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Multi-point functions of weighted cubic maps
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Abstract. We study the geodesic two- and three-point functions of random weighted

cubic maps, which are obtained by assigning random edge lengths to random cubic planar

maps. Explicit expressions are obtained by taking limits of recently established bivariate

multi-point functions of general planar maps. We give an alternative interpretation of the

two-point function in terms of an Eden model exploration process on a random planar tri-

angulation. Finally, the scaling limits of the multi-point functions are studied, showing in

particular that the two- and three-point functions of the Brownian map are recovered as the

number of faces is taken to in�nity.
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1. Introduction

During the last few decades an increasingly intricate picture of the geometry of
random surfaces has emerged. Of particular importance are the multi-point func-
tions that describe the probability distributions of geodesic distances between
random points in the surfaces. �e �rst such two-point function was derived
in [3] in the setting of random planar triangulations by a transfer-matrix approach.
A striking result of this analysis is that in the limit of large triangulations the vol-
ume of a geodesic ball on average does not grow with the square of its radius, but
with its fourth power, providing strong evidence that two-dimensional quantum
gravity possesses a fractal dimension that is di�erent from its topological dimen-
sion.

Later the discovery of a distance-preserving bijection between planar quad-
rangulations and certain labeled planar trees [24, 11] sparked a renewed interest in
the distance statistics of random surfaces. Using this bijection the two-point func-
tion of random planar quadrangulations [6] was established rigorously. It was
extended to more families of planar maps with various restrictions on the degrees
of the faces [12, 9] and recently to bivariate two-point functions of general planar
maps [2, 7], i.e. with prescribed number of vertices and faces. Moreover, a clever
application of an extension of the previously mentioned bijection [20] allowed for
the three-point function, measuring the pair-wise distances between three random
vertices, to be established for random quadrangulations [8]. Very recently, using
the techniques from [2], also this was extended to a bivariate three-point function
for general planar maps [14].

Each of these two- and three-point functions can be seen to have identical
asymptotics (up to normalization of the geodesic distance) in the limit of large
graphs. �is may be viewed as a consequence of the recently proven fact that
various families of random maps, including planar maps with �xed face degrees
[19, 21] and general planar maps [5], converge as metric spaces to a single random
continuous metric space, known as the Brownian map.

In this paper we will study distances in yet another family of planar maps,
namely cubic planar maps, i.e. planar maps for which the vertices all have degree
three. Currently an exact expression for the two-point function of such planar maps
is unknown (although the transfer matrix approach in [18] comes close), likely due
to the fact that the usual distance-preserving bijections are not easily adapted to
a setting where the degree of the vertices is restricted. However, the situation
changes when one adapts the notion of distance in a planar map by introducing
length variables on the edges of the planar maps, the result of which we call a
weighted map. When one takes the edge lengths to be independent exponential
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variables, the associated multi-point functions of weighted maps turn out to be
related to a particular limit of the bivariate multi-point functions of general planar
maps (as we will see in Section 3). �is limit was �rst studied [2] as a non-trivial
scaling limit, known as generalized causal dynamical triangulations, of planar
quadrangulations with �nitely many local maxima of the distance functions to a
marked vertex.

It would be of general interest to �nd out whether random weighted cubic maps
as random metric spaces converge to the Brownian map, when the number of
vertices is taken to in�nity, just like for the previously mentioned families of maps.
Showing this is beyond the scope of this investigation, but once we have the two-
and three-point functions we can at least check that in the scaling limit they agree
with those of the Brownian map, as we will do in Section 8.

�e geometry of random cubic weighted maps is not only interesting in its own
right, but some of its aspects have a direct interpretation in terms of well-known
statistical systems that are generalized to live on a random planar map instead of
a regular lattice. First passage percolation [16] describes distances on the (two-
dimensional) regular lattice for which the lengths of the edges are taken to be
independent (identically distributed) random variables. In the case of exponen-
tially distributed edge lengths this model is known to be closely related to the
Eden model [13], which describes the random growth of a cluster of vertices. It
turns out that, similarly, knowledge of the multi-point functions of weighted cu-
bic maps provides detailed information about the statistics of an Eden model on a
random planar triangulation (see Section 6).

A particularly interesting property of the Eden model on the lattice is that
the �uctuations in the shapes of the clusters are believed to be described by the
Kardar–Parisi–Zhang universality class [17] in a particular scaling limit. An inter-
esting question, which was raised in [22], is whether an analogous scaling limit
exists when the Eden model is coupled to gravity, e.g. by putting it on a random
triangulation or cubic planar map. And if it exists, what are its scaling exponents?
In order to investigate these questions we need an understanding of the relation
between the distance in a weighted cubic map to the graph distance of the corre-
sponding unweighted map. As a �rst step in this direction, we will show how a
particular limit of the derived multi-point functions allow us derive bounds on the
ratio of these distances.

Finally, we should mention the potential relevance of this work to the pro-
gram set out by Miller and She�eld in [22]. �ey propose a Quantum Loewner
Evolution as the scaling limit of the Eden model on a random triangulation and
hope to identify the explored regions of this process with the geodesic balls in
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the Brownian map. Given the close connection between the Eden model on a
random triangulation and the random weighed cubic maps, any evidence of the
convergence of the latter to the Brownian map could be useful in achieving that
goal.

�e paper is organized as follows. In Section 2 we introduce the notion of ran-
dom planar maps with random edge weights and de�ne the corresponding two-
and three-point functions. In Section 3 we show that random weighted cubic maps
(including any number of marked univalent vertices) can be exactly obtained from
uniform random maps, in the limit of large vertex to face ratio, by an operation that
involves the removal of dangling edges and merging of edges that share a bivalent
vertex. �is precise relation is then used in Sections 4 and 5.1 to deduce the two-
and three-point functions of weighted cubic maps with univalent marked vertices
from the explicitly known (bivariate) two- and three point function for uniform
planar maps. In subsequent Sections 5.2 and 5.3 we study various limits of the
three-point functions, which lead to alternative two-point functions, including one
for which the marked vertices have higher degrees (Section 5.2) and one where
the geodesic has a marked vertex (Section 5.3). In Section 6 we study the relation
between the Eden model exploration process on random triangulations and cubic
weighted maps and give an alternative interpretation of the two-point function.
�is interpretation allows us in particular to derive a di�erential equation relat-
ing the two-point functions with marked vertices of arbitrary degree. A general
solution to this di�erential equation is constructed in Section 7. In Section 8 we
determine the scaling limits of the multi-point functions in the grand-canonical
ensemble and compare them to the known expressions for the Brownian map.

2. Random weighted maps

For a planar map m, denote its set of undirected edges by E.m/, its set of directed
edges by EE.m/, and its set of vertices by V.m/. A weighted map .m; L/ 2 X is a
pair consisting of a planar map m and a length function L W E.m/ ! RC. One can
associate to .m; L/ a metric space Xm;L given by the quotient metric space of a
disjoint union of intervals,

Xm;L WD
�

G

e2E.m/

Œ0; L.e/�
�

= �;

where � appropriately identi�es end-points of intervals according to the incidence
relations of m. �e metric space Xm;L comes with a natural measure d� originat-
ing from the Lebesgue measure on the intervals.
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In this paper the edge lengths L.e/ will be independent random variables taken
from an exponential distribution with unit expectation value, i.e. for a �xed planar
map m the probability measure is

Y

e2E.m/

dL.e/ e�L.e/ on R
jE.m/j
C : (1)

A measure on the space of weighted maps X is obtained by taking the product of
this measure and a measure on the space of planar maps M. In general the latter
will be a restriction of the uniform measure �F;n on the spaceMF;n of planar maps
with F faces and n (distinguished and distinct) marked vertices. By “uniform”
we mean that a planar map m carries measure �F;n.¹mº/ D 1=jAut.m/j, where
Aut.m/ is the group of (orientation preserving) automorphisms of m preserving
the marked vertices. Equivalently, one may consider the corresponding measure
on rooted planar maps, i.e. planar maps with a distinguished directed edge, with
measure 1=.2jE.m/j/. However, the root will play no special role in the following
and therefore we choose to stick to unrooted planar maps to reduce notational
clutter. In addition, we will consider (restrictions) of the grand canonical measure
�n on the spaceMn of planar maps with n marked vertices, which includes a factor
of g for each face, i.e.

�n D
1

X

F D1

gF �F;n:

Several subclasses of planar maps will be of importance later. In each case
we will use the notation M�

F;n, with � replaced with some identi�er, to denote a
subset of planar maps equipped with the (appropriate restriction of the) measure
�F;n.m/ and X�

F;n to denote the corresponding weighted maps with the product
measure �F;n.m; L/ of �F;n.m/ and (1). Similar notation will be used for the grand
canonical measures ��

n on M�
n and X�

n.
Let M.3/

F;n be the space of cubic planar maps, where each vertex has degree 3.

More generally, we de�ne the space of almost cubic mapsM.d1;:::;dn/
F;n to contain the

planar maps for which the n marked vertices have degree d1; : : : ; dn, respectively,
while all other are vertices are cubic. �e special case where all marked vertices
have equal degree d will be denoted by M

.d/
F;n.

2.1. Multi-point functions. Given any of these subclasses of planar maps,
we can de�ne the multi-point functions

G�
F;n..Dij /1�i<j �n/ WD

Z

X
�
F;n

d��
F;n.m; L; vi/

Y

1�i<j �n

ı.Dij � dXm;L
.vi ; vj //:

(2)
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In particular, we will consider the two-point function1

G�
F;2.T / D

Z

X
�
F;2

d��
F;2.m; L; v1; v2/ı.T � dXm;L

.v1; v2//; (3)

and the three-point function

G�
F;3.D12; D23; D31/ D

Z

X
�
F;3

d��
F;3.m; L; v1; v2; v3/ ı.D12 � dXm;L

.v1; v2//

ı.D23 � dXm;L
.v2; v3//ı.D31 � dXm;L

.v3; v1//:

(4)

Notice that, by de�nition of the measures d��
F;n, the vertices vi in (3) and (4) are

not allowed to coincide. Similarly one may de�ne the grand canonical multi-point
functions G�

g;n..Dij /1�i<j �n/ by replacing the measure in (2) by ��
n on X�

n.

Remark 1. Another natural two-point function one can assign to weighted maps
is the geometric two-point function

G
geom
F;2 .T / WD

Z

XF;0

d�F;0.m; L/

Z

Xm;L

d�.x1/d�.x2/ ı.T � dXm;L
.x1; x2//; (5)

where � is the natural (Lebesgue) measure on Xm;L. When the points x1, x2

sit in generic positions, one can naturally associate a weighted map in X
.2/
F;n to

.m; L; x1; x2/ by insertion of marked bivalent vertices at the points x1, x2.
As a consequence of the exponential distribution of the edge lengths, the measure
d�F;0.m; L/d�.x1/d�.x2/ is precisely mapped to the measure d�F;2 restricted

to X
.2/
F;n. �erefore G

geom
F;2 .T / D G

.2/
F;2.T / as long as F � 3. Similarly, the

natural generalization of (5) to the three-point function G
geom
F;3 .D12; D23; D31/

agrees with G
.2/
F;3.D12; D23; D31/. Notice that, contrary to G

geom
F;2 .T / and both

G
geom
F;3 .D12; D23; D31/ and G

.2/
F;2.T /, as well as G

.2/
F;3.D12; D23; D31/ are non-zero

for F D 2, which will turn out to be more natural from the combinatorial point of
view.

�e generating function for the number W
.3/

F of rooted cubic planar maps with
F � 3 faces can be found, among other places, in [15] and is given by

1
X

F D3

W
.3/

F gF D 1

2
t3.1 � t /.1 � 4t C 2t2/;

1

2
t.1 � t /.1 � 2t/ D g;

1 �e two- and three-point functions should of course be viewed as distributions on R and
R

3 respectively, but for convenience we will abuse notation and treat them as (generalized) func-
tions. We could have chosen to consider instead the continuous cumulative two- and three-point
functions, for which the ı.�/ is replaced by a step function in (3) and (4), but the equations would
become more cumbersome.
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where the root t D O.g/ is chosen, and W
.3/

F is given explicitly by

W
.3/

F D 22F �3 .3F � 6/ŠŠ

F Š.F � 2/ŠŠ
: (6)

Lemma 1. �e measure �F;n.X
.d/
F;n/ D �F;n.M

.d/
F;n/ of the set of (unrooted) almost

cubic planar maps with F faces and n marked vertices of degree d is given for
d D 3; 2; 1 by

�F;n.M
.3/
F;n/ D 22F �4 .2F � 4/Š.3F � 8/ŠŠ

F Š.2F � 4 � n/Š.F � 2/ŠŠ
.F � 3; 0 � n � 2F � 4/ (7)

�F;n.M
.2/
F;n/ D 22F �4 .3F � 7 C n/Š

F Š.3F � 7/ŠŠ.F � 2/ŠŠ
.F � 2; n C F � 3/ (8)

�F;n.M
.1/
F;n/ D �22F �4Cn .3F � 8 C 2n/ŠŠ

F Š.F � 2/ŠŠ
.F � 1; n C F � 3/ (9)

Proof. A cubic planar map with F � 3 faces has jE.m/j D 3.F � 2/ edges and
jV.m/j D 2.F � 2/ vertices. �erefore n (distinct) vertices can be marked in
.2F � 4/Š=.2F � 4 � n/Š ways and (7) follows directly from (6).

For n � 1 and nCF � 4, any almost cubic planar map inM
.2/
F;n can be obtained

uniquely from a planar map inM
.2/
F;n�1 by inserting a marked bivalent vertex in one

of its .3F � 7 C n/ edges. �erefore �F;n.M
.2/
F;n/ D .3F � 7 C n/�F;n.M

.2/
F;n�1/

and (8) follows from the fact that �F;0.M
.2/
F;0/ D �F;0.M

.3/
F;0/ for F � 3, while

the case F D 2 can be checked by hand. Similarly, for n � 1 and n C F � 4,
any planar map in M

.1/
F;n is uniquely obtained from a planar map in M

.2/
F;n�1 by

inserting a cubic vertex in one of its .3F � 8 C 2n/ edges and connecting it to
a new marked 1-valent vertex. Since the latter vertex can be on either side of the
edge, we �nd that �F;n.M

.1/
F;n/ D 2.3F �8C2n/�F;n.M

.1/
F;n/. Again we deduce (9)

from �F;0.M
.1/
F;0/ D �F;0.M

.3/
F;0/ for F � 3, while the cases F D 1 and F D 2 are

easily checked.

2.2. Properties of the multi-point functions. Based on these results we can
already determine a number of limits and integrals of the multi-point functions (3)
and (4). First of all, let us consider the T ! 0 limit of the two-point function
G�

F;2.T /. It is not hard to see that in this limit the only planar maps .m; L/ 2 X�
F;2

contributing to G�
F;2.T / are those for which the marked vertices v1 and v2 are
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connected by an edge e with length L.e/ ! 0. Hence we may write

G�
F;2.0/ WD lim

T !0
G�

F;2.T /

D lim
T !0

Z

X
�
F;2

d�F;2.m; L; v1; v2/
X

e�¹v1;v2º
ı.T � L.e//;

(10)

where the sum is over edges e connecting v1 and v2.

In the case m 2 X
.1/
F;2 only the planar map m consisting of a single edge will

contribute, leading to

G
.1/
F;2.0/ D ıF;1: (11)

On the other hand, if d � 2 and m 2 X
.d/
F;2 contributes to (10) with an edge

e 2 E.m/, one can contract the edge to obtain a weighted map in X
.2d�2/
F;1 . Since

any weighted map in X
.2d�2/
F;1 can be obtained accordingly in exactly 2d � 2 ways,

we �nd that

G
.d/
F;2.0/ D 2.d � 1/�F;1.X

.2d�2/
F;1 / .d � 2/: (12)

More generally, for d1; d2 � 1 we have

G
.d1;d2/
F;2 .0/ D .d1 C d2 � 2/�F;1.X

.d1Cd2�2/
F;1 /: (13)

One can check that the symmetry factors 1=jAut.m/j in the measure are appro-
priately taken care of in (12) and (13) in the following way. We could have replaced
1=jAut.m/j by 1=d1 and summed over planar maps that are rooted at an edge leav-
ing the �rst vertex v1. Alternatively one can drop the factor 1=d1 and demand
that the root edge is the shortest edge leaving v1. �e symmetry factor in (13) is a
result of the fact that contracting the shortest edge leaving v1 results naturally in
a planar map rooted at a (not necessarily shortest) edge leaving its marked vertex
with degree d1 C d2 � 2. Very similar arguments will be used implicitly in the
derivations to follow.

Finally, from their de�nition one can immediately deduce that the integrals of
the two- and three-point functions are given by

Z 1

0

dT G�
F;2.T / D �F;2.X�

F;2/; (14)

Z 1

0

dD12

Z 1

0

dD23

Z 1

0

dD31G�
F;3.D12; D23; D31/ D �F;3.X�

F;3/:
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3. Weighted maps from general planar maps

Let m 2 MF;n, F C n � 3, be a planar map with F faces and n (distinguished)
marked vertices. We de�ne ˆ.m/ to be the unique maximal submap of m contain-
ing the n marked vertices while all its other vertices have degree larger than one,
which can be obtained from m by repeatedly deleting dangling edges, i.e. edges of
which one of the extremities is unmarked and has degree one. When F C n � 3,
this determines a well-de�ned, idempotent map ˆ W MF;n ! MF;n (see Figure
1).

Given ` > 0, we can associate a weighted map ‰`.m/ WD .m0; L/ to a planar
map m 2 MF;n in the following way. We de�ne the planar map m0 to have vertex
set V.m0/ � V.m/ given by all vertices of m except the unmarked bivalent vertices.
An edge e 2 E.m0/ with length L.e/ D k` from v1 to v2 exists if and only if there
is a chain of edges ¹e1; : : : ; ekº � E.m/ of length k from v1 to v2 such that for
each i D 1; : : : ; k � 1, ei and eiC1 share an unmarked bivalent vertex. Since m0

naturally inherits an embedding from m, the weighted map .m0; L/ is well-de�ned
and unique. �erefore we have a map ‰` W MF;n ! XF;n (see Figure 1).

�e maps ˆ.m/ and (the unweighted version of) ‰` ı ˆ.m/ are closely related
to the so-called core and kernel of the planar map m (see e.g. [23]), respectively,
with the only di�erence that we require the marked vertices to be maintained.

Figure 1. �e maps ˆ W MF;n ! MF;n and ‰` W MF;n ! XF;n applied to a planar map
with F D 6 faces and n D 3 marked vertices.

Let �F;n;x be the discrete measure on the space MF;n of planar maps with F

faces and n marked vertices such that each such planar map m carries measure
xjE.m/j=jAut.m/j.

�eorem 1. �e pushforward measure `.x/3F C2n�6.‰`.x/ ı ˆ/�.�F;n;x/ with
`.x/ D

p
4 � 16x converges weakly as x ! 1=4 from below to the measure �F;n

on the spaceX.1/
F;n of weighted almost cubic maps with n marked univalent vertices.
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Proof. We will �rst determine the discrete measure

Q�F;n;x WD ˆ�.�F;n;x/:

Let m 2 ˆ.MF;n/. Each map in the preimage ˆ�1.m/ can be obtained uniquely
fromm by gluing a (potentially empty) rooted tree in each corner ofm. �e number
of rooted trees with E edges is given by the Catalan number

�

2E
E

�

=.E C 1/ with
generating function .1 �

p
1 � 4x//=2x. Since the number of corners of m equals

2jE.m/j we �nd that

Q�F;n;x.¹mº/ D �F;n;x.ˆ�1.m// D 1

jAut.m/j
�1 �

p
1 � 4x

2x

�2jE.m/j
xjE.m/j: (15)

By construction the discrete measure

Q�F;n;x;` WD `3F C2n�6.‰` ı ˆ/�.�F;n;x/

has support on weighted maps .m; L/ 2 XF;n for which m contains no unmarked
vertices with degree smaller than three and L.e/=` 2 ZC is a positive integer for
each edge e. Using (15) we �nd that for such a weighted map

Q�F;n;x;`.¹.m; L/º/ D `3F C2n�6

jAut.m/j
� .1 �

p
1 � 4x/2

4x

�

P

e2E.m/ L.e/=`

: (16)

Hence for �xed m, the measure of the set of weighted maps .m; L/ with arbitrary
L is given by

`3F C2n�6

jAut.m/j
� 1p

4 � 16x
� 1

2

�jE.m/j
D `3F C2n�6

jAut.m/j
� 1

`.x/
� 1

2

�jE.m/j
: (17)

Using Euler’s formula jV.m/j � jE.m/j C F D 2, one �nds that

jE.m/j � 3F C 2n � 6;

while equality holds if and only if the n marked vertices have degree one and all
other vertices are cubic. �erefore, if we set ` D `.x/ and consider the limit as
x ! 1=4 from below, we �nd in the latter case that (17) converges to 1=jAut.m/j
and to zero otherwise.
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It remains to show that for a �xed planar map m and a continuous function
f W RjE.m/j

C ! R we have

lim
x"1=4

Z

R
jE.m/j
C

f .L/ Q�F;n;x;`.m; dL/ D
Z

R
jE.m/j
C

f .L/�F;n.m; dL/: (18)

To leading order in ` D `.x/, the right-hand side of (16) is given by

1

jAut.m/j
Y

e2E.m/

`.x/e�L.e/

and therefore

lim
x"1=4

Z

R
jE.m/j
C

f .L/d Q�F;n;x;`

D lim
`#0

1

jAut.m/j
X

Ek2ZjE.m/j
C

`jE.m/jf .`Ek/e�`
P

e2E.m/
Eke ;

which indeed gives (18).

Recently, explicit generating functions have been found for the two-point func-
tions [2, 7] and three-point functions [14] for general planar maps with �xed num-
ber of edges and faces. In the following sections, we will show how �eorem 1 can
be used to derive the weighted map multi-point functions from these functions.

4. Two-point function

As in the previous section, let �F;n;x be the discrete measure xjE.m/j=jAut.m/j on
planar mapsm 2 MF;n with F faces and n marked vertices. �e discrete two-point
function GF;x W Z ! R for general planar maps is de�ned as

GF;x.t / WD
Z

MF;2

d�F;2;x.m; v1; v2/ ıt;dm.v1;v2/;

where dm.v1; v2/ is the graph distance between the marked vertices and ıi;j D 1 if
and only if i D j and ıi;j D 0 otherwise. �e corresponding generating function
is denoted by

Gz;x.t / WD
1

X

F D1

zF GF;x.t /:
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In [2, 7, 14] an explicit expression for Gz;x.t / was found, which, borrowing some
notation from [14], reads

Gz;x.t / D log
� Œt C 1�3�;aŒt C 3��;a

Œt ��;aŒt C 2�3�;a

�

; Œt ��;a WD 1 � a � t ; (19)

where � D �.z; x/ D x C O.x2/ and a D a.z; x/ D z C O.x/ are the unique
solutions that are analytic at the origin to

x D �.1 � a�/3.1 � a�3/

.1 C � C a� � 6a�2 C a�3 C a2�3 C a2�4/2
; (20)

z D a.1 � �/3.1 � a2�3/

.1 � a�/3.1 � a�3/
: (21)

�eorem 2. �e two-point functions G
.1/
g;2.T / and G

.2/
g;2.T /, with 0 < g � g� WD

1=.12
p

3/, for almost cubic weighted maps are given by

G
.1/
g;2.T / D @3

T logCg.T /; (22)

G
.2/
g;2.T / D 1

4
.1 C @T /2@3

T logCg.T /; (23)

where

Cg.T / WD † cosh †T C ˛ sinh †T; † WD
r

3

2
˛2 � 1

8
(24)

and ˛ is the largest positive solution to

˛3 � ˛=4 C g D 0; (25)

or explicitly

˛ D 12g

1 � cos
�2

3
arcsin.12

p
3g/

�

C
p

3 sin
�2

3
arcsin.12

p
3g/

�

:

Proof. Let �.T / W RC ! R be a smooth test function with support on some
compact subinterval of RC. �en by de�nition

Z 1

0

dT �.T /G
.1/
F;2.T / D

Z

X
.1/
F;2

d�F;2.m; L; v1; v2/�.dXm;L
.v1; v2//: (26)
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Suppose ` > 0 and let m 2 MF;2 be a planar map with marked vertices v1 and v2.
By construction, the distance dX‰`ıˆ.m/

.v1; v2/ in the weighted map ‰` ı ˆ.m/ is
given by `dm.v1; v2/. �erefore, by �eorem 1 one can express (26) in terms of
GF;x.t / by

Z 1

0

dT �.T /G
.1/
F;2.T /

D lim
x"1=4

`.x/3F �2

Z

MF;2

d�F;2;x.m; v1; v2/�.`.x/dm.v1; v2//

D lim
`!0

1
X

tD1

`3F �2�.`t/GF;x.`/.t /; x.`/ WD .1 � `2=4/=4:

For g > 0 su�ciently small, one can turn this into a relation between the generat-
ing functions G

.1/
g;2.T / and Gz;x.t /,

Z 1

0

dT �.T /G
.1/
g;2.T / D

1
X

F D1

gF
h

lim
`!0

1
X

tD1

`3F �2�.`t/GF;.1�`2=4/=4.t /
i

D lim
`!0

1
X

tD1

`�2�.`t/

1
X

F D1

.`3g/F GF;.1�`2=4/=4.t /

D lim
`!0

1
X

tD1

`�2�.`t/G`3g;x.`/.t /;

(27)

where the second equality is justi�ed by the fact that that there exists a c > 0 and
B > 0 such that

ˇ

ˇ

ˇ

ˇ

ˇ

1
X

tD1

`3F �2�.`t/GF;.1�`2=4/=4.t /

ˇ

ˇ

ˇ

ˇ

ˇ

< c �F;2.X
.1/
F;2/ < c B�F

for all su�ciently small `.

According to (27) we should parametrize x D x.`/ and z D `3g and consider
the limit ` ! 0 for �xed (su�ciently small) g > 0. Equations (20) and (21) are
solved to leading order in ` by

�.`/ D 1 � 2†` C O.`2/; a.`/ D ˛ � †

˛ C †
C O.`/; (28)

where † D
q

3
2
˛2 � 1

8
and ˛ D ˛.g/ is the largest positive solution to (25).
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In particular, one �nds that

lim
`!0

log.ŒT=`��.`/;a.`// D log
�

1 � ˛ � †

˛ C †
e�2†T

�

(29)

for T > 0.

Using (19), we �nd that (27) is equal to

lim
`!0

1
X

tD1

`�2 .3�.`t � `/ C �.`t � 3`/ � 3�.`t � 2`/ � �.`t// logŒt ��.`/;a.`/

D � lim
`!0

1
X

tD1

`�000.`t/ logŒt ��.`/;a.`/

D �
Z 1

0

dT �000.T / log
�

1 � ˛ � †

˛ C †
e�2†T

�

D
Z 1

0

dT �.T / @3
T logCg.T /:

Since by construction G
.1/
g;2.T / is regular as T ! 0, we conclude that G

.1/
g;2.T / D

@3
T logCg.T /.

Let .m; L/ 2 X
.1/
F;2 be a weighted map with F � 2 faces and let e1 and e2 be the

edges incident to the marked vertices. Removing the edges e1 and e2 and marking
the vertex or vertices at their other endpoint, one obtains a weighted map .m0; L0/,
which either (A) has two marked bivalent vertices, i.e. .m0; L0/ 2 X

.2/
F;2, or (B) one

marked 1-valent vertex, i.e. .m0; L0/ 2 X
.1/
F;1 (see Figure 2). �is observation leads

to the decomposition G
.1/
g;2.T / D ge�T C G

.A/
g;2 .T / C G

.B/
g;2 .T /, where the ge�T is

the contribution of the weighted maps with F D 1 faces.

Figure 2. Almost cubic weighted maps with two univalent marked vertices come in two
types. Geodesics are shown in red.
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Notice that we can write

G
.A/
g;2 .T / D 4

Z 1

0

dL0e�L0

Z 1

0

dL1e�L1G
.2/
g;2.T � L1 � L2/; (30)

where the factor of 4 comes from the fact that the edges e1 and e2 can be on either
side of the marked vertices of m0. We can solve (30) for G

.2/
g;2.T /, yielding

G
.2/
g;2.T / D 1

4
.1 C @T /2 G

.A/
g;2 .T /:

On the other hand, it is clear that G
.B/
g;2 .T / will be of the form

G
.B/
g;2 .T / /

Z 1

0

dL0e�L0

Z 1

0

dL1e�L1ı.T � L1 � L2/ D Te�T :

�erefore

.1 C @T /2G
.B/
g;2 .T / D 0

(and .1 C @T /ge�T D 0 of course) and (23) follows.

One can easily calculate

˛ D 1

2
� 2g � 12g2 � 128g3 � 1680g4 C O.g5/;

† D 1

2
� 3g � 21g2 � 246g3 � 3453g4 C O.g5/;

and therefore the �rst few terms of the two-point functions read

G
.1/
g;2.T / D ge�T C g2.6e�T T C 4e�2T � 4e�T /

C g3.18e�T T 2 C 48e�2T T

C 18e�T T C 9e�3T C 40e�2T � 49e�T /

C O.g4/;

G
.2/
g;2.T / D g2e�2T C g3.12e�2T T C 9e�3T � 14e�2T C 9e�T / C O.g4/:
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Let us check some properties of G
.1/
g;2.T / and G

.2/
g;2.T /. First of all, their inte-

grals are given by

Z 1

0

dT G
.1/
g;2.T /

D � @2
T logCg.T /

ˇ

ˇ

T D0

D ˛2 � †2

D g

2˛

D 1

24

�

1 � cos
�2

3
arcsin.12

p
3g/

�

C
p

3 sin
�2

3
arcsin.12

p
3g/

��

;

(31)

Z 1

0

dT G
.2/
g;2.T / D �1

4
.1 C @T /2@2

T logCg.T /
ˇ

ˇ

T D0

D g.1 � 2˛/.5 � 6˛/

32˛
;

(32)

which can be checked to be generating functions of (9) and (8) respectively for
n D 2, con�rming (14).

On the other hand,

G
.1/
g;2.0/ D @3

T logCg .T /
ˇ

ˇ

T D0
D 2˛.˛2 � †2/ D g; (33)

G
.2/
g;2.0/ D 1

4
.1 C @T /2@3

T logCg.T /
ˇ

ˇ

T D0
D g.1 � 2˛/.6˛ � 1/

16˛
: (34)

Clearly the former is in agreement with (11). To see that (34) agrees with (12),
notice that according to (8) we have �n.X

.2/
n / D

�

3g @
@g

� 5
�

�n.X
.1/
n /. Using

@˛
@g

D 4=.1 � 12˛2/, which follows from (25), we can easily check that

Z 1

0

dT G
.2/
g;2.T /

D 1

2

�

3g
@

@g
� 5

�

G
.2/
g;2.0/

is satis�ed by the expressions (32) and (34).

In Section 6 the expression for G
.2/
g;2 will be rederived using a di�erent per-

spective, which will clarify the appearance of the di�erential operator .1 C @T /

and will allow us to derive an expression for G
.3/
g;2.T /.
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5. �ree-point function

5.1. General expression. �e steps in the previous section can be repeated to
obtain the three-point function from its discrete counter part Gz;x.d12; d23; d31/

for general planar maps. It will be convenient to use the parametrization

D12 D S C T; D23 D T C U; D31 D U C S

and to de�ne the corresponding three-point functions

xG�
g;3.S; T; U / WD 2G�

g;3.S C T; T C U; U C S/:

In [14] an explicit expression was found for

Gz;x.d12; d23; d31/

WD
1

X

F D1

zF

Z

MF;3

d�F;3;x.m; v1; v2; v3/ıd12;dm.v1;v2/ıd23;dm.v2;v3/ıd31;dm.v3;v1/:

It can be summarized as2

1 C
s

X

s0D0

t
X

t 0D0

u
X

u0D0

Gz;x.s0 C t 0; t 0 C u0; u0 C s0/ D Feven
z;x .s; t; u/; (35)

s
X

s0D1

t
X

t 0D1

u
X

u0D1

Gz;x.s0 C t 0 � 1; t 0 C u0 � 1; u0 C s0 � 1/ D Fodd
z;x .s; t; u/; (36)

where

Feven
z;x .s; t; u/ WD Œ3��;a.Œs C 2��;aŒt C 2��;aŒu C 2��;aŒs C t C u C 3��;a/2

D
;

Fodd
z;x .s; t; u/ WD �3Œ3��;a.aŒs��;1Œt ��;1Œu��;1Œs C t C u C 3��;a2 /2

D
;

and

D WD Œ2�3�;aŒs C t C 2��;aŒt C u C 2��;aŒu C s C 2��;a

Œs C t C 3��;aŒt C u C 3��;aŒu C s C 3��;a

using the same notation Œt ��;a WD 1 � a� t as before.

2 �e 1 C � is there to compensate for the fact that the irrelevant constant term present in
F

even
z;x .s; t; u/ in [14] was chosen such that Feven

z;x .0; 0; 0/ D 1.
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�eorem 3. �e three-point functions xG.1/
g;3.S; T; U / and xG.2/

g;3.S; T; U / for
weighted cubic maps are given by

xG.1/
g;3.S; T; U / D @S@T @U Fg.S; T; U /;

xG.2/
g;3.S; T; U / D 1

8
.1 C @S /.1 C @T /.1 C @U / xG.1/

g;3.S; T; U /

C G
.2/
g;2.T C U /ı.S/

C G
.2/
g;2.U C S/ı.T /

C G
.2/
g;2.S C T /ı.U /;

(37)

where G
.2/
g;2.T / is two-point function from �eorem 2 and

Fg .S; T; U / WD F even
g .S; T; U / C F odd

g .S; T; U /;

F even
g .S; T; U / WD 1

†2

C2
g.S/C2

g.T /C2
g.U /C2

g.S C T C U /

C2
g.S C T /C2

g.T C U /C2
g.U C S/

;

F odd
g .S; T; U / WD .˛2 � †2/2

†2

sinh2 †S sinh2 †T sinh2 †U yCg.S C T C U /2

C2
g.S C T /C2

g.T C U /C2
g.U C S/

;

yCg.T / WD 2˛† cosh.†T / C .˛2 C †2/ sinh.†T /

and Cg.T / as in (24).

Proof. Setting x D x.`/ D .1 � `2=4/=4, z D `3g, s D S=`, t D T=` and
u D U=`, one can check that we have the following limits for S; T; U; g �xed:

lim
`!0

Feven
`3g;x.`/

.bS=`c; bT=`c; bU=`c/ D F even
g .S; T; U /; (38)

lim
`!0

Fodd
`3g;x.`/

.bS=`c; bT=`c; bU=`c/ D F odd
g .S; T; U /; : (39)

By construction we have the identity
Z T

0

dT 0
Z S

0

dS 0
Z U

0

dU 0 xG.1/
g;3.S 0; T 0; U 0/

D
Z 1

0

dD12

Z 1

0

dD23

Z 1

0

dD31G
.1/
g;3.D12; D23; D31/

�.S � .D12 C D31 � D23/=2/

�.T � .D23 C D12 � D31/=2/

�.U � .D31 C D23 � D12/=2/:
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Application of �eorem 1 shows that the right-hand side can be expressed in terms
of the discrete three-point function Gz;x.d12; d23; d31/ as

Z T

0

dT 0
Z S

0

dS 0
Z U

0

dU 0 xG.1/
g;3.S 0; T 0; U 0/

D lim
`!0

1
X

d12D1

1
X

d23D1

1
X

d31D1

G`3g;x.`/.d12; d23; d31/

�.S 0 � `.d12 C d31 � d23/=2/

�.T 0 � `.d23 C d12 � d31/=2/

�.U 0 � `.d31 C d23 � d12/=2/:

If we decompose the sum according to the parity of d12 C d23 C d31, we get
exactly sums of the form (35) and (36), up to boundary terms which vanish as
` ! 0. �erefore, using (38) and (39), we �nd that

Z T

0

dT 0
Z S

0

dS 0
Z U

0

dU 0 xG.1/
g;3.S 0; T 0; U 0/ D Fg .S; T; U / � 1: (40)

Since Fg.S; T; U / is a smooth function on R
3
C which takes value 1 on the bound-

ary, the three-point function xG.1/
g;3.S; T; U / is non-singular and can be obtained by

di�erentiating (40), i.e.

xG.1/
g;3.S; T; U / D @S@T @U Fg .S; T; U /:

As for the two-point function we will construct xG.2/
g;3.S; T; U / by considering

the operation of removing the edges e1; e2; e3 incident to the marked vertices of a
weighted map .m; L/ 2 X

.1/
F;3. Assuming F � 2, we distinguish two cases: either

(A) no pair of the three edges shares a vertex, or (B) exactly one pair of edges
shares a vertex. It is not hard to see that the three-point function xG.1/

g;3.S; T; U /

decomposes accordingly as

xG.1/
g;3.S; T; U / D xG.A/

g;3 .S; T; U / C xG.B/
g;3 .S; T; U / C 2ge�S�T �U ; (41)

where 2ge�S�T �U is the contribution for F D 1. Suppose in case (B) that e1

and e2 share a vertex v, then S D L.e1/, T D L.e2/ and after removal of the
edges e1 and e2 the remaining weighted map has two 1-valent vertices separated
by a distance U . Hence, we can express xG.B/

g;3 .S; T; U / in terms of the two-point
functions as

xG.B/
g;3 .S; T; U /

D 2e�T �U G
.1/
g;2.S/ C 2e�U �SG

.1/
g;2.T / C 2e�S�T G

.1/
g;2.U / � 6ge�S�T �U ;

(42)
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where the last term is necessary to remove the contribution for F D 1.
On the other hand, similarly to (30), we have

xG.A/
g;3 .S; T; U /

D 8

Z 1

0

dL1e�L1

Z 1

0

dL2e�L2

Z 1

0

dL3e�L3 xG.2/
g;3.S � L1; T � L2; U � L3/:

(43)

Combining (41) with (42) and (33) shows that xG.A/
g;3 .S; 0; 0/ D 0 and therefore (43)

is solved by

xG.2/
g;3.S; T; U / D 1

8
.1 C @S /.1 C @T /.1 C @U / xG.A/

g;3 .S; T; U /

C 1

8
.1 C @T /.1 C @U / xG.A/

g;3 .0; T; U /ı.S/

C 1

8
.1 C @S /.1 C @U / xG.A/

g;3 .S; 0; U /ı.T /

C 1

8
.1 C @S /.1 C @T / xG.A/

g;3 .S; T; 0/ı.U /:

In this expression we may replace xG.A/
g;3 .�; �; �/ with xG.1/

g;3.�; �; �/, because the other
terms in (41) are killed by the derivatives. �e desired expression (37) then follows
from setting

xG.1/
g;3.S; T; 0/ D 2G

.1/
g;2.S C T /;

which follows from
@S@T @U F odd

g .S; T; U /jU D0 D 0

and

@S@T @U F even
g .S; T; U /jU D0 D @S@T @U

C2
g .S C T C U /

C2
g .S C T /

ˇ

ˇ

ˇ

ˇ

ˇ

U D0

D 2@3
S logCg.S C T /:

Remark 2. It is not hard to interpret the split of the 3-point functions into even
and odd parts. Consider a planar map m 2 MF;3 with pair-wise distances
.d12; d23; d31/ between the marked vertices. Two scenarios are possible depend-
ing on whether a vertex v 2 V.m/ exists such that dij D dm.vi ; v/ C dm.vj ; v/.
If such a vertex exists, then d12 C d23 C d31 is necessarily even. Otherwise, in the
limit in whichm is very large, d12Cd23Cd31 is even or odd with equal probability.
Translating to the weighted maps, where geodesics are almost surely unique, this
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means that weighted maps .m; L/ 2 X
.1/
F;3 contribute equally to F even

g .S; T; U / and
F odd

g .S; T; U / except when the three geodesics meet in a point (the geodesics are

“completely con�uent”). In particular, the three-point function xG.1/
g;3;conf.S; T; U /

of weighted maps with completely con�uent geodesics is given by

xG.1/

g;3;conf.S; T; U / D @S@T @U .F even
g .S; T; U / � F odd

g .S; T; U //: (44)

Let us check some integrals of the three-point functions in �eorem 3. First
of all
Z 1

0

dS

Z 1

0

dT

Z 1

0

dU xG.1/
g;3.S; T; U / D Fg .S; T; U /

ˇ

ˇ

1
SD0

ˇ

ˇ

1
T D0

ˇ

ˇ

1
U D0

D g

4˛†2
;

which is precisely the generating function for �F;3.X
.1/
F;3/ in (9). �e measure of

the subset of X.2/
F;3 for which strict triangle inequalities hold is given by

Z 1

0

dS

Z 1

0

dT

Z 1

0

dU
1

8
.1 C @S /.1 C @T /.1 C @U / xG.1/

g;3.S; T; U /

D g
36˛2 � 4˛ C 24g � 1

64˛†2
� 3

4
.˛ � †/;

while for the subset with saturated triangle inequalities (i.e. the second line of (37))
it is

3

Z 1

0

dS

Z 1

0

dT G
.2/
g;2.S C T / D g

3˛ � 3

4˛
C 3

4
.˛ � †/:

Adding these together we �nd

Z 1

0

dS

Z 1

0

dT

Z 1

0

dU xG.2/
g;3.S; T; U / D g

.1 � 2˛/.5 C 6˛ � 24˛2/

64˛†2
;

which is the generating function for �F;3.X
.2/
F;3/ in (8).

5.2. Coincidence limit. We already observed that

xG.1/
g;3.S; T; 0/ D 2G

.1/
g;2.S C T /;

which has the clear interpretation that the vertex v3 must be located somewhere
along the geodesic from v1 to v2. A slightly tedious calculation, which we have
included in the appendix, shows that

@S@U
xG.1/

g;3.S; T; U /
ˇ

ˇ

SDU D0
D xG.1/

g;3.0; T; 0/ D 2G
.1/
g;2.T /:
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�is in turn allows us to evaluate the limit S; U ! 0 (but S; T; U ¤ 0) of
xG.2/

g;3.S; T; U / as given in (37), namely (for T > 0)

lim
S;U !0
S;U ¤0

xG.2/
g;3.S; T; U /

D 1

8
.1 C @S /.1 C @T /.1 C @U / xG.1/

g;3.S; T; U /
ˇ

ˇ

SDU D0

D 1

8
.1 C @T /Œ.1 C @S/ C .1 C @U / C @S@U � 1� xG.1/

g;3.S; T; U /
ˇ

ˇ

SDU D0

D 1

2
.1 C @T /2G

.1/
g;2.T / D 2G

.2/
g;2.T / .T > 0/:

(45)

which, despite its simplicity, is actually not easily interpreted from the geometric
point of view. In particular the two-point function G

.2/
g;2.T / does not arise from

con�gurations with one of the vertices lying on the geodesic connecting the other
two, since S; U ¤ 0 implies that we are enforcing strict triangle inequalities.
Instead we will see now that the important contributions are of the form of those
in Figure 3.

Figure 3. Two possible ways the vertices v1 and v3 can be in�nitesimally close without
violating strict triangle inequalities in a weighted map .m; L; v1; v2; v3/ 2 X

.2/

F;3
. �e two

geodesics of length T connecting v1 and v3 to v2 are colored red.

Let us consider a weighted map .m; L/ 2 X
.2/
F;3 with geodesic distances cor-

responding to S; T; U , where both S and U are in�nitesimally small but posi-
tive. �is corresponds to a situation where two of the marked vertices, say v1 and
v3, are in�nitesimally close, but strict triangle inequalities with the other vertex
v2 are maintained. Two types of con�gurations of the three points are possible
(as is illustrated in Figure 3): (A) either v1 and v3 are adjacent to a cubic vertex
v and dXm;L

.v2; v/ D T , or (B) there is an (in�nitesimally short) edge e connect-
ing v1 and v3 containing a local maximum of the distance function dXm;L

.v2; �/.
In case (A), merging v1 and v3 leads to an almost cubic weighted map with both
a cubic and a bivalent marked vertex separated by a distance T . Moreover, each
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such weighted map can be obtained in precisely two ways, since the same weighted
map would have been obtained if v1 and v3 were interchanged. In case (B), merg-
ing v1 and v2 leads to an almost cubic weighted map with two bivalent vertices
separated by a distance T that is conditioned to be realized by two geodesics.
In fact we may identify

lim
S;U !0

xG.2/
g;3.S; T; U / D 2G

.2;3/
g;2 .T / C 2Gmax

g;2 .T /; (46)

Gmax
F;2 .T / WD

Z

X
.2/
F;1

d�F;1.m; L; v1/
X

x2max.m;L;v1/

ı.T � dXm;L
.v1; x//

where max.m; L; v1/ � Xm;L is the �nite set of local maxima of dXm;L
.v1; �/.

Recall that the two-point function G
.2/
F;2.T / can be identi�ed with the geometric

two-point function G
geom
F;2 .T / de�ned in (5) for F � 3. In fact, we can represent

G
.2/
F;2.T / as

G
.2/
F;2.T / D

Z

X
.2/
F;1

d�F;1.m; L; v1/ j¹x 2 Xm;L W dXm;L
.v1; x/ D T ºj:

For a �xed weighted map the integrand only changes with increasing T when
either a vertex (C1) or a local maximum (�2) is encountered. �erefore, for T > 0,

@T G
.2/
F;2.T / D

Z

X
.2/
F;1

d�F;1.m; L; v1/
�

X

v2V.m/

ı.T � dXm;L
.v1; v//

� 2
X

x2max.m;L;v1/

ı.T � dXm;L
.v1; x//

�

;

which implies the identity

@T G
.2/
g;2.T / D G

.2;3/
g;2 .T / � 2Gmax

g;2 .T /: (47)

Combined with (45) and (46) this leads to

G
.2;3/
g;2 .T / D 1

3
.2 C @T /G

.2/
g;2.T / D 1

12
.2 C @T /.1 C @T /2@3

T logCg .T /; (48)

Gmax
g;2 .T / D 1

3
.1 � @T /G

.2/
g;2.T / D 1

12
.1 � @T /.1 C @T /2@3

T logCg.T /: (49)

We have still not managed to compute the two-point function for purely cubic
weighted maps, but we are getting close and a clear pattern is emerging in the
relation between the two-point functions.
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Figure 4. If the geodesics connecting the three marked vertices of an almost cubic weighted
map .m; L; v1; v2; v3/ 2 X

.2/

F;3
are completely con�uent and U is in�nitesimal (but

nonzero), v3 must be close to a cubic vertex on the geodesic from v1 to v2 but v3 can-
not be on that geodesic.

5.3. Collinear limit. Next let us consider just the limit U ! 0 of xG.2/
g;3.S; T; U /

while S; T > 0 are kept �xed. �is limit is of particular interest when we restrict
to the completely con�uent part of xG.2/

g;3.S; T; U /, i.e.

xG.2/
g;3;conf.S; T; U / WD 1

8
.1 C @S /.1 C @T /.1 C @U / xG.1/

g;3;conf.S; T; U /; (50)

with S; T; U > 0 and with xG.1/

g;3;conf.S; T; U / as in (44). In the limit U ! 0 the
weighted maps .m; v1; v2; v3/ contributing to this three-point function must have
their vertex v3 in�nitesimally close to a vertex v that lies on a geodesic from v1

to v2 with distance S to v1 and T to v2 (see Figure 4). Hence, by integrating over
S while keeping S C T �xed, one �nds that

G
.2/
g;2;vert.T / WD lim

U !0

Z T

0

dS xG.2/
g;3;conf.S; T � S; U /

gives the two-point function for weighted maps with two marked bivalent vertices
connected by a geodesic of length T and a marked cubic vertex on the geodesic.
�e expected number of cubic vertices hV iF;T on a geodesic of length T in a
random weighted map with F faces is then given by

hV iF;T D
G

.2/
F;2;vert.T /

G
.2/
F;2.T /

and, of course, the expected number of edges in the geodesic by hV iF;T C 1.
Moreover, since the number of edges in the geodesic from v1 to v2 gives an upper
bound for the graph distance dm.v1; v2/, the expected graph distance satis�es the
inequality

hdm.v1; v2/iF;T < hV iF;T C 1: (51)
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Using (50) and (44) one �nds

lim
U !0

xG.2/

g;3;conf.S; T � S; U /

D G
.2/
g;2.T / C 1

8
.1 C @S C @T /.1 C @T /@U

xG.1/
g;3;conf.S; T � S; U /

ˇ

ˇ

U D0

and therefore

G
.2/
g;2;vert.T / D T G

.2/
g;2.T /

� 1

2
.1 C @T /@T G

.1/
g;2.T /

C 1

8
.1 C @T /2

Z T

0

dS @U
xG.1/

g;3;conf.S; T � S; U /
ˇ

ˇ

U D0
:

A tedious calculation shows that the latter integral is given by

Z T

0

dS @U
xG.1/

g;3;conf.S; T � S; U /
ˇ

ˇ

U D0

D 4˛T G
.1/
g;2.T / C 8 log

�Cg.T /

†

�

@3
T log

� yCg.T /

Cg.T /

�

� 4 sinh.†T /yCg.T /@T

�@2
T log yCg .T /

Cg.T /2

�

:

�e explicit expression for G
.2/
g;2;vert.T / is perhaps of little interest, but it will allow

us in Section 8 to obtain a simple expression for the scaling limit of the expected
number of vertices on a geodesic.

6. Relation to the Eden model on random triangulations

Given a planar map m we de�ne an exploration process of length k to be a se-
quence e D ..Vt ;Et//

k
tD0 of pairs consisting of subsets of explored vertices

Vt � V.m/ and subsets of explored edges Et � E.m/ satisfying the following
properties:

(1) both endpoints of each edge e 2 Et are contained in Vt I

(2) for each t D 1; : : : ; k, there exists an edge e … Et�1 such that at least one of
its endpoints is in Vt�1 and Et D Et�1 [ ¹eº.
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For each t D 0; : : : ; k we de�ne the subset of frontier edges EFt � EE.m/ to contain
the directed edges that start at vertices in Vt , but of which the unoriented versions
are not in Et (see Figure 5). An exploration process is complete if Ek D E.m/.
An exploration process started at a vertex v is an exploration process with
V0 D ¹vº and E0 D ;. Finally, by an exploration process of m started at an
edge e we mean an exploration process of m1 started at vertex v, where m1 is
obtained from m by inserting a bivalent vertex v in edge e (see Figure 5 for an
example).

Figure 5. �e top row shows an example of an Eden model exploration process of length 3
started at an edge of a cubic planar map. Explored edges and vertices are colored red and
the green arrowed edges represent the oriented frontier edges. �e bottom row shows the
same exploration process from the point of view of the dual triangulation.

Clearly, an exploration process is fully determined by an initial pair .V0;E0/

and a (deterministic or probabilistic) algorithm that selects a frontier edge at each
step t . �e Eden model exploration process corresponds to the probabilistic algo-
rithm that selects a frontier edge uniformly at random from EFt at each step t . One
can either consider a complete Eden model process or stop the process according
to some algorithm. Of particular interest is the Eden model exploration process
with stopping weight w, where at each time t the process is stopped with proba-
bility w=.j EFt j C w/. Instead of just choosing a frontier edge uniformly at random,
this comes down to randomly selecting either a frontier edge, each with weight 1,
or to stop with weight w.

It is well known that the Eden model exploration process on a planar map m

is closely related to the geodesic balls in m when the edge lengths are taken to
be exponential random variables. To be precise, let V0 � V.m/ be a subset of the
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vertices of m, and let L W E.m/ ! RC be random edge lengths as in (1). De�ne
the max-distance dXm;L

.e;V0/ of an edge e 2 E.m/ to the set V0 to be

dXm;L
.e;V0/ D max

x2e
min
v2V0

dXm;L
.x; v/;

where by x 2 e we mean that x 2 Xm;L is contained in the interval associated
to the edge e. Almost surely the values dXm;L

.e;V0/, e 2 E.m/, are distinct and
therefore we can uniquely identify a complete exploration process eL by setting
En, 0 � n � jE.m/j, equal to the set of n edges which have smallest max-distance
dXm;L

.�;V0/. Moreover, one obtains an exploration process eL;w of random length
k by sampling in addition an exponentially distributed random variable T with
expectation value 1=w, and stopping eL;w after k steps where k is the number of
edges with max-distance dXm;L

.�;V0/ smaller than T .

Lemma 2. �e random exploration process eL;w described above is identical in
law to the Eden model exploration process with stopping weight w started at V0.

Proof. Let k � 0 be the length of the exploration process eL;w . It su�ces to check
that the conditional probabilities

P.k � t and Et D E0 [ ¹eº j k � t � 1 and Et�1 D E0/ (52)

agree for all 1 � t � jE.m/j, and all possible E0 � E.m/ and edges e. Notice
that by construction this probability for the Eden model is 0, 1=.j EFt�1j C w/,
or 2=.j EFt�1j C w/, depending on whether respectively none, one, or two of the
orientations of e are in the frontier EFt�1.

Let us consider the exploration process eL;w conditioned as in (52). If we
de�ne

T0 WD max
e02Et�1

dXm;L
.e0;V0/ and T1 WD min

e02 EFt�1

dXm;L
.e0;V0/; (53)

then the condition is equivalent to T0 � T and T0 < T1. For each edge e0 2 E.m/

that has at least one of its orientations in EFt�1 let us de�ne �T .e0/ as follows. If
e0 2 E.m/ has precisely one of its orientations in EFt�1 and v is the endpoint of e0

for which v 2 Vt�1, let

�T .e0/ WD L.e0/ � T0 C dXm;L
.v;V0/: (54)
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On the other hand, if both orientations of e0 are in EFt�1 and v; v0 2 Vt�1 are its
endpoints, let

�T .e0/ WD 1=2.L.e0/ � 2T0 C dXm;L
.v;V0/ C dXm;L

.v0;V0//: (55)

Since T1 �T0 D mine0 �T .e0/, the condition T0 < T1 is equivalent to �T .e0/ > 0

for all e0. Since the L.e0/ were originally independently, exponentially distributed
with expectation value 1, with this condition the �T .e0/ are exponentially dis-
tributed with expectation value 1 in the case of (54) and expectation value 1=2 in
the case of (55). In particular, T1 � T0 is exponentially distributed with expecta-
tion value 1=j EFt�1j and the situation T1 � T0 D �T .e0/ occurs with probability
1=j EFt�1j, respectively 2=j EFt�1j for an edge e0 with one, respectively two, orienta-
tions in e0 2 EFt�1.

Moreover, since T was exponentially distributed with expectation value 1=w,
conditioned on T > T0 the probability that T > T1 is equal to j EFt�1j=.j EFt�1jCw/.
Combining these probabilities we recover the probabilities mentioned above for
the Eden model.

Lemma 3. Given a planar map m, two distinct vertices v1; v2 2 V.m/ and w 2
RC, the following three probabilities are equal, where e is an Eden model explo-
rations process on m:

(a) the probability that e reaches v2, i.e. v2 2 Vk , when e is started at v1 and has
stopping weight wI

(b) the probability that the submap explored by e eventually becomes connected,
when e is started at V0 D ¹v1; v2º and has stopping weight 2wI

(c) the probability Pm;w.v1; v2/ that dXm;L
.v1; v2/ < T , when T is an exponen-

tially distributed random variable with expectation value 1=w and the edge
lengths L W E.m/ ! RC are independently and exponentially distributed
with expectation value 1.

Proof. Notice that the last probability Pm;w.v1; v2/ is also the probability that an
edge e 2 E.m/ exists that has v2 as its endpoint and for which the max-distance
dXm;L

.e; v1/ < T . By Lemma 2 this is exactly the probability of (a). Second,
observe that dXm;L

.v2; v1/ < T is equivalent to the condition that the set of edges
e for which dXm;L

.e; ¹v1; v2º/ < T=2 comprises a connected submap containing
v1 and v2, but by Lemma 2 this is equivalent to situation (b).

In the following we will simply refer to this probability as Pm;w.v1; v2/ and
we will use the convention Pm;w.v1; v2/ D 0 when v1 D v2.



Multi-point functions of weighted cubic maps 29

Using these results we can interpret the two-point functions of weighted maps
in terms of the Eden model exploration processes. Indeed, the sum of the proba-
bilities Pm;w.v1; v2/ over all .m; v1; v2/ 2 M�

F;2 is equal to the Laplace transform
yG�

F;2.w/ of the corresponding two-point function G�
F;2.T /, i.e.

Z

M
�
F;2

d�F;2.m; v1; v2/Pm;w.v1; v2/ D
Z

X
�
F;2

d�F;2.m; L; v1; v2/e
�wdX

m;L
.v1;v2/

D
Z 1

0

dT e�wT G�
F;2.T / DW yG�

F;2.w/:

(56)

For instance, we can compute explicitly the Laplace transforms of G
.1/
g;2.T / and

G
.2/
g;2.T / as follows. We have

Z 1

0

dTe�wT @2
T logCg.T / D †2.†2 � ˛2/

Z 1

0

dT
e�wT

.† cosh †T C ˛ sinh †T /2

D �4†2ˇ

Z 1

0

dT
e�wT �2†T

.1 � ˇe�2†T /2

D �2†ˇ

Z ˇ

0

dx

x

.x=ˇ/
w

2†
C1

.1 � x/2

D �2†ˇ� w
2† Bˇ

�

1 C w

2†
; �1

�

;

where we de�ned ˇ WD .˛ � †/=.˛ C †/ and Bˇ .a; b/ is the incomplete beta
function. �erefore, using (22) and (23) and partial integrations to take care of the
additional derivatives, we �nd

yG.1/
g;2.w/ D ˛2 � †2 � 2w†ˇ� w

2† Bˇ .1 C w

2†
; �1/;

yG.2/
g;2.w/ D 1

4
.1 C w/2 yG.1/

g;2.w/ � 1

4
.2 C w C @T /G

.2/
g;2.T /jT D0

D 1 � 4†2

48

�

.w � ˛ C 1/2 C 2˛2 � 2˛ C 1

4

�

� w.1 C w/2

2
†ˇ� w

2† Bˇ

�

1 C w

2†
; �1

�

:

(57)
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Given .m; v1/ 2 M
.2/
F;1 and e 2 E.m/, let m0 2 m

.2/
F;2 be the weighted map

obtained from m by inserting a bivalent vertex v2 in the edge e. �en Pm
0;w.v1; v2/

is equal to the probability P.e 2 Ek/ that the edge e is explored in an Eden model
exploration process with stopping weight w on m started at v1. �is means that we
can interpret yGF;2.w/ as a sum over expectation values of the number of explored
edges. To be precise, we have the following result.

�eorem 4. Let m be a uniformly random rooted cubic planar map with F � 3

faces. �e expected length hkiF;w of an Eden model exploration process with
stopping weight w started at the root edge is

hkiF;w D 24�2F F Š.F � 2/ŠŠ

.3F � 6/ŠŠ
ŒgF � yG.2/

g;2.w/; (58)

where ŒgF � yG.2/
g;2.w/ is the coe�cient of gF in (57).

Proof. �is is a simple combination of the remark above and (8) with n D 1.

For instance, the expectation values for F D 3 and F D 4 faces are

hki3;w D � 7

w C 2
C 9

2.w C 3/
C 6

.w C 2/2
C 9

2.w C 1/
;

hki4;w D � 37

4.w C 2/
C 27

8.w C 3/
C 9

4.w C 4/
� 21

4.w C 2/2

C 81

8.w C 3/2
C 9

.w C 2/3
C 45

8.w C 1/
C 27

8.w C 1/2
:

Figure 6. (a) A possible state of an exploration process at time t with an unexplored marked
vertex represented by an open dot. (b) �e explored submap mt at time t with two external
vertices of which one is distinguished. (c) �e unexplored submap represented by the dis-
tinguished external vertex. An exploration process starting at the red vertex of this planar
map has the same probability of reaching the marked vertex as the one in (a) (given its
current state).
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Let e D ..Vt ;Et//
k
tD0 be an Eden model exploration process on a planar mapm.

We de�ne the explored submap at time t to be the planar map mt obtained from
the submap m0

t of m with edges Et by inserting a new marked vertex, called an
external vertex, in each face ofm0

t that contains at least one frontier edge and a new
edge starting at the starting corner of each frontier edge in EFt and ending at one of
the external vertices (see Figure 6b). To each external vertex v we can associate
the unexplored submap represented by v, which is given by contracting the edges
of m that do not lie in the interior of the face of m0

t corresponding to v to a single
marked vertex (see Figure 6c). In case m possesses an unexplored marked vertex
v1, it is contained in a unique unexplored submap, which can then be regarded as
having two marked vertices (the red dot and the open dot in Figure 6c).

Lemma 4. Let .m; v1; v2/ 2 M
.d1;d2/
F;2 be a random planar map (with respect

to the measure �F;2) and let e D ..Vt ;Et//
k
tD0 be an Eden model exploration

process started at v1 with stopping weight w. For t � 0, conditioned on k � t ,
on v2 … Vt , on the explored submap mt at time t , and on the unexplored submap

containing v2 being a member of M
.d 0

1
;d2/

F 0;2 , the probability that e reaches v2 equals
the probability that a similar exploration process started at v0

1 on a random planar

map .m0; v0
1; v0

2/ 2 M
.d 0

1
;d2/

F 0;2 with respect to the measure �F 0;2 reaches v0
2.

Proof. Let .m; v1; v2/ and e be conditioned as above. By Lemma 2 the described
probability P is equal to the probability that dXm;L

.Vt ; v2/ < T for random edge
lengths L and and an exponential random T with mean 1=w. Since the shortest
path from v2 toVt in Xm;L is necessarily contained in the face ofm0

t corresponding
to the external vertex v, its random length is identical in law to the distance be-
tween the marked vertices in the unexplored submap .m0; v0

1; v2/ if its edge lengths
are chosen randomly with the same distribution. �erefore P is equal to the prob-
ability that an Eden model exploration process started at v0

1 on m0 reaches v2. �e

result follows by noting that, for �xed F 0 and d 0
1, each .m0; v0

1; v0
2/ 2 M

.d 0
1

;d2/

F 0;2 can
occur as unexplored submap and the probability distribution agrees with that of
the measure �F 0;2.

For convenience let us introduce the notation G
.d1;d2/
F;2;r .T / for the rooted two-

point function of almost cubic maps with one of the edges starting at v1 marked
as root edge, which is given by

G
.d1;d2/
F;2;r .T / WD d1 G

.d1;d2/
F;2 .T /
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and corresponding Laplace transform yG.d1;d2/
F;2;r .w/. Similarly, we de�ne the rooted

one-point function as
W

.d1/
F WD d1 �F;1.M

.d1/
F;1 /;

with the convention that W
.0/

F D ıF;1. Notice that, with this convention, (13)
implies that

G
.d1;d2/
F;2;r .0/ D d1 W

.d1Cd2�2/
F .d1; d2 � 1/: (59)

Finally, let us introduce the generating functions

Gg;r.z1; z2I T / WD
1

X

F D1

1
X

d1D1

1
X

d2D1

gF z
�d1�1
1 z

�d2�1
2 G

.d1;d2/
F;2;r .T / (60)

and

Wg.z1/ WD
1

X

F D1

1
X

d1D0

gF z
�d1�1
1 W

.d1/
F : (61)

Proposition 1. For d1; d2 � 1, the rooted two-point functions satisfy the equations

.d1 C @T /G
.d1;d2/
F;2;r .T /

D d1 G
.d1C1;d2/
F;2;r .T / C 2d1

F �1
X

F 0D1

d1�2
X

d 0
1

D1

W
.d1�d 0

1
�2/

F �F 0 G
.d 0

1
;d2/

F 0;2;r .T /;
(62)

and their generating functions satisfy

@

@T
Gg;r.z1; z2I T / D @

@z1

Œ.z1 � z2
1 � 2Wg.z1//Gg;r.z1; z2I T /�: (63)

Proof. Let us inspect the �rst step of an Eden model exploration process e with
stopping weight w started at the vertex v1 of a random .m; v1; v2/ 2 M

.d1;d2/
F;2 . With

probability w=.d1 C w/ the process is killed immediately. Otherwise E1 D ¹eº
and e is an edge starting at v1 and ending at v0

1. �ree situations are now possible:
(A) v0

1 D v2, (B) v0
1 ¤ v2 and v0

1 ¤ v1, or (C) v0
1 D v1. �e probability P that e

reaches v2 decomposes accordingly as

P WD
yG.d1;d2/

F;2;r .w/

yG.d1;d2/
F;2;r .0/

D d1

d1 C w
.PA C PB C PC / : (64)

In case (A), e necessarily reaches v2 therefore PA is simply the probability of
case (A) occurring, which is

PA D W
.d1Cd2�2/

F

yG.d1;d2/
F;2;r .0/

D
G

.d1;d2/
F;2;r .0/

d1
yG.d1;d2/

F;2;r .0/
;

where we used (59).
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In case (B), the explored submap at time t D 1 contains one external vertex
of degree d1 C 1 representing an unexplored submap with F faces. Applying
Lemma 4 we �nd

PB D
yG.d1C1;d2/

F;2;r .w/

yG.d1;d2/
F;2;r .0/

:

In case (C), which can only occur when d1 � 3 and F � 2, the explored
submap at time t D 1 contains two external vertices, v and v0. �e sum of the
degrees of the external vertices is d1 � 2 and the total number of faces in both
unexplored submaps is F . �erefore, the probability that (C) occurs and that v2 is
in the unexplored submap represented by v with 1 � F 0 < F faces and v having
degree 1 � d 0

1 � d1 � 2 is

W
.d1�d 0

1
�2/

F �F 0
yG.d 0

1
;d2/

F 0;2;r .0/

yG.d1;d2/
F;2;r .0/

:

Hence, using Lemma 4,

PC D 2

F �1
X

F 0D1

d1�2
X

d 0
1

D1

W
.d1�d 0

1
�2/

F �F 0
yG.d 0

1
;d2/

F 0;2;r .w/

yG.d1;d2/
F;2;r .0/

;

where the factor of 2 comes from the fact that v2 can be in either of the two unex-
plored submaps.

Plugging the probabilities PA, PB , and PC into (64) leads to

.d1 C w/ yG.d1;d2/
F;2;r .w/ � G

.d1;d2/
F;2;r .0/

D d1
yG.d1C1;d2/

F;2;r .w/ C 2d1

F �1
X

F 0D1

d1�2
X

d 0
1

D1

W
.d1�d 0

1
�2/

F �F 0
yG.d 0

1
;d2/

F 0;2;r .w/;
(65)

but this is exactly the Laplace transform of equation (62). By plugging (60)
and (61) into (63) one can easily check that (63) is equivalent to (62).

For d1 � 2, the sum in (62) vanishes and therefore Proposition 1 implies

G
.2;d/
F;2 .T / D 1

2
.1 C @T /G

.1;d/
F;2 .T /;

G
.3;d/
F;2 .T / D 1

3
.2 C @T /G

.2;d/
F;2 .T /:

Hence, we recover (48) and moreover we obtain the following.
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Corollary 1. �e two-point function G
.3/
g;2.T / for weighted cubic maps is given by

G
.3/
g;2.T / D 1

36
.2 C @T /2.1 C @T /2@3

T logCg.T /;

with Cg.T / as in �eorem 2.

Remark 3. In principle one can apply similar techniques to obtain the three-point
function xG.3/

g;3.S; T; U / from xG.2/
g;3.S; T; U /. However, this requires a non-trivial

investigation of edge-cases and an extension of Lemma 4 to disconnected explored
submaps. We leave this to future investigation.

Remark 4. Except for the statement in Lemma 4, we have not utilized the gen-
eral Markovian properties that the exploration process most likely possesses. For
instance, most of the results for the Eden model exploration process, like that of
�eorem 4, should hold for any exploration process governed by a (deterministic
or probabilistic) algorithm that selects a frontier edge independently of the un-
explored part of the planar map. See e.g. [4] for an investigation in the case of
in�nite planar triangulations.

7. General two-point function

Equations very similar to (63) already appeared in [25, 3] (see also [1] Section
4.7.2) and were used to derive the continuum expression for the two-point function
of triangulations for the �rst time. In fact, (62) and (63) are identical to (4.336) and
(4.337) in [1] after a renormalization of the parameters g ! p

g and zi ! zi=
p

g

to go from a factor of g per vertex to a factor of g per face. It was shown in [3]
that (63) can be solved explicitly once Wg.z/ is known and an initial condition
at T D 0 is given. It should be noted that the di�erential equations in [3, 1] are
written in terms of the two-loop function, which in terms of our weighted cubic
maps should be interpreted as an adapted two-point function with the condition
on the contributing maps that the geodesic distance to the �rst marked point is
decreasing along each edge leading away from the second marked point. Both
satisfy the same equation but with di�erent initial conditions. �erefore we can
recycle the derivation in [3, 1] using the initial condition (59), which in terms of
the generating functions reads

Gg;r.z1; z2I 0/ D @

@z1

� 1

z2

Wg.z2/ � Wg.z1/

z2 � z1

�

: (66)
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�e rooted one-point function Wg.z/, which in the literature is often called
the disk function of random triangulations, is well-known and is, for instance,
easily calculated using matrix models (see e.g. [10]) or loop equations (see e.g.
[1] Section 4.2). In our notation it takes the form

Wg.z/ D 1

2

�

z � z2 C .z � ˛ � 1

2
/

r

.z C ˛ � 1

2
/2 � 2g=˛

�

;

which can be checked to fall o� like g=z as z ! 1.
�e standard approach to solving the linear �rst-order partial di�erential equa-

tions like (63) is through the method of characteristics, i.e. we �rst solve the ordi-
nary di�erential equation

Oz0
1.T / D Oz1.T / � Oz1.T /2 � 2Wg. Oz1.T //; Oz1.0/ D z1: (67)

One can check that in the z1 ! 1 limit the solution is given by

Oz.T / D ˛ C 1

2
C †2

sinh.†T /Cg.T /
; (68)

which is monotonically decreasing and approaches ˛ C 1
2

as T ! 1. �e general
solution for z1 > ˛ C 1=2 is therefore given by

Oz1.T / D Oz.T C Oz�1.z1//: (69)

�e unique solution to (63) with initial condition (66) is then simply

Gg;r.z1; z2I T / D @

@z1

� 1

z2

Wg.z2/ � Wg. Oz1.T //

z2 � Oz1.T /

�

: (70)

We conclude that the generating function Gg .z1; z2I T / for unrooted two-point
functions is

Gg.z1; z2I T / WD
1

X

d1D1

1
X

d2D1

z
�d1�1
1 z

�d2�1
2 G

.d1;d2/
g;2 .T /

D �1

z1z2

�Wg .z2/ � Wg. Oz1.T //

z2 � Oz1.T /
� Wg.z2/ � Wg. Oz.T //

z2 � Oz.T /

�

;

where the second term is needed to ensure limz1!1 z1Gg.z1; z2I T / D 0. One can
check explicitly that this expression is symmetric in z1 and z2 and that it repro-
duces the previously derived two-point functions. Let us illustrate the case where
the second marked vertex is univalent, corresponding to the coe�cient of z�2

2 in
Gg .z1; z2I T /. Combining (67) and (68) one may deduce that

@T Wg. Oz.T // D 1

2
@T . Oz0.T / � Oz.T / C Oz.T /2/ D @3

T logCg.T / D G.1/
g .T /:
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Using the explicit expansion

Oz�1.z1/ D 1

z1

C 1

2z2
1

C 1

3z3
1

C O.z�4
1 /;

one �nds that

Œz�2
2 �Gg.z1; z2I T /

D 1

z1

ŒWg. Oz1.T // � Wg. Oz.T //�

D 1

z1

h

Wg. Oz.T C 1

z1

C 1

2z2
1

C 1

3z3
1

C : : :// � Wg. Oz.T //
i

D G.1/
g .T /z�2

1 C 1

2
.1 C @T /G.1/

g .T /z�3
1

C 1

6
.2 C @T /.1 C @T /G.1/

g .T /z�4
1 C O.z�5

1 /;

in agreement with the formulas in Section 4.

8. Large graph limits

All generating functions that we have encountered have a radius of convergence
equal to g� D 1

12
p

3
and are non-analytic at g D g�. As usual one can study the

asymptotic growth of their coe�cients by expanding around g D g�. Writing

g D g�.1 � 24�2/

and expanding ˛ and † around � D 0 yields

˛ D 1

2
p

3
C 2�p

3
� 4�2

3
p

3
C O.�3/;

† D �
1
2 C 2

3
�

3
2 � �

5
2 C O.�

7
2 /:

8.1. Scaling limit. If in addition we scale distances like T D T0�� 1
2 we �nd that

Cg.T / D 1p
12

sinh T0 C 2
p

� cosh T0 C O.�/
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and the various two-point functions are two leading order given by

G
.1/
g;2.T / D 2

cosh T0

sinh3 T0

�
3
2 C O.�2/; (71)

G
.2/
g;2.T / D 1

2

cosh T0

sinh3 T0

�
3
2 C O.�2/;

G
.3/
g;2.T / D 2

9

cosh T0

sinh3 T0

�
3
2 C O.�2/:

Up to numerical factors these agree exactly with the scaling of the two-point func-
tions of triangulations [3], quadrangulations [6] and general planar maps [2, 7, 14].
Hence, in the large F limit, the distribution of distances between the marked ver-
tices agrees with that of the Brownian map.

On the other hand F even
g .S; T; U / and F odd

g .S; T; U / are identical to leading
order,

F even=odd
g .S; T; U /

D 1

12

sinh2 S0 sinh2 T0 sinh2 U0 sinh2.S0 C T0 C U0/

sinh2.S0 C T0/ sinh2.T0 C U0/ sinh2.U0 C S0/
��1 C O.�� 1

2 /;
(72)

while the leading orders of xG.1/
g;3.S; T; U / and xG.2/

g;3.S; T; U / are obtained by acting

on (72) with �
3
2 @S0

@T0
@U0

and 1
8
�

3
2 @S0

@T0
@U0

respectively. Again we observe that
in the scaling limit, up to numerical factors, the two- and three-point functions
agree exactly with those of quadrangulations [8] and general planar maps [14].

One can check that

lim
U !0

xG.2/
g;3;conf.S; T � S; U / D 1

2

�

1 C 1p
3

� cosh T0

sinh3 T0

�
3
2 C O.�2/

D
�

1 C 1p
3

�

G
.2/
g;2.T / C O.�2/:

(73)

Hence

G
.2/
g;2;vert.T / D

�

1 C 1p
3

�

T G
.2/
g;3.T / C O.�

3
2 /: (74)

We will discuss the consequences of this simple relation in (9).

8.2. Local limit. Finally, let us have a look at the F ! 1 limit of the two-point
function G

.1/
F;2.T / while keeping T �xed, also known as the local limit of G

.1/
F;2.T /.

It can again be found by scaling g D g�.1 � 24�2/ in G
.1/
g;2.T / and determining
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the �rst non-analytic term in the expansion in �, which turns out to be the one
proportional to �3. Performing this calculation shows that to leading order in F ,

G
.1/
F;2.T / � F � 5

2 .12
p

3/F

630
p

2�

�

3C23T 0C30T 02C10T 03� 3

.1 C T 0/4

�

; T 0 D T

2
p

3
;

while analogous formulas for G
.2/
F;2.T / and G

.3/
F;3.T / are obtained by taking deriva-

tives with respect to T .
As an application one may obtain the F ! 1 limit of the expected length

hkiF;w of an Eden model exploration process with stopping weight w started at
the root edge of a random cubic planar map with F faces. Using �eorem 4 we
�nd

lim
F !1

hkiF;w D p0.w/

w4
� 144

p
3

35
w3.1 C w/2e�2

p
3wEi.2

p
3w/;

where Ei.�/ is the exponential integral function and p0.w/ is the eighth-order poly-
nomial

p0.w/ D 1

35
.5 C 10w C 28w2 C 46w3 � 24w4 � 24w5

� 84w6 � 144w7 � 72w8

C 2
p

3 w.1 C w/2.5 C 3w2 C 6w4//:

9. Discussion

We have derived explicit expressions for the two- and three-point functions for ran-
dom (almost) cubic maps with exponential edge weights. In the grand-canonical
scaling limit they agree with the analogous expressions for the Brownian map.
�is suggest that the deformation of the geometry introduced by the random edge
weights has no e�ect, other an overall change of scale, on the continuum geometry.

Apart from the novel enumeration techniques for cubic maps, the current study
also sheds some light on the relation between inequivalent distances on the same
cubic map. To see this let us return to the scaling limit (74) of the two-point
function G

.2/
g;2;vert.T / with a marked vertex on the geodesic of length T . Although

we do not give a proof, one may deduce from (74) that the same linear relation
holds between the large-F limits of G

.2/
F;2;vert.T / and T G

.2/
F;2.T / as long as one

keeps TF �1=4 constant. �erefore the expected number hV iF;T of cubic vertices
on a geodesic of length T scales linearly with T with ratio 1 C 1=

p
3, i.e.

lim
F !1

TF �1=4 const

hV iF;T

T
D 1 C 1p

3
:
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Of course, this formula should also hold for the situation where the marked ver-
tices are cubic. It then follows from (51) that the expected graph distance
hdm.v1; v2/iF;T is bounded from above by .1 C 1=

p
3/T as F ! 1. On the

other hand, by the central limit theorem, conditioned on dm.v1; v2/ almost surely
T � dm.v1; v2/ as F ! 1. �erefore, hdm.v1; v2/iF;T is asymptotically bounded
from below by T . We conclude that

lim inf
F !1

TF �1=4 const

hdm.v1; v2/iF;T

T
� 1

and

lim sup
F !1

TF �1=4 const

hdm.v1; v2/iF;T

T
� 1 C 1p

3
:

d

T

Figure 7. �e numerical expectation value (dark curve) together with the standard deviation
(shaded area) of the graph distance d between random pairs of vertices that are conditioned
to have geodesic distance (in a small interval around) T in a random weighted cubic map
with F D 32000 faces. �e dashed lines correspond to d D T and d D .1 C 1=

p
3/T

respectively.

Notice that (73) does not only tell us about the expect total number of vertices
on the geodesic, it also implies that the expected density of vertices is equal to
1 C 1=

p
3 as F ! 1 independently of the position S along the geodesic. It is

quite plausible that the densities at di�erent distances are independent enough to
make the average density of vertices along the geodesic almost surely equal to
1 C 1=

p
3. If that is indeed the case, one may conclude that in the limit F ! 1

the ratio of the graph distance and geodesic distance between a random pair of
vertices is almost surely between 1 and 1 C 1=

p
3.
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�is suspicion can be easily checked numerically using a Monte Carlo simula-
tion, as can be seen in Figure 7 for a random weighted cubic map with F D 32000

faces. In fact, the simulation data suggest that the graph distance is precisely in
the middle of the two bounds, i.e. that ratio is 1 C 1=.2

p
3/, with high probability.

Without going into details let us mention that the ratio 1 C 1=.2
p

3/ can in fact be
obtained heuristically by comparing the continuum limit of the di�erential equa-
tion (63) to the analogous equation (19) in [18], related to a transfer matrix for the
graph distance on cubic maps.

In addition to the graph distance dm and geodesic distance (or �rst-passage
time) T on the cubic map, there exist another natural distance d �

m
, which is the

graph distance on the triangulation dual to the cubic map. Based on a comparison
of the continuum two-point function (71) to that of large random triangulations,
which can e.g. be deduced from [19], �eorem 1.1, we expect the ratio of the
geodesic distance T to the triangulation-distance to be given by 2

p
3.

It would be interesting to see whether there is any universality to the simple
ratios between the various distances. In a forthcoming paper we will study these
relations in the more general setting of Boltzmann planar maps, where vertices of
arbitrary degree are allowed.
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Appendix A. Coincidence limit calculation

In this appendix we will show the non-trivial fact that

@S@U
xG.1/

g;3.S; T; U /
ˇ

ˇ

SDU D0
D xG.1/

g;3.0; T; 0/:

�e odd part is easy since the derivatives @2
S@2

U need to act on the factor

sinh2 †S sinh2 †U
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in order to make the result nonzero. Hence

@T @2
S@2

U F odd
g .S; T; U /jSDU D0

D 4@T

h

.˛2 � †2/2 sinh2 †T
yC2

g.T /

C4
g.T /

i

D 4@T

h

.C0
g.T / � ˛Cg.T //2

.C0
g.T / C ˛Cg.T //2

C4
g.T /

i

D 4@T

h

�

C0
g.T /

Cg.T /

�2

� ˛2
i2

;

(75)

where in the second equality we used that yCg .T / D C0
g .T / C ˛Cg.T /. �e even

part requires more work:

@T @2
S@2

U F even
g .S; T; U /jSDU D0

D @T @2
S

h

@2
U

C2
g.S C T C U /

C2
g.S C T /

C 2
�

@U

C2
g.T /

C2
g .T C U /

�

@U

C2
g.S/

C2
g.S C U /

C A

i

U DSD0

where

A D 2
�

@U

C2
g.S C T C U /

C2
g.S C T /

�

@U

�C2
g.U /

†2
C

C2
g .T /

C2
g.T C U /

C
C2

g.S/

C2
g.S C U /

�

;

and so

@T @2
S@2

U F even
g .S; T; U /jSDU D0

D @T @2
S

h@2
TC

2
g .T C S/

C2
g .T C S/

C 8
C0

g.T /

Cg.T /

C0
g.S/

Cg.S/
C 8

C0
g.S C T /

Cg.S C T /

�C0
g .0/

Cg .0/
�

C0
g.T /

Cg.T /
�

C0
g .S/

Cg .S/

�i

SD0

D @T

h

@2
T

@2
TC

2
g.T /

C2
g.T /

� 8
�

@2
T

C0
g.T /

Cg.T /

�C0
g .T /

Cg .T /
� 16

�

@T

C0
g.T /

Cg.T /

�

@S

C0
g.S/

Cg.S/

i

SD0

D 4@T

h�

@T

C0
g.T /

Cg.T /

�2

�
C0

g .T /

Cg .T /
@2

T

C0
g .T /

Cg .T /
� 4.†2 � ˛2/@T

C0
g .T /

Cg .T /

i

D 4@T

h

�
�C0

g.T /

Cg.T /

�4

C 4.†2 � ˛2/
�C0

g.T /

Cg.T /

�2i

;

(76)
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where we used C00
g .T / D †2Cg.T / and @SC

0
g.S/=Cg.S/jSD0 D †2 � ˛2. Com-

bining (75) and (76) and using that 2†2 D 3˛2 � 1=4 we obtain

@T @2
S@2

U Fg .S; T; U /jSDU D0 D 4@T

h

.4†2 � 6˛2/
�C0

g.T /

Cg.T /

�2i

D 2@3
T logCg .T /:
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