases n D 2; 3 are vacuous and one can see from the examples in Figure 4
that this holds when n D 4.

�e connected graph G n ¹1º may be decomposed into its bc-tree. Each block
with l vertices in the tree has to have � 2l � 4 edges or else we have a smaller
graph which has a chord by induction. We note here that blocks of size 2 or 3 need
to be treated separately. We let li denote the size of the i th block not of size 2 or 3

and b2 and b3 denote the number of blocks of size 2 and 3 respectively. We have
from lemma 6.1

X

i

.li � 1/ C b2 C 2b3 D n � 2 (6.3)

�e total number of edges in G n ¹1º must then not exceed:
X

i

2.li � 1/ � 2b�4 C b2 C 3b3 � 2n � 4 � b2 � b3 � 2b�4 (6.4)

where b�4 indicates the number of blocks with more than four vertices. We know
that e.G n ¹1º/ � 2n � 3 � d1 and so we obtain the inequality

d1 � 1 C b2 C b3 C 2b�4 � 1 C total number of blocks (6.5)

If we have only one block, then we either have two neighbours of 1 and can
apply induction to this block, as it will be a two-connected graph on n�1 vertices
and at least 2.n � 1/ � 3 edges.

If we have at least three neighbours of 1 in a block, say ˛, ˇ and  , then we
may �nd a path ˛ ! ˇ !  . �is follows from �eorem 4.3, since we have two
internally disjoint paths between ˛ and ˇ and between ˇ and  . If we go along
one of the paths between ˛ and ˇ until we �rst hit one of the two paths between ˇ

and  , from here we follow the path towards ˇ and then take the disjoint path to
 , this is then a path between ˛ and  that goes via ˇ and does not self-intersect.
In this case ¹1; ˇº forms a chord.

�e �nal case is if we have at least two blocks and at most two neighbours of 1

in a block. �en we have a block with two neighbours of 1 call them ˛ and ˇ and
we have a third neighbour of 1,  in some other block. Let A be the articulation
point of the block containing ˛ and ˇ closest to  . We have a path from A to 

outside of this block since it is a connected graph. We are also able to construct a
path ˛ ! ˇ ! A since they are all in one block. Concatenating these paths gives
again a path ˛ ! ˇ !  from which we determine ¹1; ˇº is a chord.

It is also possible to construct a graph with n vertices and 2n � 4 edges that
is minimally two-connected, as shown in Figure 5. �e number of edges being
2n � 3 marks some transition in the possibility of being minimal.
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1 1 12 2 2

3 3 34 4 4

3 3 34 4 4

1 1 12 2 2

Figure 4. �e chords in graphs of n D 4 ver-
tices, excluding the complete graph

Figure 5. A graph with 2n � 4 edges
and n vertices which is minimally two-
connected

7. �e connections with tree identities

�is section explains the connection between involutions and partition schemes
for connected graphs and how the latter is used to give estimations of the co-
e�cients in the expansions. �is is used as motivation to consider whether the
two-connected graph involution may have such a connection.

�e paper [11] presents the notion of the partition in the sense of Penrose
and gives the general idea of a partition. We de�ne a partial order of CŒn� by
bond inclusion: G � QG () E.G/ � E. QG/. For G � H , we de�ne the set
ŒG; H� D ¹Kj G � K � H º �e Penrose construction partitions the set of con-
nected graphs into subsets of the form Œ�; R.�/�, where R W aŒn� ! CŒn�. Many
di�erent constructions can be used to achieve an R. Penrose gave one explicit
example in [21].

De�nition 13 (partition scheme). A partition scheme for the set of connected
graphs CŒn� is any map

R W aŒn� �! CŒn�; � 7�! R.�/;

such that

i) E.R.�// � E.�/ and

ii) CŒn� is the disjoint union of the sets Œ�; R.�/� for � 2 aŒn�.

�e Penrose scheme is as follows.
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For any vertex i of � 2 aŒn�, we denote by d.i/ the tree distance between
the vertices i and 1. We let i 0 be the predecessor of i i.e. d.i 0/ D d.i/ � 1 and
¹i 0; iº 2 E.�/. We associate to � , the graph RPen.�/ found by adding (only once)
to � all edges ¹i; j º 2 Œn�.2/ such that either

P1. d.i/ D d.j / edges between vertices at same generation,

P2. d.j / D d.i/ � 1 and i 0 < j edges between vertices one generation away.

For a partition scheme R, denote by

aR WD ¹� 2 aŒn�j R.�/ D �º

the set of R-trees. In particular, aRPen is the set of Penrose trees.
�e following proposition emphasises where the Boolean partition o�ers ad-

vantages to providing estimations.

Proposition 7.1 (bounding the connected graph sum). In models where we have

soft repulsion (a positive potential), the Mayer f -function satis�es j1 C fej � 1.

Using a partition scheme, we have the bound

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X

G2CŒn�

Y

e2E.G/

fe

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�
X

�2aŒn�

Y

e2E.�/

jfej � jaŒn�j (7.1)

Proof. For any numbers .fe/e2Œn�.2/ ,

X

G2CŒn�

Y

e2E.G/

fe D
X

�2aŒn�

Y

e2E.�/

fe

X

F �E.R.�//nE.�/

Y

e2F

fe

D
X

�2aŒn�

Y

e2E.�/

fe

Y

e2E.R.�//nE.�/

.1 C fe/
(7.2)

When we take the absolute value of the right hand side, we may use the triangle
inequality and bound the second product in (7.2) by 1.

In the hardcore case, the second product in (7.2) is zero unless R.�/ D � ,
giving that the �xed points of this R function also give a combinatorial inter-
pretation of the cancellations.�e alternative combinatorial interpretation of �xed
points provided by Penrose trees is that, considering the tree as being rooted at
1, we are required to have precisely one vertex in each generation. �is neces-
sarily gives a linear tree. We have to determine the positions of i 2 Œ2; n�, which
are de�ned uniquely by their distance from 1, which corresponds to a bijection,
f W Œ2; n� ! Œn � 1�, giving the .n � 1/Š factor.
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To de�ne the Penrose involution arising from the Penrose construction, we
make the following de�nition of a Penrose active edge.

For a graph G, we de�ne the Hamming distance between vertices labelled i

and j as dG.i; j / which is the length of the shortest path between i and j .

De�nition 14 (Penrose active edges). An edge ¹i; j º is called Penrose active for
G if, either

i) dG.1; i/ D dG.1; j / or

ii) dG.1; i/ D dG.1; j / C 1 and there exists i 0 < j such that ¹i; i 0º 2 E.G/ with
dG.1; i 0/ D dG.1; j /.

We let e?
Pen;G be the greatest Penrose active edge for G in lexicographic order.

Lemma 7.2 (�e Penrose Involution). �e mapping

‰Pen W G 7�!

´

G ˚ e?
Pen;G

if G has a Penrose active edge

G otherwise
(7.3)

is an involution on connected graphs.

Proof. We �rst prove that dG.1; k/ D d‰Pen.G/.1; k/. �e two graphs G and
‰Pen.G/ di�er only on an edge e?

Pen;G
DW ¹i; j º, where jdG.1; i/ � dG.1; j /j � 1.

�roughout this proof in the case where we have equality, we assume without loss
of generality that dG.1; i/ C 1 D dG.1; j /.

For any k, we consider the distance from the vertex labelled k to 1 in both
graphs. �is is de�ned through the shortest path from 1 to k. We indicate that
for any path between 1 and k containing the edge ¹i; j º we can �nd a path of the
same or shorter length that does not contain this edge. If dG.1; j / D dG.1; i/,
then considering a path from 1 to k up to this edge, we realise that the shortest
length the path up to this edge can be is dG.1; j / C 1, but we know that there is a
shorter path to this endpoint because dG.1; j / D dG.1; i/ and so we can replace
this initial path with a shorter path.

We are left with the case dG.1; j / C 1 D dG.1; i/. We know from property i i/

that there is some i 0 such that dG.1; i 0/ D dG.1; j / and ¹i 0; iº is an edge in both
graphs. �erefore if the initial segment of a path includes the edge ¹i; j º, then the
shortest this can be is dG.1; i/. If the initial segment ends at j rather than i then
we know we have a shorter path to j that we can replace this initial segment by.
Otherwise it ends at i . We know that we have a path of length dG.1; j / to i 0 on
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which we can attach the edge ¹i; i 0º to construct a new path of the same length but
not using this edge.

We now have that condition i/ for Penrose active edges is the same in both
graphs, since the graph distance is the same. We now indicate that an edge satis�es
condition i i/ independent of the presence of ¹i; j º. We realise if ¹i; j º was added
or removed satisfying i/ then it has no e�ect on an edge satisfying i i/, since i i/

depends on edges between generations. �erefore, we consider that ¹i; j º satis�es
i i/. Since dG.1; i/ D dG.1; j / C 1, we have an i 0 < j such that ¹i 0; iº is an edge
in both graphs and dG.1; i 0/ D dG.1; j /. �is means that if we use j to invoke
applying condition i i/ for an edge to be Penrose active, then we can invoke it in
both cases by using i 0.

We can also go the other way and �nd a Bernardi construction to provide an
appropriate partition. �e map R W aŒn� ! CŒn�, which adds to � all externally
active edges for the given tree graph � is the appropriate partition scheme. �is is
explained in the context of matroids below.

In the work of Björner and Sokal [7, 23], it is explained that for a matroid M ,
where we give a total order to the underlying set E.M/, we may �nd a partition
of the collection of subsets of E D E.M/ according to the matroid structure. We
introduce below some key de�nitions for matroids to introduce this connection,
which can be found in the book of Oxley [20] and the work of Faris [10].

A matroid M on the ground set E.M/ D E is de�ned by a collection of
independent subsets, denoted I.M/ D I. �ese subsets must satisfy the following
three axioms:

(1) ; 2 I (non empty);

(2) if X 2 I and X 0 � X then X 0 2 I (downward closed);

(3) if X 2 I and Y 2 I and jX j < jY j, then there exists l 2 Y nX with X [¹lº 2 I

(augmentation property).

For a graphical matroid, the ground set is Œn�.2/. We de�ne the independent
sets as forests or acyclic graphs.

De�nition 15. A maximal independent set X 2 I.M/ is called a basis. �e set of
bases is denoted B.M/.

�e maximal independent sets for a graphical matroid are therefore trees.

De�nition 16. �e rank of a matroid M , rk.M/ is the cardinality of a basis ele-
ment.
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All bases have the same cardinality and so the rank is well de�ned. A matroid
can be de�ned by its set of bases, since X 2 I.M/ if and only if X � Y , for some
Y 2 B.M/.

De�nition 17 (restricted matroid and rank). Given a matroid, M , consider X �

E.M/. �ere is a matroid M jX , which is the restriction of M to X . It has ground
set X and I.M jX / D ¹Y 2 I.M/jY � Xº.

For X � E.M/, the rank of X , rk.X/ is the rank of the matroid M jX or
alternatively the cardinality of the largest independent subset of X .

We note that rk.X/ D jX j if and only if X is independent, so the rank function
completely determines the matroid.

De�nition 18 (dual of a matroid). �e dual of a matroid is de�ned on the same
ground set, but has a dual rank function rk?, de�ned by

rk?.A/ WD jAj � rk.E/ C rk.E n A/ (7.4)

Let B be the set of bases for E. �e dual basis set is then B? D ¹E nBjB 2 Bº.
We �x a total order on E in the following.

De�nition 19 (externally active). Let B 2 B. An element e 2 E n B is externally

active on B if e is dependent on the list of elements of B larger than it. We let
Q".B/ be the set of externally active elements.

De�nition 20 (internally active). An element e 2 B is internally active on B , if
in the dual matroid e is externally active on the complement Bc D E n B 2 B?.
We denote by Q�.B/ D Q"?.Bc/ the set of internally active elements.

For R � S � E, we de�ne ŒR; S� D ¹AjR � A � Sº.

Proposition 7.3. 2E can be written as the disjoint union

2E D
G

B2B

ŒB n Q�.B/; B [ Q".B/�: (7.5)

For the case of the graphical matroid, we recall that the bases are the collection
of trees. If we use the lexicographical order on the edges, then an edge is externally
active for a tree � in this sense, if and only if it is externally active in the sense of
Bernardi [4]. �is is due to the fact that all independent sets are forests and so a
set of edges is dependent if it creates a cycle. We emphasise that for connected
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graphs, internally active edges play no role, since trees are minimally connected
graphs. �is therefore gives, when we intersect each set with connected graphs:

CŒn� D
G

�2aŒn�

Œ�; R.�/�; (7.6)

where R.�/ has edge set E.�/ [ Q".�/.
We note that the Penrose construction does not �t in the construction given

above. In Figure 6, we see that we would add the dashed edge in each case. In
order to do this, we cannot have a consistent ordering on the edges ¹2; 3º, ¹2:4º

and ¹3; 4º.

Figure 6. �ree Graphs to Indicate that the Penrose Construction is Di�erent

�e motivation of emphasising this connection is to understand if a similar
connection may be drawn for two-connected graphs as the important context of
the result.

8. Outlook and conclusions

�e main conclusion is that we are able to identify combinatorially the cancella-
tions in the alternating sums of weighted two-connected graphs. �e combinato-
rial factor arises from increasing trees on the subset Œn � 1� of the vertices, with
the vertex n adjacent to every other vertex. �ere are modi�ed versions for this in
the case of the polytope, where we have the isomorphic graph structures, di�ering
only through a relabelling in the form i 7! i C s (mod) n for all s 2 Œn�.

�e key outlook for the work contained in this paper is to modify the set up
explained in Section 7 towards two-connected graphs so that we obtain a helpful
resummation of the graphs amenable to suitable estimation, which is important for
the virial expansion. �e parallel that is useful to draw here is that for the cluster
expansion, we have the increasing and Cayley trees as the combinatorial objects
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representing the two cases above. It has been shown by Groeneveld [12] that these
examples provide the extreme cases for positive potentials and an adaptation is
available for stable potentials.
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