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Clustering properties of rectangular Macdonald polynomials
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Abstract. �e clustering properties of Jack polynomials are relevant in the theoretical

study of the fractional Hall states. In this context, some factorization properties have been

conjectured for the .q; t/-deformed problem involving Macdonald polynomials (which are

also the quantum eigenfunctions of a familly of commuting di�erence operators with sig-

ni�cance in the relativistic Ruijsenaars-Schneider model). �e present paper is devoted to

the proof of this formula. To this aim we use four families of Jack/Macdonald polynomi-

als: symmetric homogeneous, nonsymmetric homogeneous, shifted symmetric and shifted

nonsymmetric.
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1. Introduction

�e symmetric (homogeneous) Jack polynomials are relevant in the study of the
quantum many-body wave functions. In particular, fractional quantum Hall states
of particles in the lowest Landau levels are described by such polynomials [3, 4,
5, 6]. Pioneered by Laughlin [24], the theoretical study of the fractional quantum
Hall states use multi-variable polynomials [14] describing the full many-body state
of the interacting electrons on a plane or on a sphere (In the case of the sphere, the
polynomials appear after stereographic projection). �e special polynomials that
are relevant in this context are not general solutions of the true eigenvalue problem
involving the Coulomb interaction but they are constructed to be adiabatically
related to the true eigenstates. �e most famous example is the Laughlin wave
function which is the cube of the Vandermonde determinant

Q

i<j .xi � xj /
3 in

the variables representing the particles. It is known to be a good approximation of
the true state of electrons for the lowest Landau level with �lling factor 1

3
. Another

interesting and celebrated example is the Moore-Read Pfa�an [26, 28]

‰MR WD Pf
� 1

xk � x`

�Y

i<j

.xi � xj /

which is one of the candidates to approximate the system for the �lling factor 5
2

and is the polynomial of smallest degree belonging to the kernel of the operator
which forbids three particles to be in the same place

H D
X

i<j<k

ı2.xi � xj /ı
2.xj � xk/:

�is operator can be naturally generalized to operators which forbid k particles in
the same place, the lowest degree polynomials in its kernel provide other examples
of wave functions called Read–Rezayi [29, 30] states:

‰kRR D Sym
k
Y

`D1

Y

1�i`<j`�N

.xi` � xj`
/2:

�is family of wave functions is composed with multivariate symmetric polyno-
mials with some additional vanishing conditions, namely wheel conditions. �ese
polynomials, whose study was pioneered by Feigin, Jimbo, Miwa and Mukhin, are
proved to belong to a family of Jack polynomials with negative rational parameter
[12, 13]. Following the notations of Bernevig and Haldane [3, 4, 5, 6, 7], these
polynomials depend upon a parameter ˛ and a con�guration of occupation num-
bers Œn0; n1; : : : �. To recover the standard notation of symmetric functions [25],
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the set of occupations de�nes a decreasing partition � D Œ�1 � �2 � � � � �N � of the
number N of particles. �e partition � corresponding to the vector Œn0; n1; : : : � is
such that ni is the multiplicity of the number i in �. �e relevant wave functions
belong to the kernel of the di�erential operators

LC WD
X

i

@

@xi
and L� WD N�

X

i

xi �
X

i

x2i
@

@xi

whereN� denotes the number of �ux quanta. In the case of the sphere, through the
stereographic projection, the natural action of the SU.2/ rotations on the quantum
states is translated in an action ofLC,L� andLz D 1

2
NN �

P

i xi
@
@xi

. One of the
authors (J.-G.L.) with �. Jolicœur [15] described a family of Jack polynomials be-
longing in the kernel of LC. More precisely, they investigate a .q; t /-deformation
of the problem involving Macdonald polynomials [25].

Bernevig and Haldane [4] identi�ed .k; r/-clustering properties of some wave
functions which relate the functions with Nk variables with those with N.k � 1/

by a factorization formula of the kind

‰.k;r/.x1; : : : ; x.N�1/k ; y; : : : ; y
„ ƒ‚ …

�k

/ D

N�k
Y

`D1

.x` � y/r‰.k;r/.x1; : : : ; x.N�1/k/:

In particular, this is the case for the Read–Rezayi states:

‰kRR.x1; : : : ; x.N�1/k ; y; : : : ; y
„ ƒ‚ …

�k

/ D

N�k
Y

`D1

.x` � y/2‰.k;r/.x1; : : : ; x.N�1/k/:

Furthermore, Bernevig and Haldane [3] showed the connection between the Read–
Rezayi states and staircase Jack polynomials P .˛/

�
:

‰kRR.x/ D P
.�k�1/

Œ.2.N�1//k ;:::;2k ;0k�
.x/:

�e link between Jack polynomials and quantum Hall states was proven by B. Esti-
enne et al. [10, 11]. Recently, Baratta and Forrester [2] proved that staircase Jack
polynomials for some negative rational parameter satisfy the clustering conditions.
More speci�cally, they stated the result in terms of Macdonald polynomials and
recovered the property as a limit case. In the same paper, they conjectured very
interesting identities for rectangular partitions (the initial case of staircase with
only one step):

Prg.y; yq
1
˛ ; : : : ; yq

.N�k�1/
˛ ; xN�g ; : : : ; xN / D

N
Y

`DN�gC1

r�1
Y

jD0

.x` � q
1
˛ y/;
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where ˛ is a certain negative rational number. �e aim of our paper is to prove
this conjecture by using some other families of Macdonald polynomials. Indeed,
we will use four families of Jack/Macdonald polynomials: symmetric homoge-
neous, nonsymmetric homogeneous, shifted symmetric, shifted nonsymmetric.
�e Macdonald polynomials are a two-parameter deformation of the Jack polyno-
mials which can be used to �nely understand relations involving Jack polynomials.
�is is due to the fact that they appear in the representation theory of the double
a�ne Hecke algebra (the Jack polynomials are a degenerated version and involve
the algebra of the symmetric group). Furthermore they admit a physical interpre-
tation as the eigenfunctions of the Macdonald–Ruijsenaars operator

H D

N
X

iD1

N
Y

j D1
i¤j

exi � exj C�

exi � exj
e„@xi ;

which is a relativistic version of the quantum Calogero-Moser system (see [31,
32]). �e parameters q and t are related to the parameters „ and � by q D e„=2

and t D e�=2.
One approach to developing a theory of orthogonal polynomials of several

variables of classical type led to symmetric and nonsymmetric Jack polynomials.
�e associated mechanism involves the symmetric group and Young tableaux. Just
as the theory of hypergeometric series is extended to basic hypergeometric series,
the theory of Jack polynomials is extended by the Macdonald polynomials. Here
the symmetric group is replaced by its Hecke algebra. �e orthogonality of the
polynomials comes from their realization as eigenfunctions of a certain set of
commuting operators. Generally these polynomials have coe�cients which are
rational functions of the parameters .q; t /, assumed not to be roots of unity. Later
a further generalization was developed, namely the theory of shifted Macdonald
polynomials, which are nonhomogeneous polynomials de�ned by the property
of vanishing on certain points, corresponding to so-called spectral vectors. �is
vanishing property leads to expressions of the polynomials as products of linear
factors in various special cases.

It turns out that for special values of the form qatb D 1 for positive integers
a; b, a shifted Macdonald polynomial collapses to its highest degree term, in which
case, it agrees with an ordinary homogeneous Macdonald polynomial. �e label
of the polynomial has to satisfy certain restrictions for this to be possible. �ese
parameter values result in the polynomials being of “singular” type. In this pa-
per we concentrate on the rectangular polynomials, meaning those whose leading
term is of the form .x1x2 : : : xk/

m. Our results provide factorizations which are
interpreted as clustering properties.
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�e paper itself starts with an overview of the four di�erent types of Mac-
donald polynomials (shifted, ordinary, symmetric, nonsymmetric) and the alge-
braic structure of the associated operations. �e technical machinery comprises
tableaux, adjacent transpositions, raising operators, and the Yang-Baxter graph.
�en there is a presentation of the binomial formulae of Knop and Sahi which
show how to expand nonhomogeneous Macdonald polynomials in terms of ho-
mogeneous ones. �ese series are then specialized to the rectangular versions and
this leads to the proofs of our main results. �ese all concern the case of N vari-
ables with k � N=2 and the parameters satisfying qatN�kC1 D 1 (with a D m�1

for the symmetric type and a D m for the nonsymmetric type) but no such rela-
tion with smaller exponents. In closing there is a discussion of future research in
the direction of polynomials of staircase type; this phrase refers to the pictorial
representation of the label of the polynomial, for example .4; 4; 2; 2; 0; 0/.

2. Macdonald polynomials

Macdonald polynomials are special functions which are involved in the represen-
tation theory of the a�ne Hecke algebra. Readers wishing to deepen their knowl-
edge of Macdonald polynomials may refer to [20, 21, 25, 35]. �is paper is devoted
to the case of the symmetric group (type AN�1). Up to normalization Macdonald
polynomials are de�ned to be the simultaneous eigenfunctions of some operators
which are a .q; t /-deformation of the Cherednik operators. We study four variants
of these polynomials: symmetric, nonsymmetric, shifted symmetric and shifted
nonsymmetric. Symmetric Macdonald polynomials are indexed by decreasing
partitions � whilst the nonsymmetric ones are indexed by vectors v 2 N

N . In
the aim to simplify the expression arising in the computation, we use the notion
of legs and arms of a cell in the Ferrers diagram of a vector. �ese numbers are
(classically) de�ned by

Av.i; j / WD vŒi �� j

and

bv.i; j / WD #¹k < i W j � vŒk�C 1 � vŒi �º C #¹i < k W j � vŒk� � vŒi �º:

Note that if v D � is a partition thenb is the classical leg-length:

b�.i; j / D �0
i � j

where �0 denotes the conjugate of �.
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�e leg-length and arm-length are used to de�ne the .q; t /-hook product of v
with argument z:

hq;t .v; z/ D
Y

.i;j /2v

.1 � zq Av.i;j /tbv.i;j //:

We need also the arm-colength and the leg-colength

Av.j / D j � 1

and b

v.i/ WD #¹k < i W vŒi � � vŒk�º C #¹i < k W vŒi � < vŒk�º:

Note that the rank function of v:

rv D Œ1C

b

v.1/; : : : ; 1C

b

v.N /�

is a permutation of SN .

2.1. A�ne Hecke algebra. We use the notation of Lascoux, Rains and War-
naar [22]. Let us recall it here. Let N � 2 be an integer and X D ¹x1; : : : ; xN º be
an alphabet of formal variables. We consider the operators Ti acting on Laurent
polynomials in the variables xj by

Ti D t C .si � 1/
txiC1 � xi

xiC1 � xi
; (1)

where si is the elementary transposition permuting the variables xi and xiC1.
�ese operators act on the right and in particular we have

1Ti D t and xiC1Ti D xi : (2)

More precisely, Ti is the unique operator that commutes with symmetric functions
in xi and xiC1 satisfying (2). �e operators Ti satisfy the relations of the Hecke
algebra of the symmetric group:

TiTiC1Ti D TiC1TiTiC1;

TiTj D TjTi for ji � j j > 1;

.Ti � t /.Ti C 1/ D 0

(3)

Together with multiplication by the variables xi and the a�ne operator � de�ned
by f .x/� D f .xN=q; x1; : : : ; xN�1/, they generate the a�ne Hecke algebra of the
symmetric group. More precisely,

HN .q; t / D C.q; t /Œx˙
1 ; : : : ; x

˙
N ; T

˙
1 ; : : : ; T

˙
N�1; � �: (4)
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2.2. Nonsymmetric Macdonald polynomials. �e nonsymmetric Macdonald
polynomials .Ev/v2NN are de�ned as the unique basis of simultaneous eigenfunc-
tions of the .q; t /-version of the Cherednik operators de�ned by

�i WD t1�iTi�1 : : : T1�T
�1
N�1 : : : T

�1
i : (5)

such thatEv D xvC
P

u�v ˛u;vx
u with xv D xvŒ1� : : : xvŒN� if v D ŒvŒ1�; : : : ; vŒN ��

and � denotes the dominance order on vectors which is based on the dominance
order �D for partitions:

� �D � () for all i; �1 C � � � C �i � �1 C � � � C �i :

�is order is naturally extended to vectors with the same de�nition. �e domi-
nance order � for vectors is

u � v () either uC �D v
C or .uC D vC and u �D v/

where uC denotes the unique nonincreasing partition which is a permutation of u.

Note that Cherednik operators commute with each other and generate a maxi-
mal commutative subalgebra of HN .q; t /.

�e corresponding spectral vectors are given by SpecvŒi � D 1
hviŒi�

with

hvi D ŒqvŒ1�tN�rvŒ1�; : : : ; qvŒN�tN�rvŒN��:

We recall also the .q; t /-Dunkl operators

DN D .1� �N /x
�1
N ; Di D tT �1

i DiC1T
�1
i :

Set c0
v.q; t / D hq;t .v; q/. We will use another normalization which is useful when

symmetrizing:

Ev D
tn.v/

c0
v.q; t /

Ev (6)

where n.v/ D
P

.i;j /2vbv.i; j /.

Knop [17] de�ned and studied the polynomials

Ev D c00
v .q; t /Ev (7)

with c00
v .q; t / D hq;t .v; qt/. �e expansion of Ev on the monomial basis is known

to have integral coe�cients in Z
�

q; q�1; t; t�1
�

, see [17].
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2.3. Nonsymmetric shifted Macdonald polynomials. �e de�nition of non-
symmetric shifted Macdonald polynomials Mv is quite similar to those of the
Macdonald polynomials Ev . �is is the unique basis of simultaneous eigenfunc-
tions of the Knop-Cherednik operators de�ned by

„i WD t1�iTi�1 : : : T1�
�

1 �
1

xN

�

T �1
N�1 : : : T

�1
i C

1

xi
: (8)

such that

Mv D q�n0.v/xv C
X

u�v

˛u;vx
u

with xv D xvŒ1� : : : xvŒN� if v D ŒvŒ1�; : : : ; vŒN ��,

n0.v/ D
X

.i;j /2v

Av.i; j /:

and � again denotes the dominance order on vectors.

Note that, initially, the dominance order is de�ned only for vectors with the
same norm. We can straightforwardly extend it for any vectors by adding the con-
dition u � v when juj < jvj. We remark that the Sahi binomial formula [33], more
precisely one of its consequences [22] (Corollary 4.3), together with a theorem of
Knop [18] (see also equation (26)) imply that if juj < jvj then xu has a non-null
coe�cient in the expansion of Mv only if uC � vC. It follows that the natural
extension of the dominance order for any pairs of vectors, i.e.:

u � v () either uC �D v
C or .uC D vC and u �D v/;

matches with the order appearing in the expansion of Mv . �e reader can refer to
Appendix A for a discussion about the notations.

Note operators �i and „i can be constructed in a similar way, as shown in the
following proposition.

Proposition 1. For 1 � i < N ,

�i D tT �1
i �iC1T

�1
i

and

„i D tT �1
i „iC1T

�1
i :
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Proof. �e �rst part is obvious. For the second part we have

ptT �1
i „iC1T

�1
i

D t1�ipTi�1 : : : T1�
�

1 �
1

xN

�

T �1
N�1 : : : T

�1
i C t

�pT �1
i

xiC1

�

T �1
i ;

for any polynomial p, and
�pT �1

i

xiC1

�

T �1
i D

p

txi

thus tT �1
i „iC1T

�1
i D „i .

Also we have

Proposition 2. „i D �i CDi for 1 � i � N .

Proof. Start with i D N . For any polynomial p

p„N D t1�NpTN�1 : : : T1�
�

1 �
1

xN

�

C
p

xN

D p�N C
�

p � p�N

�

=xN

D p�N C pDN :

�e claim follows by downward induction from the relationsDi D tT �1
i DiC1T

�1
i ,

�i D tT �1
i �iC1T

�1
i�1, and „i D tT �1

i „iC1T
�1
i .

Polynomials Mv can be computed by induction from M0N , by the help of the
Yang–Baxter graph [20]:

Mv:si D Mv

�

Ti C
1 � t

1�
hviŒi C 1�

hviŒi �

�

if vŒi � < vŒi C 1� (9)

and
Mvˆ D Mv�.xN � 1/; (10)

where ŒvŒ1�; : : : ; vŒN ��ˆ D ŒvŒ2�; : : : ; vŒN �; vŒ1�C 1� is the raising operator.
Note that these polynomials are nonhomogeneous and the spectral vector as-

sociated to Mv equals Specv. We will consider also the specialization Mv D

qn
0.v/tn.v/Mv. Alternatively, the Macdonald polynomialMv can be de�ned (up a

normalization) by interpolation:

Mv.hui/ D 0 for jvj � juj; u ¤ v (11)

and the coe�cient of xv is q�n0.v/.
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�e polynomial Ev can be recovered as a limit form from Mv:

Ev.x1; : : : ; xN / D lim
a!0

ajvjMv.x1=a; : : : ; xN =a/: (12)

2.4. Symmetric Macdonald polynomials. Symmetric Macdonald polynomials
are de�ned as the eigenfunctions of the symmetric polynomials in the variables �i .
�ey can be obtained by applying the symmetrizing operator

SN D
X

�2SN

T� (13)

on the Macdonald polynomial E�� where �� is an increasing vector and T� D

Ti1 : : : Tik if � D si1 : : : sik is a shortest decomposition of � in elementary trans-
positions. �e coe�cient of x� in the expansion of E��SN is the Poincaré poly-
nomial �t .S�/ where S� denotes the stabilizer of � in SN .

We will consider several normalizations of the symmetric Macdonald poly-
nomial. First P� is such that the coe�cient of x� is 1. �e normalization P� D
tn.�/

c0
�
.q;t/

P� is interesting since the normalization reads

P� WD
X

uCD�

Eu (14)

where uC denotes the unique nonincreasing vector which is a permutation of u. Fi-
nally, we will also use the specialization J� D c�.q; t /P�with cv.q; t / D hq;t .v; t /

which has integral coe�cients when expanded in terms of monomials [17].

For an in�nite alphabet, symmetric Macdonald polynomials can be de�ned,
up to multiplication by a scalar, as the only basis having dominance properties
which is orthogonal with respect to the scalar product

hp�; p�iq;t D z�

`.�/
Y

iD1

1 � q�i

1 � t�i
ı�;�; (15)

where p� D p�1
: : : p�n

, pk D
P

x2X x
k is a power sum symmetric function for

k � 1, ı�;� D 1 if � D � and 0 otherwise and z� D
Q1
iD1mi Ši

mi where mi
denotes the multiplicity of i in �.

�e dual basis of P� is another normalization of Macdonald polynomials usu-
ally denoted by Q�,

hP�; Q�iq;t D ı�;�:
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�e reproducing kernel

Kq;t .X;Y/ D
X

�

P�.X/Q�.Y/ D
X

�

z�1
�

`.�/
Y

iD1

1 � t�i

1 � q�i
p�.X/p�.Y/;

admits a nice expression when stated in terms of the Cauchy function

�1.X/ D
Y

x2X

1

1 � x

and �-ring [19]:

K.X;Y/ D �1

� 1 � t

1 � q
XY

�

D

�1

� 1

1 � q
XY

�

�1

� t

1 � q
XY

� ; (16)

where the alphabet 1
1�q

XY means ¹qixy W i 2 N; x 2 X; y 2 Yº and t
1�q

XY

means ¹tqixy W i 2 N; x 2 X; y 2 Yº.
Note that formula (16) remains valid for �nite alphabets.
Denote c�.XI q; t/ D

Q

i
1�t�i

1�q�i
p�.X/ the dual basis of p�. We have

c�.XI q; t/ D
Y

i

1 � t��i

1 � q��i
p�.X/ D

� t

q

�j�jY

i

t��i � 1

q��i � 1
p�.X/:

For homogeneous polynomials R and S of global degree d we have

hR; Siq�1;t�1 D
qd

td
hR; Siq;t :

Hence,

P�.XI q�1; t�1/ D
t j�j

qj�j
P�.XI q; t/: (17)

For the normalization P� we have

P�.XI q�1; t�1/ D
t�n.�/

c0
�
.q�1; t�1/

P�.XI q�1; t�1/:

From

c0
�.q

�1; t�1/ D
Y

.i;j /2�

.1� q�1� A�.i;j /t�b�.i;j //

D .�1/j�jq�j�j�n0.�/t�n.�/c0
�.q; t /
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we obtain

P�.XI q�1; t�1/ D
.�1/j�jt j�jqn

0.�/

c0
�
.q; t /

P�.XI q; t/ D ��P�.XI q; t/; (18)

with

�v D .�1/jvjqn
0.v/t�n

0.vC/

(using the notation of Lascoux et al. [22]).

2.5. Symmetric shifted Macdonald polynomials. Following the previous sub-
section, we de�ne the symmetric shifted Macdonald polynomials MS� as the sym-
metrization of M�� , where v� denotes the unique nondecreasing vector which is
a permutation of v, such that the coe�cient of x� equals qn

0.�/. More precisely,

M��SN D �t .S�/MS�; (19)

recall SN is the symmetrizing operator (13).

We will use also the normalization

MS� D
qn

0.�/tn.�/

c0
�
.q; t /

MS�:

With such a normalization we have

MS� WD
X

uCD�

Mu: (20)

Alternatively, the polynomials M� are de�ned by interpolation

MS�.h�i/ D 0 for j�j � j�j; � ¤ �: (21)

Note that q�n0.�/P� is the homogeneous component of maximal degree in MS�,
that is

lim
a!0

aj�jMS�.x1=a; : : : ; xN=a/ D q�n0.�/P�: (22)

Equivalently, from equalitions (12), (14) and (20), we obtain

P�.x1; : : : ; xN / D lim
a!0

aj�jMS�.x1=a; : : : ; xN=a/: (23)

�at is, P�.x1; : : : ; xN / is the homogeneous component of maximal degree in
MS�.
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3. Generalized binomial coe�cients

3.1. De�nitions. Sahi [33] generalized binomial coe�cients:

hu

v

i

WD
Mv.hui/

Mv.hvi/
(24)

From the vanishing properties we have
hu

v

i

D 0 if juj � jvj and u ¤ v: (25)

More generally, a theorem of Knop [18] implies
hu

v

i

D 0 if vC 6� uC; (26)

and in particular
�
u
0N

�

D
�
u
u

�

D 1.

Okounkov [27] and Lassalle [23] independently introduced the symmetric ana-
logue of this coe�cient:

�u

v

�

WD
MSv.hui/

MSv.hvi/
(27)

3.2. Okounkov binomial formula and consequences. Symmetric binomial co-
e�cients appear in Okounkov’s binomial formula.

De�ne

MS
0

�.x1; : : : ; xN / D
qj�j

��t
.N�1/j�j

MS�.t
1�Nx1; : : : ; t

1�NxN I q�1; t�1/:

�eorem 3. (Okounkov)

MS�.ax1; : : : ; axN / D
X

�

aj�j

�
�

�

�

q�1;t�1

MS�.ah0i/

MS�.ah0i/
MS

0

�.x1; : : : ; xN /

Note that from eq. (23) and (18), we obtain

lim
a!0

aj�jMS
0

�.x1=a; : : : ; xN=a/ D qn
0.�/P�: (28)

Hence, if we apply �eorem 3 to the alphabet ¹x1=a; : : : ; xN=aº and we take the
limit when a tends to 0 on the right hand side, we obtain

MS�.x1; : : : ; xN / D
X

�

qn
0.�/

�
�

�

�

q�1;t�1

MS�.0; : : : ; 0/

MS�.0; : : : ; 0/
P�.x1; : : : ; xN /:

(29)
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�e constant term Mv.0; : : : ; 0/ is related to the principal specialization of Ev, see
[22]:

Mv.0; : : : ; 0/ D �vEv.h0i/: (30)

Note that �v D �vC hence from eq. (14) and (20) we obtain

MS�.0; : : : ; 0/ D ��P�.h0i/ D ��
tn.�/

c0
�
.q; t /

P�.h0i/: (31)

Hence,

MS�.x1; : : : ; xN / D qn
0.�/

X

�

��

��

tn.�/c0
�

tn.�/c0
�

�
�

�

�

q�1;t�1

P�.h0i/

P�.h0i/
P�.x1; : : : ; xN /:

(32)

Or equivalently:

Lemma 4.

MS�.x1; : : : ; xN / D
X

�

��

��

�
�

�

�

q�1;t�1

P�.h0i/

P�.h0i/
P�.x1; : : : ; xN /: (33)

4. Principal specializations

4.1. Principal specialization of Ev. From eq. (30) the specialization Ev.h0i/
is obtained (up to a multiplicative constant .�1/�q?tı) from the constant term
Mv.0; : : : ; 0/. For simplicity, we sometimes neglect the multiplication by .�1/,
q and t of our polynomials and denote it by .?/.

We introduce the classical q-Pochhammer symbol

.a; q/N D

N
Y

iD1

.1 � aqi�1/

and its generalization for a partition �:

.aI q; t/� D

N
Y

iD1

.at1�i ; q/�Œi�:

Since 1Ti D t , we obtain

Mv:si .0/ D Mv.0/

0

B
B
@

1 � t
hviŒi C 1�

hviŒi �

1 �
hviŒi C 1�

hviŒi �

1

C
C
A
; if vŒi � < vŒi C 1� (34)
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from (9). From (10) we have also

Mvˆ.0/ D �Mv.0/: (35)

We have:

Proposition 5. For any vector v 2 N
N :

Mv.0/ D .�1/jvj .t
NqI q; t/vC

hq;t .v; qt/

Proof. It su�ces to prove that the right hand side

P.v/ D
.tNqI q; t/vC

hq;t .v; qt/

satis�es the recurrence relations (34) and (35).
Let us �rst prove that if vŒi � < vŒi C 1�

P.v:si/

P.v/
D

0

B
B
@

1� t
hviŒi C 1�

hviŒi �

1 �
hviŒi C 1�

hviŒi �

1

C
C
A
: (36)

Note then the only change in P.v/ occurs in hq;t .v; qt/:

P.v:si/

P.v/
D
hq;t .v:si ; qt/

hq;t .v; qt/
:

�e only factor in hq;t .v; qt/ that changes is the factor for the cell .iC1; vŒi �C1/.
So

hq;t .v:si ; qt/

hq;t .v; qt/
D
1� qvŒiC1��vŒi�taC1

1� qvŒiC1��vŒi�ta
;

where

a D bv.i C 1; vŒi �C 1/ D bv:si .i C 1; vŒi �C 1/C 1:

Let

A1 D ¹l W l < i; v Œl� � v Œi �º [ ¹l W l > i C 1; v Œi � < v Œl�º ;

A2 D ¹l W l < i; v Œl� � v Œi C 1�º [ ¹l W l > i C 1; v Œi C 1� < v Œl�º ;

then A2 � A1 and

A1nA2 D ¹l W l < i; v Œi � � v Œl� < v Œi C 1�º

[ ¹l W l > i C 1; v Œi � < v Œl� � v Œi C 1�º I
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thus

a D #A1nA2 C 1:

Also

rv Œi � D #A1 C 2

and

rv Œi C 1� D #A2 C 1;

and so

a D rv Œi �� rv Œi C 1� :

�is �nishes the proof of (36) since

hvi Œi C 1�

hvi Œi �
D qvŒiC1��vŒi�t rvŒi��rvŒiC1�:

To prove the second part we need the following lemma

Lemma 6. Let � be a decreasing partition and m � N the biggest integer such

that �Œm� > 0. Let

 D Œ�Œ1�; : : : ; �Œm � 1�; �Œm�� 1; 0N�m�:

If M .0/ D P./ then M�.0/ D P.�/.

Proof. Let

ˇ D Œ� Œm� � 1; � Œ1� ; : : : ; � Œm � 1� ; 0; : : :�

˛ D Œ� Œ1� ; : : : ; � Œm � 1� ; 0; : : : 0; � Œm�� :

We evaluateMˇ .0/ =M .0/ ;M� .0/ =M˛ .0/ and useM˛ .0/ D �Mˇ .0/ to prove
M� .0/ =M .0/ D P .�/ =P ./. �e formula (34) is used repeatedly in the fol-
lowing calculations. First we have

M� .0/

M˛ .0/
D
1� q�Œm�tN�mC1

1 � q�Œm�t
:

Since � Œm � 1� � � Œm� it follows that  Œi � >  Œm� for 1 � i < m. �en

Mˇ .0/

M .0/
D

m�1
Y

iD1

1� q�Œi���Œm�C1tm�i

1� q�Œi���Œm�C1tm�iC1
:
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Next �

qtN I q; t
�

�
�

qtN I q; t
�



D .1� q�Œm�tNC1�m/

and we evaluate
hq;t .; qt/

hq;t .�; qt/
:

In this ratio the only cells that have a changed factor are those in column � Œm� and

in row m. Sob� .i; � Œm�/ D m� i andb .i; � Œm�/ D m� i � 1 for 1 � i < m.
�e cells in ¹.1; � Œm�/ ; � � � .m � 1; � Œm�/º contribute

m�1
Y

iD1

1 � q�Œi���Œm�C1tm�i

1 � q�Œi���Œm�C1tm�iC1

to the ratio and the cells in row m contribute

Y�Œm��1

iD1
.1� tq�Œm��i /

Y�Œm�

iD1
.1 � tq�Œm�C1�i /

D
1

1 � tq�Œm�
:

�us
�

qtN I q; t
�

�
hq;t .; qt/

�

qtN I q; t
�


hq;t .�; qt/

D
1 � tN�mC1q�Œm�

1� tq�Œm�

m�1
Y

iD1

1 � q�Œi���Œm�C1tm�i

1 � q�Œi���Œm�C1tm�iC1
:

�is agrees with �M� .0/ =M .0/ and proves the lemma.

End of the proof of Proposition 5. Any vector v can be obtained from 0N by
adding 1 to a null part or to a minimal nonzero part. We will denote this oper-

ation by
C
!. For instance,

Œ0; 0; 0�
C
!Œ0; 1; 0�

C
!Œ0; 2; 0�

C
!Œ0; 3; 0�

C
!Œ1; 3; 0�:

Let v!C v0. Suppose v0C D Œ�1; : : : ; �m; 0; : : : ; 0� then

vC D Œ�1; : : : ; �m�1; �m � 1; 0; : : : ; 0�:

Hence, if MvC.0; : : : ; 0/ D P.vC/ then by lemma 6 Mv0C .0/ D P.v0C/. And
using repeatedly eq. (36), we obtain Mv.0/ D P.v/ implies Mv0.0/ D P.v0/.

Since M0N .0/ D P.0N / the result is shown by a straightforward induction.
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As a direct consequence:

Corollary 7. We have

Ev.h0i/ D .?/
.tNqI q; t/vC

hq;t .v; qt/
:

Lascoux [21] gave an equivalent expression using in�nite vectors

v1 D ŒvŒ1�; : : : ; vŒN �; vŒ1�C 1; : : : ; vŒN �C 1; : : : �

and
hvi1 D ŒhviŒ1�; : : : ; hviŒN �; qhviŒ1�; : : : ; qhviŒN �; : : : �:

Note that hvi1 ¤ hv1i.
Lascoux showed

P.v/ D .�1/jvj

N
Y

iD1

Y

j >i
v1Œi�>v1Œj �

t
hvi1Œi �

hvi1Œj �
� 1

hvi1Œi �

hvi1Œj �
� 1

: (37)

4.2. Principal specialization of P�. From eq. (31) and (19) one has

P�.h0i/ D .?/MS�.0/ D .?/
�t .SN /

�t .S�/
M��.0/: (38)

So one has to determine the value of the constant term M��.0/.
�e t -multinomial coe�cient is de�ned as follows: for any partition � 2 N

N
0

let
m� .i/ D # ¹j W � Œj � D iº

(de�ned for 0 � i � � Œ1�) and let
�
N

m�

�

t

D .t; t /N =
Y�Œ1�

iD0
.t; t /m�.i/

(note that .t; t /n D
Qn
iD1.1 � t i /). In fact, the Poincaré series for �, denoted

� .S�/, equals
Q�Œ1�
iD0 .t; t /m�.i/

=.1 � t /N where S� is the stabilizer subgroup of
� in SN (the symmetric group on N letters), and � .SN / D .t; t /N =.1 � t /N :

For application of proposition 5, we �nd a convenient formula for M�� .0/ for
partitions �.

Proposition 8. For a partition � 2 N
N
0

M��.0/ D .�1/j�j .t
N I q; t/�

hq;t .�; t /

� .S�/

� .SN /
:
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Proof. From Proposition 5,

M�� .0/ D .�1/j�j .t
NqI q; t/�

hq;t .�
�; qt/

so we need to evaluate the ratios

.tNqI q; t/�

.tN I q; t/�
and

hq;t .�
�; qt/

hq;t .�; t /
:

It is easy to see that

�

tNqI q; t
�

�
�

tN I q; t
�

�

D

N
Y

iD1

1 � tNC1�iq�Œi�

1 � tNC1�i
:

If the multiplicity of a particular � Œi � is 1 (in �) then the leg-length of cell
.N C 1� i; j C 1/ in �� is the same as that of the cell .i; j / in � for 1 � j < � Œi �.
To account for multiplicities let c be the inverse of r�� , that is r�� Œci � D i for
1 � i � N . �en �� Œci � D � Œi � (for example suppose � Œ1� > � Œ2� D � Œ3� >

� Œ4�, then c1 D N; c2 D N � 2; c3 D N � 1). As before

b�� .ci ; j C 1/ D b� .i; j / ; 1 � j < � Œi � :

�e factor in hq;t .��; qt/ at the cell .ci ; j C 1/ is .1 � tb�.i;j /C1q�Œi��j / which
is the same as the factor at the cell .i; j / in hq;t .�; t /. �us

hq;t .�
�; qt/

hq;t .�; t /

is the product of the factors at the cells .ci ; 1/ in hq;t .��; qt/ divided by the prod-
uct of the factors at the cells .i; � Œi �/ in hq;t .�; t /, for 1 � i � `.�/, since there
are no cells for the zero parts. �e factor at .ci ; 1/ is .1 � tNC1�iq�Œi�/. Suppose
� Œi � has multiplicity k (that is, � Œi � 1� > � Œi � D : : : D � Œi C k � 1� > � Œi C k�)
then

b� .i C l � 1; � Œi �/ D k � l for 1 � l � k;

and the cells .i; � Œi �/ ; : : : ; .i C k � 1; � Œi �/ contribute
Qk
lD1.1 � t l/ D .t; t /k.

�us

hq;t .�
�; qt/

hq;t .�; t /
D

Y`.�/

iD1
.1� tNC1�iq�Œi�/

Y�Œ1�

iD1
.t; t /m�.i/

:
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Combining the ratios we �nd that

.tN I q; t/�

hq;t .�; t /
D
.tNqI q; t/�

hq;t .�
�; qt/

YN

iD1

1 � tNC1�i

1� tNC1�iq�Œi�

Y`.�/

iD1
.1 � tNC1�iq�Œi�/

Y�Œ1�

iD1
.t; t /m�.i/

D
.tNqI q; t/�

hq;t .�
�; qt/

.t; t /N
Y�Œ1�

iD1
.t; t /m�.i/

YN

iD`.�/C1
.1� tNC1�i /

D
.tNqI q; t/�

hq;t .�
�; qt/

�
N

m�

�

t

;

since m� .0/ D N � `.�/.

As a direct consequence of Proposition 8 and equality (38), we obtain

Corollary 9.

P�.h0i/ D .?/

�

tN I q; t
�

�

hq;t .�; t /
:

5. Subrectangular Macdonald polynomials

5.1. �e denominator of subrectangular Macdonald polynomials. �e fol-
lowing lemma shows that if � � Œmk ; 0N�k �with 2k � N then P� does not have a

pole at qm�1tN�kC1 D 1 and q
m�1

d t
N�kC1

d ¤ 1 where d > 1 is a common factor
of m � 1 and N � k C 1:

Lemma 10. Let � � Œmk ; 0N�k� be a partition with 2k � N . �en

.1� qm�1tN�kC1/

is not a factor of any the denominators of coe�cients of xv in P�.

Proof. It su�ces to prove that the integral version J� does not vanish when

1 � qm�1tN�kC1 D 0 and 1 � q
m�1

d t
N�kC1

d ¤ 0 where d > 1 divides m � 1

and N � k C 1. In other words, we have to show that c�.q; t / does not have
1 � qm�1tN�kC1 as a factor. Suppose � D Œmk

0
; �k0C1; : : : ; �k00 ; 0N�k00

� with
k0 � k00 � k and �k00 > 0 . �en the only factors with the relevant power of q
that occur in c� are .1 � q�i �j t

�0
j

�iC1
/ for �i D m (so i D 1::k0) and j D 1

(so �0
j D k00). Hence, for such a pair .i; j / one has �0

j � i C 1 � k � N � k. �is
proves the result.
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5.2. �e .q; t/-binomial
�

mk

�

�

. Lassalle [23] gave an explicit formula for the

.q; t /-binomial
�
mk

�

�

for � � mk :

 

mk

�

!

D
Y

.i;j /2�

t i�k
.t i�1 � qj�1tk/.1� qm�jC1t i�1/

.1 � q A�.i;j /t1Cb�.i;j //.1� q1C A�.i;j /tb�.i;j //
(39)

Using .q; t /-hook products, the formula reads
 

mk

�

!

D .�1/j�j t3n.�/�.k�1/j�jqmj�j�n.�0/ .t
kI q; t/� .q

�mI q; t/�
hq;t .�; q/ hq;t .�; t /

: (40)

We deduce

Lemma 11. Let � ¨ mk be a strict subrectangular partition with 2k � N . �e

denominator of the reduced fraction
�
mk

�

�

has no factor 1� qm�1tN�kC1.

Proof. We examine the factor of the denominator of equality (39):

D� WD
Y

.i;j /2�

.1� q A�.i;j /t1Cb�.i;j //.1� q1C A�.i;j /tb�.i;j //:

Since � is a partition, there are only terms of the type 1�q�t
�0

j
�iC1 and 1�q�t

�0
j

�i

in D�. When � ¨ mk , we have �0
j � i C 1 < �0

j C 1 � k C 1. And so k � N � k

implies �0
j � i C 1 < N � k C 1. �is proves the result.

Note that  

mk

mk

!

D

 

mk

0

!

D 1: (41)

5.3. Principal specialization for subrectangular partitions. We consider cer-
tain poles ofM�� .0/ for � � Œmk ; 0N�k � with 2k � N . In particular, we examine
the occurrences of .1�qm�1tN�kC1/ in .tN I q; t/� and hq;t .�; t /. Since the max-
imum leg-length of any cell in � � Œmk ; 0N�k� is k � 1 only factors of the form
�

1 � taqb
�

with 1 � a � k < N � k C 1 and 0 � b � m � 1 can appear in
hq;t .�; t /. Further

.tN I q; t/� D

k
Y

iD1

�Œi�
Y

jD1

.1� tN�iC1qj�1/:
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�e factor .1 � qm�1tN�kC1/ appears in this product exactly when � Œk� D m,
that is, � D Œmk ; 0N�k �. �us M�� .0/ has a zero at qm�1tN�kC1 D 1 for
� D Œmk ; 0N�k� and no zeros or poles there when � ¨ Œmk ; 0N�k �. We sum-
marize this in the following lemma

Lemma 12. Let � � Œmk ; 0N�k� with 2k � N then the reduced fractionsM��.0/

and P�.h0i/ have .1 � qm�1tN�kC1/ as a factor if and only if � D Œmk ; 0N�k �.

Equivalently, if .1� qm�1tN�kC1/ D 0 and for any d > 1 dividing m� 1 and

N � k C 1, .1� q
m�1

d t
N�kC1

d / ¤ 0 then

Pmk .h0i/

P�.h0i/
D 0:

�ere is an alternative proof using eq. (37) (see Appendix B).

6. Rectangular Macdonald polynomials

6.1. Clustering properties of MSmk . In this section, we will use �nite alphabets
with di�erent sizes.

Notations 13. For simplicity, when we use a partition � 2 N
N , we mean that the

underlying alphabet is ¹x1; : : : ; xN º and the symmetric shifted monic Macdonald

polynomial will be denoted by MS.N/
�

D MS�.x1; : : : ; xN /. In the same way, for

v 2 N
N the nonsymmetric shifted monic Macdonald polynomial will be denoted

M
.N/
v .

�e length of v 2 NN is

` .v/ WD max ¹i W v Œi � > 0º :

For k � `.v/ we will denote also

v.k/ WD Œv1; : : : ; vk�:

�e following proposition shows that if v 2 N
N with `.v/ � k then the Mac-

donald polynomials M .N/
v and M .k/

v.k/ are closely related.
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Proposition 14. �e following assertions hold.

(1) Suppose v 2 N
N
0 satis�es ` .v/ � k for some k < N , then

Mv.x1t
N�k ; : : : ; xkt

N�k ; tN�k�1; : : : ; t; 1/ D t .N�k/jvjM
.k/

v.k/ :

(2) Suppose a partition � 2 N
N
0 satis�es ` .�/ � k for some k < N , then

MS.N/
�
.x1t

N�k ; : : : ; xkt
N�k ; tN�k�1; : : : ; t; 1/ D t .N�k/jvjMS.k/

�
.x/ :

Proof. We prove �rst (1): Both sides have the same coe�cient of xv and satisfy
the same vanishing conditions. More precisely, both sides vanish for x D hui,
u 2 N

k
0 ; juj � jvj ; u ¤ v, and hui Œj � D quŒj �tk�ruŒi�, for 1 � j � k; and the

multiplicative coe�cient is obtained considering the coe�cient of the dominant
term in the left hand side and the right hand side.

To prove (2) observe that the left-hand side is symmetric in .x1; : : : ; xk/. Hence
an obvious modi�cation of the above argument applies.

Example 15. For instance consider v D Œ2; 0�. �e polynomial MŒ2;0�.x1; x2/

vanishes for Œx1; x2� D h00i D Œt; 1�, Œx1; x2� D h10i D Œqt; 1�, Œx1; x2� D h01i D

Œ1; qt �, Œx1; x2� D h11i D Œqt; q�, Œx1; x2� D h02i D Œ1; q2t �whilstMŒ20�.h20i/ ¤ 0

(recall that h20i D Œq2t; 1�).

Hence, the polynomial P.x1/ D MŒ2;0�.x1t; 1/ vanishes for Œx1� D Œ1� D h0i

and Œx1� D Œq� D h1i whilst P.h2i/ D MŒ2;0�.q
2t; 1/ ¤ 0. �is agrees with the

de�nition of MŒ2�.x1/ up to a multiplicative factor.

For almost rectangular vector

vm;k WD ŒmN�k ; .mC 1/k �

we prove that the corresponding Macdonald polynomials nicely factorize:

Proposition 16. For m � 0 and 0 � k < N we have

M .N/
vm;k

D .�1/NmCk qm.kC.m�1/N=2/

N�k
Y

iD1

.xi ; q
�1/m

N
Y

iDN�kC1

.xi ; q
�1/mC1:
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Proof. Recall u:ˆ D Œu Œ2� ; : : : ; u ŒN � 1� ; u Œ1�C 1�, thus vm;k :ˆ D vm;kC1 for
0 � k < N and vm;N�1:ˆ D vmC1;0. �e claim is obvious for v0;0. Suppose the
claim is true for some .m; k/, then

M .N/
vm;k

� D qm.kC.m�1/N=2/.�1/NmCk

N�k�1
Y

iD1

.xi ; q
�1/m

N�1
Y

iDN�k

.xi ; q
�1/mC1.q

�1xN ; q
�1/m:

Multiply both sides by .xN � 1/ to get an expression for M .N/
vm;kC1

(or vmC1;0);
observe .xN � 1/.q�1xN ; q

�1/m D �.xN ; q
�1/mC1. �is completes the inductive

proof.

As a straightforward consequence, setting k D 0 in the previous proposition,
Mvm;0

is symmetric in x1; : : : ; xN and then we �nd:

Corollary 17. For n � 1,

MS.N/vm;0
D qNm.m�1/=2.�1/Nm

N
Y

iD1

.xi ; q
�1/mI

note that vm;0 D ŒmN �:

Let X D ¹x1; : : : ; xN º and Y D ¹y1; : : : ; ykº be two alphabets. We will denote
by

R.X;Y/ D

N
Y

iD1

k
Y

jD1

.xi � yj /

the resultant of X with respect to Y.
Let also

D
y

N;k;m
.x1; : : : ; xk/ WD R.Œx1; : : : ; xk�; Œyt

N�kq0; : : : ; ytN�kqm�1�/:

We have:

Proposition 18. Let � D Œmk ; 0N�k� for some 1 � k < N and m � 1, and y ¤ 0

then

MS.N/
�
.
x1

y
; : : : ;

xk

y
; tN�k�1; : : : ; 1/ D y�km

D
y

N;k;m
.x1; : : : ; xk/:
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Proof. By the previous propositions

MS.N/
�

�x1

y
; : : : ;

xk

y
; tN�k�1; : : : ; 1

�

D tk.N�k/mq
m
2
k.m�1/ .�1/km

k
Y

iD1

� xi

ytN�k
; q�1

�

m
;

and

� xi

ytN�k
; q�1

�

m
D

m�1
Y

jD0

�

1�
xi

ytN�kqj

�

D .�1/mq�m.m�1/=2t�m.N�k/y�m

m�1
Y

jD0

.xi � ytN�kqj /;

for 1 � i � k.

6.2. Homogeneity of MSmk at 1 � qm�1tN �kC1
D 0. Let us describe �rst the

solution set Z of the conditions

qm�1tN�kC1 D 1 and q.m�1/=at .N�kC1/=a ¤ 1

for any common divisor a of m � 1 and N � k C 1 with a > 1.
Let

d WD gcd .m � 1; N � k C 1/ ; m0 D
m � 1

d
; n0 D

N � k C 1

d
:

Recall the Euler �-function, � .d/ D #Kd where

Kd WD ¹k W 1 � k < d; gcd .k; d/ D 1º :

We claim that Z has � .d/ disjoint connected components as a subset of C2. Let
z D re2�i� 2 C with r > 0 and � 2 R, and set

q D zn0 ; t D !z�m0 ;

! D e2i� ;

then qm0 tn0 D !n0 and it is required that !n0d D 1 and .!n0/j ¤ 1 for 1 �

j < d . (if d D 1 the latter restriction becomes void). For determining connected
components it su�ces to let r D 1 and project onto the 2-torus realized as the
unit square ¹.˛; ˇ/ W 0 � ˛; ˇ � 1º with identi�cations .˛ C 1; ˇ/ � .˛; ˇ/ and
.˛; ˇ C 1/ � .˛; ˇ/, with the mapping

.˛; ˇ/ 7�! .e2�i˛; e2�iˇ /:
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�e pre-image of .q; t / is

¹.n0�;�m0� C  / W � 2 Rº :

We require  n0d 2 Z and  n0j … Z for 1 � j < d , that is  D k
n0d

for some

k and kj
d

… Z (when d D 1 the value k D 0 is permissible). �is is equivalent
to gcd .k; d/ D 1. By the identi�cation assume 0 �  < 1. So there are # zK

solutions for  where

zK WD ¹k W 1 � k � n0d; gcd .k; d/ D 1º ;

and # zK D n0� .d/. For k 2 zK let

Zk D
°�

n0�;�m0� C
k

n0d

�

W 0 � � <
1

n0

±

:

�en Zk meets Zk0 where k0 D .k �m0d/ mod .n0d/ (the �rst coordinate is pe-
riodic for � 7! �C 1

n0
; and where 0 � a mod b < b for a 2 Z; b � 1). �is is con-

tinued to show thatZk is connected toZk0 with k0 D .k �m0dj / mod .n0d/ ; 1 �

j < n0. Consider the set

zK 0 WD ¹.k �m0dj / mod .n0d/ ; 0 � j < n0; k 2 Kdº :

We claim this set coincides with zK. If k; k0 2 Kd and k ¤ k0 then .k �m0dj / ¤

.k0 �m0dj
0/ mod .n0d/ for any j; j 0 (else k D k0 mod d ); suppose 0 � j <

j 0 < n0 then .k �m0dj / ¤ .k �m0dj
0/ mod .n0d/ or else m0d .j � j 0/ D

n0dl for some l , which is impossible for 1 � j � j 0 < n0. �us zK 0 � zK and
# zK 0 D # zK and hence zK 0 D zK. �us Z is the disjoint union of the connected sets
S®

ZkCjd W 0 � j < n0
¯

� ¹r W r > 0º for k 2 Kd .

Example 19. (1) First examine the solution of qatb D 1 where gcd.a; b/ D 1 on

the example a D 4 and b D 7. Topologically we can collapse the problem to the

torus Œq D exp.2i�˛/; t D exp.2i�ˇ/� , 0 � ˛; ˇ � 1. On the unit square this

becomes 7˛ C 4ˇ D 0 mod 1, or ˇ D �7
4
˛, interpreted periodically, period 1

see �g.1. (2) When gcd.a; b/ > 1, for instance a D 8 and b D 12, there are

several connected solutions. In the example given in �g.2, there are two solutions

2˛ C 3ˇ D 1
4

and 2˛ C 3ˇ D 3
4
.

Proposition 20. Consider q D za and t D !zb a specialization of the parameters

such that 1� qm�1tN�kC1 D 0 and 1� q
m�1

d t
N�kC1

d ¤ 0 if d > 1 divides m � 1

and N � k C 1. �en,

MSmk D Pmk
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Figure 1. Solution of qatb D 1 for a D 4 and b D 7.

Proof. From Lemma 4, one has

MSmk D Pmk C
X

�¨mk

��

�mk

 

mk

�

!

q�1;t�1

Pmk .h0i/

P�.h0i/
P�:

From Lemma 12,
P

mk .h0i/

P�.h0i/
D 0 for � ¨ mk . Furthermore, from Lemmas 10 and 11

there are no poles at q D za and t D !zb in P� and
�
mk

�

�

q�1;t�1
(otherwise the

denominators of the two polynomials have .1 � qm�1tN�kC1/ as a factor which
contradicts the lemmas). �e result follows.
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t

Figure 2. Solution of qatb D 1 for a D 12 and b D 8.

7. Proof of a conjecture of Forrester

7.1. Clustering properties of Pmk . In the study of fractional quantum Hall
states, Bernevig and Haldane [4] identi�ed certain clustering conditions on rect-
angular Jack polynomials. �ese can be interpreted as factorization properties
under certain specialization of the variables. In this context, Baratta and Forrester
conjectured [2] a more general identity involving a rectangular Macdonald poly-
nomial:

Pmk .y; yq
1
˛ ; : : : ; yq

N�k�1
˛ ; xN�k ; : : : ; xN / D D

y

N;k;m
.x1; : : : ; xk/; (42)

where N � 2k, ˛ D �N�kC1
m�1

and gcd.N � k C 1;m� 1/ D 1.
Propositions 20 and 18 allow us to write a more general formula.
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�eorem 21. Let y 2 N. Consider q D za and t D !zb a specialization of the

parameters such that 1 � qm�1tN�kC1 D 0 and 1 � q
m�1

d t
N�kC1

d ¤ 0 if d > 1

divides m � 1 and N � k C 1. �en,

Pmk .x1; : : : ; xk; yt
N�k�1; : : : ; yt; y/ D D

y

N;k;m
.x1; : : : ; xk/:

Proof. Propositions 20 and 18 show the formula for y ¤ 0. Since the coe�cients
of xv in the left hand side and right hand side are polynomial in y, the result
remains true for y D 0.

Example 22. Let us illustrate this result with a few examples.

(1) Set q D t�3 then

PŒ2;2;0;0�.x1; x2; yt; y/ D
�

x1 �
y

t

��

x2 �
y

t

�

.x1 � yt2/.x2 � yt2/

(2) Let t D �q�1, one has

PŒ3;0�.x1; y/ D
�

x1 C
y

q

�

.x1 C y/.x1 C qy/:

whilst the result does not hold for t D q�1:

PŒ3;0�.x1; y/ D
�

x21 �
�

1C
1

q

�2

yx1 C y2
�

.x1 C y/:

(3) Let ! D exp
®
2�i
3

¯

and t D !q�1. We have

PŒ4;4;0;0�.x1; x2; ty; y/

D .x1 � !2yq�2/.x2 � !2yq�2/.x1 � !2yq�1/.x2 � !2yq�1/

.x1 � !2y/.x2 � !2y/.x1 � !2yq/.x2 � !2yq/;

whilst the result does not hold for t D q�1, since there is a pole in PŒ4;4;0;0�:

Numer.PŒ4;4;0;0.x1; x2; ty; y//jtDq�1 D 3
y4

q6
.1� q2/.1� q3/2.1� q4/x21x

2
2 ;

where Numer denotes the numerator of the reduced fraction.

7.2. �e Jack polynomial P

�

N �kC1

1�m

�

mk
. �e Jack polynomial P .˛/

�
is usually re-

covered from the Macdonald polynomial P�.x1; : : : ; xN I q; t/ by setting q D t˛

and taking the limit t ! 1.
So as a consequence of �eorem 21 we obtain
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Corollary 23. Let N; k � 1 and m � 2 verifying N � 2k and

gcd.N � k C 1;m� 1/ D 1:

�en we have

P

�
N�kC1

1�m

�

mk .x1; : : : ; xk;

�N�k
‚ …„ ƒ

y; : : : ; y/ D

k
Y

iD1

.xi � y/m:

See Kakei et al. [16] for related results on shifted Jack polynomials.

7.3. Clustering properties of nonsymmetric Macdonald polynomials. As be-
fore we use .�/ to indicate a term qatb with a; b 2 Z when its value can be ig-
nored in the context of analyzing zeros and poles. We restate a result of Las-
coux et al. [22, Corollary 4.3 from Sahi’s binomial formula]. For u 2 N

N
0 let

Bu WD
®

v 2 N
N
0 W

�
u
v

�

¤ 0; v ¤ u
¯

. As stated before v 2 Bu implies vC � uC

and jvj < juj, but there are important additional consequences as we will show.

�eorem 24. For u 2 N
N
0

Mu .x/ D Eu .x/C
X

v2Bu

.�/
hu

v

i

q�1;t�1

Eu .h0i/

Ev .h0i/
Ev .x/ :

We need to use this formula for u D Œmk ; 0N�k� with 2k � N and .q; t /
in a neighborhood � of the set of solutions of qmtN�kC1 D 1 and qatb ¤ 1

for 1 � a � m and 0 � b � N � k C 1, except for a D m and b D N �

k C 1. (We note here that if q; t 2 C and neither q nor t are roots of unity then
qmtN�kC1 D 1 and qatb D 1 imply that a D n

d
m; b D n

d
.N � k C 1/ where

d D gcd .m;N � k C 1/ and n 2 Z; roughly the equations imply qamtbm D

1 D qamta.N�kC1/, etc.) From Knop [18, Proposition 5.3] the coe�cients of
hq;t .v; qt/Mv .x/ are in ZŒq; q�1; t; t�1� for any v 2 N

N
0 (the same multiplier

works for Ev .x/). FurthermoreMv.hvi/D.�/hq;t .v; q/ (from Lascoux et al. [22,
p. 8]), and

Ev.h0i/ D .�/
.tNq; q; t /vC

hq;t .v; qt/

by Proposition 5. �us we consider hq;t .v; qt/ and hq;t .v; q/ for v 2 Bu.
We showed that vC � u and jvj < juj implies .tNq; q; t /vC ¤ 0 for .q; t / 2 �.

Proposition 25. Suppose u 2 N
N
0 and ` .u/ � k < N then v 2 Bu implies

` .v/ � k.



Clustering properties of rectangular Macdonald polynomials 293

Proof. We use the “extra-vanishing” theorem of Knop [18, �eorem 4.5] applied
to v withMv .hui/ ¤ 0. �is implies that there is a permutationw 2 SN such that
for any i with 1 � i � N the inequality i � w .i/ implies v Œi � � u Œw .i/� other-
wise v Œi � < u Œw .i/�. By hypothesis u Œj � D 0 for any j > k hence w�1 .j / � j

(since v
�

w�1 .j /
�

< 0 is impossible). �us w�1 .j / � j for each j > k and by
downward induction w .j / D j for k < j � N . By applying Knop’s condition it
follows that v Œj � � u Œw .j /� D u Œj � D 0 for j > k.

Corollary 26. If u D Œmk ; 0N�k� and v 2 Bu then

hq;t .v; qt/ ¤ 0 and hq;t .v; q/ ¤ 0

for .q; t / 2 �.

Proof. �e factors in the hook products are of the form 1� qatb with 1 � a � m

and 0 � b � k < N � k C 1 (the leg-lengths are bounded by k � 1).

�is shows that
h
mk

v

i

q�1;t�1
has no poles for v 2 Bmk and .q; t / 2 �. �e last

step is to show Emk .h0i/ D 0 for qmtN�kC1 D 1 and .q; t / 2 �, and indeed

�

tNqI q; t
�

mk D

k
Y

iD1

m
Y

jD1

�

1� qj tN�iC1
�

I

the factor with i D k; j D m is .1� qmtN�kC1/.

Proposition 27. Suppose

u D Œmk ; 0N�k �; 2k � N;

qmtN�kC1 D 1;

and

qm=at .N�kC1/=a ¤ 1

for a > 1 being a common divisor of m and N � k C 1, then

Mu .x/ D Eu .x/ ;

Eu.x1; : : : ; xk; yt
N�kC1 : : : ; yt; y/ D D

y

N;k;m
.x1; : : : ; xk/ :

Proof. �e proof is essentially the same as that of Proposition 21.

We �nd that the polynomial Eu .x/ is singular for certain values of .q; t / ex-
actly when it coincides withMu .x/, and in that case there is a factorization result
of clustering type.
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7.4. Highest weight and singular Macdonald polynomials. In the case of spe-
cial parameter values when MS� D P� by Proposition 2 it follows that

MS�

N
X

iD1

„i D P�

N
X

iD1

„i D P�

N
X

iD1

�i

and thusP�
PN
iD1Di D 0. For rectangular partitions, this matches with a result of

one of the authors (J.-G. Luque) with �. Jolicœur [15] which involves the kernel
of the operator

LC WD

N
X

iD1

N
Y

j D1
j ¤i

txi � xj

xi � xj

@

@qxi

with

@

@qxi
f .x1; : : : ; xN / D

f .x1; : : : ; xN / � f .x1; : : : ; xi�1; qxi ; xiC1; : : : xN /

xi � qxi
:

Note that from a result of Baker and Forrester [1, eq. (5.9), p. 12], the operator LC

satis�es

.1� q/LC D

N
X

iD1

Di :

�eorem 28 (Jolicœur and Luque [15]). If N � 2k then the Macdonald polyno-

mial Pmk .x1; : : : ; xN I q; t/ belongs to the kernel of LC for the specialization

.q; t / D .z
k�1�N

d ; !z
m�1

d /

where d D gcd.m � 1; N � k � 1/ and ! D exp
°
2i�.1Cdn/

m�1

±

with n 2 Z.

We observe similar phenomena for nonsymmetric Macdonald polynomials.
Note that Eu; Mu have the same eigenvalues under the action of �i ; „i respec-
tively. If for certain parameters .q; t / Mu D Eu then EuDi D 0 for 1 � i � N

(since Mu„i D Eu„i D Eu�i CEuDi ).

According to Proposition 27, suppose that u D Œmk ; 0N�k�, 2k � N , and
qmtN�kC1 D 1, and qm=at .N�kC1/=a ¤ 1 for a > 1 being a common divisor of m
and N � k C 1, then Emk0N�kDi D 0 for each 1 � i � N .
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8. Conclusion and perspectives

One of the authors (J.-G. Luque) with �ierry Jolicoeur [15] investigated other
families of symmetric Macdonald polynomials belonging to the kernel of LC for
certain specializations of the parameters. �ese polynomials are indexed by stair-
case partitions and numerical evidence shows that they have nice factorization
properties. A staircase partition

� D Œ..ˇ C 1/s C r/k; .ˇs C r/`; : : : ; .s C r/`; 0
`C1
s�1 �

is de�ned by �ve integer parameters ˇ; s; r; k and ` such that k � ` and

N D
`C 1

s � 1
r C `.ˇ C 1/C k 2 N:

�e corresponding specialization is

.t; q/ D .z
s�1

g ; z� lC1
g !/

where g D gcd.`C 1; s� 1/ and ! D exp
°
2i�.1Cdg/

s�1

±

. �e simplest polynomials

.r D k D 0/ can be factorized for any variables x1; : : : ; xN as a

.q; t /-discriminant. When g D 1, this is a consequence of a theorem proved by
one of the authors (J.-G.L) with A. Boussicault [8, �eorem 3.2]. For instance,

P420.x1; x2; x3I q D t�2; t /

D .�/t .x1 � tx2/.x1 � tx3/.x2 � tx1/.x2 � tx3/.x3 � tx1/.x3 � tx1/;

where .�/t denotes a factor depending only on t . But it seems that a factorization
holds also for the other cases (for special values of the variables and the parame-
ters). Let us give a few examples:

P630.x1; x2; x3I q D �t�1; t /

D .�/t .x1 C x2/.x1 C x3/.x2 C x3/.x1 � tx2/.x1 � tx3/

.x2 � tx1/.x2 � tx3/.x3 � tx1/.x3 � tx1/;

P53000.x1; x2; y; yt; yt
2I q D t�2; t /

D .�/t .x1 � yt3/.x1 � yt/.x1 � yt�1/

.x2 � yt3/.x2 � yt/.x2 � yt�1/;

P42200.x1; y1; y1t; y2; y2t I q D t�3; t /

D .�/t .x1 � y1t
2/.x1 � y2t

2/.x1 � y1t /.x1 � y2t /

.y1 � ty2/.y1 � t2y2/.y2 � ty1/.y2 � t2y1/;
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P6400000.x1; y1; y1t; y1t
2; y2; y2t; y2t

2I q D t�2; t /

D .�/t .x1 � y1t
3/.x1 � y1t

3/.x1 � y1t
�1/

.x1 � y2t
3/.x1 � y2t

3/.x1 � y2t
�1/.y1 � ty2/

.y1 � t3y2/.y2 � ty1/.y2 � t3y1/;

P7507.x1; y1; : : : ; y1t
4; y2; : : : ; y2t

2I q D t2; t /

D .�/t .y1 � x1t
3/.y1 � y2t

3/.y1 � x1t
5/

.y1 � y2t
5/.y2 � x1t

3/.y2 � y1t
3/P420.x1; y1; y2I q D t�2; t /; : : : :

A correct formula (and of course a proof) remains to be found.
Note that there are also analogous formulas for singular nonsymmetric Mac-

donald polynomials indexed by staircase partitions. Consider the following exam-
ples:

E210.x1; x2; x3I q D z�2; t D z/

D .�/t .tx2 � x1/.tx3 � x1/.tx3 � x2/

E630.x1; x2; x3I q D z�2; t D z3/

D .�/z.x2 z � x3/.�zx3 C x2/.x2 � z3x3/.x1 z � x3/

.�zx3 C x1/.x1 � z3x3/.x1 z � x2/.x1 � x2 z/.x1 � x2 z
3/;

E420.x1; x2; x3I q D �t; t /

D .�/t .x2 C x3/.�tx3 C x2/.x3 C x1/.�tx3 C x1/.x1 C x2/.x1 � x2t /;

E221100.x1; x2; y1; ty1; y2; ty2I q D t�3; t /

D .�/t .y1 � y2t
2/.y1 � y2t /.x2 � y2t

2/

.x2 � t2y1/.x1 � y2t
2/.x1 � t2y1/;

E442200.x1; y1; y1z
2; y2; y2z

2I q D z�3; t D z2/

D .�/z.y1 � y2z
4/.y1 � y2z/.y1z � y2/

.y1 � y2z
2/.x1 � y2z

4/.x1 � y2z/.x1 � y1z
4/.x1 � y1z/:

�ere are also equations involving permutations of .mk ; 0N�k/. For instance,

E0022.t; 1; x3; x4I q D t�3; t / D .�/t .tx4 � y/.tx3 � y/x4x3:

In Appendix C we show a factorization formula for permutations of mk0N�k .
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�e connections with singular properties remain to be investigated. In partic-
ular, if Eu is singular then it has the same spectral vector for ¹„iº as Mu. If the
spectral vector is nondegenerate (multiplicity D 1) then Mu D Eu.

A. Notations

For parameters a; b; c, we consider the operator Gi
a;b;c

acting on polynomials (or
Laurent polynomials) by

Gia;b;c D aC
bxi � cxiC1

xi � xiC1
.1� si /; 1 � i < N:

�e braid relations GiGiC1Gi D GiC1GiGiC1 hold for two families of so-
lutions: .a; b; c/ D .t1;�t1; t2/ and .a; b; c/ D .t1; t2;�t1/. In both cases the
quadratic relation

.Gia;b;c � t1/.G
i
a;b;c � t2/ D 0

holds. �e inverses are

.Git1;�t1;t2/
�1 D Gi1=t1;1=t2;�1=t1 ;

.Git1;t2;�t1/
�1 D Gi1=t1;�1=t1;1=t2;:

Some pertinent evaluations are

1Gia;b;c D a;

xiG
i
t1;�t1;t2

D �t2xiC1;

and

xiC1G
i
t1;t2;�t1

D �t2xi :

In our applications we require the quadratic relation

.Gia;b;c � t /.Gia;b;c C 1/ D 0;

and the evaluation 1Gi
a;b;c

D t , because 1 is (trivially) symmetric, thus a D t ,
b D �1. �e version of Ti used in one of our previous papers [9] is Git;�t;�1,
but Lascoux et al. [22] uses Git;�1;�t which equals .Gi

1=t;�1=t;�1
/�1 (that is,

Ti .1=t/
�1 from our notations[9]).
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With parameters 1
t
; 1
q

in relation to our notations [9] the following hold for the

Lascoux et al. [22] versions (and Ti D Git;�1;�t , T
�1
i D G1=t;�1=t;�1 ):

(1) �i D t1�iTi�1 : : : T1�T
�1
N�1 : : : T

�1
i (Cherednik operator);

(2) p�.x/ D p.xN=q; x1; : : : ; xN�1/I

(3) DN D .1 � �N /x
�1
N ; a simple check for the coe�cient of �N : apply the

operator to the constant polynomial 1, since 1Ti D t we have 1�i D t i�N and
it is necessary that 1DN D 0;

(4) Di D tT �1
i DiC1T

�1
i ;

(5) „i D t1�iTi�1 : : : T1�.1 � 1
xN
/T �1
N�1 : : : T

�1
i C 1

xi
; similarly check the con-

stants by verifying 1„i D t i�N ; note that . 1
xiC1

/T �1
i D 1

xi
.

B. Alternative proof of Lemma 12

Let � � Œmk ; 0N�k� with 2k � N . We have

� D Œmk
0

; �k0C1; : : : ; �k00 ; 0N�k00

�;

with k0 � k00 � k and �k0C1 < m.

�e vector h��i1 with � ¨ mk is

ŒtN�k00�1; : : : ; t; 1; �; : : : ; �; qmtN�1; : : : ; qmtN�k0

; qtN�k00�1; : : : ; qt; q; : : : �:

So we have to enumerate the pairs .i; j / with i D 1; : : : ; k0 and j D 1; : : : ,
N � k00 verifying

h��i1
N�k0Ci D qmtN�i ;

h��i1
NCj D qtN�k00�j ;

and
h��i1

N�k0Ci

h��i1
NCj

D qm�1tN�kC1:

�en, we have to enumerate the pairs .i; j / with i D 1; : : : ; k0, j D 1; : : : ; N � k00

such that

N � i � .N � k00 � j / D N � k C 1:
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Equivalently,

j D N � k � k00 C 1C i:

Hence, when i ranges 1; : : : ; k0, j rangesN �k�k00 C2; : : : ; N �kCk0 �k00 C1.
But since k � N � k and k00 � k we have

2 � k � k00 C 2 � N � k � k00 C 2:

If � ¨ Œmk ; 0N�k� then k0 < k and we have

N � k C k0 � k00 � N � k00:

To resume: when � ¨ Œmk ; 0N�k �, j ranges

N � k � k00 C 2; : : : ; N � k C k0 � k0 C 1 � 1; : : : ; N � k00:

So there are

N � k C k0 � k00 C 1 � .N � k � k00 C 2/C 1 D k0

pairs .i; j / satisfying the property. It follows that the maximal power of
.1 � qm�1tN�kC1/ in the denominator of equality (37) is k0.

But if � D Œmk ; 0N�k � then j ranges

N � 2k C 2; : : : ; N � k (k D k0 D k00)I

so the maximal power is k0 � 1 D k � 1.

Similarly, we study the numerator: we have to enumerate the pair .i; j / with
i D 1; : : : ; k0, j D 1; : : : ; N � k00 such that

N � i � .N � k00 � j /C 1 D N � k C 1:

Equivalently,

j D N � k � k00 C i:

Hence, when i ranges 1 : : : k0, j ranges

N � k � k00 C 1; : : : ; N � k C k0 � k00:

Again

N � k � k00 C 1; : : : ; N � k C k0 � k00 � 1; : : : ; N � k00:
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So there are

N � k C k0 � k00 � .N � k � k00 C 1/C 1 D k0

pairs .i; j / satisfying the property. As a consequence the maximal power of
.1 � qm�1tN�kC1/ in the numerator of (37) equals k0.

If � ¨ Œmk ; 0N�k �, the numerator and the denominator simplify and we have no
factor of the form .1 � qm�1tN�kC1/ in (37). On the other hand, when
� D Œmk ; 0N�k�, after simpli�cation it remains a factor .1�qm�1tN�kC1/ in (37).
�is completes the proof.

C. Expressions for Mu where u is a permutation of Œmk0N �k�

Fix m � 1 and k with 1 � k � N . As before we neglect scalar multipliers .�/ of
the form qatb, and then adjust the formulae using the monic properties. De�ne

�N;k WD ¹ˇ 2 N
k W 1 � ˇŒ1� < ˇŒ2� < � � � < ˇŒk� � N º

For ˇ 2 �N;k de�ne u .ˇ/ 2 N
N by u .ˇ/ Œˇ Œi �� D m for 1 � i � k otherwise

u .ˇ/ Œj � D 0. Let � .ˇ/ denote the set ¹ˇŒi � W 1 � i � kº. For 1 � i � k de�ne "i
by "i Œj � D ıij .

Remark 29. Note that if i D ˇŒj ��1 62 �.ˇ/ for some j then u.ˇ/:si D u.ˇ�"j /.
For instance, if N D 7 and ˇ D Œ1; 4; 5; 7� then u.ˇ/ D Œm; 0; 0; m;m; 0;m� and

u.ˇ/s6 D Œm; 0; 0; m;m;m; 0�D u.Œ1; 4; 5; 6�/D u.ˇ � "4/:

De�nition 30. For 1 � i � N let �ˇ .i/ D N � i � # ¹l W ˇ Œl� > iº, (if i D ˇ Œl�

then �ˇ .i/ D N � i � k C l). Also let x.ˇ/ be the point given by

x
.ˇ/
i D

8

<

:

xi for i 2 � .ˇ/ ;

t�ˇ.i/ for i … � .ˇ/ :

�e meaning of �ˇ is simply that �ˇ .i/ D N � ru.ˇ/ Œi � and x.ˇ/i D hu .ˇ/i Œi �

for i … � .ˇ/. �e following is one of the main results of this section. �e proof
consists of several lemmas.

�eorem 31. For ˇ 2 �N;k

Mu.ˇ/.x
.ˇ// D

k
Y

jD1

.xˇŒj � � tNCj�k�ˇŒj �/

m�1
Y

iD1

.xˇŒj � � tN�kqi /:
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Lemma 32. Suppose v 2 N
N , v Œi � < v Œi C 1� for some i < N and y is a point

such that Mv .y/ D 0, then

Mv:si .y/ D
�yi � tyiC1

yi � yiC1

�

Mv .y:si/ :

Proof. �is follows from De�nition 1 of Ti .

Lemma 33. Suppose ˇ 2 �N;k and ˇ Œj ��1 … � .ˇ/ for some j . Set i D ˇ Œj ��1

so that u .ˇ/ Œi � D 0; u .ˇ/ Œi C 1� D m and u .ˇ/ :si D u.ˇ�"j / (see Remark 29).

�en

Mu.ˇ/.x
.ˇ/:si / D 0:

Proof. Let v 2 N
N satisfy v Œl� � 1 for l 2 �.ˇ � "j / and v Œl� D 0 for

l … �
�

ˇ � "j
�

(in particular v Œi � � 1 and v Œi C 1� D 0). By Knop’s “extra-
vanishing” theorem [18, �eorem 4.5]Mu.ˇ/ .hvi/ D 0. To prove by contradiction
suppose Mu.ˇ/ .hvi/ ¤ 0 then there is a permutation w 2 SN such that for any
i with 1 � i � N either i � w .i/ and u .ˇ/ Œi � � v Œw .i/� or i < w .i/ and
u .ˇ/ Œi � < v Œw .i/�. Let S1 D ¹1; : : : ; N º n� .ˇ/ and S2 D ¹1; : : : ; N º n�.ˇ� "j /.
�e sets S1 and S2 agree with the exception i 2 S1nS2 and i C 1 2 S2nS1.
By construction w .l/ 2 S2 implies l 2 S1 and l � w .l/. �us w maps S1 onto
S2 and by induction (using l � w .l/) we see that w .l/ D l for each l 2 S1 with
l < i . But then w .i/ � i C 1, which is impossible.

Consider the vector hvi; by construction

hvi Œl � D

8

<

:

qvŒl�tN�rvŒl�; l 2 �.ˇ � "j /;

t�ˇ.l/; l … �.ˇ � "j /:

Note that 1 � rv Œl � � k for l 2 �.ˇ � "j /, and hvi D x.ˇ/:si where each xl is
of the form qatb with a � 1 and N � k C 1 � b � N . Now Mu.x

.ˇ/:si / is a
polynomial in k variables of degree mk which vanishes at in�nitely many points
of this form; by the uniqueness of the vanishing property of shifted Macdonald
polynomials Mu.x

.ˇ/:si / D 0 for all x.ˇ/.

Lemma 34. Suppose ˇ D ŒN � k C 1; : : : ; N � then

x.ˇ/ D .tN�kC1; : : : ; t; 1; xN�kC1; : : : ; xN /

and

Mu.ˇ/.x
.ˇ// D

N
Y

iDN�kC1

.xi � 1/

m�1
Y

jD1

.xi � tN�kqj /:
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Proof. Let v D Œ.m � 1/k; 0N�k �. By the results of Section 6.1

Mv.x1; : : : ; xk; t
N�k�1; : : : ; 1/ D

k
Y

iD1

m�2
Y

jD0

.xi � tN�kqj /I

if m D 1 the product equals 1. From v:ˆk D u .ˇ/ it follows that

Mu.ˇ/ .x/ D .�/Mv .xN�kC1=q; : : : ; xN=q; x1; : : : ; xN�k/

N
Y

iDN�kC1

.xi � 1/ :

Set xi D tN�k�i for 1 � i � N � k, then

Mu.ˇ/ .x/ D .�/Mv.xN�kC1=q; : : : ; xN =q; t
N�k�1; : : : ; 1/

N
Y

iDN�kC1

.xi � 1/

D .�/

N
Y

iDN�kC1

.xi � 1/

m�2
Y

jD0

.xi=q � tN�kqj /:

�is proves the Lemma.

For ˇ 2 �N;k de�ne

Fˇ .x/ WD

k
Y

jD1

.xˇŒj � � tNCj�k�ˇŒj �/:

�e special cases are ˇ D ŒN � k C 1; : : : ; N �, Fˇ D
QN
iDN�kC1 .xi � 1/ and

ˇ D Œ1; 2; : : : ; k�, Fˇ D
Qk
iD1.xi � tN�k/.

Proof. (of �eorem 31): We use induction for steps of the form u .ˇ/ ! u .ˇ/ :si

applied to u .ˇ/ with u .ˇ/ Œi � D 0 and u .ˇ/ Œi C 1� D m. �e previous Lemma
provides the starting point. Suppose for some j; i that ˇ Œj � D iC1 and i … � .ˇ/,
then with the identi�cation xi D xiC1 we have x.ˇ/:si D x.ˇ

0/, where ˇ0 D ˇ�"j .
�en

Fˇ 0.x.ˇ
0// D

xi � tNCj�k�i

xi � tNCj�k�i�1
Fˇ .x

.ˇ//;

because only the factor involving xi changes. Suppose that the claimed formula
holds for ˇ, that is,

Mu.ˇ/.x
.ˇ// D Fˇ .x

.ˇ//

m�1
Y

jD1

.xˇŒi� � tN�kqj /:



Clustering properties of rectangular Macdonald polynomials 303

By Lemma 33 Mu.ˇ/.x
.ˇ/:si / D 0 and by Lemma 32

Mu.ˇ/:si .x
.ˇ 0// D

�x
.ˇ 0/
i � tx

.ˇ 0/
iC1

x
.ˇ 0/
i � x

.ˇ 0/
iC1

�

Mu.ˇ/.x
.ˇ//;

because
x.ˇ

0/:si D x.ˇ/:

Also
x
.ˇ 0/
iC1 D x

.ˇ/
i D t�ˇ.i/

where
�ˇ .i/ D N � i � # ¹l W ˇ Œl� > iº D N � i � .k � j C 1/ :

�us

Mu.ˇ/:si .x
.ˇ 0// D

� xi � tNCj�i�k

xi � tNCj�i�k�1

�

Mu.ˇ/.x
.ˇ//

D
Fˇ 0.x.ˇ

0//

Fˇ .x
.ˇ//

Mu.ˇ/.x
.ˇ//;

and this proves the formula for ˇ � "j .

Example 35. Let ˇ D Œ2; 5; 6; 9� 2 �10;4, then u.ˇ/ D Œ0m00mm00m0�,

x.ˇ/ D .t5; x2; t
4; t3; x5; x6; t

2; t; x9; 1/;

Mu.ˇ/.x
.ˇ// D .x2 � t5/.x5 � t3/.x6 � t3/.x9 � t /

Y

j2¹2;5;6;9º

m�1
Y

iD1

.xj � t6qi/:

�e factorization result for rectangular Eu can be adapted to this situation.
Start with u D Œmk ; 0N�k � with 2k � N .

For the rest of this section assume qmtN�kC1 D 1 and no relation qatb D 1

with a < m or b < N � k C 1 holds (for details see Section 6.2).
�en by Proposition 27 Mu .x/ D Eu .x/. We claim this equality can be ex-

tended to u .ˇ/ provided that u .ˇ/ is a reverse lattice permutation; this means that
any substring Œu .ˇ/ Œj � ; u .ˇ/ Œj C 1� ; : : : ; u .ˇ/ ŒN �� contains at least as many 0’s
as m’s [34, p.313]. �is condition is equivalent to

ˇ Œj � � N � 2k C 2j � 1; 1 � j � k: (43)

As above suppose ˇ Œj � D i C 1; ˇ Œj � 1� < i and v D u .ˇ/ ; v:si D u.ˇ � "j /.
�e inverse relation is

Mv D
.1 � �/2

.t� � 1/ .� � t /
Mv:si

�

Ti � �
1� t

1 � �

�

;
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where � D qmtkC1Ci�2j . �e same transformation takes Ev:si to Ev . We use in-
duction. Suppose Mu.ˇ�"j / D Eu.ˇ�"j / when qmtN�kC1 D 1 and both polyno-

mials are de�ned (that is, the coe�cients have no poles at qmtN�kC1 D 1). �en
the same properties hold forMu.ˇ/ andEu.ˇ/ if � ¤ t�1; 1; t . Set qm D t�.N�kC1/

then � D ta with a D 2k C i � 2j � N . But i D ˇ Œj � � 1 thus by condition (43)
we have

a � 2k � 2j � N C .N � 2k C 2j � 1/ � 1 D �2:

�e induction starts with ˇ D Œ1; 2 : : : ; k�. We have shown

Proposition 36. Suppose 2k � N , ˇ 2 �N;k , ˇ satis�es (43), (and qm D

t�.N�kC1/) then

Eu.ˇ/ .x/ D Mu.ˇ/ .x/ :

For the specialization result, let z.ˇ/ be de�ned by z.ˇ/i D xi if i 2 � .ˇ/, and

z
.ˇ/
i D yt�ˇ.i/ if i … � .ˇ/, for variables xi and y.

Proposition 37. Suppose 2k � N , ˇ 2 �N;k , ˇ satis�es (43), (and qm D

t�.N�kC1/), then

Eu.ˇ/.z
.ˇ// D

k
Y

jD1

.xˇŒj � � tNCj�k�ˇŒj �y/

m�1
Y

iD1

.xˇŒj � � tN�kqiy/:

Proof. With the notation of De�nition 30,

Eu.ˇ/.yx
.ˇ// D ymkEu.ˇ/.x

.ˇ//

D ymkMu.ˇ/.x
.ˇ//

D ymk
k
Y

jD1

.xˇŒj � � tNCj�k�ˇŒj �/

m�1
Y

iD1

.xˇŒj � � tN�kqi/:

Replace xi by xi=y to �nish the proof.

Example 38. Let ˇ D Œ2; 5; 6; 9� 2 �10;4, q
mt7 D 1 then

z.ˇ/ D .yt5; x2; yt
4; yt3; x5; x6; yt

2; yt; x9; y/;

and

Eu.ˇ/.z
.ˇ//

D .x2 � yt5/.x5 � yt3/.x6 � yt3/.x9 � yt/
Y

j2¹2;5;6;9º

m�1
Y

iD1

.xj � t6qiy/:

One expects a generalization of this result for permutations of staircase parti-
tions.



Clustering properties of rectangular Macdonald polynomials 305

Acknowledgments. �is paper is supported by the ANR project PhysComb,
ANR-08-BLAN-0243-04.

References

[1] T. H. Baker and P. J. Forrester, A q-analogue of the type A Dunkl operator and inte-
gral kernel. Internat. Math. Res. Notices 1997 (1997), no. 14, 667–686. MR 1460388
Zbl 0922.33012

[2] W. Baratta and P. J. Forrester, Jack polynomial fractional quantum Hall states and
their generalizations. Nuclear Phys. B 843 (2011), no. 1, 362–381. MR 2734375
Zbl 1207.81203

[3] B. A. Bernevig and F. D. M. Haldane, Model fractional quantum Hall states and Jack
polynomials. Phys. Rev. Lett. 100 (2008), article id. 246802.

[4] B. A. Bernevig and F. D. M. Haldane, Generalized clustering conditions of Jack
polynomials at negative Jack parameter ˛. Phys. Rev. B 77 (2008), article id. 184502.

[5] B. A. Bernevig and F. D. M. Haldane, Properties of non-abelian fractional quantum
Hall states at �lling � D k

r
. Phys. Rev. Lett. 101 (2008), article id. 246806.

[6] B. A. Bernevig and F. D. M. Haldane, Clustering properties and model wavefunc-
tions for non-abelian fractional quantum Hall quasielectrons. Phys. Rev. Lett. 102

(2009), article id. 066802.

[7] B. A. Bernevig, V. Gurarie, and S. H. Simon, Central charge and quasihole scal-
ing dimensions from model wavefunctions: towards relating Jack wavefunctions
to W-algebras. J. Phys. A 42 (2009), no. 24, article id. 245206. MR 2515535
Zbl 1167.81014

[8] A. Boussicault and J.-G. Luque, Staircase Macdonald polynomials and the q-dis-
criminant. In 20 th Annual International Conference on Formal Power Series and Al-

gebraic Combinatorics (FPSAC 2008). Proceedings of the conference held in Viña
del Mar, June 23–27, 2008. Discrete Mathematics & �eoretical Computer Science
Proceedings, AJ. �e Association. Discrete Mathematics & �eoretical Computer
Science (DMTCS), Nancy, 2008, 381–392. MR 2721469 MR 2603250 (collection)

[9] C. F. Dunkl and J.-G. Luque, Vector valued Macdonald polynomials. Sém. Lothar.
Combin. 66 (2012), article id. B66b. MR 2971011 Zbl 1253.05142

[10] B. Estienne and R. Santachiara, Relating Jack wavefunctions to WAk�1 theories.
J. Phys. A 42 (2009), no. 44, article id. 445209. MR 2551315 Zbl 1175.81166

[11] B. Estienne, B. A. Bernevig, and R. Santachiara, Electron-quasihole duality and
second-order di�erential equation for Read–Rezayi and Jack wave function. Phys.

Rev. B 82 (2010), article id. 205307.

[12] B. Feigin, M. Jimbo, T. Miwa and E. Mukhin, A di�erential ideal of symmetric poly-
nomials spanned by Jack polynomials at ˇ D �.r � 1/=.k C 1/. Int. Math. Res.

Not. 2002 (2002), no. 23, 1223–1237. MR 1903954 Zbl 1012.05153

http://www.ams.org/mathscinet-getitem?mr=1460388
http://zbmath.org/?q=an:0922.33012
http://www.ams.org/mathscinet-getitem?mr=2734375
http://zbmath.org/?q=an:1207.81203
http://www.ams.org/mathscinet-getitem?mr=2515535
http://zbmath.org/?q=an:1167.81014
http://www.ams.org/mathscinet-getitem?mr=2721469
http://www.ams.org/mathscinet-getitem?mr=2603250
http://www.ams.org/mathscinet-getitem?mr=2971011
http://zbmath.org/?q=an:1253.05142
http://www.ams.org/mathscinet-getitem?mr=2551315
http://zbmath.org/?q=an:1175.81166
http://www.ams.org/mathscinet-getitem?mr=1903954
http://zbmath.org/?q=an:1012.05153


306 Ch. F. Dunkl and J.-G. Luque

[13] B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Symmetric polynomials vanishing on
the shifted diagonals and Macdonald polynomials. Int. Math. Res. Not. 2003 (2003),
no. 18, 1015–1034. MR 1962014 Zbl 1069.33019

[14] J. K. Jain, Composite fermions. Cambridge University Press, Cambridge, 2007.
Zbl 1128.81001

[15] �. Jolicœur and J.-G. Luque, Highest weight Macdonald and Jack polynomials.
J. Phys. A 44 (2011), no. 5, article id. 055204. MR 2763456 Zbl 1229.05272

[16] S. Kakei, M. Nishizawa, Y. Saito, and Y. Takeyama, �e Rational qKZ equation
and shifted non-symmetric Jack polynomials. SIGMA Symmetry Integrability Geom.

Methods Appl. 5 (2009), article id. 010. MR 2481482 Zbl 1163.39305

[17] F. Knop, Integrality of two variable Kostka functions. J. Reine Angew. Math. 482

(1997), 177–189. MR 1427661 Zbl 0876.05098

[18] F. Knop, Symmetric and non-symmetric quantum Capelli polynomials. Comment.

Math. Helv. 72 (1997), no. 1, 84–100. MR 1456318 Zbl 0954.05049

[19] A. Lascoux, Symmetric functions and combinatorial operators on polynomials.

CBMS Regional Conference Series in Mathematics, 99. Published for the Conference
Board of the Mathematical Sciences, Washington, DC, by the American Mathemati-
cal Society, Providence, R.I., 2003. MR 2017492 Zbl 1039.05066

[20] A. Lascoux, Yang–Baxter graphs, Jack and Macdonald polynomials. Ann. Comb. 5

(2001), no. 3-4, 397–424. Dedicated to the memory of Gian-Carlo Rota (Tianjin,
1999). MR 1897633 Zbl 0988.05093

[21] A. Lascoux, Schubert and Macdonald polynomials, a parallel. Unpublished.
http://igm.univ-mlv.fr/~al/ARTICLES/Dummies.pdf

[22] A. Lascoux, E. M. Rains and S. Ole Warnaar, Nonsymmetric interpolation Macdon-
ald polynomials and gln basic hypergeometric series. Transform. Groups 14 (2009),
no. 3, 613–647. MR 2534801 Zbl 1179.33027

[23] M. Lassalle, Coe�cients binomiaux généralisés et polynômes de Macdonald.

J. Funct. Anal. 158 (1998), no. 2, 289–324. MR 1648471 Zbl 0914.33012

[24] R. B. Laughlin, Anomalous quantum Hall e�ect: an incompressible quantum �uid
with fractionally charged excitations. Phys. Rev. Lett. 50 (1983), article id. 1395.

[25] I. G. Macdonald, Symmetric functions and Hall polynomials. 2nd ed. With contribu-
tions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publica-
tions. �e Clarendon Press, Oxford University Press, New York, 1995. MR 1354144
Zbl 0824.05059

[26] G. Moore and N. Read, Nonabelions in the fractional quantum hall e�ect. Nucl.

Phys. B 360 (1991), no. 2-3, 362–396. MR 1118790

[27] A. Okounkov, On Newton interpolation of symmetric functions: a characterization of
interpolation Macdonald polynomials. Adv. Appl. Math. 20 (1998), no+̇4, 395–428.
MR 1612846 Zbl 0918.33014

http://www.ams.org/mathscinet-getitem?mr=1962014
http://zbmath.org/?q=an:1069.33019
http://zbmath.org/?q=an:1128.81001
http://www.ams.org/mathscinet-getitem?mr=2763456
http://zbmath.org/?q=an:1229.05272
http://www.ams.org/mathscinet-getitem?mr=2481482
http://zbmath.org/?q=an:1163.39305
http://www.ams.org/mathscinet-getitem?mr=1427661
http://zbmath.org/?q=an:0876.05098
http://www.ams.org/mathscinet-getitem?mr=1456318
http://zbmath.org/?q=an:0954.05049
http://www.ams.org/mathscinet-getitem?mr=2017492
http://zbmath.org/?q=an:1039.05066
http://www.ams.org/mathscinet-getitem?mr=1897633
http://zbmath.org/?q=an:0988.05093
http://igm.univ-mlv.fr/~al/ARTICLES/Dummies.pdf
http://www.ams.org/mathscinet-getitem?mr=2534801
http://zbmath.org/?q=an:1179.33027
http://www.ams.org/mathscinet-getitem?mr=1648471
http://zbmath.org/?q=an:0914.33012
http://www.ams.org/mathscinet-getitem?mr=1354144
http://zbmath.org/?q=an:0824.05059
http://www.ams.org/mathscinet-getitem?mr=1118790
http://www.ams.org/mathscinet-getitem?mr=1612846
http://zbmath.org/?q=an:0918.33014


Clustering properties of rectangular Macdonald polynomials 307

[28] N. Read and G. Moore, Fractional quantum Hall e�ect and nonabelian statistics.
In Y. Nagaoka (ed.), Low-dimensional �eld theories and condensed matter physics.

Proceedings from the Fourth Yukawa International Seminar held in Kyoto, July
28–August 3, 1991. Progr. �eoret. Phys. Suppl. No. 107 (1992). Progress of �eo-
retical Physics, Kyoto, 1992, 157–166. MR 1194695 MR 1194690 (collection)

[29] N. Read and E. H. Rezayi, Quasiholes and fermionic zero modes of paired fractional
quantum Hall states: the mechanism for nonabelian statistics. Phys. Rev. B 54 (1996),
16864–16887.

[30] N. Read and E. H. Rezayi, Beyond paired quantum Hall states: parafermions and
incompressible states in the �rst excited Landau level. Phys. Rev. B 59 (1999),
8084–8092.

[31] S. N. M. Ruijsenaars and H. Schneider, A new class of integrable systems and
its relation to solitons. Ann. Physics 170 (1986), no. 2, 370–405. MR 0851627
Zbl 0608.35071

[32] S. N. M. Ruijsenaars, Complete integrability of relativistic Calogero–Moser sys-
tems and elliptic function identities. Comm. Math. Phys. 110, no. 2, (1987), 191–213.
MR 0887995 Zbl 0673.58024

[33] S. Sahi, �e binomial formula for nonsymmetric Macdonald polynomials. Duke

Math. J. 94 (1998), no. 3, 465–477. MR 1639523 Zbl 0947.33012

[34] R. P. Stanley, Enumerative combinatorics. With a foreword by G. Rota and Appen-
dix 1 by S. Fomin. Cambridge Studies in Advanced Mathematics, 62. Cambridge
University Press, Cambridge, 1999. MR 1676282 Zbl 0928.05001

[35] J. V. Stokman, Macdonald-Koornwinder polynomials. Preprint 2011. arXiv:1111.6112
[math.QA]

© European Mathematical Society

Communicated by François Bergeron

Received October 3, 2014

Charles F. Dunkl, Department of Mathematics, University of Virginia,
Charlottesville VA 22904-4137, USA

home page: http://people.virginia.edu/~cfd5z/

e-mail: cfd5z@virginia.edu

Jean-Gabriel Luque, Université de Rouen,
Laboratoire d’Informatique, du Traitement de l’Information et des Systèmes (LITIS),
Avenue de l’Université - BP 8, 76801 Saint-Étienne-du-Rouvray Cedex, France.

e-mail: jean-gabriel.luque@univ-rouen.fr

http://www.ams.org/mathscinet-getitem?mr=1194695
http://www.ams.org/mathscinet-getitem?mr=1194690
http://www.ams.org/mathscinet-getitem?mr=0851627
http://zbmath.org/?q=an:0608.35071
http://www.ams.org/mathscinet-getitem?mr=0887995
http://zbmath.org/?q=an:0673.58024
http://www.ams.org/mathscinet-getitem?mr=1639523
http://zbmath.org/?q=an:0947.33012
http://www.ams.org/mathscinet-getitem?mr=1676282
http://zbmath.org/?q=an:0928.05001
http://arxiv.org/abs/1111.6112
http://people.virginia.edu/~cfd5z/
mailto:cfd5z@virginia.edu
mailto:jean-gabriel.luque@univ-rouen.fr

	Introduction
	Macdonald polynomials
	Generalized binomial coefficients
	Principal specializations
	Subrectangular Macdonald polynomials
	Rectangular Macdonald polynomials
	Proof of a conjecture of Forrester
	Conclusion and perspectives
	Notations 
	Alternative proof of Lemma 12 
	Expressions for M_u where u is a permutation of [mk0N-k]
	References

