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Abstract. Let S.N / � PG.1; 2/ � PG.1; 2/ � � � � � PG.1; 2/ be a Segre variety that is an

N -fold direct product of projective lines of size three. Given two geometric hyperplanes

H 0 and H 00 of S.N /, let us call the triple ¹H 0; H 00; H 0�H 00º the Veldkamp line of S.N /.

We shall demonstrate, for the sequence 2 � N � 4, that the properties of geometric hy-

perplanes of S.N / are fully encoded in the properties of Veldkamp lines of S.N �1/. Using

this property, a complete classi�cation of all types of geometric hyperplanes of S.4/ is pro-

vided. Employing the fact that, for 2 � N � 4, the (ordinary part of) Veldkamp space of

S.N / is PG.2N � 1; 2/, we shall further describe which types of geometric hyperplanes of

S.N / lie on a certain hyperbolic quadric Q
C

0
.2N � 1; 2/ � PG.2N � 1; 2/ that contains the

S.N / and is invariant under its stabilizer group; in the N D 4 case we shall also single out

those of them that correspond, via the Lagrangian Grassmannian of type LG.4; 8/, to the

set of 2295 maximal subspaces of the symplectic polar space W.7; 2/.
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1. Introduction

Algebraic varieties that are Cartesian products of two or more projective spaces

of the same or di�erent dimensions were introduced as early as 1891 by Corrado

Segre [1] who, however, considered only the ‘classical’ case, viz. the �eld of real

or complex numbers. Some seventy years later, Benjamino Segre [2] showed that

the de�nition of Segre varieties, as well as a majority of their properties, carry

over to other �elds, in particular over �nite (Galois) �elds (see also [3]). �e past
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decade witnessed an increased interest in the topic, and this not only from a pure

mathematical point of view (e. g., [4, 5, 6, 7, 8, 9, 10]), but also due to impor-

tant quantum physical applications. �e latter case is remarkable in that alongside

classical Segre varieties, and associated Segre maps, which provide a setup for

geometrical construction of concurrence, one of the principal measures of quan-

tum entanglement (e. g., [11, 12, 13, 14, 15]), we also encounter Segre varieties de-

�ned over the smallest Galois �eld, which are intimately linked with the issue of

quantum contextuality and the so-called black-hole–qubit correspondence through

the properties of certain generalized multi-qubit Pauli groups (e. g., [16, 17, 18]).

Interestingly enough, these ‘quantum contextual’ �nite Segre varieties are found

to lie within the family de�ned as S.N / � PG.1; 2/ � PG.1; 2/ � � � � � PG.1; 2/

(N times), where PG.1; 2/ represents the smallest projective line, being always

contained/embedded in a distinguished �nite geometry/point-line incidence struc-

ture.

�e �rst physically relevant type of �nite Segre variety is S.2/. It lives in the

symplectic polar space W.3; 2/, which underlies the commutation relations be-

tween the elements of two-qubit generalized Pauli group [16, 19]. �e S.2/ itself,

being isomorphic to the smallest slim generalized quadrangle GQ.2; 1/, is the ge-

ometry behind what is known as a Mermin magic square [20]. It represents a set

of nine observables placed at the vertices of a 3�3 grid and forming six maximum

sets of pairwise commuting elements that lie along three horizontal and three ver-

tical lines, each observable thus pertaining to two such sets. �e observables are

selected in such a way that the product of their triples in �ve of the six sets is CI ,

whilst in the remaining set it is �I , I being the identity matrix. Another prominent

type of the Segre variety is S.3/, which enters the quantum informational game in a

more re�ned disguise – namely through its dual S?
.3/

. �e latter lives in the gener-

alized quadrangle of type GQ.2; 4/, one of the key �nite geometries in the context

of the black-hole–qubit correspondence [17]. GQ.2; 4/ encodes completely the

entropy formula of black holes, or black strings, in certain D D 5 supergravity

theories. �is entropy formula features 27 charges and 45 terms of three charges

each that correspond, respectively, to 27 points and 45 lines of GQ.2; 4/. Take any

three pairwise disjoint GQ.2; 1/s in GQ.2; 4/ and remove their lines; what is left

is a copy of S?
.3/

. Hence, our S?
.3/

represents an interesting sub-geometry of the

entropy formula that still incorporates all 27 charges, but picks up only a particular

subset of 27 terms out of the totality of 45 ones.

�ese �ndings are indicative of the fact that also the next type of Segre variety

in the hierarchy, S.4/, is – up to duality – likely to be of relevance for quantum

physics and thus deserves a closer look. To perform such an inspection, we shall
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employ the notion of Veldkamp space of a point-line incidence geometry [21]. �is

important concept has already been utilized to analyze the structure of W.3; 2/,

see [22], and higher-rank symplectic polar spaces [23] where it helped to reveal

some �ner traits of the structure of multiple-qubit Pauli groups, that of GQ.2; 4/,

see [24], where it led to a deeper understanding of distinguished truncations of the

above-described black-hole entropy formula, as well as that of the Segre variety

S.3/, see [25]. Our reasoning will heavily rest on the results of the last-mentioned

reference, where properties of both geometric hyperplanes and Veldkamp lines of

S.3/ were treated in much detail.

�e paper is organized as follows. Section 2 highlights basic concepts, sym-

bols and notation to be employed. In Section 3, Subsections 3.1– 3.3, we shall de-

scribe, for the sequence 2 � N � 4, a diagrammatical recipe for how to ascertain

the properties of Veldkamp points of S.N / if we know the properties of Veldkamp

lines of S.N �1/; using this recipe, a complete classi�cation of geometric hyper-

planes of S.4/ will be arrived at. In addition, for each S.N / in the above-given

sequence it shall be shown which types of its geometric hyperplanes lie on the

unique hyperbolic quadric Q
C

0 .2N � 1; 2/ � PG.2N � 1; 2/ that contains the S.N /

and is invariant under its stabilizer group. Finally, Section 4 will be devoted to a

brief summary of the main �ndings as well as to pointing out certain resemblance

between our ‘generalized’ concept of Veldkamp space and the notion of projective

space de�ned over a ring.

2. Basic concepts, symbols and notation

In this section we shall make a brief inventory of basic concepts, symbols and

notation employed in the sequel.

Our starting point is a point-line incidence structure C D .P;L; I / where P

and L are, respectively, sets of points and lines and where incidence I � P � L

is a binary relation indicating which point-line pairs are incident (see, e. g., [26]).

�e dual of a point-line incidence structure is the structure with points and lines

exchanged, and with the reversed incidence relation. In what follows we shall

encounter only speci�c point-line incidence structures where every line has the

same number of points, every point is incident with the same number of lines and

any two distinct points are joined by at most one line. A geometric hyperplane of

C D .P;L; I / is a proper subset of P such that a line from C either lies fully in the

subset, or shares with it only one point. Given a hyperplane H ofC, one de�nes the

order of any of its points as the number of lines through the point that are fully con-

tained in H ; a point of H is called deep if all the lines passing through it are fully
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contained in H . If C possesses geometric hyperplanes, then one can de�ne the

Veldkamp space ofC as follows [21]: (i) a point of the Veldkamp space is a geomet-

ric hyperplane of C and (ii) a line of the Veldkamp space is the collection H 0H 00

of all geometric hyperplanes H of C such that H 0 \ H 00 D H 0 \ H D H 00 \ H

or H D H 0; H 00, where H 0 and H 00 are distinct geometric hyperplanes. �ere

exists a wide family of point-line incidence structures, including also those to be

discussed below, where each line has three points and where a line of the Veld-

kamp space can equivalently be de�ned as ¹H 0; H 00; H 0�H 00º; here, the symbol

� stands for the symmetric di�erence of the two geometric hyperplanes and an

overbar denotes the complement of the object indicated. Occasionally, H 0�H 00

will be called the Veldkamp sum of hyperplanes H 0 and H 00. To meet our needs,

we shall use a slightly generalized notion of the Veldkamp space of C, V.C/, which

also includes C as the extraordinary geometric hyperplane and which features ex-

traordinary Veldkamp lines, the latter being of type ¹H; H;Cº. Moreover, we shall

reserve the symbol ord-V.C/ for the ‘ordinary’ part of V.C/, i. e. that devoid of

the extraordinary hyperplane and all the Veldkamp lines passing through it.

Next, let V.d C 1; q/, d � 1, denote a rank-.d C 1/ vector space over the

Galois �eld GF.q/, q being a power of a prime. Associated with this vector space

is a d -dimensional projective space over GF.q/, PG.d; q/, whose points, lines,

planes,: : :, hyperplanes are rank-one, rank-two, rank-three,: : :, rank-d subspaces

of V.d C 1; q/. A quadric in PG.d; q/, d � 1, is the set of points whose coor-

dinates satisfy an equation of the form
PdC1

i;j D1 aij xi xj D 0, where at least one

aij ¤ 0. Up to transformations of coordinates, there is one or there are two

distinct kinds of non-singular quadrics in PG.d; q/ depending on whether d is

even or odd, namely [27]: Q.2N; q/, the parabolic quadric formed by all points of

PG.2N; q/ satisfying the standard equation x1x2 C� � �Cx2N �1x2N Cx2
2N C1 D 0;

Q�.2N � 1; q/, the elliptic quadric formed by all points of PG.2N � 1; q/

satisfying the standard equation f .x1; x2/ C x3x4 C � � � C x2N �1x2N D 0,

where f is irreducible over GF.q/; and QC.2N � 1; q/, the hyperbolic quadric

formed by all points of PG.2N � 1; q/ satisfying the standard equation

x1x2 C x3x4 C � � � C x2N �1x2N D 0; where N � 1. In this paper we shall only be

concerned with hyperbolic quadrics, in particular with those of q D 2; each such

quadric is found to accommodate as many as .2N �1 C 1/.2N � 1/ points. Given a

PG.2N �1; q/ that is endowed with a symplectic form, the symplectic polar space

W.2N � 1; q/ in PG.2N � 1; q/ is the space of all totally isotropic subspaces with

respect to the symplectic form [28], with its maximal totally isotropic subspaces,

also called generators, having dimension N � 1. For q D 2 this polar space con-

tains j PG.2N � 1; 2/j D 22N � 1 D 4N � 1 points and .2 C 1/.22 C 1/ � � � .2N C 1/

generators.
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Last but not least, there comes a �nite Segre variety [27] Sd1;d2;:::;dN
.q/ �

PG.d1; q/ � PG.d2; q/ � : : : � PG.dN ; q/; whose simplest possible form, namely

S1;1;:::;1.2/ � S.N /, will be of central interest to us. An easy count yields that

S.N / D PG.1; 2/ � S.N �1/, when viewed as an abstract point-line incidence struc-

ture, has 3N points and N 3N �1 lines, with three points per line and N lines through

a point.

3. From the Veldkamp lines of S.N �1/

to the Veldkamp points of S.N / (2 � N � 4)

3.1. S.2/ and its Veldkamp space. �e Segre variety S.2/ is a point-line inci-

dence structure having 9 points and 6 lines, with two lines per point. Using its

diagrammatical representation as a 3 � 3 grid, one can readily check that it fea-

tures two distinct kinds of geometric hyperplanes, which are depicted in Figure 1

and whose properties are summarized in Table 1. In the latter, the �rst column

gives the type (‘Tp’) of a hyperplane, which is followed by the number of points

(‘Ps’) and lines (‘Ls’) it contains, and the number of points of given order. �e

next two columns tell us about how many of 6 lines (S.1/’s) are fully located (‘D’)

in the hyperplane and/or share with it a single point (which is the only ordinary

hyperplane of S.1/). �e VL-column lists the types of Veldkamp lines of S.1/ we

get by projecting a hyperplane of the given type into a line of the S.2/. Finally, for

each hyperplane type we give its cardinality (‘Crd’). A brief inspection of Figure 1

shows that, given a point of S.2/, a type one hyperplane consists of the point and

all the points that are not at maximum distance1 from it; in the language of near

polygons (e. g., [29]), this is usually termed a singular hyperplane. On the other

hand, a type two hyperplane represents a maximum set of mutually non-collinear

points, often referred to as an ovoid.

Table 1. �e two types of geometric hyperplanes of S.2/.

Pts of Order S.1/’s Type

Tp Ps Ls 0 1 2 D H1 VL Crd

1 5 2 0 4 1 2 4 ext 9

2 3 0 3 0 0 0 6 ord 6

1 Here the term ‘distance’ means the graph-theoretical distance between the corresponding

vertices of the collinearity graph of the point-line incidence structure in question.
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1

1

2

4 4

4

Figure 1. A diagrammatic representation of the types of geometric hyperplanes of S.2/. �e

number attached to a sub�gure indicates how many distinct copies of a given hyperplane

one gets by rotating the sub�gure around its center. �e top row illustrates all 9 copies of

type one hyperplane, the middle row all 6 copies of type two hyperplane and, for the sake of

completeness, the bottom row shows the extraordinary hyperplane. �e encircled bullets

in the top row denote deep points. (Obviously, all the nine points of the extraordinary

hyperplane are deep (not indicated).)

In order to get a deeper insight into the nature of the two (ordinary) types of

geometric hyperplanes of S.2/, we shall have a look at Veldkamp lines of S.1/.

�ese are also of two di�erent kinds, which we shall call ordinary (abbreviated

as ‘ord’ in Table 1) and extraordinary (‘ext’) ones. �e Veldkamp line of ordinary

type is just a single one, namely that comprising all the three points of S.1/ – as

portrayed in Figure 2, top left, where the points are distinguished by di�erent col-

ors. A Veldkamp line of extraordinary type features the extraordinary hyperplane

(that is the whole S.1/) and a point counted twice – see Figure 2, bottom left;

clearly, there are three of them. Now, S.2/ is endowed with two di�erent spreads

of lines, i. e. sets of three pairwise disjoint lines that partition the point-set of S.2/;

in our diagrammatical representation of S.2/, one spread consists of three ‘hori-
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zontal’ lines and the other comprises three ‘vertical’ lines. Let us take a geometric

hyperplane of type two and project its points along the three lines of one spread

onto a line of the second spread. If we keep the distinction between the three lines

of the second spread, what we get is nothing but the ordinary Veldkamp line of

S.1/. �is fact is portrayed in Figure 2, top, where the projection is made along

the lines of the ‘vertical’ spread. Making the same projection with a type one hy-

perplane results in an extraordinary Veldkamp line of S.1/ – see Figure 2, bottom

part. We further see that six di�erent S.2/-hyperplanes of type two are projected

into one and the same ordinary Veldkamp line of S.1/, whereas it is three distinct

S.2/-hyperplanes of type one that map into the same extraordinary Veldkamp line

of S.1/. Reversing our reasoning, by blowing up S.1/ to S.2/ each of the three ex-

traordinary Veldkamp lines of S.1/ generates three geometric hyperplanes of S.2/

of type one, whilst the single ordinary one gives rise to all the six hyperplanes of

type two. We have thus explicitly demonstrated the fact that the types of geomet-

ric hyperplanes, that is Veldkamp points, of the Segre variety S.2/, as well as their

cardinalities, can be fully derived/recovered from the properties of Veldkamp lines

of the Segre variety of the preceding rank, S.1/. One of the main foci of this paper

is to justify a conjecture that this remarkable relation between Veldkamp points of

S.N / and Veldkamp lines of S.N �1/ holds, in fact, for any positive integer N � 2

by illustrating its properties in su�cient detail on the two subsequent cases, viz.

N D 3 and N D 4.

It is now obvious that in order to tackle properly the next (N D 3) case in the

hierarchy, we have to ascertain how many types of Veldkamp lines of S.2/ we have

and what their properties are. Using our descriptive representation of geometric

hyperplanes of S.2/ (Figure 1), this is quite a straightforward task. For ordinary

Veldkamp lines the corresponding information is collected in Table 2 and, in a

visual form, in Figure 3, top. �ere are four types of them and their total number is

35; type one and type four are so-called homogenous Veldkamp lines as they both

feature hyperplanes of the same type. As for extraordinary Veldkamp lines, we

�nd only two types, namely the extraordinary hyperplane and H1 counted twice

(type I) and the extraordinary hyperplane and H2 counted twice (type II), totaling

to 15 – as depicted in the upper part of Figure 4, left and right, respectively.

We shall �nalize this section by observing that the ordinary part of the Veld-

kamp space of S.2/, ord-V.S.2//, features 15 points (ordinary geometric hyper-

planes of S.2/) and 35 lines (ordinary Veldkamp lines of S.2/), being isomorphic

to PG.3; 2/. �e nine hyperplanes of type one then correspond to the nine points

lying on a hyperbolic quadric Q
C

0 .3; 2/ � PG.3; 2/.
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Table 2. �e types of ordinary Veldkamp lines of S.2/. �e �rst column gives the type, the

next two columns tell us about how many points and lines belong to all the three geometric

hyperplanes a line of the given type consists of, then we learn about the line’s composition

and, �nally, the last column lists cardinalities for each type.

Core Comp’n

Tp Ps Ls H1 H2 Crd

1 3 1 3 – 6

2 2 0 2 1 18

3 1 0 1 2 9

4 0 0 – 3 2

1

6

3

9

H1

H2

Figure 2. An illustration of the fact that the two types of geometric hyperplanes of S.2/

(right) can be regarded as blow-ups of the Veldkamp lines of S.1/ (left), or, vice versa, that

a projection of a type two (top right) or type one (bottom right) hyperplane of S.2/ onto

a line of S.2/ can be viewed, respectively, as the ordinary (top left) or an extraordinary

(bottom left) Veldkamp line of S.1/.
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6 9 218

36 108 54 12

H2 H3 H4 H5

Figure 3. Top: – A descriptive illustration of the structure of the four distinct types (1 to 4,

left to right) of ordinary Veldkamp lines of S.2/ (Table 2); the three geometric hyperplanes

comprising a Veldkamp line are distinguished by di�erent colors, with the points and lines

shared by all of them being colored black. Bottom: – �e four distinct types of geometric

hyperplanes of S.3/, as well as the number of copies per each type, we get by blowing-up

Veldkamp lines of S.2/ of the type shown above the particular sub�gure.

9 6

27 18

H2H1

Figure 4. �e same as in Figure 3, but for extraordinary Veldkamp lines of S.2/ (top) and

their S.3/ blown-up cousins (bottom).
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3.2. S.3/ and its Veldkamp space. �e Segre variety S.3/, known also as the

smallest slim dense near hexagon [29] or the Gray con�guration [30], is a point-

line incidence structure having 27 points and the same number of lines, with three

points per line and the same number of lines through a point. It possesses nine

S.2/’s, arranged into three distinct triples of pairwise disjoint members, each of

which partitions the point-set. Analogously, S.3/ contains three distinguished

spreads of lines; a distinguished spread of lines is a set of nine mutually skew

lines such that each line is incident with all the three S.2/’s from a given triple.2

As already mentioned, S.3/, as an abstract point-line incidence structure, was thor-

oughly analyzed in [25] where it was found that ord-V.S.3// Š PG.7; 2/. As

PG.7; 2/ has 255 points and 10 795 lines (see, e. g., [27]), S.3/ features a total of

255 (ordinary) geometric hyperplanes and 10 795 (ordinary) Veldkamp lines.

Let us �rst focus brie�y on geometric hyperplanes of S.3/, referring the inter-

ested reader to [25] (as well as to Section 6 of [31]) for more details. Disregarding

the extraordinary one, there are �ve distinct types of them, their basic properties

being listed in Table 3 and their representatives depicted in Figure 5; we note that

a type one hyperplane is the singular one, whereas that of type �ve is an ovoid.

Type one hyperplanes, as already pointed out in [25], play a distinguished role in

the sense that a hyperplane of any other type can be expressed as the Veldkamp

sum of several type-one hyperplanes; the smallest such number is then called the

weight of the hyperplane. A type two hyperplane also di�ers from the rest in being

a blow-up of two di�erent kinds of Veldkamp lines of S.2/, viz. those of type 1

ordinary (Figure 3, leftmost) and those of type II extraordinary (Figure 4, right),

with its 36/18 copies originating from the former/latter process; hyperplanes of

any of the remaining four types originate – as it can easily be veri�ed from the

corresponding parts of Figure 3 and Figure 4 – from S.2/-Veldkamp-lines of the

same type.

Regarding hyperplanes as points of the PG.7; 2/ (Š ord-V.S.3//), it can be

demonstrated that those points that correspond to hyperplanes of type one, two and

four, and whose number totals to 135, all lie on a certain Q
C

0 .7; 2/ � PG.7; 2/; note

that these are exactly the three types whose members feature points of maximum

order. It is also worth mentioning here that these three hyperplane types in their

totality correspond to the image, furnished by the Lagrangian Grassmannian of

LG.3; 6/ type, of the set of 135 maximal subspaces of W.5; 2/ [18, 33].

2 In analogy to S.2/, and to be compatible with the approach advanced in [25], we shall

employ a handy descriptive representation of S.3/ as a 3 � 3 � 3 grid (see Figure 1 of [25]).
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Table 3. �e 5 types of (ordinary) geometric hyperplanes of the Segre variety S.3/.

As in Table 1, the �rst column gives the type (‘Tp’) of a hyperplane, which is followed

by the number of points (‘Ps’) and lines (‘Ls’) it contains, and the number of points of

given order. �e next three columns tell us about how many of 9 S.2/’s are fully located

(‘D’) in the hyperplane and/or share with it a hyperplane of type H1 or H2 (see Table 1).

�e VL-column lists the types of (ordinary and extraordinary) Veldkamp lines of S.2/ we

get by projecting a hyperplane of the given type into an S.2/ along the lines of all three

distinguished spreads. Finally, for each hyperplane type we give its cardinality (‘Crd’), the

corresponding large orbit of 2 � 2 � 2 arrays over GF.2/ (‘BS’) taken from Table 3 of [32],

and its weight, or rank in the language of [32] (‘W’).

Points of Order S.2/’s of Type

Tp Ps Ls 0 1 2 3 D H1 H2 VL Crd BS W

1 19 15 0 0 12 7 3 6 0 I 27 2 1

2 15 9 0 6 6 3 1 6 2 II, 1 54 3 2

3 13 6 1 6 6 0 0 6 3 2 108 4 2

4 11 3 4 6 0 1 0 3 6 3 54 5 3

5 9 0 9 0 0 0 0 0 9 4 12 6 3

1 2 3 4 5

Figure 5. A diagrammatic 3 � 3 � 3 grid representation of the types of (ordinary) geometric

hyperplanes of S.3/ (after [25], Figure 2). As in Figure 1, deep points are encircled. Note

that one of the seven deep points of a type-one hyperplane stands on a di�erent footing than

the others, as each line passing through it features deep points; we shall call it the deepest

point.

Next, let us have an informative look at the (ordinary) Veldkamp lines of S.3/.

As already mentioned, there are 10 795 of them and, as found in [25], they fall

into 41 distinct types. �e basic combinatorial characteristics of all the types are

listed in Table 4 and a representative of each type is provided by Figure 6. Con-

cerning extraordinary Veldkamp lines of S.3/, there are obviously as many types

of them as there are types of ordinary geometric hyperplanes of S.3/; we depict

their representatives in Figure 7.
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Table 4. �e types of ordinary Veldkamp lines of S.3/, in the notation set up in Table 2.

A slightly modi�ed reproduction of Table 2 from [25], where the reader is referred to for

detailed explanation of the meaning of all subscripts associated with some cardinalities of

core points and lines (columns two and three).

Core Composition

Tp Ps Ls H1 H2 H3 H4 H5 Crd

1 15 11 3 – – – – 27

2 13 8 2 1 – – – 162

3 12 6 2 – 1 – – 108

4 11 7 1 2 – – – 81

5 10 4 1 1 1 – – 648

6 9 6 – 3 – – – 18

7 9 4 1 – 2 – – 324

8 9.2/ 3c 1 1 – 1 – 324

9 9 3 1 – 2 – – 324

10 9 3p – 3 – – – 18

11 9.3/ 3c – 3 – – – 108

12 8 3 – 2 1 – – 648

13 8 2 1 – 1 1 – 648

14 7 3 1 – – 2 – 27

15 7 2p – 1 2 – – 162

16 7.2/ 2c – 1 2 – – 324

17 7.3/ 2c – 1 2 – – 324

18 7Œ2� 1 – 2 – 1 – 162

19 7Œ1� 1 – 1 2 – – 324

20 7 0 1 – 1 – 1 108

21 7 0 1 – – 2 – 108

22 6 2c – 1 1 1 – 648

23 6 2p – – 3 – – 108

24 6 1 – – 3 – – 648

25 6Œ3� 0 1 – – 1 1 216

26 6Œ2� 0 – 2 – – 1 108

27 6Œ1� 0 – 1 1 1 – 648

28 6Œ0� 0 – – 3 – – 36
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Table 4. (Continued.)

Core Composition

Tp Ps Ls H1 H2 H3 H4 H5 Crd

29 5Œ1� 1 – 1 – 2 – 162

30 5Œ0� 1 – – 2 1 – 648

31 5.2/ 0 – 1 1 – 1 324

32 5.1/ 0 – 1 – 2 – 324

33 5.0/ 0 – – 2 1 – 648

34 4 0 – – 2 – 1 324

35 4.3W1/ 0 – – 1 2 – 216

36 4.2W2/ 0 – – 1 2 – 324

37 3 1 – – – 3 – 54

38 3Œ1� 0 – 1 – – 2 54

39 3Œ0� 0 – – 1 1 1 216

40 2 0 – – – 2 1 108

41 0 0 – – – – 3 4
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1 2

3 4

5 6

13 14

15 16

17 18

7 8

9 10

11 12

19 20

21 22

23 24

Figure 6. A diagrammatic illustration, on a 3 � 3 � 3-grid, of representatives of all 41 types

of ordinary Veldkamp lines of S.3/. As in Figure 3, top, the three geometric hyperplanes

forming a Veldkamp line are distinguished by di�erent coloring, with the points and lines

shared by all of them (the core) being colored black.
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25 26

27 28

29 30

37 38

39 40

41

31 32

33 34

35 36

Figure 6. (Continued.)
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27 54 54108 12

I II III IV V

Figure 7. A diagrammatic 3 � 3 � 3 grid representation of the �ve types of extraordinary

Veldkamp lines of S.3/. Roman numerals stand for the type, whilst Arabic ones denote the

number of members for each type.

3.3. S.4/ and its geometric hyperplanes. �e Segre variety S.4/, known also

as the smallest slim dense near octagon [29], is a point-line incidence structure

having 81 points and 108 lines, with three points per line and four lines through a

point. It possesses 12 S.3/’s, arranged into four distinct triples of pairwise disjoint

members, each of which partitions the point-set. Analogously, S.4/ contains four

distinguished spreads of lines; a distinguished spread of lines is a set of 27 mutu-

ally skew lines such that each line is incident with all the three S.3/’s from a given

triple.

In order to �nd out how many di�erent types of geometric hyperplanes S.4/

is endowed with and what the cardinality is of a given hyperplane type, we shall

make use of a 3 � 3 � 3 � 3 grid (‘hypercube’) representation of S.4/, whose rudi-

ments are sketched in Figure 8, and simply blow-up the representatives of both

ordinary and extraordinary Veldkamp lines of S.3/ whose diagrammatic portray-

als were given in the previous section. In particular, taking a representative of the

Veldkamp line of S.3/ of given type from Figure 6, we �rst blow-up – employing

the procedure illustrated in Figures 3 and 4 – all its nine S.2/-Veldkamp-sublines

into S.3/-hyperplanes to get the character of intersection of the corresponding geo-

metric hyperplane of S.4/ with 9 out of its 12 S.3/’s, and then look up the char-

acter of the remaining three guys in Table 4. Let us illustrate this in more detail

by taking an explicit example of the type-seven Veldkamp line of S.3/, whose

representative sits in row four, column one of Figure 6. Let us name its nine

S.2/-Veldkamp-lines according to the location of the corresponding S.2/’s as left,

right, middle-left-right, top, bottom, middle-top-bottom, front, back, and middle-

front-back. With the help of Figures 3 and 4 we �nd out that the geometric hy-

perplanes of S.3/ we get by the corresponding blow-ups are of type two, one,

four, one, three, three, one, two and four, respectively. From Table 4 we extract

that a type-seven Veldkamp line of S.3/ consists of hyperplanes of type one, three

and three. Summarizing, we get that the geometric hyperplane of S.4/ we get by

blowing-up a representative of a Veldkamp line of S.3/ of type seven will feature

four S.3/’s of type H1 and H3, two S.3/’s of type H2 and H4, and no S.3/’s of type
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H5 or fully located in the hyperplane. To �nd the number points and lines this

particular geometric hyperplane of S.4/ possesses is also quite easy. One simply

keeps in mind that each point colored green, blue and red represents a single point

of the hyperplane, whilst a point colored black (i. e., point of the core) is blown

up into three distinct points of the hyperplane. As the corresponding sub�gure in

Figure 6 has nine black points, we �nd that the hyperplane in question will have

9 � 3 C .27 � 9/ � 1 D 45 points. Similarly, if we take into account that each

green, blue and red line, as well as each black point, is blown up into a single

line of the hyperplane and each black line gives rise to three distinct lines of the

hyperplane, we �nd that the hyperplane must feature 36 lines. We leave it with

the interested reader to ascertain the order of individual points of this particular

hyperplane type. Following the same procedure, we shall arrive at the same type

of geometric hyperplane if we start with a representative of type-eight Veldkamp

line of S.3/ (shown in row four, column two of Figure 6). Concerning the question

of how many distinct copies of this type of hyperplane we have, it su�ces to recall

and generalize our observation from Section 3.1 that an ordinary Veldkamp line of

S.N �1/ gives rise to six di�erent hyperplanes of S.N /. Since our hyperplane, as we

have just seen, originates from two di�erent types of ordinary Veldkamp lines of

S.3/, namely seven and eight, and each of the latter has 324 members (see Table 4),

we �nd that this hyperplane type has as many as 6 � 2 � 324 D 3888 members.

Performing the same analysis with each representative depicted in both Figure 6

and Figure 7, we shall �nd that geometric hyperplanes of S.4/, totaling to 65 535

(= 216 �1 = j PG.15; 2/j) distinct members, fall into 29 di�erent types whose basic

combinatorial properties are collected in Table 5. In the table, the basic ordering

is the same as in Tables 1 and 3, i. e., the types featuring more points/lines precede

those having less ones. However, unlike the previous two cases, we now encounter

two or more types having the same number of point/lines, in which case the �rst

goes that having more deep points; even if this number is the same (for example,

types seven and eight), then we list �rst the one having more points of order three.

One notes in passing that the hyperplane subject to a detailed examination above

belongs to type nine.
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Table 5. �e 29 types of geometric hyperplanes of S.4/; also shown is the partition of hy-

perplane types into 15 classes according to the number of points/lines. As in corresponding

Tables 1 and 3, one �rst gives the type (‘Tp’) of a hyperplane, then the number of points

(‘Ps’) and lines (‘Ls’) it contains, and the number of points of given order. �e next six

columns tell us about how many of 12 S.3/’s are fully located (‘D’) in the hyperplane and/or

share with it a hyperplane of type Hi (see Table 3 above). �e VL-column lists the types of

ordinary and/or extraordinary Veldkamp lines of S.3/ we get by projecting a hyperplane of

the given type into S.3/’s along the lines of all four distinguished spreads. Finally, for each

hyperplane type we give its cardinality (‘Crd’), the corresponding large orbit of 2�2�2�2

arrays over GF.2/ (‘BS’) taken from Table 5 of [32], and its weight/rank (‘W’).

# of Points of Order # of S.3/’s of Type

Tp Ps Ls 0 1 2 3 4 D H1 H2 H3 H4 H5 VL Crd BS W

1 65 76 0 0 0 32 33 4 8 0 0 0 0 I 81 2 1

2 57 60 0 0 12 24 21 2 6 4 0 0 0 II, 1 324 3 2

3 53 52 0 2 12 26 13 1 6 3 2 0 0 III, 2 1296 4 2

4 51 48 1 0 12 32 6 0 8 0 4 0 0 3 648 5 2

5 49 44 0 8 12 16 13 1 3 6 0 2 0 IV, 4 648 6 3

6 47 40 0 4 18 20 5 0 4 4 4 0 0 5 3888 11 3

7 45 36 0 18 0 18 9 1 0 9 0 0 2 V, 6 144 7 3

8 45 36 0 0 36 0 9 0 0 12 0 0 0 10 108 17 4

9 45 36 2 4 18 16 5 0 4 2 4 2 0 7, 8 3888 8 3

10 45 36 0 6 18 18 3 0 3 3 6 0 0 9, 11 2592 9 3

11 43 32 1 8 18 12 4 0 2 4 4 2 0 12, 13 7776 12 3

12 41 28 8 0 24 0 9 0 4 0 0 8 0 14 162 14 4

13 41 28 0 12 18 8 3 0 0 6 4 2 0 15, 18 1944 19 4

14 41 28 0 14 12 14 1 0 1 3 6 2 0 17, 21 2592 15 4

15 41 28 2 8 18 12 1 0 1 3 7 0 1 16, 20 2592 10 3

16 41 28 0 8 24 8 1 0 0 4 8 0 0 19 1944 20 4

17 39 24 4 12 12 8 3 0 1 3 3 4 1 22, 25 5184 16 4

18 39 24 3 12 12 12 0 0 0 4 6 0 2 23, 26 1296 22 4

19 39 24 1 12 18 8 0 0 0 2 8 2 0 24, 27 7776 23 4

20 39 24 3 0 36 0 0 0 0 0 12 0 0 28 216 13 3

21 37 20 4 16 12 0 5 0 0 4 0 8 0 29 972 18 4

22 37 20 4 14 12 6 1 0 0 2 5 4 1 30–32 7776 21 4

23 37 20 3 12 18 4 0 0 0 0 8 4 0 33 3888 24 4

24 35 16 4 20 6 4 1 0 0 0 4 8 0 35 1296 28 5

25 35 16 7 12 12 4 0 0 0 0 6 4 2 34, 36 3888 25 4

26 33 12 12 12 6 0 3 0 0 2 0 6 4 37, 38 648 26 5

27 33 12 11 12 6 4 0 0 0 0 4 4 4 39 1296 29 5

28 31 8 13 16 0 0 2 0 0 0 0 8 4 40 648 27 5

29 27 0 27 0 0 0 0 0 0 0 0 0 12 41 24 30 6
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Figure 8. A tesseract-based frame for visualization of the structure of S.4/; in order to avoid

too crowded appearance of the con�guration, there are only shown 24 (out of 81) points and

44 (out of 108) lines.

Let us make a brief inspection of Table 5 and highlight the most prominent

properties of the hyperplane types. Obviously, a type-one hyperplane is a sin-

gular hyperplane, that is a hyperplane comprising all the points that are not at

maximum distance from a given point; the latter being called the deepest point.

On the other hand, a type-29 hyperplane is an ovoid, that is, a set of 27 mutu-

ally non-collinear points. Next, let us call, adopting the terminology used for near

polygons, a hyperplane of S.4/ homogeneous if all its S.3/’s are of the same char-

acter. From Table 5 we discern that homogeneous hyperplanes are of types 8, 20

and 29; of course, for the extraordinary hyperplane all of its S.3/’s are deep, but

there is no homogeneous hyperplane whose S.3/’s would be all of type H1 or H4.

At the opposite end of the spectrum, there is a type-17 hyperplane, which entails

all types of S.3/’s except for that corresponding to S.3/’s fully located in it. �is is

also a hyperplane type that contains points of all orders; there are other �ve types

enjoying this property, namely 9, 11, 15, 22 and 24. A type-22 hyperplane is also

distinguished by the fact that this is the only type whose each member stems from

three di�erent types of Veldkamp lines of S.3/. �ere are 15 types such that each

originates from two di�erent types of Veldkamp lines of S.3/; each of the remain-

ing 13 types being then a blow-up of a single type of Veldkamp lines of S.3/. We

further observe that there are only three hyperplane types whose representatives

exhibit just a single point of zeroth (i. e. minimum) order, and �ve types with a

single point of the fourth (i. e. maximum) order. It is also worth mentioning that

a hyperplane of type two, three and four, being of weight two, can be obtained as

the Veldkamp sum of any two hyperplanes of type one whose deepest points are

at distance two, three and four, respectively.
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A further inspiring insight into the nature of hyperplane types is acquired

if one looks at distinguished subcon�gurations of the Veldkamp space of S.4/,

V.S.4//. We have already explicitly seen that ord-V.S.N // Š PG.2N � 1; 2/

for 1 � N � 3. It is assumed that this property holds for any N , hence ord-

V.S.4// Š PG.15; 2/. In the latter case there, indeed, exists a speci�c hyperbolic

quadric Q
C

0 .15; 2/ � PG.15; 2/ that is composed of 18 particular types of geomet-

ric hyperplanes shown in Table 6. Comparing the ‘VL’- column of this table with

the information displayed in Table 4 we �nd out that these are precisely hyperplane

types that originate from those types of (ordinary) Veldkamp lines of S.3/ whose

cores feature odd number of points. �is is, however, not the full story as we can

look at those orbits of this particular QC

0 .15; 2/ that in their totality correspond to

the image, furnished by the Lagrangian Grassmannian of type LGr.4; 8/, of the

set of 2295 maximal subspaces of the symplectic polar space W.7; 2/ [18]. �e

corresponding hyperplane types are given in Table 7; note that they are exactly

the types whose members feature no S.3/ of type H3 and H5, each of them also

exhibiting points of maximum order (compare with the S.3/-case).

Table 6. �e types of geometric hyperplanes of S.4/ lying on the unique hyperbolic quadric

Q
C

0
.15; 2/ � PG.15; 2/ that contains the S.4/ (the �rst orbit) and is invariant under its

stabilizer group.

# of Points of Order # of S.3/’s of Type

Tp Ps Ls 0 1 2 3 4 D H1 H2 H3 H4 H5 VL Crd BS W

1 65 76 0 0 0 32 33 4 8 0 0 0 0 I 81 2 1

2 57 60 0 0 12 24 21 2 6 4 0 0 0 II, 1 324 3 2

3 53 52 0 2 12 26 13 1 6 3 2 0 0 III, 2 1296 4 2

5 49 44 0 8 12 16 13 1 3 6 0 2 0 IV, 4 648 6 3

7 45 36 0 18 0 18 9 1 0 9 0 0 2 V, 6 144 7 3

8 45 36 0 0 36 0 9 0 0 12 0 0 0 10 108 17 4

9 45 36 2 4 18 16 5 0 4 2 4 2 0 7, 8 3888 8 3

10 45 36 0 6 18 18 3 0 3 3 6 0 0 9, 11 2592 9 3

12 41 28 8 0 24 0 9 0 4 0 0 8 0 14 162 14 4

13 41 28 0 12 18 8 3 0 0 6 4 2 0 15, 18 1944 19 4

14 41 28 0 14 12 14 1 0 1 3 6 2 0 17, 21 2592 15 4

15 41 28 2 8 18 12 1 0 1 3 7 0 1 16, 20 2592 10 3

16 41 28 0 8 24 8 1 0 0 4 8 0 0 19 1944 20 4

21 37 20 4 16 12 0 5 0 0 4 0 8 0 29 972 18 4

22 37 20 4 14 12 6 1 0 0 2 5 4 1 30–32 7776 21 4

23 37 20 3 12 18 4 0 0 0 0 8 4 0 33 3888 24 4

26 33 12 12 12 6 0 3 0 0 2 0 6 4 37, 38 648 26 5

27 33 12 11 12 6 4 0 0 0 0 4 4 4 39 1296 29 5
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Table 7. Six types of hyperplanes lying on Q
C

0
.15; 2/ that in their totality correspond to

the image of the set of 2295 maximal subspaces of the symplectic polar space W.7; 2/.

Interestingly, one orbit consists of homogeneous hyperplanes, viz. of those whose all S.3/’s

are of type H2.

# of Points of Order # of S.3/’s of Type

Tp Ps Ls 0 1 2 3 4 D H1 H2 H3 H4 H5 VL Crd BS W

1 65 76 0 0 0 32 33 4 8 0 0 0 0 I 81 2 1

2 57 60 0 0 12 24 21 2 6 4 0 0 0 II, 1 324 3 2

5 49 44 0 8 12 16 13 1 3 6 0 2 0 IV, 4 648 6 3

8 45 36 0 0 36 0 9 0 0 12 0 0 0 10 108 17 4

12 41 28 8 0 24 0 9 0 4 0 0 8 0 14 162 14 4

21 37 20 4 16 12 0 5 0 0 4 0 8 0 29 972 18 4

4. Conclusion

Based on the concept of the (generalized) Veldkamp space of a point-line inci-

dence structure, we have had a detailed look at the structure of the Segre va-

rieties that are N -fold direct product of projective lines of size three, S.N / �

PG.1; 2/ � PG.1; 2/ � � � � � PG.1; 2/, for the cases 2 � N � 4. In particu-

lar, given the fact that S.N / D PG.1; 2/ � S.N �1/, we have introduced a dia-

grammatical recipe that shows how to fully recover the properties of Veldkamp

points (i. e. geometric hyperplanes) of S.N / once we know the types (and cardi-

nalities thereof) of Veldkamp lines of S.N �1/. After illustrating this recipe on the

S.1/-to-S.2/ (Section 3.1) and S.2/-to-S.3/ (Section 3.2) cases, we have made use

of it to arrive at a complete classi�cation of types of geometric hyperplanes of

S.4/ (Section 3.3, Table 5). In this latter case, employing the fact that the ordinary

part of Veldkamp space of S.N /, ord-V.S.N //, is isomorphic to PG.2N � 1; 2/,

which is conjectured to hold for any N � 1, we were also able to ascertain (Ta-

ble 6) which types of geometric hyperplanes of S.4/ lie on a particular hyperbolic

quadric Q
C

0 .15; 2/ � PG.15; 2/ Š ord-V.S.4// which contains the S.4/ and is in-

variant under its stabilizer group, as well as to single out those of them (Table 7)

that are mapped, via the Lagrangian Grassmannian of type LG.4; 8/, to the set of

2295 maximal subspaces of the symplectic polar space W.7; 2/.

Finally, we would like to stress the following intriguing fact. In our concep-

tion of the Veldkamp space of a point-line incidence structure, the extraordinary

geometric hyperplane was taken to stand on the same par as any other hyperplane.

Otherwise, as it is readily discernible from Tables 1, 3, and 5, by employing our



330 M. Saniga, H. Havlicek, F. Holweck, M. Planat, and P. Pracna

blow-up recipe it would not only be impossible to recover singular geometric hy-

perplanes of S.N / from the Veldkamp lines of S.N �1/, but, as it is particularly

evident in the N D 4 case (and envisaged to be gradually more pronounced as

N increases), we could not get the correct cardinalities for certain other hyper-

plane types. �e price to be paid for this is that our Veldkamp space is no longer

a ‘homogeneous’ geometry, but it comprises a ‘well-behaving’ ordinary part and

a rather ‘ugly’ extraordinary part. �is is reminding us distantly of a situation

with the concept of an N -dimensional projective space over an associative ring

with unity, R, if one takes the points of this space to be represented by all free

cyclic submodules (FCS’s) of the left module RN C1; here, the ‘ordinary’ part

of the space is generated by unimodular FCS’s, whilst its ‘extraordinary’ part –

which is, however, non-empty only for very speci�c rings, like rings of ternions –

is represented by non-unimodular FCS’s (see, e. g., [34, 35] for some illustrative

examples and [36] for a possible physics behind).
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