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Clustering properties of rectangular Macdonald polynomials

Charles F. Dunkl and Jean-Gabriel Luque

Abstract. The clustering properties of Jack polynomials are relevant in the theoretical
study of the fractional Hall states. In this context, some factorization properties have been
conjectured for the (g, #)-deformed problem involving Macdonald polynomials (which are
also the quantum eigenfunctions of a familly of commuting difference operators with sig-
nificance in the relativistic Ruijsenaars-Schneider model). The present paper is devoted to
the proof of this formula. To this aim we use four families of Jack/Macdonald polynomi-
als: symmetric homogeneous, nonsymmetric homogeneous, shifted symmetric and shifted
nonsymmetric.
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1. Introduction

The symmetric (homogeneous) Jack polynomials are relevant in the study of the
quantum many-body wave functions. In particular, fractional quantum Hall states
of particles in the lowest Landau levels are described by such polynomials [3, 4,
5, 6]. Pioneered by Laughlin [24], the theoretical study of the fractional quantum
Hall states use multi-variable polynomials [14] describing the full many-body state
of the interacting electrons on a plane or on a sphere (In the case of the sphere, the
polynomials appear after stereographic projection). The special polynomials that
are relevant in this context are not general solutions of the true eigenvalue problem
involving the Coulomb interaction but they are constructed to be adiabatically
related to the true eigenstates. The most famous example is the Laughlin wave
function which is the cube of the Vandermonde determinant [;_; (x; — x;)* in
the variables representing the particles. It is known to be a good approximation of
the true state of electrons for the lowest Landau level with filling factor % Another
interesting and celebrated example is the Moore-Read Pfaffian [26, 28]

YpR = Pf(xk iw) H(x,- —X;)

i<j

which is one of the candidates to approximate the system for the filling factor %
and is the polynomial of smallest degree belonging to the kernel of the operator
which forbids three particles to be in the same place

H= > 8(xi —x)8(x; — xp).

i<j<k

This operator can be naturally generalized to operators which forbid k particles in
the same place, the lowest degree polynomials in its kernel provide other examples
of wave functions called Read—Rezayi [29, 30] states:

k
\II]ICQR = Sym l_[ l_[ (xip — Xj4)2.

{=11<ig<j¢<N

This family of wave functions is composed with multivariate symmetric polyno-
mials with some additional vanishing conditions, namely wheel conditions. These
polynomials, whose study was pioneered by Feigin, Jimbo, Miwa and Mukhin, are
proved to belong to a family of Jack polynomials with negative rational parameter
[12, 13]. Following the notations of Bernevig and Haldane [3, 4, 5, 6, 7], these
polynomials depend upon a parameter « and a configuration of occupation num-
bers [ng,n1,...]. To recover the standard notation of symmetric functions [25],
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the set of occupations defines a decreasing partition A = [A; > A, --- > Ay] of the
number N of particles. The partition A corresponding to the vector [rg, 11, ...]is
such that n; is the multiplicity of the number i in A. The relevant wave functions
belong to the kernel of the differential operators

LJF::ZSix,- and L_ —N¢Zx, le Bx,

where Ny denotes the number of flux quanta. In the case of the sphere, through the
stereographic projection, the natural action of the SU(2) rotations on the quantum
states is translated in an actionof L4+, L_and L, = %NNW - i Xi % One of the
authors (J.-G.L.) with Th. Jolicceur [15] described a family of Jack polynomials be-
longing in the kernel of L. More precisely, they investigate a (g, t)-deformation
of the problem involving Macdonald polynomials [25].

Bernevig and Haldane [4] identified (k, r)-clustering properties of some wave
functions which relate the functions with Nk variables with those with N(k — 1)
by a factorization formula of the kind

WED (g, Xk YY) = H (e — ) WED (xp, L xv—nr)-
xk t=1

In particular, this is the case for the Read—Rezayi states:

N—k
WA R (X1, e XV D)ks Ve es V) = l_[ (xe — )2 WED (xp, L xv—nk)-
b =1

Furthermore, Bernevig and Haldane [3] showed the connection between the Read—
Rezayi states and staircase Jack polynomials P)E“):

(—k—1)
R(x) P(2(N 1))k 2k’0k]('x)‘

The link between Jack polynomials and quantum Hall states was proven by B. Esti-
enne et al. [10, 11]. Recently, Baratta and Forrester [2] proved that staircase Jack
polynomials for some negative rational parameter satisfy the clustering conditions.
More specifically, they stated the result in terms of Macdonald polynomials and
recovered the property as a limit case. In the same paper, they conjectured very
interesting identities for rectangular partitions (the initial case of staircase with
only one step):

1 (N—k=1) 1
Pre(y.yqe.....yq « xn—g.....xn)= [ [lGe—a%».
{=N—-g+1j=0
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where « is a certain negative rational number. The aim of our paper is to prove
this conjecture by using some other families of Macdonald polynomials. Indeed,
we will use four families of Jack/Macdonald polynomials: symmetric homoge-
neous, nonsymmetric homogeneous, shifted symmetric, shifted nonsymmetric.
The Macdonald polynomials are a two-parameter deformation of the Jack polyno-
mials which can be used to finely understand relations involving Jack polynomials.
This is due to the fact that they appear in the representation theory of the double
affine Hecke algebra (the Jack polynomials are a degenerated version and involve
the algebra of the symmetric group). Furthermore they admit a physical interpre-
tation as the eigenfunctions of the Macdonald—Ruijsenaars operator

eXi —eXitn

N N
T 3§ ey
eXi —e%i ’

=
which is a relativistic version of the quantum Calogero-Moser system (see [3I,
32]). The parameters ¢ and ¢ are related to the parameters % and 7 by ¢ = ¢"/2
and 1 = e"/2,

One approach to developing a theory of orthogonal polynomials of several
variables of classical type led to symmetric and nonsymmetric Jack polynomials.
The associated mechanism involves the symmetric group and Young tableaux. Just
as the theory of hypergeometric series is extended to basic hypergeometric series,
the theory of Jack polynomials is extended by the Macdonald polynomials. Here
the symmetric group is replaced by its Hecke algebra. The orthogonality of the
polynomials comes from their realization as eigenfunctions of a certain set of
commuting operators. Generally these polynomials have coefficients which are
rational functions of the parameters (g, t), assumed not to be roots of unity. Later
a further generalization was developed, namely the theory of shifted Macdonald
polynomials, which are nonhomogeneous polynomials defined by the property
of vanishing on certain points, corresponding to so-called spectral vectors. This
vanishing property leads to expressions of the polynomials as products of linear
factors in various special cases.

It turns out that for special values of the form g%t = 1 for positive integers
a, b, ashifted Macdonald polynomial collapses to its highest degree term, in which
case, it agrees with an ordinary homogeneous Macdonald polynomial. The label
of the polynomial has to satisfy certain restrictions for this to be possible. These
parameter values result in the polynomials being of “singular” type. In this pa-
per we concentrate on the rectangular polynomials, meaning those whose leading
term is of the form (x;x,...xx)™. Our results provide factorizations which are
interpreted as clustering properties.
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The paper itself starts with an overview of the four different types of Mac-
donald polynomials (shifted, ordinary, symmetric, nonsymmetric) and the alge-
braic structure of the associated operations. The technical machinery comprises
tableaux, adjacent transpositions, raising operators, and the Yang-Baxter graph.
Then there is a presentation of the binomial formulae of Knop and Sahi which
show how to expand nonhomogeneous Macdonald polynomials in terms of ho-
mogeneous ones. These series are then specialized to the rectangular versions and
this leads to the proofs of our main results. These all concern the case of N vari-
ables with k < N/2 and the parameters satisfying g%tV **1 = 1 (witha = m—1
for the symmetric type and @ = m for the nonsymmetric type) but no such rela-
tion with smaller exponents. In closing there is a discussion of future research in
the direction of polynomials of staircase type; this phrase refers to the pictorial
representation of the label of the polynomial, for example (4, 4,2, 2,0, 0).

2. Macdonald polynomials

Macdonald polynomials are special functions which are involved in the represen-
tation theory of the affine Hecke algebra. Readers wishing to deepen their knowl-
edge of Macdonald polynomials may refer to [20, 21, 25, 35]. This paper is devoted
to the case of the symmetric group (type Ay—1). Up to normalization Macdonald
polynomials are defined to be the simultaneous eigenfunctions of some operators
which are a (q, t)-deformation of the Cherednik operators. We study four variants
of these polynomials: symmetric, nonsymmetric, shifted symmetric and shifted
nonsymmetric. Symmetric Macdonald polynomials are indexed by decreasing
partitions A whilst the nonsymmetric ones are indexed by vectors v € INV. In
the aim to simplify the expression arising in the computation, we use the notion
of legs and arms of a cell in the Ferrers diagram of a vector. These numbers are
(classically) defined by

0y, j) i=v[i]=Jj

and
ol jy =tk <i:j <vlk]+1<vli]} +#i <k:j <v[k] < v[i]}.
Note that if v = A is a partition then J is the classical leg-length:
Jiapn=2-

where A’ denotes the conjugate of A.
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The leg-length and arm-length are used to define the (g, t)-hook product of v
with argument z:

hQ,t(U, z) = 1_[ (1—-1zq ﬂ—cv(i,j)tJ v(i,j))‘
G, j)ev

We need also the arm-colength and the leg-colength

a—“v(]) = J —1
and
Tlv(i) =#k <i:vli] S vlk]}+# < k:v]i] < vlk]}

Note that the rank function of v:
ry =1 +7Iv(1),..., 1 +j]v(N)]

is a permutation of Gy .

2.1. Affine Hecke algebra. We use the notation of Lascoux, Rains and War-
naar [22]. Let us recall it here. Let N > 2 be an integer and X = {x;,...,xn} be
an alphabet of formal variables. We consider the operators 7; acting on Laurent
polynomials in the variables x; by

1Xi41 — Xi
Ti =1+ (si — h———, (1)
Xi+1 — Xi
where s; is the elementary transposition permuting the variables x; and x;j4.
These operators act on the right and in particular we have
1T; :tandxiHTi = X;. )

More precisely, T; is the unique operator that commutes with symmetric functions
in x; and x; 41 satisfying (2). The operators 7; satisfy the relations of the Hecke
algebra of the symmetric group:

TiTinT; = Tip1Ti Ti41,
I;T; =T;T; for|i—j|>1, 3)
(T; =t)(Ti +1) =0

Together with multiplication by the variables x; and the affine operator t defined
by f(x)t = f(xn/q,X1,...,XN—1), they generate the affine Hecke algebra of the
symmetric group. More precisely,

Hu(g.t) = Clq, OxE, ... x5, TFE, ... TE_,, . 4)
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2.2. Nonsymmetric Macdonald polynomials. The nonsymmetric Macdonald
polynomials (Ey), ey~ are defined as the unique basis of simultaneous eigenfunc-
tions of the (g, ¢)-version of the Cherednik operators defined by

g ="y .. TieTy, ... T7 L 6))

suchthat £, = x? 4+, L, o px* with x¥ = x?U x?INTify = [u[1], ..., v[N]]
and < denotes the dominance order on vectors which is based on the dominance
order <p for partitions:

A=<pu & foralli, Ay +---+A; < py1+-+ .

This order is naturally extended to vectors with the same definition. The domi-
nance order < for vectors is

u=<v < eitheru’™ <p vt or (u+ =vTandu <p V)

where u™ denotes the unique nonincreasing partition which is a permutation of u.
Note that Cherednik operators commute with each other and generate a maxi-

mal commutative subalgebra of Hy (g, 1).

The corresponding spectral vectors are given by Spec, [i] = Wl[z] with

(v) = [q"T Nl Nl N=ruNY]

We recall also the (g, ¢)-Dunkl operators
DN:(l—EN)XXII, D; :[’Ti_lDi-f-l’Ti_l-

Set ¢, (q,t) = hg,(v,q). We will use another normalization which is useful when
symmetrizing:
tn(v)

cy(g,1)

E, (6)
where n(v) = 3 ; iyey J o, ).
Knop [17] defined and studied the polynomials
&y =c,(q,1)Ey (7

with ¢/ (q,t) = hg, (v, qt). The expansion of £, on the monomial basis is known
to have integral coefficients in Z [g, ¢!, ¢,t7], see [17].
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2.3. Nonsymmetric shifted Macdonald polynomials. The definition of non-
symmetric shifted Macdonald polynomials M, is quite similar to those of the
Macdonald polynomials E,. This is the unique basis of simultaneous eigenfunc-
tions of the Knop-Cherednik operators defined by

. 1 1
g = tl_‘Ti_l...Tlr(l - —)T;Ll N P (8)
XN xi
such that
M, —n(v)v+Zauvx
u<v
with x¥ = xVI xUINVif y = [u[1], ..., v[N]],

W)= Y eyl )

@, j)ev

and < again denotes the dominance order on vectors.

Note that, initially, the dominance order is defined only for vectors with the
same norm. We can straightforwardly extend it for any vectors by adding the con-
dition u < v when |u| < |v|. We remark that the Sahi binomial formula [33], more
precisely one of its consequences [22] (Corollary 4.3), together with a theorem of
Knop [18] (see also equation (26)) imply that if |u| < |v| then x* has a non-null
coefficient in the expansion of M, only if ut C v*. It follows that the natural
extension of the dominance order for any pairs of vectors, i.e.:

u<v < eitherut <p vtorwt =vtandu <p v),

matches with the order appearing in the expansion of M, . The reader can refer to
Appendix A for a discussion about the notations.

Note operators & and E; can be constructed in a similar way, as shown in the
following proposition.

Proposition 1. For1 <i < N,

& = 1T & T
and

-~ —1r= —1
Hy = l‘Ti Qi—l—lTi .
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Proof. The first part is obvious. For the second part we have
ptT B T7

. 1 T._l
=Ty Tie (1= —) TRty 1 e (B )7,
XN Xi+1

for any polynomial p, and

(pTi_l)T.—l -7

Xig1 /! Ix;

thustTi_lEi_HTi_l = &;. Ol
Also we have

Proposition 2. E;, =& + D; for1 <i < N.

Proof. Start with i = N. For any polynomial p

1
pEN =1V pTyy Tir(1-—)+ £

= pén + (p - pEN)/xN

= pén + pDy.
The claim follows by downward induction from the relations D; = ¢t T, ' D; 1T !,
& =117 T and B; =T 1B, T771 . O

Polynomials M, can be computed by induction from M~ , by the help of the
Yang—Baxter graph [20]:

1 —1 T .
My, = MU(Ti + W) if v[i] < vfi + 1] )
okl
(v)[7]
and
Mye = Myt(xy — 1), (10)

where [v[1],..., v[N]]® = [v[2],...,v[N], v[l] + 1] is the raising operator.

Note that these polynomials are nonhomogeneous and the spectral vector as-
sociated to M, equals Spec,. We will consider also the specialization M, =
g @@ M Alternatively, the Macdonald polynomial M, can be defined (up a
normalization) by interpolation:

My ({u)) =0 for |v| < |u|,u # v 1)

and the coefficient of x? is g~ ®.
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The polynomial E, can be recovered as a limit form from M,:

Ey(x1,...,xN8) = lin})allev(xl/a, ..., XN /). (12)

2.4. Symmetric Macdonald polynomials. Symmetric Macdonald polynomials
are defined as the eigenfunctions of the symmetric polynomials in the variables &;.
They can be obtained by applying the symmetrizing operator

Sv= ) T (13)

(4SSN

on the Macdonald polynomial E,- where A~ is an increasing vector and T, =
T;, ... T; if o = s;, ...s;, is a shortest decomposition of ¢ in elementary trans-
positions. The coefficient of x* in the expansion of E;-8y is the Poincaré poly-
nomial ¢;(S,) where &, denotes the stabilizer of A in Gy.

We will consider several normalizations of the symmetric Macdonald poly-
nomial. First P, is such that the coefficient of x* is 1. The normalization P; =

) L L _—
% P), is interesting since the normalization reads
A )
Py:= > E, (14)
ut=2

where u™" denotes the unique nonincreasing vector which is a permutation of u. Fi-
nally, we will also use the specialization J; = cj(q,t) P withcy(q,t) = hg (v, 1)
which has integral coefficients when expanded in terms of monomials [17].

For an infinite alphabet, symmetric Macdonald polynomials can be defined,
up to multiplication by a scalar, as the only basis having dominance properties
which is orthogonal with respect to the scalar product

L(A) 1— q)“'
(Pa, pu)q,t =2Z) 1_[ m&,u, (15)

i=1

where p; = pa, .- Pa,» Pk = Y xex X is @ power sum symmetric function for
k >1,68,, = 1if A = u and 0 otherwise and z; = [[;2, m;!i"™ where m;
denotes the multiplicity of 7 in A.

The dual basis of P, is another normalization of Macdonald polynomials usu-
ally denoted by Q,,

(Pr, Qudgs = Sapu-
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The reproducing kernel

(|

Koa(X.Y) = 3 PA(X)0a(Y) = Zz H Q PA(X)pa(Y),
A

admits a nice expression when stated in terms of the Cauchy function

00 =[]

xeX

and A-ring [19]:

01(11qXY)
Gl(liq >’

where the alphabet —XY means {g'xy:i € N,x € X,y € Y} and 5
means {tg'xy:i € N, xeX yeY}.
Note that formula (16) remams valid for finite alphabets.

Denote ¢;(X;¢q,t) =[], 11 2 - p2.(X) the dual basis of p;. We have

t
qXY) -

K(X,Y)=01(11:

i A Ai _
i, =[] = 0 = (2) H;—lm(x@

For homogeneous polynomials R and S of global degree d we have

qd

(R, S)q_l,t_l = t—d<R, S)q,t

Hence,
1Al

Pi(XightTh = g DA% 1),

For the normalization P, we have

Pia ) = — b eq )
AN ) = — 2 (X , .
TG

From
c’i(q_l, [—1) _ l_[ (1— q—l— ﬂ—cx(i,j)t—-Jl )\(i7.f))

@,j)er
= (_1)|A|q—|/\|—n ()L)t—n(/l) /(q [)

273

(16)

XY

a7
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we obtain
_ (=)HrlHgr®)

P,(Xiq7 ' t7h
c;(q.1)

PrXig.1) = nPi(Xiq.1),  (18)
with

Ty = (—)Vlgn @)
(using the notation of Lascoux et al. [22]).
2.5. Symmetric shifted Macdonald polynomials. Following the previous sub-
section, we define the symmetric shifted Macdonald polynomials MS as the sym-

metrization of M-, where v~ denotes the unique nondecreasing vector which is
a permutation of v, such that the coefficient of x* equals ¢’ »). More precisely,

M;-8n = ¢:(G3)MS;, 19)

recall 8y is the symmetrizing operator (13).
We will use also the normalization

qn/(/l)tn(/l)

MS;, = ——MS;.
i (g, 1)
With such a normalization we have
MS) = Y M,. (20)
ut=A1

Alternatively, the polynomials M, are defined by interpolation

MS;((u)) =0 for [A] < |ul,A # . 2D

Note that ¢~'™ P, is the homogeneous component of maximal degree in MS;,
that is

lin})aMIMS;L(xl/a, cxnja) =g P p. (22)
a—
Equivalently, from equalitions (12), (14) and (20), we obtain

Py(x1,...,xn) :gi_rg})al’l'm;t(xl/a,...,x]v/a). (23)

That is, P, (x;,...,xy) is the homogeneous component of maximal degree in
MS;.
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3. Generalized binomial coefficients

3.1. Definitions. Sahi [33] generalized binomial coefficients:

M
[u] — Mu((u)) 24)
v My ({v))
From the vanishing properties we have
[”]:o if [u| < [v] and u # v. (25)
v

More generally, a theorem of Knop [18] implies

[”]:o if vt & ut, (26)
v

and in particular [ 3 | =[%] = 1.
Okounkov [27] and Lassalle [23] independently introduced the symmetric ana-

logue of this coefficient: L

(u) _ MS,((u)

v/ MS,((v)) @7

3.2. Okounkov binomial formula and consequences. Symmetric binomial co-
efficients appear in Okounkov’s binomial formula.
Define

[A]

_ Q. (+1—-N 1-N =1 =1
,,xN)_—ut(N_l)mMSA(t Xiaoon VXN T,

m; (X 15
Theorem 3. (Okounkov)

- A MS; (a(0)) ——
MS; (axy,...,axy) = Xu:al“l (M)q—l,t—l mMSM(m, C XN)

Note that from eq. (23) and (18), we obtain
gi_l)l})al’”m;(xl/a, . xn/a) = q" PP, (28)

Hence, if we apply Theorem 3 to the alphabet {x;/a, ..., xy/a} and we take the
limit when a tends to 0 on the right hand side, we obtain

_ o (A MS;(0,...,0)
MS)(x1,...,xy§) = ”(“)( ) — 2 P (X1, ... XN).
A(x1 N) ;CI i) i MS,0,.0) (X1 N)
(29)
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The constant term M, (0, . . ., 0) is related to the principal specialization of E,,, see
[22]:
M, (O0,...,0) = t,Ey({0)). 30)
Note that 7, = 7,,+ hence from eq. (14) and (20) we obtain
N t"()t)
MS;.(0,...,0) = 1A PA({0)) = =4 7@ )P 2((0)). (31)
Hence,
—_ 2 "Ml 2 P;5.({0)
MS; (x1. . . =q"® AP (X XN
/‘L(XI xN) q Z _L_ [n(M)c ( )q—l’t—l PM(<O>) M(xl XN)
(32)
Or equivalently:
Lemma 4.
T (A P, ({0))
MS; (x1,...,xN) = —( ) Po(x1,...,xN). (33)
‘ DR V) Y

4. Principal specializations

4.1. Principal specialization of E,. From eq. (30) the specialization E,({0))
is obtained (up to a multiplicative constant (—1)*¢*¢°) from the constant term
M, (0, ...,0). For simplicity, we sometimes neglect the multiplication by (—1),

g and ¢ of our polynomials and denote it by (x).
We introduce the classical g-Pochhammer symbol

N
(@.qnv =[]0 —ag'™"

i=1

and its generalization for a partition A:

N
(@q,0x = [ J@' ™, @)
i=1

Since 17; = ¢, we obtain
 + 1
1 t(”)[l ]

I L |

{v)[7]

(34)
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from (9). From (10) we have also
Mye(0) = =M, (0). (35)
We have:

Proposition 5. For any vector v e NV :

M, (0) = (144 Dot

hq,t (vs q[)
Proof. It suffices to prove that the right hand side
(tVg:q. 1)yt
hq,t (07 qt)

satisfies the recurrence relations (34) and (35).
Let us first prove that if v[i] < v[i + 1]

P) =

ORI
P(v.s;) _ (v)[i] (36)
Po) | _ @i+

()]

Note then the only change in P (v) occurs in A4 (v, g1):
P(v.s;) _ hg:(v.si,qt)
P(v) hg:(v.qt)

The only factor in A4 (v, g¢) that changes is the factor for the cell (i + 1, v[i] + 1).
So

hqt(v.si,qt) 1 —q”[i+1]—v[l’][a+1

hgt(v,qt) B 1 — gvli+1-vlilza °

where
a=doi + 10+ 1) =dos G+ Lofi]+ 1)+ 1.
Let

Ay ={l: 1l <i,v[l]=v[i[JU{l:l>i+1,v[i]<v[l]},
Ay ={l:l<i,v[l]=v[i+1JU{l:l>i+Lv[i+1] <v][l]},
then A, C A; and

AN\Ax ={l: Il <i,v[i] <v[l]<v[i + 1]}
U{l:l>i+1Lvli]<v[l]<v[i + 1]};
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thus
a=#A1\A + 1.
Also
Ty [l] =#A1+2
and
ryli +1] =#42 + 1,
and so

a=ryli]—ry[i +1].
This finishes the proof of (36) since

()l +1] _ gVl rolilr i 1) 0
(v) [7] '

To prove the second part we need the following lemma

Lemma 6. Let A be a decreasing partition and m < N the biggest integer such
that A[m] > 0. Let

y =AM, ..., A[m — 1], A[m] — 1,0¥ ™).
If My (0) = P(y) then M, (0) = P(Q).
Proof. Let

B=[Aml—1,A[1],...,A[m—1],0,..]
a=[A[1],...,A[m—1],0,...0,A[m]].
We evaluate Mg (0) /M, (0), M (0) /M, (0) and use My (0) = —Mp (0) to prove

M, (0) /M, (0) = P (1) /P (y). The formula (34) is used repeatedly in the fol-
lowing calculations. First we have

MA (O) B 1— q/l[m][N—m-l—l
My (0) 1 —gml;

Since A [m — 1] > A [m] it follows that y [i] > y [m] for 1 <i < m. Then

Mﬂ (0) B m—1 1— q)L[i]—)L[m]-f—ltm—i
M, (0) o bl 1 — gAlil=Alm]+1gm—i+1
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Next N
(at™:q.1), | — gAml N+1-m
N - ( q ! )
(qt":q.1),
and we evaluate
hqgs (v, qt)
hq,t (As q[)

In this ratio the only cells that have a changed factor are those in column A [m] and
in row m. SoJk(i,)L[m]) =m—i andJ,,(i,A[m]) =m—i—1lforl <i<m.
The cells in {(1, A [m]),---(m — 1, A [m])} contribute

m—1 Ali1=Alm]+1 m—i

l1—¢q
1— q)L[i]—/l[m]-f—ltm—H-l

i=1

to the ratio and the cells in row m contribute

Alm]—1 .
l_[ (1 _ tq)t[m] l) 1

i=1

1—[*[’”1(1 _ g Mmi1-iy T 1 —tghml

i=1 tq
Thus
(@tN:q.1); hgs (voqt) 1 —(N=mt1ghlml oy g AL=ADm] 41 m—i
(@tV:iq.0) hae (aqry L=t 1L T — @AB A it
This agrees with —M} (0) /M, (0) and proves the lemma. ]

End of the proof of Proposition 5. Any vector v can be obtained from 0V by
adding 1 to a null part or to a minimal nonzero part. We will denote this oper-

ation by i> For instance,
[0,0,0] 5[0, 1,0] 5[0, 2, 0] 5[0, 3, 0] [1,3,0].
Let v —71 v'. Suppose v'* = [A1,...,Am.0,...,0] then
vt =1  Ame1sAm — 1,0,...,0].

Hence, if M,+(0,...,0) = P(v*) then by lemma 6 M,+(0) = P(v'"). And
using repeatedly eq. (36), we obtain M, (0) = P(v) implies M/ (0) = P(v').

Since My~ (0) = P(0V) the result is shown by a straightforward induction.

O
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As a direct consequence:

Corollary 7. We have

(th’ q, t)v-i-
hg:(v.qt)

Lascoux [21] gave an equivalent expression using infinite vectors

v = [v[l],...,v[N],v[1] 4+ 1,...,v[N]+ 1,...]

Ey((0)) = (%)

and
(V)* = [)1]..... )N g{)1].....q()N]....].
Note that (v)*° £ (v°°).
Lascoux showed

—zj] 37

N
P)=C0"TT 1
i=1  >1

e ()]

4.2. Principal specialization of P,. From eq. (31) and (19) one has

¢:(Sn)
¢:(S1)
So one has to determine the value of the constant term M- (0).

The ¢-multinomial coefficient is defined as follows: for any partition A € INY
let

Py ((0)) = ()MS,(0) = (»)

M;—(0). (38)

my (i) =#{j: Alj] =i}
(defined for 0 < < A[1]) and let

N All]
(m/l)t - (I’I)N/Hzeo - Oms iy

(note that (¢,1), = [[i—,(1 —¢%)). In fact, the Poincaré series for A, denoted
¢ (6,), equals 1—[;_12(1 (&, Oy iy /(1 — 1)V where &, is the stabilizer subgroup of
A in Gy (the symmetric group on N letters), and ¢ (Gy) = (¢,¢)y /(1 —1)V.

For application of proposition 5, we find a convenient formula for M- (0) for
partitions A.

Proposition 8. For a partition A € NY

tN:q.0) ¢ (S2)

L0y = (_)A
M;-(0) = (—1) hgt (A1) ¢ (Sn)
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Proof. From Proposition 5,

Vgiq.0
M- (0) = (-D)* —=—
hqt(A ’qt)
so we need to evaluate the ratios
tNg:q.1) g e @Ga)
Vg0 hgi(h.t)
It is easy to see that
( qq, Nl_[N+1 zq/x[]
l_[ 1 — [N-f-l i
( /) PR

If the multiplicity of a particular A [i] is 1 (in A) then the leg-length of cell
(N +1—1i,j 4 1)in A~ is the same as that of the cell (i, j)in A for 1 < j < A [i].
To account for multiplicities let ¢ be the inverse of r,—, that is ry— [¢;] = i for
1 <i < N. Then A~ [¢;] = A[i] (for example suppose A [1] > A[2] = A[3] >
Al4],thency = N,co = N —2,c3 = N — 1). As before

i@ j+n=d,a.h.1<j<rp).

The factor in &, (A7, qt) at the cell (¢;, j + 1) is (1 — IJA("J)Hq”"]_ﬂf) which
is the same as the factor at the cell (i, j) in A4 (A, ). Thus

hgt (A~ q1)
hg: (A, 1)

is the product of the factors at the cells (¢;, 1) in kg, (A7, gt) divided by the prod-
uct of the factors at the cells (i, A [i]) in kg, (A, 1), for 1 < i < £(A), since there
are no cells for the zero parts. The factor at (c;, 1) is (1 — ¢tV 1= gy Suppose
A [i] has multiplicity k (thatis, A[i — 1] > A[i]=...=A[i + k — 1] > Al +k])
then

JoG+i—taiD=k—1 for1<i<k,
and the cells (i,A[i]),..., (i + k —1,A[i]) contribute ]_[5;1(1 —thy = (@, 1)
Thus ‘o
hys 2 qi) ~ l_L 1(1 _tN-H—zq)L[l])

hgt (A1) All]
ar (1) l_[ LG Dms 6
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Combining the ratios we find that

L) Nl ar
(tN;q,t);L B (ZNC]M]J)A 1 — fN+1=i 1_[1'_1(1 _ N+ lq [t])
hos (A1) hgs (A, qt) L Li= 11_[N+1 7oAl A
gt (A1) gt (A7, q1) q l_[ 3 [)mk(l)
_ Ngiq.00 (t, z)N

 hge O .q0) T N+1-i
.t 1_[ (t, [)mx(t)l_[ Z(A)+1 —t i)

_ Ngiq.0n (N)
hg (A~ qt) \mj; ),
since my (0) = N — £(A). O

As a direct consequence of Proposition 8 and equality (38), we obtain

Corollary 9.

(t":q.1),

P = (%
40 = ()

5. Subrectangular Macdonald polynomials

5.1. The denominator of subrectangular Macdonald polynomials. The fol-
lowing lemma shows that if A € [m 0N—k] with 2k < N then P, does not have a
pole at g™~ 1tN—k+1 — 1 and ¢ "7 1tN . # 1 where d > 1 is a common factor

ofm—land N —k + 1:

Lemma 10. Let A C [mk, ON_k] be a partition with 2k < N. Then

(1 _ qm_llN_k+l)
is not a factor of any the denominators of coefficients of x in P).

Proof. 1t suffices to prove that the integral version J; does not vanish when
| — g UN=k+1 — gand 1 — ¢"7'¢t" @ # 0 where d > 1 divides m — 1

and N — k + 1. In other words, we have to show that c)(g,t) does not have

1 — g™ 1tN=k+1 a5 a factor. Suppose A = [m*', Apry1, ..., Apr, ON7F'] with
k' < k" < k and A > 0. Then the only factors with the relevant power of ¢
that occur in ¢, are (1 — qkf—jt’\f_lﬂ) for\; = m@Goi = 1.k)and j = 1

(so A; = k”). Hence, for such a pair (i, j) one has A; —i + 1 <k < N —k. This
proves the result. U
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5.2. The (g, t)-binomial (”ik ) Lassalle [23] gave an explicit formula for the
(¢, t)-binomial ("ik) for A € mk:

(mk) B 1_[ ik 1 — qj—ltk)(l — gmit1 iy
& (i.)€ e inad . o )G
(1—g¢q 2@ 1+AAED) (1 — gt b—=n ()2 G0))
(39)

Using (g, t)-hook products, the formula reads
mk = (—1)/H 3n G~ G=DIAl mIAl=n () % 9.0 (g™ q, t)x' 40)
)L hq,t (A" Q) hq,t (A7 t)

We deduce

Lemma 11. Let A S m* be a strict subrectangular partition with 2k < N. The

k
denominator of the reduced fraction (”/ll ) has no factor 1 — g™~ 1t N=k+1,

Proof. We examine the factor of the denominator of equality (39):

D, = 1_[ (1—g¢ ﬂ—cx(i,j)tl-l-J A(iaj))(l _ q1+ ﬂ—cx(i,.i)tJA(i,j))_
@, 7)€r

Since A is a partition, there are only terms of the type l—q*t’l} ~i*+1and l—q*t’l} -
in D;. When A gmk,wehavek} —i+1 <)L;. +1<k+1.Andsok <N —k

implies A —i + 1 < N —k + 1. This proves the result. O

k k
Q)

5.3. Principal specialization for subrectangular partitions. We consider cer-
tain poles of M- (0) for A € [m*, 0N %] with 2k < N. In particular, we examine
the occurrences of (1 —g™ ' t¥N=*+1yin (tV;q,¢); and by, (A, ). Since the max-
imum leg-length of any cell in A C [m*, 0¥ ] is k — 1 only factors of the form
(1—r9gb) with 1 <a <k <N —k+1and0 < b < m — 1 can appear in
hg: (A,t). Further

Note that

k Ali]

(Mg =[] [Ta—-""*1g™.

i=1j=1
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The factor (1 — g™~ 1¢tN=k+1) appears in this product exactly when A [k] = m,
that is, A = [m*,0¥k]. Thus M;- (0) has a zero at ¢ ' ¢tN=k+1 = | for
A = [m*, 0¥ k] and no zeros or poles there when A < [m*, 0V ~%]. We sum-
marize this in the following lemma

Lemma 12. Let A C [m*, 0¥ =] with 2k < N then the reduced fractions M- (0)
and Py ((0)) have (1 — g™~ tN=*+1) as a factor if and only if & = [m*, 0N ],
Equivalently, if (1 — g™ 'tN=k+1) = 0 and for any d > 1 dividing m — 1 and

m—1 N-—k+

N—-k+1,(1l—g at 7 1)750then

P ((0) _

Py ((0)

There is an alternative proof using eq. (37) (see Appendix B).

6. Rectangular Macdonald polynomials

6.1. Clustering properties of MS,,.. In this section, we will use finite alphabets
with different sizes.

Notations 13. For simplicity, when we use a partition A € NN, we mean that the
underlying alphabet is {x1, ..., xn} and the symmetric shifted monic Macdonald
polynomial will be denoted by MS;N) = MS, (x1,...,xn). In the same way, for
v € NV the nonsymmetric shifted monic Macdonald polynomial will be denoted
MM,

The length of v € NV is

£ () :=max{i :v[i] > 0}.
For k > £(v) we will denote also

p®) .= [v1,..., vg].

The following proposition shows that if v € NV with £(v) < k then the Mac-
donald polynomials MISN ) and le{‘k)) are closely related.
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Proposition 14. The following assertions hold.

(1) Suppose v € ]NON satisfies £ (v) < k for some k < N, then

My (et N VTR VTR ) = R @)

(2) Suppose a partition A € WY satisfies £ (A) < k for some k < N, then

MS™M ey VR g VR N 1) = ((VRRIMST (v

Proof. We prove first (1): Both sides have the same coefficient of x” and satisfy
the same vanishing conditions. More precisely, both sides vanish for x = (u),
u € NE Jul < |v],u # v, and (u) [j] = ¢*Ultk=l] for 1 < j < k; and the
multiplicative coefficient is obtained considering the coefficient of the dominant
term in the left hand side and the right hand side.

To prove (2) observe that the left-hand side is symmetric in (x, .. ., x). Hence
an obvious modification of the above argument applies. O
Example 15. For instance consider v = [2,0]. The polynomial M ¢j(x1, x2)

vanishes for [x1, x2] = (00) = [z, 1], [x1, x2] = (10) = [¢¢, 1], [x1, x2] = (01) =
[1.q1], [x1. x2] = (11) = [gt.q]. [x1. x2] = (02) = [1, ¢*r] whilst M{5)({20)) # 0
(recall that (20) = [¢?¢, 1]).

Hence, the polynomial P(x1) = M g)(x1t, 1) vanishes for [x;] = [1] = (0)
and [x1] = [¢] = (1) whilst P((2)) = M2,01(¢%t, 1) # 0. This agrees with the
definition of M[,;(x1) up to a multiplicative factor.

For almost rectangular vector
vmk = [V (m + DY)
we prove that the corresponding Macdonald polynomials nicely factorize:

Proposition 16. For m > 0 and 0 < k < N we have

N—k N

MlSrlr\l,)k = (= NmHk gmltm=1N/2) 1_[ (Xi.q m 1_[ (Xi.q Dm1.
i=1 i=N—k+1
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Proof. Recall u.® = [u[2],...,u[N —1],u[1] + 1], thus v, x.® = vy x4 for
0 <k < N and vy y—1.DP = Vy+1,0- The claim is obvious for vy o. Suppose the
claim is true for some (m, k), then

N—k—-1

M:E,]X)kt — qm(k+(m—1)N/2)(_1)Nm+k l_[ (xi’q—l)m
i=1
N-1
[T Gioa ™ Dmer@ xn. 47
i=N—k

Multiply both sides by (xy — 1) to get an expression for lef,\,’)k 41 (O Upmt1,0);
observe (xy — 1)(¢ 'xn. ¢ Dm = —(xn. ¢ m+1. This completes the inductive
proof. O

As a straightforward consequence, setting k = 0 in the previous proposition,
M,,, , is symmetric in xq, ..., xy and then we find:

Corollary 17. Forn > 1,

N
Ms(N) — qu(m—l)/Z(_l)Nm H(xi’q—l)m;

Um.0
i=1

note that vy,0 = [m™].

LetX = {x1,...,xy}and Y = {y1,..., yx} be two alphabets. We will denote
by
N k
RXY) =[] =)
i=1j=1
the resultant of X with respect to Y.

Let also

N—qu" N—kqm—l]).

@J]:,,k’m(xl,...,xk) = R([x1,...,xx], [yt Loyt

We have:

Proposition 18. Let A = [m*, 0¥ %] for some 1 <k < N andm > 1, and y # 0
then

Xk
y

AN ) =y TR DY (e x).

) X1
MSEV N
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Proof. By the previous propositions

X X
MsgN’(—l,...,—",zN—k—l,...,1)
y Y
k i
_ k(N=k)m  Zk(m—1) . 1\km i -1

i=1

and
(), = T (- )
ytN—k"I mo ytN—kgi
m—1
— (_l)mq—m(m—l)/Zl—m(N—k)y—m l_[ (Xi _ ytN_kqj),
j=0
forl <i <k. O

6.2. Homogeneity of MS,,,x at 1 — g™~ 1¢N—k+1 = (, Let us describe first the
solution set Z of the conditions

qm—llN—k+1 =1 andq(m—l)/a[(N—k—H)/a 7& 1

for any common divisora of m — 1 and N —k + 1 witha > 1.

Let
-1 — 1
d:=gcdm—1,N—-k+1), mozm ,nozN k+ .
d d
Recall the Euler ¢-function, ¢ (d) = #K,; where

Kgi={k:1<k<d ged(k,d)=1).

We claim that Z has ¢ (d) disjoint connected components as a subset of C2. Let
z =re?™? ¢ Cwithr > 0and 6 € R, and set

q=7z7"t=wz",

w = eZi:n//’

then ¢™01"0 = "0 and it is required that "¢ = 1 and (0"°)’ # 1for 1 <
j <d. (if d = 1 the latter restriction becomes void). For determining connected
components it suffices to let » = 1 and project onto the 2-torus realized as the
unit square {(c, B) : 0 < @, B < 1} with identifications (¢ + 1, 8) = («, B) and
(o, B+ 1) = («, B), with the mapping

((X,,B) —_ (eZNia’eZJ'[iﬂ)‘
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The pre-image of (g, t) is
{(nOG, —mof + W) 10 e R}.

We require Y nod € Z and Yyngj ¢ Zforl < j < d, thatis ¢ = nOLd for some
k and % ¢ 7Z (when d = 1 the value k = 0 is permissible). This is equivalent
to gcd (k,d) = 1. By the identification assume 0 < v < 1. So there are #K
solutions for {» where

K:={k:1<k<nod ged(k,d)=1)},

and #K = no¢ (d). Fork € K let

k 1
Zk = {(floe, —m()@ + }’lo—d) 0< 0 < %}
Then Z; meets Z; where k' = (k — mod) mod (nod) (the first coordinate is pe-
riodic for 6 — 6+ %; and where 0 <amod b < b fora € Z,b > 1). This is con-
tinued to show that Z is connected to Zy, withk” = (k — modj) mod (nod),1 <
j < ng. Consider the set

K’ := {(k —modj) mod (nod).0< j <ng.k € Kg}.

We claim this set coincides with K. If k, k' € K4 and k # k’ then (k — modj) #
(k" —modj’") mod (nod) for any j, j’ (else k = k'’ mod d); suppose 0 < j <
j' < ng then (k —modj) # (k —modj’) mod (nod) or else mod (j — j') =
nod! for some [, which is impossible for 1 < j — j’ < ng. Thus K' c K and
#K' = #K and hence K' = K. Thus Z is the disjoint union of the connected sets
U{Zk+ja:0<j <no}x{r:r>0}fork € K.

Example 19. (1) First examine the solution of ¢*t® = 1 where gcd(a, b) = 1 on
the example a = 4 and b = 7. Topologically we can collapse the problem to the
torus [q = expRina),t = expRinp)], 0 < «,f < 1. On the unit square this
becomes T + 48 = 0 mod 1, or B = —%a, interpreted periodically, period 1
see fig.l. (2) When gcd(a, b) > 1, for instance a = 8 and b = 12, there are
several connected solutions. In the example given in fig.2, there are two solutions
200 + 38 =%and2a+3,3 = %.

Proposition 20. Considerq = z% andt = wz® a specialization of the parameters
m— N—k+1

such that 1 — g™ "N=k+1 = 0 and 1 — ¢" 7" ¢t Tt # 0ifd > 1 dividesm — 1

and N — k + 1. Then,

MS, x = P,k
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1 b *+ *ﬁ ) 3 L \++ ﬁh
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i S— W — ® : 'l 4
0 0.2 0.4 0.6 0.8

Figure 1. Solution of ¢%t? = 1 fora = 4and b = 7.

Proof. From Lemma 4, one has

B Tu m* P ((0)
MSk = Ppic + Z Tmk (,u )q—l,t—l P//“(<0))

uGmk

P, ({0))
P ((0)

there are no poles at ¢ = z% and t = wz? in P, and (

From Lemma 12,

mk
w

P,..

289

= 0 for . & m*. Furthermore, from Lemmas 10 and 11

) 1 1(otherwise the
gl

denominators of the two polynomials have (1 — ¢”~'¢tN=**1) as a factor which

contradicts the lemmas). The result follows.

O
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Figure 2. Solution of g%t = 1 fora = 12 and b = 8.

7. Proof of a conjecture of Forrester

7.1. Clustering properties of P,x. In the study of fractional quantum Hall
states, Bernevig and Haldane [4] identified certain clustering conditions on rect-
angular Jack polynomials. These can be interpreted as factorization properties
under certain specialization of the variables. In this context, Baratta and Forrester
conjectured [2] a more general identity involving a rectangular Macdonald poly-
nomial:

N—k—1

1
Pmk(y’yqa""’yq o ’xN—k"'-’xN)=DyN,k’m(x17"-’xk)7 (42)

where N > 2k, o = — 25t and ged(N —k +1,m — 1) = 1.
Propositions 20 and 18 allow us to write a more general formula.
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Theorem 21. Let y € N. Consider g = z% and t = wz? a spicialization of the
m—1 N-— 1
parameters such that 1 — g™ UN=*+1 = 0and 1 —q 7 t 7 #0ifd > 1

dividesm — 1 and N — k + 1. Then,

—k—1
Pmk(xl,...,xk,ytN e LYl y) = Dly\,’k,m(xl,...,xk).

Proof. Propositions 20 and 18 show the formula for y # 0. Since the coefficients
of xV in the left hand side and right hand side are polynomial in y, the result
remains true for y = 0. O

Example 22. Let us illustrate this result with a few examples.
(1) Setg = t~3 then

Pp.2,0,00(x1, X2, yt,y) = (Xl - %) (Xz - %)(Xl — y1%)(x2 — yt?)

(2) Lett = —q~!, one has
y
Ppa,o(x1,y) = (xl + g)(xl + »)(x1 + gy).

whilst the result does not hold for t = ¢g~1:

1,2
Pp30(x1,y) = (xf - (1 + 5) yx1 + yz)(xl + ).

3) Letw = exp{%”i} and t = wg~!. We have

Pr4.,4,0,0] (X1, x2,1y,¥)
= (x1 — ©7yq ) (x2 — 0?yqg ) (x1 — 0*yg ) (x2 —0?*yq ")
(x1 — 0?y)(x2 — 0?y) (x1 — 0> yq)(x2 — ®°yq),

1

whilst the result does not hold for # = g™, since there is a pole in P4 4,0,0]:

4
y
Numer(P4,4,0,0(X1. X2, 1y, y))|t=q_1 = 3$(1 - 42)(1 - ‘13)2(1 - 614))5%)6%7

where Numer denotes the numerator of the reduced fraction.

N—k+1
7.2. The Jack polynomial P'S A =™/ The Jack polynomial PA("‘) is usually re-
covered from the Macdonald polynomial P (x1,...,xn;q,t) by setting g = ¢

and taking the limit t — 1.
So as a consequence of Theorem 21 we obtain
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Corollary 23. Let N, k > 1 and m > 2 verifying N > 2k and
gcd(N —k+1,m—1)=1.

Then we have

(Nl—_k-‘rl) xN—k k
P i 1, XYy = [ =)™
1

i=
See Kakei et al. [16] for related results on shifted Jack polynomials.

7.3. Clustering properties of nonsymmetric Macdonald polynomials. As be-
fore we use (*) to indicate a term ¢%t? with a, b € Z when its value can be ig-
nored in the context of analyzing zeros and poles. We restate a result of Las-
coux et al. [22, Corollary 4.3 from Sahi’s binomial formula]. For u € ]Nf,v let
By = {ve N} :[¥] #0,v+#u}. As stated before v € B, implies vt C u™
and |v| < |u|, but there are important additional consequences as we will show.

Theorem 24. Foru € NY

Mo =E+ Y @[] Fa B,
vEBy
We need to use this formula for ¥ = [m*,0N=%] with 2k < N and (¢, 1)

in a neighborhood Q of the set of solutions of g™tV =**+1 = | and ¢%® # 1
forl] <a <mand0 <b < N —k + 1,exceptfora = mandb = N —
k + 1. (We note here that if ¢,¢ € C and neither ¢ nor ¢ are roots of unity then
g™tNTFt = 1 and ¢%® = 1imply thata = Zm,b = % (N —k + 1) where
d = ged(m,N —k + 1) and n € Z; roughly the equations imply g™ ¢b™ =
1 = q“mt”(N —k+1) etc.) From Knop [18, Proposition 5.3] the coefficients of
hgt (v, qt) My (x) are in Z[q,q~ ', t,t7"] for any v € INY (the same multiplier
works for E,, (x)). Furthermore M, ({(v))=(*)hq (v, q) (from Lascoux et al. [22,
p-81), and

(tNg.q.1)+

hq: (v,q1)
by Proposition 5. Thus we consider A4 (v, qt) and hy; (v,gq) for v € By.
We showed that v+ C u and |v| < |u| implies (t¥q.q.t),+ # 0 for (q.1) € Q.

Ey((0)) = (%)

Proposition 25. Suppose u € NY and £ (u) < k < N then v € B, implies
L(v) <k.
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Proof. We use the “extra-vanishing” theorem of Knop [18, Theorem 4.5] applied
to v with M, ({u)) # 0. This implies that there is a permutation w € &y such that
for any i with 1 <i < N the inequality i > w (i) implies v [i] < u [w (i)] other-
wise v [i] < u [w (i)]. By hypothesis u [j] = 0 for any j > k hence w™! (j) > j
(since v [w™! (j)] < 0 is impossible). Thus w=! (j) > ;j for each j > k and by
downward induction w (j) = j for k < j < N. By applying Knop’s condition it
follows that v [j] <u[w (j)] =u[j]=0for j > k. O

Corollary 26. Ifu = [m*, 0" %] and v € B, then
hg:(v,qt) #0 and hgs(v,q) #0

for (g,t) € Q.
Proof. The factors in the hook products are of the form 1 — ¢%t? with 1 <a <m
and 0 < b <k < N —k + 1 (the leg-lengths are bounded by k — 1). U

This shows that [”l’)k] L has no poles for v € B, x and (¢, t) € Q2. The last
g=t=
step is to show E,x ((0)) = 0 for ¢"t¥N=**1 = | and (¢q,¢) € Q, and indeed

k m
(th;q’[)mk = H l_[ (1— g/ tN=it1).
i=1j=1

the factor with i =k, j = m is (1 — gtV 7%+1),

Proposition 27. Suppose
u = [mF,0N7*], 2k <N,

qth—k+1 — 1’

and
qm/a[(N—k-f—l)/a 7& 1
fora > 1 being a common divisor of m and N — k + 1, then
M, (x) = Ey (x),

N—k+1

Ey(x1,..., x5, yt ..,yt,y)zﬂﬁ,k’m(xl,...,xk).

Proof. The proof is essentially the same as that of Proposition 21. O

We find that the polynomial E,, (x) is singular for certain values of (g, ) ex-
actly when it coincides with M,, (x), and in that case there is a factorization result
of clustering type.
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7.4. Highest weight and singular Macdonald polynomials. In the case of spe-
cial parameter values when MS, = P, by Proposition 2 it follows that

and thus P, ZlN=1 D; = 0. For rectangular partitions, this matches with a result of
one of the authors (J.-G. Luque) with Th. Jolicceur [15] which involves the kernel
of the operator

N N
ZH —
sy =1 YT A qxz
;ﬁ
with

fCer, oo xn) = f(X1, o0, Xim1, G X0, Xit 1, .- XN)
—4qXxi '

LXN) =

Note that from a result of Baker and Forrester [1, eq. (5.9), p.12], the operator L+
satisfies

N
(1-¢g)Ly = ZDi-

i=1

Theorem 28 (Jolicceur and Luque [15]). If N > 2k then the Macdonald polyno-
mial P,k (X1,...,xN;q,t) belongs to the kernel of Ly for the specialization

—1

(@) =(@"7 0"

where d = gcd(m — 1, N —k — 1) and v = exp {M} withn € Z.

We observe similar phenomena for nonsymmetric Macdonald polynomials.
Note that £,,, M, have the same eigenvalues under the action of &;, E; respec-
tively. If for certain parameters (¢,¢) M,, = E, then E,D; = 0for1 <i < N
(since My E; = E,E; = Ey& + E, D).

According to Proposition 27, suppose that u = [m*, 0¥ =*], 2k < N, and
g™tV K+l = |, and g"/@t(N—k+D/a L | for ¢ > 1 being a common divisor of m
and N —k + 1,then E, kgnv—«xD; =0foreach1 <i < N.
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8. Conclusion and perspectives

One of the authors (J.-G. Luque) with Thierry Jolicoeur [15] investigated other
families of symmetric Macdonald polynomials belonging to the kernel of L for
certain specializations of the parameters. These polynomials are indexed by stair-
case partitions and numerical evidence shows that they have nice factorization
properties. A staircase partition

A=[(B+Ds+r)k (Bs+r)b ..., (s + 1) 05T

is defined by five integer parameters S, s, r, k and £ such that k¥ < £ and

{41

N=—r+lp+D+kel.

The corresponding specialization is

I+l
g

) =C7 .27 % w)

where g = gcd({ + 1,5 — 1) and ® = exp {%}. The simplest polynomials

(r = k = 0) can be factorized for any variables x;,...,xy as a
(g, t)-discriminant. When g = 1, this is a consequence of a theorem proved by
one of the authors (J.-G.L) with A. Boussicault [8, Theorem 3.2]. For instance,

Pazo(x1, X2, X3, = t72,1)
= (=) (x1 — tx2) (1 — 1x3)(x2 — tx7) (X2 — x3)(x3 — 1x7) (X3 — £X1),

where (—); denotes a factor depending only on ¢. But it seems that a factorization
holds also for the other cases (for special values of the variables and the parame-
ters). Let us give a few examples:

Pe3o(x1, X2, X3:q = —t',1)
= (=) (1 + x2)(x1 + x3)(x2 + x3)(x1 — 1x2) (X1 — 1X3)
(x2 —tx1)(x2 — £x3)(x3 — £x1) (X3 — 1X1),
Ps3000(X1, X2, y, yt, ytz;q =12, t)
= (—)¢(x1 — yt)(x1 — yt)(x1 — yt ')
(x2 — yt?)(x2 — y1)(xa — yt ™).
Pirz00(x1, Y1, y1t, y2, yat:q = 173, t)

= (=)e(x1 — y112)(x1 — y2t?)(x1 — y11)(x1 — yat)
(1 = ty2)(y1 — 12y2)(y2 — ty1) (y2 — 12 y1),
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Po400000 (X1, Y1, V1L, it y2, yat, yat?;q = 172,1)
= (9)e(x1 — y1?)(x1 — 1) (xp =yt ™)
(x1 — y2r ) (x1 — y2r ) (x1 — yat =) (y1 — 1y2)
(1 —2y2) (2 — ty1)(y2 — 2 y1).
Prsor(x1.y1. ...yt ya. . yat?ig = 1200)
= (=1 — x182)(y1 — y2t>) (y1 — x12°)
(1 — y21”)(y2 — x12°)(y2 — y11°) Pazo(x1. y1. y2: 4 = 172.1). . . ..

A correct formula (and of course a proof) remains to be found.

Note that there are also analogous formulas for singular nonsymmetric Mac-
donald polynomials indexed by staircase partitions. Consider the following exam-
ples:

Exio(x1, X2, X3:g = 22,1 = 2)
= ()¢ (tx2 — x1)(tx3 — x1)(1x3 — X2)
Ee30(x1,X2,x30q =2 2,1 = 2°)
= (—)z(x22 — x3)(—2x3 4+ x2) (x2 — 2°x3) (X 2 — x3)
(—zx3 4+ x7) (x1 — 2°x3) (X1 2 — x2) (X — X2 2) (X — X2 2°),
E420(x1,x2,Xx3;9 = —t,1)
= (=) (x2 + x3)(—1x3 + x2) (X3 + x1)(—1x3 + x1) (X1 + x2)(x1 — X20),
E221100(X1. X2, Y1, Y1, Y2, Y219 = 172, 1)
= (=) (1 = y212) (1 = y21)(x2 = yat?)
(x2 — 12 y1)(x1 — yat?) (x1 — 12y1),
Ea42200(x1, y1, y12%, 2, 222 = 23,1 = 2?)
= (9):(01 — 322 (1 — y22) (112 — y2)
(1 — J’222)(X1 - y224)(x1 — y2z)(x1 — J’1Z4)(x1 — y12).
There are also equations involving permutations of (m*, 0" =%). For instance,

Eo022(t, 1,x3,x4:q = t73,1) = (=) (tx4 — y)(tx3 — ¥)X4X3.

In Appendix C we show a factorization formula for permutations of m¥0N =%,
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The connections with singular properties remain to be investigated. In partic-
ular, if £, is singular then it has the same spectral vector for {E;} as M,,. If the
spectral vector is nondegenerate (multiplicity = 1) then M,, = E,,.

A. Notations

For parameters a, b, ¢, we consider the operator Gfl b acting on polynomials (or
Laurent polynomials) by

The braid relations G'G'*1G? = G'T'G'G'*! hold for two families of so-
lutions: (a,b,c) = (t1,—11,t2) and (a,b,c) = (t1,t2,—t1). In both cases the
quadratic relation

(G!

—1)(Glp —12) =0

a,b,c a,b,c

holds. The inverses are
1 _ i
(th _tlst2) = S1/n,1/0,-1/tp
1 _
(th 212, —11) l/tl,—l/tl,l/tzs

Some pertinent evaluations are

lGa b ¢ =a,
i —_ .
X’Gll —t = —Xit1,
and
. i — oy
xl‘Hth,tz,—tl = —hx;.

In our applications we require the quadratic relation

(GL, —1)(GL, +1)=0,

a,b,c a,b,c

and the evaluation 1G* abe =1 because 1 is (trivially) symmetric, thus a = ¢,
b = —1. The version of T; used in one of our previous papers [9] is G} _, _,
but Lascoux et al. [22] uses G} _, _, which equals (Gi/t,_l/t’_l)_1 (that is,
T;(1/t)~! from our notations[9]).
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With parameters % é in relation to our notations [9] the following hold for the
Lascoux et al. [22] versions (and T; = Gﬁ,—1,—t’ Tl._1 =Gi/t,—1/t,-1 ):
(1) & ="' Ty ... TieTy!, ... T7! (Cherednik operator);
(2) pr(x) = p(xn/q.x1,....XN-1);

3) Dy = (1 — EN)XI_VI; a simple check for the coefficient of &y: apply the
operator to the constant polynomial 1, since 17; = ¢ we have 1§ = t*~" and
it is necessary that 1Dy = 0;

(4) Dy =tT7 "Dy T7Y
B) B, =t Ty ... Tht(l — #)Tﬁll LT+ xli; similarly check the con-

. 2. — i—N. 1 -1 _ 1
stants by verifying 18; = #'~"; note that (xi+1 )T = 5

B. Alternative proof of Lemma 12
Let A C [m*, 0" %] with 2k < N. We have
A= [mk/, Ak’-ﬁ-l’ Cee )&k//, ON_k//],

with k' <k” <k and A1 < m.
The vector (A7) with A S m* is

[ZN_k”_l,...,t, 1,*,...,*,qth_l,...,qth_k/,qtN_k”_l,...,qt,q,...].
So we have to enumerate the pairs (i, j) withi = 1,...,k"and j = 1,...,
N — k" verifying

— N—i
ANk =471,
— N_k//_'
ANy =at .,
and
—\ o0
AN ki — oM N—k+1
AR+ '
J

Then, we have to enumerate the pairs (i, j) withi = 1,.... k", j =1,...,N —k”
such that

N—i—(N—k"—j)=N—k+1.
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Equivalently,
j=N—k—k""+1+i.

Hence, wheni ranges 1,...,k, jranges N —k—k"+2,...,N—k+k'—k" +1.
But since k < N —k and k" < k we have

2<k—k"4+2<N-k—-k"+2.
If A € [m*,0N=*] then k¥’ < k and we have
N-—-k+k'—k'"<N-k".
To resume: when A C [m*, 0N =], j ranges
N—k—-k"+2,....N—k+k'—k'+1cC1,....N—k".
So there are

N—-—k+k—-k'+1-—(N—-k—-k"+2)+1=k

pairs (i, j) satisfying the property. It follows that the maximal power of
(1 — g™~ 1¢tN=k+1) in the denominator of equality (37) is k.
But if A = [m*, 0V %] then ; ranges

N—-2k+2,....N—k (k=k'=k")

so the maximal poweris k' — 1 =k — 1.
Similarly, we study the numerator: we have to enumerate the pair (i, j) with
i=1,....k',j=1,..., N —k” such that

N—i—(N—k'—j)+1=N—k+1.

Equivalently,
jJ=N—-k—k'"+i.

Hence, when i ranges 1...k’, j ranges
N—k—-k"+1,....N—k+k'—k".

Again
N—-—k—k"+1,....N—k+k'-k"c1,....N—k".
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So there are
N—-k+k'—k'—(N—k—K'+1)+1=Fk

pairs (i, j) satisfying the property. As a consequence the maximal power of
(1 — g™~ 1¢N—k+1y in the numerator of (37) equals k’.

If A € [m*, 0N =], the numerator and the denominator simplify and we have no
factor of the form (1 — ¢™ 't¥N—k+1) in (37). On the other hand, when
A = [m*, 0N =¥, after simplification it remains a factor (1 —g™ 'tV —%+1) in (37).
This completes the proof.

C. Expressions for M, where u is a permutation of [m*0" —¥]

Fix m > 1 and k with 1 <k < N. As before we neglect scalar multipliers () of
the form ¢“¢?, and then adjust the formulae using the monic properties. Define

Qui={BeN:1<p[l] <B2] << Blk] < N}

For B € Qu define u (8) € NV by u (B) [B[i]] = m for 1 < i < k otherwise
u(B)[j] = 0. Leto (B) denote the set {B[i] : | <i <k}.Forl <i <k define ¢;

by &; [j] = 8i;.

Remark 29. Note thatifi = B[j]—1 & o(B) for some j thenu(B).s; = u(f—¢;).

For instance, if N = 7and 8 = [1, 4,5, 7] then u(8) = [m, 0,0, m, m, 0, m] and
u(B)se = [m,0,0,m,m,m,0] = u([1,4,5,6]) = u(f —e4).

Definition 30. For1 <i < Nlet yg (i) =N —i —#{l : B[] > i}, (ifi = B[]
then yg (i) = N —i —k +1). Also let xB) be the point given by

x.(’g) _ Xi Jorieo(B),
l tX89D  fori ¢ o ().

The meaning of yg is simply that yg (i) = N —ryg) [i] and xi(ﬂ) = (u (B)) [i]

for i ¢ o (B). The following is one of the main results of this section. The proof
consists of several lemmas.

Theorem 31. For f € Qyk

k m—1

Mu(ﬂ)(x(ﬁ)) — H(xﬂ[j] _ tN+j—k—ﬁ[j]) l_[ (xp] — (N—kgiy,
j=1 i=1
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Lemma 32. Suppose v e NV, v[i] < v[i + 1] for somei < N and y is a point
such that M, (y) = 0, then

Mv.s,' (y) = (M)Mv (y.8i) .
Yi = Yi+1
Proof. 'This follows from Definition 1 of 7;. O

Lemma 33. Suppose p € Qnrand B[j]—1 ¢ o (B)for some j. Seti = B[j]—1
sothatu (B) il =0,u(B)[i +1] =mandu (B).si = u(B—e¢;) (see Remark 29).
Then

Mu(ﬁ)(x(ﬂ).si) = 0.

Proof. Let v € NV satisfy v[/] > 1forl € o(B —¢;) and v[[] = 0 for
I ¢ o(B—¢j) (in particular v[i] > 1 and v[i + 1] = 0). By Knop’s “extra-
vanishing” theorem [18, Theorem 4.5] M, ({v)) = 0. To prove by contradiction
suppose My, gy ({(v)) # O then there is a permutation w € &y such that for any
iwithl <i < Neitheri > w()andu(B)[i] < v[w@)] ori < w(i) and
uB)li] <vw@)].Let Sy ={1,...,N}\o (B)and S, ={1,..., N} \o(B—¢j).
The sets S; and S, agree with the exception i € S1\S> andi + 1 € S,\S;.
By construction w (I) € S, implies / € S; and/ > w (/). Thus w maps S; onto
S> and by induction (using / > w (/)) we see that w (/) = [ for each [/ € S; with
| <i.Butthen w (i) > i + 1, which is impossible.
Consider the vector (v); by construction

qv[l]tN—rv[l]’ leo(f— 5]'),

/=
{v) [1] s L ¢o(B5).

Note that 1 < r,[[] < k forl € o(B —¢;), and (v) = x®) s; where each x; is
of the form ¢%t® witha > land N —k +1 < b < N. Now M, (x®) s;) is a
polynomial in k variables of degree mk which vanishes at infinitely many points
of this form; by the uniqueness of the vanishing property of shifted Macdonald
polynomials My, (x® s;) = 0 for all x®. O

Lemma 34. Suppose § =[N —k +1,..., N] then

x® = (ZN_k+1, vy XNk 1s e XN)

and
N

m—1
My = T] =D J]@—-""¢%).

i=N—-k+1 Jj=1
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Proof. Letv = [(m — 1)¥, 0N ~*]. By the results of Section 6.1

k m-2

My(xy, ..., xg, 1V 1)—Hl_[(x,—lNk ;

i=1j=0

if m = 1 the product equals 1. From v.®* = u (B) it follows that

N
My (x) = (x) My (XN—k+1/9+-- -  XN/q. X1, ... XN—k) 1_[ (x; = 1).
i=N—-k+1
Setx; =tV %= for1 <i < N —k, then
N
My (x) = () My(en—kr1/q.-oxn /g N T =D
i=N—-k+1
N m—2 .
= JI Gi=D]]Cura—t""q%).
i=N—-k+1 Jj=0
This proves the Lemma. O

For B € Qpy x define

k

Fg (x) := H(Xﬂ[j] — [N+j_k_ﬂ[j]).
Jj=1

The special cases are B = [N —k +1,...,N], Fg = ]_[fva_kH (x; — 1) and
B=1[1.2.....k], Fg = [TF_, (xi —t¥7F).

Proof. (of Theorem 31): We use induction for steps of the form u (8) — u (B) .s;
applied to u (8) with u (8) [i{] = 0 and u (B) [i + 1] = m. The previous Lemma
provides the starting point. Suppose for some j,i that §[j] =i+ 1 andi ¢ o (B),
then with the identification x; = x;1; we have x® 5; = x#B) where B =p—e¢;.

Then
. N+j—ki

By _ N
Fgr(x7) = Y — (Nt ki1

Fﬂ (x(ﬂ)),

because only the factor involving x; changes. Suppose that the claimed formula
holds for 8, that is,

m—1

Mu(ﬁ)(x(ﬁ)) = Fp (x(ﬂ)) l_[ (X,B[i] _ tN—qu')'
j=1
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By Lemma 33 M,y (x®).5;) = 0 and by Lemma 32

X B 5 ®)
’ i it
a0 = (L ot
i i+1
because
XxB) 5 = B
Also
8 = ) = o)
where
xpl)=N—i—#{:B[l]>i}=N—-i—(k—j+1).
Thus
) x; — (N+i—i—k
Mugp.s; () = (xi _NAj—i—k-1 )M“(ﬂ)(x(ﬂ))
Fp (x®?) ®)
= WMu(ﬂ)(x ).
and this proves the formula for g — ¢;. O

Example 35. Let 8 = [2,5,6,9] € Q10,4, then u(f) = [0m00m m00mO],

xB = (13, x,, 1%, 13, x5. x6. 12,1, X0, 1),

m—1
Mgy (x®) = (x2 = %) (xs =) (xe =)o —1) [ [0 —14").
j€{2,5,6,9} i=1

The factorization result for rectangular E, can be adapted to this situation.
Start with u = [m*, 0¥ =*] with 2k < N.

For the rest of this section assume ¢t = 1 and no relation g%t = 1
witha <morb < N —k + 1 holds (for details see Section 6.2).

Then by Proposition 27 M,, (x) = E, (x). We claim this equality can be ex-
tended to u (B) provided that u (B) is a reverse lattice permutation; this means that
any substring [u (B) [j],u (B)[j + 1],...,u (B)[N]] contains at least as many 0’s
as m’s [34, p.313]. This condition is equivalent to

N—k+1

BlJI=N—-2k+2j-1.1<j <k (43)

As above suppose B[j] =i + 1,8[j —1] <iandv =u(B),v.si = u(f —¢;).
The inverse relation is

(1—1) =1
My= =07 (- A2,
1M (M- t7)
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where ¢ = ¢™tk+1%1=2/ The same transformation takes E,, to E,. We use in-
duction. Suppose Mu(ﬂ_sj) = Eu(ﬂ_sj) when ¢”tN=k+1 = 1 and both polyno-
mials are defined (that is, the coefficients have no poles at g™tV —k+1 — 1). Then
the same properties hold for My,(g) and Ey g if ¢ # t 1, 1,¢. Setg™ = ¢~ V=k+1
then ¢ = t¢ witha =2k +i —2j — N. Buti = B[j] — 1 thus by condition (43)
we have

a<2k—-2j—N+(N-2k+2j—-1)—1=-2,
The induction starts with 8 = [1,2..., k]. We have shown
Proposition 36. Suppose 2k < N, B € Qnx, B satisfies (43), (and q"" =
t~WN=k+1)) then

Eu(p) (x) = Myp) (x) .

For the specialization result, let z(8) be defined by zl.(ﬂ ) = x; ifi € 0 (B), and
zi(ﬂ) = ytX8® if i ¢ o (B), for variables x; and y.
Proposition 37. Suppose 2k < N, B € Qnxi, P satisfies (43), (and q" =
t~WN=k+DY then

m—1

Eup(z®) = l_[(xﬂ[ i — N HIREBUL ) TT gy — £V %4 ).
j=1 i=1

Proof. With the notation of Definition 30,

Eupy(rxP) = y"FE, 5 (x®))
— mkM (ﬂ)(x(ﬂ))

m—1

= ”’"l_[(x (NHTEPUD TT Gepiy — V7.

i=1

Replace x; by x;/y to finish the proof. U
Example 38. Let 8 = [2,5,6,9] € Qi0.4, ¢"t7 = 1 then
28 = (y1°, xa, yt*, yt® x5, X6, Y12, y1. X0, Y),

and

Eu)(z#)

m—1
= (2 —y)(xs =y e —y)(xo —yt) [ [ —1%'y)
je€{2,5,6,9} i=1

One expects a generalization of this result for permutations of staircase parti-
tions.
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