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Loop-weighted walk

Tyler Helmuth

Abstract. Loop-weighted walk with parameter � � 0 is a non-Markovian model of random

walks that is related to the loop O.N / model of statistical mechanics. A walk receives

weight �k if it contains k loops; whether this is a reward or punishment for containing

loops depends on the value of �. A challenging feature of loop-weighted walk is that it

is not purely repulsive, meaning the weight of the future of a walk may either increase

or decrease if the past is forgotten. Repulsion is typically an essential property for lace

expansion arguments. �is article circumvents the lack of repulsion and proves, for any

� > 0, that loop-weighted walk is di�usive in high dimensions by lace expansion methods.
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1. Introduction and main results

Loop-weighted walk with parameter �, abbreviated �-LWW, is a model of self-

interacting walks that can be informally de�ned as follows. Formal de�nitions

will be given in Section 1.2. Let ! be a walk on a graph. A walk is called a loop

if ! begins and ends at the same vertex. �e loop erasure LE.!/ is formed by

chronologically removing loops from !. If nL.!/ denotes the number of loops

removed, the �-LWW weight of a walk ! is

w�.!/ D �nL.!/: (1.1)

�roughout this article it will be assumed that � � 0, so equation (1.1) de�nes

a non-negative weight on walks. In particular, w� de�nes a probability measure on

n-step walks that begin at a �xed vertex of a graph by de�ning the probability of !

to be proportional to w�.!/. If 0 � � < 1 the e�ect of the weight is to discourage

walks from containing loops, and for this parameter range �-LWW interpolates

between the uniform measure on n-step self-avoiding walks (0-LWW) and the

uniform measure on all n-step walks (1-LWW). If � > 1 the weight encourages

the existence of loops: walks are rewarded for returning to vertices that have been

visited in the past. Note that �-LWW for � ¤ 1 is not a Markovian model of walks.

In addition to being an interesting model of self-interacting random walks that

encompasses the well-known models of self-avoiding and simple random walk,

�-LWW also has connections with spin models in statistical mechanics. �e de-

scription of these connections will be deferred until after the results of the article

are described, see Section 1.1.

�is article consists of a lace expansion analysis of �-LWW. �e lace expan-

sion, originally introduced by Brydges and Spencer [3], is a powerful tool for

proving mean-�eld behaviour in high dimensions [14]. With few exceptions, see

the discussion at the end of Section 1.2.2, walk models that have been successfully

studied with the lace expansion have been purely repulsive. A walk model being

purely repulsive means that the weight w on walks that de�nes the model satis�es

the inequality

w.! ı �/ � w.!/w.�/; (1.2)

where ! ı� is the concatenation of two walks ! and �. For example, self-avoiding

walk is purely repulsive. In general �-LWW is not purely repulsive if � ¤ 0; 1.

See Figure 1.

�e most signi�cant step required to analyze �-LWW with the lace expansion

is therefore a technique to overcome the lack of repulsion. �is is done by re-

summing �-LWW to obtain a model of self-interacting and self-avoiding walks.
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Figure 1. For each diagram consider (i) the concatenation of the dashed walk ! and the solid

walk !0 and (ii) the two walks as being separate. On the left (i) results in four loops being

erased, nL.! ı !0/ D 4, while (ii) results in no loops being erased, nL.!/ D nL.!0/ D 0.

On the right (i) results in one loop being erased, nL.! ı !0/ D 1, while (ii) results in three

loops being erased, nL.!/ D 0, nL.!0/ D 3. It follows that the �-LWW weight is not

purely repulsive for � ¤ 0; 1.

�e particular form of the �-LWW weight leads to a very explicit description of

the self-interaction in terms of a generalization of the loop measure of [10], and

this explicit description makes it clear that the self-interaction is repulsive. �is

enables a lace expansion to be performed. Further details about the proof follow

after the statement of �eorem 1.1.

Some notation will be needed to state the results. Let h�i�
n denote expectation

with respect to the measure on n-step walks associated to w�. Let c�
n be the nor-

malizing factor for the expectation, i.e., the sum over all n step walks weighted by

�nL.!/ as in (1.1). Let ��.z/ D P

n c�
n zn, and let zc.�/ be the radius of conver-

gence of ��.z/. �e main result of this article can be summarized as saying that,

in high dimensions, �-LWW has mean �eld behaviour at criticality.

�eorem 1.1. Fix � � 0 and consider �-LWW on Z
d . �ere exists d0 D d0.�/

such that for d � d0 there are constants A and D such that

(1) the susceptibility diverges linearly: ��.z/ � Azc.zc � z/�1 as z % zc ,

(2) c�
n D A .zc.�//�n .1 C O.n�ı// for any ı < 1, and

(3) �-LWW is di�usive: hj!nj2i�
n D Dn.1 C O.n�ı// for any ı < 1.

For � D 0, �eorem 1.1 has been proven with d0 D 5 by Hara and Slade [8].

It is worth emphasizing that �eorem 1.1 holds for � > 1 when �-LWW is attractive

in the sense that the formation of loops is encouraged.

Remark 1.2. No attempt has been made to track the value of d0 that is required,

and the proof presented in this article requires d0 � 9. �e true behaviour of

d0.�/ is an interesting question for future study.
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Let us say a few more words about the proof of �eorem 1.1. As described ear-

lier, the key step is a resummation of �-LWW into a self-interacting self-avoiding

walk. �e self-interaction of the self-avoiding walk is a many-body interaction,

and this leads to a hypergraph-based lace expansion instead of the graph-based

lace expansion that is used for self-avoiding walk. We stress that hypergraphs are

merely an organizational tool, and no prior knowledge of hypergraphs is needed

to understand the expansion. Once the lace expansion has been performed the

various self-interacting self-avoiding walk quantities can be re-expressed in terms

of �-LWW. �e diagrams that occur in analyzing the expansion generalize the di-

agrams for self-avoiding walk, and when � D 0 they reduce to the diagrams for

self-avoiding walk. With some e�ort it is possible to analyze the diagrams for

� > 0 with existing methods. Once the analysis of the diagrams is completed it is

possible to apply established techniques to analyze �-LWW, namely the trigono-

metric approach to the convergence of the lace expansion [14] and complex ana-

lytic methods for studying asymptotics.

In fact �eorem 1.1 holds in greater generality. Let �` � 0 be the weight of the

loop `. Replace the weight � per loop in equation (1.1) with the product of �` over

the set of loops ` that are erased when performing loop erasure on !. Assume the

set of weights ¹�`º satisfy a mild symmetry hypothesis, see �eorem 1.2.1, and are

uniformly bounded above. �en the results of �eorem 1.1 continue to hold.

�e remainder of the introduction is as follows. Section 1.1 describes an impor-

tant connection between �-LWW and the loop O.N / model of statistical physics.

Section 1.2 gives a formal de�nition of �-LWW, relates �-LWW to a self-interact-

ing and self-avoiding walk, and outlines how this enables a lace expansion analy-

sis. Lastly, Section 1.3 establishes a few conventions used in the remainder of the

article.

1.1. Motivation from statistical mechanics. For N 2 N the O.N / model on a

graph �nite G D .V; E/ is a generalization of the Ising model. To each vertex

x 2 V is associated a spin Esx taking values in the unit sphere in R
N . �e proba-

bility of a spin con�guration is de�ned by

P
�

¹Esxºx2V

�

/ exp
�

ˇ
X

x�y

Esx � Esy

�

;

where ˇ is a real parameter and the summation is over all edges ¹x; yº 2 E. In [6] a

simpli�cation of the O.N / model known as the loop O.N / model was introduced.

�e loop O.N / model is de�ned in terms of subgraph con�gurations on G. In the

special case of a graph with vertex degree bounded by 3, the loop O.N / model

con�gurations are subgraphs that are disjoint unions of cycles of length at least 3,
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and the probability of a subgraph H is given by

P.H/ / zjE.H/jN #H ; (1.3)

where #H denotes the number of connected components of H . Note that the

probability in equation (1.3) may be negative if N < 0: equation (1.3) de�nes a

signed measure in general.

�e de�nition of the loop O.N / model on an arbitrary graph G involves non-

cyclic subgraphs, see for example [5]. �e noncyclic subgraphs are predicted by

non-rigorous renormalization group arguments to be irrelevant [12], at least for

jN j � 2 on planar graphs. Call the model whose con�gurations are disjoint unions

of cyclic subgraphs the O.N / cycle gas. For N 2 N this model has previously

appeared in the physics literature as a model for melting transitions [13].

As described in Section A.4, �-LWW is a walk representation of the O.N /

cycle gas. �e two-point function of �-LWW corresponds to a two-point cor-

relation in the O.N / cycle gas for N D �2�. In other words, �-LWW yields

a probabilistic interpretation of the O.N / cycle gas for N < 0. �is is an ex-

ample of a “negative activity isomorphism theorem”: an equivalence between a

statistical mechanics model at negative activity (N < 0) and a probability model.

An important previous example of such a theorem is the Brydges–Imbrie isomor-

phism between branched polymers inR
dC2 and the hard-core gas in R

d [4]. In the

present work the isomorphism allows results about �-LWW to be transferred to

the O.N / cycle gas for N < 0. For example, the isomorphism theorem combined

with �eorem 1.1 immediately implies the following corollary.

Corollary 1.3. For d su�ciently large the susceptibility of the O.N / cycle gas on

Z
d for N < 0 diverges linearly at the critical point.

�is section may be summarized as saying that �-LWW can be viewed

as a random walk representation of an approximation of the O.N / model. �us

�-LWW �ts into a long history of random walk representations of spin mod-

els [1, 2, 7] inspired by the pioneering work of Symanzik [15].

1.2. Introduction to the loop-weighted walk model. �e rest of the paper will

be concerned with Z
d , the simple cubic lattice in d dimensions. Edges ¹x; yº will

often be abbreviated xy. Two vertices x and y will be called adjacent, written

x � y, if xy is an edge in Z
d . Let

� D ¹y 2 Z
d j y � 0º;

so j�j D 2d is the number of vertices adjacent to the origin 0.
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1.2.1. Model de�nition. �e next paragraphs establish some conventions about

walks. An n-step walk ! D .!0; !1; : : : ; !n/ is a sequence of n C 1 adjacent

vertices in Z
d . Given a walk !, j!j will denote the number of steps in !. A walk

is a loop if !j!j D !0, self-avoiding if !i D !j implies i D j , and a self-avoiding

polygon if !i D !j and i ¤ j implies ¹i; j º D ¹0; j!jº.
A walk ! begins at !0 and ends at !j!j. Let ! W x ! y denote the set of walks

beginning at x and ending at y. Let �SAW denote the set of self-avoiding walks

beginning at x and ending at y; if x D y this is taken to be the set of self-avoiding

polygons beginning at x. Let

�SAP D
[

x

�SAW.x; x/ and �SAW D
[

x

[

y

�SAW.x; y/:

If !.i/ D .!
.i/
0 ; : : : ; !

.i/

ki
/ for i D 1; 2 and !

.1/

k1
D !

.2/
0 the concatenation !.1/ı!.2/

of !.1/ with !.2/ is de�ned by

!.1/ ı !.2/ D .!
.1/
0 ; : : : ; !

.1/

k1
; !

.2/
1 ; : : : ; !

.2/

k2
/:

To de�ne �-LWW precisely requires an explicit description of the loop erasure

of a walk !. De�ne

�! D min
®

i j there exists j < i such that !i D !j

¯

;

�?
! D min

®

j j !j D !�!

¯

:

If ! is a self-avoiding walk, de�ne �! D �?
! D 1. �e time �! is the �rst time a

walk visits a vertex twice.

De�nition 1.4. Let ! be a walk of length n. �e single loop erasure LE1.!/ of !

is given by

LE1.!/ D .!0; : : : ; !�?
!^n; !�!C1; : : : ; !n/;

where a ^ b denotes the minimum of a and b. �e walk .!�?
!

; !�?
!C1; : : : ; !�!

/ is

the loop removed by loop erasure. �e loop erasure LE.!/ of ! is the result of

iteratively applying LE1 until �! D 1.



Loop-weighted walk 61

By construction, each loop removed from a walk by loop erasure is a self-

avoiding polygon.

De�nition 1.5. �e loop vector nL.!/ of ! is the vector with coordinates

n
�
L.!/ D # of times � is removed by loop erasure applied to !;

with � 2 �SAP.

In what follows � will denote a vector of activities �� � 0 for � 2 �SAP.

Inequalities with respect to � are to be interpreted pointwise in � 2 �SAP. De�ne

�nL.!/ D
Y

�

�
n

�
L

.!/
� :

De�nition 1.6. Let � � 0, z � 0. �e weight w�;z of �-LWW at activity z is

given by

w�;z.!/ D zj!j�nL.!/:

De�nition 1.7. �e susceptibility ��.z/ of �-LWW is

��.z/ D
X

x2Zd

X

! W 0!x

w�;z.!/:

�e critical point zc.�/ of �-LWW is de�ned to be the radius of convergence of

��.z/.

If 0 � � � 1 then ��.z/ � �1.z/, and hence ��.z/ converges for z < j�j�1.

�e next proposition gives a mild condition under which the critical point is non-

trivial.

Proposition 1.8. Let N� D sup� �� > 1. If z < .j�j
p

N�/�1 then ��.z/ is �nite.

Proof. An n-step walk contains at most bn=2c loops, and weighting each loop by

N� yields an upper bound for ��.z/. Cancelling the factors of
p N� gives the claim,

as the resulting sum is �1. Nz/ for some Nz < j�j�1.

If R is an isometry of Zd , and A � Z
d , let RA D ¹Ra j a 2 Aº.

Assumption 1. Assume that �� D �R� for any isometry R and any � 2 �SAP.

Further assume that �� D � Q� if � and Q� are self-avoiding polygons that di�er only

in terms of initial vertex and orientation.
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Assumption 2. Assume sup
�2�SAP

�� < 1.

�eorem 1.9. Fix � � 0. If Assumption 1 and Assumption 2 hold, then there

exists d0 D d0.�/ such that for d � d0 there are constants A and D such that the

conclusions of �eorem 1.1 hold.

�eorem 1.1 is the special case of �eorem 1.9 when the loop activities � are

constant. �e constants A and D have explicit expressions, see Section 6.2. For

the remainder of the article it will be assumed that Assumption 1 and Assumption 2

hold.

1.2.2. Aspects of proof. �is section describes the basic facts about �-LWW

that allow for a lace expansion analysis, and gives an outline of the proof of �e-

orem 1.9.

De�nition 1.10. �e loop-erased �-LWW weight xw�;z on self-avoiding walks is

xw�;z.�/ D 1¹�2�SAWº
X

! W LE.!/D�

w�;z.!/:

Note that the de�nition of xw�;z assigns non-zero weight only to self-avoiding

walks. �e de�nition of xw�;z implies that for any x 2 Z
d

X

! W 0!x

xw�;z.!/ D
X

! W 0!x

w�;z.!/; (1.4)

as the left-hand side is just a reorganization of the right-hand side. �is identity

will be important in what follows.

De�nition 1.11. �e range, range.!/, of a walk ! is the set of vertices visited

by !.

�e �-LWW loop measure at activity z of a closed walk ! is given by

w�;z.!/= j!j. �e next de�nition introduces a convenient shorthand for the loop

measure of certain subsets of walks; note that ��;z is not a measure.

De�nition 1.12. Let A; B � Z
d . �e �-LWW loop measure ��;z.AI B/ is

��;z.AI B/ D
X

x

X

! W x!x
j!j�1

1¹range.!/\A¤;º1¹range.!/\BD;º
w�;z.!/

j!j :
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De�ne

��;z.A/ D ��;z.AI ;/:

For singleton sets ¹xº; ¹yº, let

��;z.xI y/ D ��;z.¹xºI ¹yº/:

For the special case of � D 1 the next theorem is [10, Proposition 9.5.1].

�eorem 1.13. �e loop erased �-LWW weight on self-avoiding walks can be

written in terms of the �-LWW loop measure:

xw�;z.�/ D
X

! W LE.!/D�

w�;z.!/ D zj�j exp.��;z.range.�///:

Proof. Deferred to Appendix A.

A function f on subsets of Zd is said to be weakly increasing if A � B implies

f .A/ � f .B/, and weakly decreasing if f .A/ � f .B/.

Proposition 1.14. Assume z � 0, � � 0.

(1) Let A; B � Z
d . �en for any isometry R

��;z.RAIRB/ D ��;z.AI B/;

(2) ��;z.AI B/ is weakly increasing in A and weakly decreasing in B .

Proof. �e �rst item follows from the isometry invariance of w�;z , which follows

from Assumption 1. �e second follows as increasing A (decreasing B) reduces

(increases) the constraints on the set of walks that contribute to the de�ning sum,

and w�;z.!/ � 0.

If � D �1 ı �2 is self-avoiding then �eorem 1.13 and the de�nition of the loop

measure imply

xw�;z.�/ D zj�1jzj�2j exp.��;z.range.�1/// exp.��;z.range.�2/I range.�1///:

By the second statement of Proposition 1.14 dropping the constraint in the second

loop measure increases the weight, and hence loop-erased �-LWW is purely repul-

sive. �is enables a lace expansion analysis of �-LWW as the two-point functions

of �-LWW and loop-erased �-LWW coincide by equation (1.4). �is is done as

follows.
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� Section 2 derives a lace expansion for �-LWW. �is is done by manipulating

the identity

xw�;z.�/ D zj�j
1¹�2�SAWº

Y

X2X
.1 C ˛X /

1¹`.X/\range.�/¤;º ; (1.5)

where

X D
[

x2Zd

¹! W x ! x; j!j � 1º ; (1.6)

`.!/ D range.!/;

˛! D exp
�w�;z.!/

j!j
�

� 1:

In equation (1.6) the condition j!j � 1 can be relaxed to j!j > 1 as all

closed walks have length at least 2. Note that ˛! � 0 for any closed walk !

as � � 0, and that the product in equation (1.5) converges for z su�ciently

small by Proposition 1.8.

� Section 3 expresses the results of Section 2 in terms of ��;z , as opposed to

the variables ˛! .

� Section 4 and Section 5 prove the convergence of the lace expansion at the

critical point. �e strategy is based on [14].

� Lastly, Section 6 proves the main theorem after establishing some further

estimates on the lace expansion coe�cients. �e analysis is based on [11].

Before carrying out the arguments outlined above, let us brie�y comment on

other relevant non-repulsive random walks that have been studied. Ueltschi [16]

has given a lace expansion analysis of a self-avoiding walk with nearest neighbour

attractions; the attraction means his model is not repulsive. �e analysis in [16]

overcomes the lack of repulsion by exploiting the self-avoiding nature of the walk.

Implementing this idea requires technical assumptions that (i) the attraction is

su�ciently weak and (ii) the self-avoiding walk can take steps of unbounded range.

A second non-repulsive model that has been studied is excited random walk: the

analysis of this model in [17] is essentially a lace expansion analysis. �ese results

have a somewhat di�erent �avour as the walk being studied has non-zero speed.

Roughly speaking, the lack of repulsion is overcome by using the transience of

the walk in the excited direction.
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1.3. Notation and conventions. Let 1¹Aº denote the indicator function of

a set A. For notational ease we will occasionally also make use of the

Kronecker delta ıx;y D 1¹xDyº. �e single step distribution D.x/ is de�ned by

D.x/ D j�j�1
1¹x�0º, where we recall that j�j D 2d and x � 0 indicates that x

is a nearest neighbour of 0 in Z
d .

�e Fourier transform

Of W Œ��; ��d �! C

of a function f on Z
d is de�ned by

Of .k/ D
X

x2Zd

eik�xf .x/

Subwalks of a walk ! can be identi�ed by specifying the subinterval that

de�nes them. �at is, for 0 � a < b � j!j de�ne ! Œa; b� D .!a; : : : ; !b/,

! Œa; b/ D ! Œa; b � 1�, ! .a; b� D ! Œa C 1; b�, and ! .a; b/ D ! Œa C 1; b � 1�.

By convention Œa; a� D ¹aº, so ! Œa; a� D !a. To avoid some ungainly notation,

let ! Œa W � D ! Œa; j!j�.
By convention inf ; D 1 and sup ; D �1. �e set ¹0; 1; : : : ; nº will be

denoted Œn�, and Œ!� will denote Œj!j� when ! is a walk. Further, c will denote a

positive constant independent of the dimension d and activity z; the precise value

of c may change from line to line.

2. A lace expansion

Remark 2.1. �e lace expansion presented here can be derived by other means,

e.g., the technique developed for self-interacting walks in [17].

2.1. Graphical representations. �is section provides a representation of the

weight xw�;z in terms of graphs. �e utility of such a representation is that it allows

recursive identities to be derived.

2.1.1. Graph representation of self avoidance

De�nition 2.2. Let A be a set. For s; t 2 A, s ¤ t , the pair ¹s; tº � st is called

an edge. A graph � on A is a set of edges.



66 T. Helmuth

�e condition ! 2 �SAW that a walk ! is self-avoiding can be expressed using

graphs:

1¹!2�SAWº D
Y

0�s<t�j!j
1¹!s¤!t º

D
Y

0�s<t�j!j
.1 � 1¹!sD!t º/

D
X

�

Y

st2�

.�1¹!sD!t º/:

(2.1)

�e sum in the rightmost term is over all graphs � on Œ!�, where we recall the

de�nition Œ!� D Œj!j� D ¹0; 1; : : : ; j!jº.

2.1.2. Hypergraph decomposition of LWW weight. A representation of the

weight on self-avoiding walks due to the product over X in equation (1.5) is less

straightforward than the graph representation of self-avoidance. �is is because

the condition of self-avoidance involves two distinct times, while the condition

that range.!/ \ `.X/ ¤ ; involves many distinct times. �is issue can be han-

dled by using inclusion-exclusion. A convenient way to represent the results of

inclusion-exclusion is in terms of hypergraphs. We emphasize, however, that no

prior knowledge of hypergraphs are needed to understand the expansion – they are

only used as a bookkeeping instrument.

Lemma 2.3. Let ! be a walk, and let X 2 X. �en

.1 C ˛X /
1¹`.X/\range.!/¤;º D

Y

J �Œ!� W jJ j�1

.1 C FJ;X .!//;

where

FJ;X .!/ �

8

ˆ̂

<̂

ˆ
ˆ̂
:

˛X

Y

j 2J

1¹!j 2`.X/º; jJ j 2 2N C 1

� ˛X

1 C ˛X

Y

j 2J

1¹!j 2`.X/º jJ j 2 2N:

(2.2)

In equation (2.2) 0 is included in 2N.
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Proof. Apply inclusion-exclusion to the condition `.X/ \ range.!/ ¤ ;:

1¹`.X/\range.!/¤;º D 1 � 1¹`.X/\range.!/D;º

D 1 �
j!j
Y

j D0

.1 � 1¹!j 2`.X/º/

D
X

J �Œ!� W jJ j�1

.�1/jJ jC1
Y

j 2J

1¹!j 2`.X/º:

�en

.1 C ˛X /
1¹`.X/\range.!/¤;º D

Y

J �Œ!� W jJ j�1

.1 C ˛X /
.�1/jJ jC1

Q

j 2J 1¹!j 2`.X/º

D
Y

J �Œ!� W jJ j�1

.1 C FJ;X .!//;

where the weights FJ;X arise from the identities .1 C ˛/�1A D 1 � ˛
1C˛

1A and

.1 C ˛/1A D 1 C ˛1A:

De�nition 2.4. A hypergraph G on a countable set A is a (possibly empty) �nite

subset of A. Each element of G is called a hyperedge.

To connect this de�nition with the more familiar notion of a graph, consider

the case when A is V 2 n ¹¹x; xº j x 2 V º for V a �nite set. A subset of A is then

the edge set of a graph on V .

If F.a/ is an indeterminate associated to the hyperedge a then, as formal power

series,
Y

a2A

.1 C F.a// D
X

G

Y

a2G

F.a/; (2.3)

where the sum on the right-hand side of (2.3) is over all hypergraphs on A.

In what follows we perform calculations in the sense of formal power series.

We will ultimately �nd that our �nal expressions have interpretations as conver-

gent objects.

To represent the product over X in equation (1.5) in terms of hypergraphs take

A in De�nition 2.4 to be .2Œn� n;/�X. If a 2 A then a D .J; X/ for J a non-empty

subset of Œn� and X 2 X. De�ne F.a/ � FJ;X . �is implies

Y

X2X
.1 C ˛X /

1¹`.X/\range.!/¤;º D
Y

X2X

Y

J �Œ!� W jJ j�1

.1 C FJ;X .!//

D
X

G

Y

.J;X/2G

FJ;X .!/;
(2.4)
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where the sum in (2.4) is over all hypergraphs. �e next corollary is a useful

hypergraph representation of the weight carried by a subwalk.

Corollary 2.5. Let ! be an n-step walk. For k � n, X 2 X,

.1 C ˛X /
1¹range.!Œ0;k//\`.X/D;º1¹range.!Œk;n�/\`.X/¤;º D

Y

J �Œn� W jJ j�1;

J \Œk;n�¤;

.1 C FJ;X .!//:

Proof. Observe that 1¹range.!Œk;n�/\`.X/¤;º1¹range.!Œ0;k//\`.X/D;º can be rewritten

as 1¹range.!/\`.X/¤;º � 1¹range.!Œ0;k//\`.X/¤;º. �e corollary follows by applying

Lemma 2.3 to both ! and ! Œ0; k/ and dividing.

2.1.3. �e full graphical representation

De�nition 2.6. Let J � Œn� be non-empty and let X denote an element of X[¹;º.
A pair .J; X/ is timelike if jJ j D 2, X D ;. A pair is spacelike if X ¤ ;.

�e use of spacelike and timelike as labels has no relation to the use of these

terms in physics. Extend the de�nition of FJ;X by de�ning FJ;X via (2.2) if .J; X/

is spacelike, and de�ning Fst;; D �1¹!sD!t º for timelike hyperedges .st; ;/. Let

G Œa; b� denote the set of hypergraphs whose hyperedges are pairs .J; X/ such that

(i) X 2 X [ ¹;º, (ii) J � ¹a; a C 1; : : : ; bº, jJ j � 1, and (iii) X D ; implies

jJ j D 2. De�ne G.n/ � G Œ0; n�. �e decompositions of Section 2.1 imply that

cn.0; x/ D
X

! W 0!x
j!jDn

1¹!2�SAWº
Y

X2X
.1 C ˛X /

1¹`.X/\range.!/¤;º

D
X

! W 0!x
j!jDn

X

G2G.n/

Y

.J;X/2G

FJ;X .!/:
(2.5)

2.2. Lace graphs

De�nition 2.7. A graph � on Œa; b� is (lace) connected if (i) b > a C 1, (ii) for all

a < j < b there is an edge st 2 � such that s < j < t , and (iii) there are j1; j2

such that aj1, j2b 2 �. Let G Œa; b� (resp. Gc Œa; b�) denote the set of graphs (resp.

lace connected graphs) on Œa; b�.
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We caution the reader that the de�nition of lace connectedness is not the same

as the graph theoretical de�nition of connectedness. �e adjective lace will be

dropped in what follows, as the graph-theoretic notion of connectedness is not

relevant in this section.

A function w on graphs on the discrete interval Œa; b� is called multiplicative

if w.G/ D Q

st2E.G/ w.st/. Note that a multiplicative function on graphs assigns

the empty graph weight 1. If w is a multiplicative function on graphs on Œa; b�

de�ne

K Œa; b� D
X

G2GŒa;b�

w.G/; J Œa; b� D
X

G2Gc Œa;b�

w.G/;

and let K Œa; b� D J Œa; b� D 0 if a > b. For a < b the observation that a graph

on Œa; b� either contains a in a connected subgraph or does not and the de�nition

of connectedness imply

K Œa; b� D K Œa; a C 1� K Œa C 1; b� C
X

j �2

J Œa; a C j � K Œa C j; b� :

De�nition 2.8. A graph is a lace graph if the removal of any edge results in a

graph which is not connected.

A labelled graph is a graph where each edge is given a label of either space-

like or timelike; a labelled graph may contain both the edge .st; spacelike/ and the

edge .st; timelike/. �e de�nition of a lace graph applies to labelled graphs as the

notion of connectedness does not depend on the labelling. �e following proce-

dure associates a unique lace L� to each labelled connected graph � on Œa; b�. �e

labelled lace L� consists of the set of edges si ti along with their labellings, where

si ti are determined by s1 D a, t1 D max¹v W s1v 2 �º, siC1 D min¹s W stiC1 2 �º,
tiC1 D max¹v W there exists s < ti such that sv 2 �º. If this does not uniquely

specify si ti then si ti is chosen to have the label spacelike. �e procedure ter-

minates when tiC1 D b. See Figure 2.

Figure 2. A labelled graph and the corresponding labelled lace graph. �e left-hand side

depicts a connected labelled graph, while the right-hand side depicts the corresponding

labelled lace graph. �e dotted black edges are labelled spacelike, while the solid black

zigzag edges are labelled timelike.
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A labelled edge st is said to be compatible with a lace L if LL[¹stº D L, i.e.,

if the addition of the labelled edge st does not alter the outcome of the above

algorithm. Let L Œa; b� denote the set of labelled lace graphs on Œa; b� and C.L/

the set of compatible labelled edges for a lace L 2 L.

Lemma 2.9. Let w be a weight on labelled edges st . �en

X

�2Gc Œa;b�

Y

st2�

w.st/ D
X

L2LŒa;b�

Y

st2L

w.st/
Y

s0t 02C.L/

.1 C w.s0t 0//;

where the sums are over labelled connected graphs and labelled laces, respec-

tively.

Proof. �e proof is the same as the proof for unlabelled graphs, see [3], [14],

or [19].

Remark 2.10. De�nition 2.7 is not the de�nition of lace connectedness typically

used for self-avoiding walk, as the graph consisting of the single edge ¹a; aC1º is

not being considered connected. �is change is entirely cosmetic for self-avoiding

walk as graphs consisting of a single edge ¹a; a C 1º do not contribute.

2.3. Laces and hypergraphs. �is section obtains an analogue of Lemma 2.9

for hypergraphs.

2.3.1. Recursion relation for hypergraphs

De�nition 2.11. For a hyperedge .J; X/ de�ne span.J; X/ D ¹min J; max J º.
If .J; X/ is spacelike label span.J; X/ spacelike, and if .J; X/ is timelike label

span.J; X/ timelike. If G is a hypergraph the labelled graph �G with labelled

edges ¹span.J; X/ j .J; X/ 2 Gº will be called the graph of spans of G.

De�nition 2.12. A hypergraph G on Œa; b� is connected if the graph of spans of

G is connected on Œa; b�. �e set of connected hypergraphs on Œa; b� is denoted

Gc Œa; b�.

�e objects ˛ and ˛0 in the next de�nition have interpretations in terms of the

loop measure, but for now should be thought of as convenient shorthand.
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De�nition 2.13. Let X0 D ¹X 2 X j 0 2 `.X/º and let y 2 � be a vertex adjacent

to 0. De�ne

˛0 D ˛0.X/ D
Y

X2X0

.1 C ˛X /; ˛ D ˛.X/ D
Y

X2X0

.1 C ˛X /1¹y…`.X/º ; (2.6)

�at ˛ is independent of the vertex y 2 � chosen follows from the isometry

invariance of the loop-weighted walk weight.

By translation invariance ˛0 is also given by the product over X 2 X such that

any single �xed vertex is contained in `.X/, and hence

˛0 D
X

G2GŒ1;1�

w.G/; (2.7)

where w.G/ D Q

.J;X/2G FJ;X . Using equation (2.7) and the de�nition of con-

nectedness for hypergraphs implies that for n � 1

X

G2GŒ0;n�

w.G/ D ˛�1
0

X

G12GŒ0;1�

X

G22GŒ1;n�

w.G1/w.G2/

C ˛�1
0

X

j �2

X

G12Gc Œ0;j �

X

G22GŒj;n�

w.G1/w.G2/:
(2.8)

�e factor of ˛�1
0 multiplying the �rst term arises since the hypergraphs

G 2 G Œ1; 1� are double counted due to being present in both G Œ0; 1� and G Œ1; n�.

�e factor of ˛�1
0 multiplying the second factor arises similarly, due to double

counting of the sum over G Œj; j �; translation invariance implies this is the same

as the sum over G Œ1; 1�. �e next lemma simpli�es equation (2.8) by computing

the sum over G Œ0; 1�.

Lemma 2.14. Fix n � 1. �en

X

G2GŒ0;n�

Y

.J;X/2G

FJ;X

D ˛
X

G2GŒ1;n�

Y

.J;X/2G

FJ;X C ˛�1
0

X

j �2

X

G12Gc Œ0;j �

X

G22GŒj;n�

Y

.J;X/2G1

FJ;X

Y

.J 0;X 0/2G2

FJ 0;X 0 :
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Proof. Let ! be a walk. Lemma 2.3 and (2.1) imply that

X

G2GŒ0;1�

Y

.J;X/2G

FJ;X .!/ D 1¹!0¤!1º
Y

X2X
.1 C ˛X /

1¹¹!0;!1º\`.X/¤;º :

�e constraint that !0 ¤ !1 is irrelevant as !j C1 ¤ !j for any walk. Using the

representation of ˛0 in equation (2.7) gives

X

G2GŒ0;1�

Y

.J;X/2G

FJ;X .!/

X

G2GŒ1;1�

Y

.J;X/2G

FJ;X .!/
D
Y

X2X
.1 C ˛X /

1¹!12`.X/º1¹!0…`.X/º ; (2.9)

and this last quantity is ˛ by equation (2.6). Using (2.7) and (2.9) to rewrite equa-

tion (2.8) gives the claim.

2.3.2. Laces for hypergraphs and weights on lace edges. �e weight on hy-

pergraphs, w.G/ D Q
FJ;X , can be pushed forward to a weight w!

? .st/ on la-

belled graphs; recall that labelled graphs were introduced following De�nition 2.8.

Explicitly, the weight w!
? .st/ is de�ned by

w!
? .st; timelike/ � �1¹!sD!t º; (2.10a)

w!
? .st; spacelike/ � .1 � 1¹!sD!t º/

X

¹.Ji ;Xi /ºW span.Ji ;Xi /Dst

Y

i

FJi ;Xi
.!/: (2.10b)

�e sum for a spacelike edge in (2.10) is over all non-empty collections of hy-

peredges, each of whose span is the labelled edge .st; spacelike/. �e factor

.1 � 1¹!sD!t º/ accounts for the possibility that a timelike hyperedge exists when

the edge st is given the label spacelike. Note that this weight neglects hyperedges

.J; X/ with jJ j D 1. For notational ease let Fj;X D F¹j º;X .

Lemma 2.15. �e following identity holds for a < b:

X

G2Gc Œa;b�

Y

.J;X/2G

FJ;X

D
Y

a�j �b

X2X

.1 C Fj;X /
X

L2LŒa;b�

Y

st2L

w?.st/
Y

.J 0;X 0/ W
span.J 0;X 0/2C.L/

.1 C FJ 0;X 0/:
(2.11)

�e left-hand sum is over all connected hypergraphs on Œa; b�, while the right-hand

sum is over labelled laces.
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Proof. Apply Lemma 2.9 with the weight w?, and take the product of this equation

with the �rst term on the right-hand side of (2.11):

Y

a�j �b

X2X

.1 C Fj;X /
X

�2Gc Œa;b�

Y

st2�

w?.st/

D
Y

a�j �b

X2X

.1 C Fj;X /
X

L2LŒa;b�

Y

st2L

w?.st/

Y

s0t 02C.L/

.1 C w?.s0t 0//:

Expanding the product over connected labelled graphs with weight w? gives the

left-hand side of (2.11) as hyperedges of the form .¹j º; X/ play no role in con-

nectivity, and for each st the weight w? is a sum of the possible collections of

hyperedges whose span is st . Similarly, 1 C w?.ij / for ij 2 C.L/ can be written

in the product form used above, giving the right-hand side of (2.11).

�e next de�nition and lemma simpli�es the sum over laces in (2.11) by

resumming the contributions to the product over st 2 L.

De�nition 2.16. For 0 � s < t ,

� if !s D !t , de�ne I !
X

.s; t / D 1, and

� if !s ¤ !t , de�ne

I !
X .s; t / D 1 �

Y

X2X

�

1 � ˛X

1 C ˛X

1¹!s2`.X/º1¹!t 2`.X/º1¹`.X/\range.!.s;t//D;º
�

:

(2.12)

Lemma 2.17. Let st be an edge. �en

w!
? .st; spacelike/ C w!

? .st; timelike/ D �I !
X .s; t /

Proof. �e case !s D !t corresponds to the timelike edge. Consider the spacelike

term. As any non-empty collection of spacelike hyperedges ¹.Ji ; Xi/º may be

chosen in equation (2.10) the equation can be rewritten as

w!
? .st; spacelike/ D .1 � 1¹!sD!t º/

� Y

.J;X/ W
span.J;X/Dst

.1 C FJ;X .!// � 1
�

:
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A hyperedge with span st and second element X is equivalent to a possibly empty

subset J of .s; t /. Using FJ [¹abº;X D 1¹!a2`.X/º1¹!b2`.X/ºFJ;X gives

w!
? .st; spacelike/

D 1¹!s¤!t º
� Y

X2X

Y

J �.s;t/

.1 C 1¹!s2`.X/º1¹!t 2`.X/ºFJ;X .!// � 1
�

;

where we recall that F;;X.!/ D �˛X .1 C ˛X /�1. Putting the condition that !s

and !t are in `.X/ into the product, separating the case J D ;, and then applying

Lemma 2.3 yields

w!
? .st; spacelike/

D 1¹!s¤!t º

 
Y

X2X W
!s ;!t 2`.X/

 
�

1 � ˛X

1 C ˛X

� Y

J �.s;t/

jJ j�1

.1 C FJ;X .!//

!

� 1

!

D 1¹!s¤!t º

 
Y

X2X W
!s ;!t 2`.X/

.1 C ˛X /
�1¹range.!.s;t//\`.X/D0º � 1

!

;

which is the second half of (2.12).

2.4. �e lace expansion equation. �is section shows how the recursion for

the interaction expressed in Lemmas 2.14 and 2.15 translates into a recursion for

the cn. By summing the resulting recursion over n the desired lace expansion is

obtained.

2.4.1. Lace expansion equation. For m � 2 de�ne

�.N /
m .x/ �zm˛�1

0

X

! W 0!x
j!jDm

X

L2L.N/Œ0;m�

� Y

st2L

I !
X .s; t /

�

Y

span.J;X/2C.L/

.1 C FJ;X .!//
Y

a�j �b

X 02X

.1 C Fj;X 0.!//;

where L.N / Œ0; m� is the set of laces with N edges on the interval Œ0; m�. Let

�m D
X

N �1

.�1/N �.N /
m :
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De�ne cm D 0 for m < 0. Equation 2.5 combined with Lemmas 2.14 and 2.15

imply

� for n � 1,

zncn.0; x/ D z˛
X

y�0

zn�1cn�1.y; x/ C
X

j �2

X

y

�j .y/zn�j cn�j .y; x/;

(2.13a)

and

� for n D 0;

zncn.0; x/ D ˛0ı0;x: (2.13b)

Let Gz.x/ D P

n zncn.0; x/. Summing (2.13) over n, using the translation invari-

ance of Gz.x/, and taking the Fourier transform yields

yGz.k/ D ˛0 C ˛z j�j yD.k/ yGz.k/ C y…z.k/ yGz.k/; (2.14)

where …z.x/ D P

m�2 �m.x/.

�e next two sections give expressions for �
.N /
m .x/ in terms of the quanti-

ties ˛X .

2.4.2. Walk representation of �
.N /
m .x/ for N D 1. If N D 1 the lace consists

of a single edge 0m. If x D 0 then !0 D !m, I !
X

.0; m/ D 1, and

�.1/
m .0/ D zm˛�1

0

X

! W 0!0
j!jDm

1¹!2�SAPº
Y

X

.1 C ˛X /
1¹range.!/\`.X/¤;º : (2.15)

If x ¤ 0 the set of incompatible hyperedges are those that contain both 0 and m.

Let m1 D m � 1. Corollary 2.5 implies that for ! 2 �SAW

Y

.J;X/2C.0m/

.1 C FJ;X .!// D
Y

X2X
.1 C ˛X /

1¹range.!/\`.X/¤;ºC1A (2.16)

where

1A D 1¹!02`.X/º1¹!m2`.X/º1¹range.!Œ1;m1�/\`.X/D;º;

while if ! is not self-avoiding the right-hand side of equation (2.16) is zero.

To see these two claims, use Corollary 2.5 to compute the products over hyper-

edges .J; X/ with (i) J � Œ1; m1�, (ii) J � Œ1; m� with m 2 J , and (iii) J � Œ0; m1�

with 0 2 J . �e product over compatible hyperedges is the product of these terms.
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�e de�nition of I !
X

.0; m/ when !m D x ¤ 0 then gives a formula for �
.1/
m .x/:

�.1/
m .x/ D zm˛�1

0

X

! W 0!x
j!jDm

1¹!2�SAWº
Y

X

.1 C ˛X /
1¹range.!/\`.X/¤;º

� Y

X2X
.1 C ˛X /

1¹!02`.X/º1¹!m2`.X/º1¹range.!Œ1;m1�/\`.X/D;º � 1
�

:

(2.17)

2.4.3. Walk representation of �
.N /
m .x/ for N � 2. For N � 2 the central

observation is that the edges of a lace on the discrete interval Œa; b� divides the

interval Œa; b� into 2N � 1 subintervals, see Figure 2.

De�nition 2.18. Let m 2 N. A vector Em with integer components m1; : : : ; m2N �1

is called valid if

(i) m1 � 1, m2N �1 � 1, and m2j � 1 for 1 � j � N � 1,

(ii) m2j C1 � 0 for 1 � j � N � 1, and

(iii)
P

mi D m.

�e lengths of the subintervals determined by a lace form valid vector Em.

�e restrictions on which mi are strictly positive arise from the de�nition of con-

nectedness, see [14, Section 3.3] for more details. �e subintervals are given by

xI1 D Œ0; m1� ;

xI2 D Œm1; m1 C m2� ;

:::

xI2N �1 D Œm1 C : : : m2N �2; m1 C : : : m2N �1� :

To each interval xIk associate a walk !.k/, e.g.

!.2/ D .!m1
; !m1C1; : : : ; !m1Cm2

/:

�e walks !.k/ interact with one another through the compatible edges.

To the kth interval associate (i) all hyperedges whose span is contained in xIk

and (ii) all compatible hyperedges .J; X/ such that span.J; X/ is not contained in
xIk with max J 2 xIk and max J ¤ max xIk .

For the subinterval 2N � 1 omit the last condition. �at is, if a hyperedge has

max J D m associate this edge to xI2N �1. Subintervals xIk for k < 2N � 1 are
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missing hyperedges of the form .max xIk ; X/. Including them, and dividing by ˛0

to correct for this, shows the weight associated to the interval xIk is

˛�1
0

Y

.J;X/

J �xIK

.1 C FJ;X /
Y

span.J 0;X 0/2Ck

.1 C FJ 0;X 0/; (2.18)

where the factor of ˛�1
0 for k D 2N � 1 comes from the prefactor ˛�1

0 in the

de�nition of �
.N /
m .

�e last two factors can be evaluated together. A compatible hyperedge must

have its minimum index be at least the second index of either !.k�2/ or !.k�3/.

Suppose the �rst case; the second is similar. Corollary 2.5 implies the product

in (2.18) forces !.k/ to be self-avoiding, !.k/ to avoid !.k�1/ and !.k�2/ Œ1 W �, and

assigns !.k/ the weight

˛�1
0

Y

X2X
.1 C ˛X /

1¹range.!.k//\`.X/¤;º1¹range.!.k�2/ı!.k�1/Œ1W �/\`.X/D;º ; (2.19)

x1

x0
0 x2

x0
1

x3

x0
2 x4

x0
3

0 xm1

m2

m3

m4

m5

m6

m7

m8

m9

Figure 3. �e diagrammatic representation of �
.5/
m .x/ with m D P

mi . �e vertices

x1; : : : ; x4 and x0
0
; : : : ; x0

3
are summed over.

As an explicit formula for �
.N /
m detailing the constraints is unwieldy, let us

explain the formula with a brief discussion of the diagrammatic representation of

�
.N /
m in Figure 3. �e solid lines represent a subdivision of a walk ! into subwalks;

these subwalks are subject to self-avoidance constraints detailed below. Pairs of

zigzag lines represent I !
X

.ti ; tiC1/, where ti is the time xi occurs in the walk

! D !.1/ ı � � � ı !.2N �1/. Each walk !.i/ has length mi and is self-avoiding.

Further, each walk !.i/ avoids some of the previous walks !.j / for j < i , ex-

cluding the endpoint of !.i�1/. To be precise, !.2/ avoids !.1/, !.2kC1/ avoids

!.2k�1/ and !.2k/, and !.2kC2/ avoids !.2k�1/, !.2k/, and !.2kC1/. �e walk !.j /

is weighted by those closed walks in X that do not intersect the !.j / which !.i/

is forbidden to intersect; for example, in equation (2.19) the walk !.k/ is being

weighted by all closed walks that do not intersect !.k�1/ or !.k�2/ Œ1 W �.
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Remark 2.19. Since ˛X � 0 for each X , ignoring the constraint that some closed

walks do not weight a subwalk gives an upper bound for the weight on the subwalks

!.i/. Ignoring the constraint of avoiding !.j / for some j < i gives a further upper

bound on �
.N /
m .x/.

3. Concrete expressions for the lace expansion for �-LWW

Quantities such as ˛0.X/ and I !
X

will be written as ˛0.�; z/, I !
�;z

and similarly

in what follows. �e arguments � and z may be omitted to lighten the notation.

As emphasized earlier, � � 0 and z � 0 implies w�;z.!/ � 0, and hence ˛! � 0.

In particular, by Remark 2.19 we can obtain upper bounds by ignoring constraints.

De�nition 3.1. �e two point function G�;z.x; y/ for �-LWW is de�ned by

G�;z.x; y/ D
X

! W x!y

w�;z.!/:

By �eorem 1.13 and equation (1.4) the two-point function G�;z of �-LWW

is given by the two-point function of self-avoiding walks weighted as in equa-

tion (1.5). For future reference we state a reformulation of (2.14) as a proposition.

Proposition 3.2. We have

yG�;z.k/ D ˛0.�; z/

1 � ˛.�; z/ j�j yD.k/ � y…�;z.k/
: (3.1)

To analyze the recursion (3.1) it will be convenient to rewrite the equation in

terms of w�;z and the loop measure ��;z . �e quantities ˛0.�; z/ and ˛.�; z/ can

be expressed as, for y � 0 2 Z
d ,

˛0.�; z/ D exp.��;z.0//; ˛.�; z/ D exp.��;z.0I y//:

Note that ˛0 � ˛ � 1. Let I !
�;z

D I !
X

. I !
�;z

.a; b/ can be written in a loop measure

like way:

I !
�;z.a; b/ D 1¹!aD!bº C 1¹!a¤!bº.1 � e���;z.!a;!b Irange.!.a;b////; (3.2)

where

��;z.A; BI C /

D
X

x

X

! W x!x
j!j�1

w�;z.!/

j!j 1¹range.!/\A¤;º1¹range.!/\B¤;º1¹range.!/\CD;º:



Loop-weighted walk 79

As with the loop measure, de�ne ��;z.A; B/ D ��;z.A; BI ;/. �e e�ect of this

more complicated object is to require that both an element from A and B are in

the range of the walk.

4. Convergence of the lace expansion

I. Preliminaries

�is section establishes the basic facts used to prove the convergence of the lace

expansion. �e strategy is that of [14], suitably adapted and modi�ed for �-LWW.

An important role is played by the function H�;z in the next de�nition.

De�nition 4.1. �e reduced two point function H�;z.x; y/ is de�ned by

H�;z.x; y/ D .1 � ıx;y/G�;z.x; y/:

A useful fact that will be used repeatedly is that

G�;z.x; y/ D ıx;y˛0.�; z/ C H�;z.x; y/: (4.1)

�e two-point functions G�;z and H�;z inherit the isometry invariance of the

weight w�;z . By translation invariance G�;z.x; y/ D G�;z.0; y � x/; it will be

convenient to write G�;z.x/ for G�;z.0; x/.

4.1. Random walk quantities and bounds

De�nition 4.2. �e random walk 2-point function Cz.x/ and its Fourier transform
yCz.k/ are given by

Cz.x/ D
X

! W x!x

zj!j; yCz.k/ D 1

1 � z j�j yD.k/
:

�e following facts about the random walk two-point function will be useful.

For notational clarity, let ˇ be a quantity that is O.j�j�1/. ˇ is to be thought of

as being a small parameter.

Lemma 4.3 (Lemma 5.5 of [11]). Assume d > 4. �en for 0 � z � j�j�1

sup
x

D.x/ � ˇ (4.2)

kCzk2
2 � 1 C cˇ (4.3)

k.1 � cos.k � x//Cz.x/k1 � 5.1 C cˇ/.1 � yD.k//



80 T. Helmuth

Proposition 4.4. Let r 2 N. �ere is a constant K independent of d such that for

d > 2r .
Z

Œ��;��d

� 1

1 � yD.k/

�r d d k

.2�/d
� 1 C cˇ:

Proof. �is follows by the argument used in the proof of [11, Lemma A.3].

4.2. Convergence strategy and basic bounds. �e proof of convergence is

based on comparing the behaviour of simple random walk and �-LWW. De�ne

p.z/ by
yG�;z.0/

˛0.�; z/
D 1

1 � p.z/ j�j D yCp.z/.0/:

Roughly speaking, the intuition is that �-LWW should behave like simple random

walk. �e de�nition of p.z/ serves to determine the activity of the simple random

walk that matches �-LWW with activity z. �e following bootstrap lemma is what

enables conclusions to be drawn for z < zc.�/.

Lemma 4.5 ([14, Lemma 5.9]). Let a < b, let f be a continuous function on the

interval Œz1; z2/, and assume that f .z1/ � a. Suppose for each z 2 .z1; z2/ that

f .z/ � b implies f .z/ � a. �en f .z/ � a for all z 2 Œz1; z2/.

To describe the function f used in applying Lemma 4.5 some de�nitions are

needed.

De�nition 4.6. De�ne �k
yA.`/ by

�1

2
�k

yA.`/ D yA.`/ � 1

2
. yA.` C k/ C yA.` � k//;

and de�ne

Up.z/.k; `/ D 16 yC �1
p.z/.k/. yCp.z/.` � k/ yCp.z/.`/ C yCp.z/.` C k/ yCp.z/.`/

C yCp.z/.` � k/ yCp.z/.` C k//:

�e quantity Up.z/ is a convenient upper bound for 1
2
j�k

yCp.z/.`/j: this can be

seen by [14, Lemma 5.7]. De�ne f .z/ D max¹f1.z/; f2.z/; f3.z/º, where

f1.z/ D z˛.�; z/j�j;

f2.z/ D sup
k2Œ��;��d

j yG�;z.k/j
yCp.z/.k/

;

f3.z/ D sup
k;`2Œ��;��d

�k
yG�;z.`/

Up.z/.k; `/
:
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�e next lemma will be useful for estimating G�;z .

Lemma 4.7. Assume y ¤ x. �e following inequality holds:

G�;z.x; y/ � z˛.�; z/ j�j
X

u

D.u/G�;z.u; y/:

Proof. �is can be proven using the loop measure representation. For � a walk

beginning at u � 0, let 0� D .0; u/ ı �. We get

G�;z.0; y/ D
X

� W 0!y

1¹�2�SAWºzj�j exp.��;z.range.�///

D
X

u�0

X

� W u!y

1¹0�2�SAWºz exp.��;z.0I range.�///zj�j

exp.��;z.range.�///

� z˛.�; z/ j�j
X

u

D.u/
X

� W u!y

1¹�2�SAWºzj�j exp.��;z.range.�///

D z˛.�; z/ j�j
X

u

D.u/G�;z.u; y/;

�e inequality follows as (a) Proposition 1.14 implies ��;z.0I range.�// is bounded

above by ��;z.0I u/ D ˛0 and (b) 1¹0�2�SAWº is bounded above by 1¹�2�SAWº.

Proposition 4.8. Assume d > 4. Fix z 2 .0; zc/ and assume f .z/ � K. �en

there is a constant cK independent of z and d such that

k.1 � cos.k � x//H�;zk1 � cK.1 C ˇ/ yCp.z/.k/�1; (4.4)

kH�;zk2
2 � cKˇ (4.5)

kH�;zk1 � cKˇ: (4.6)

Proof. �e general fact that kgk1 � k Ogk1 and the identity

X

x

cos.k � x/f .x/ei`�x D 1

2
. Of .` C k/ C Of .` � k//

imply

k.1 � cos.k � x//H�;z.x/k1 D k.1 � cos.k � x//G�;z.x/k1

� 1

2
k�k

yG�;z.`/k1:



82 T. Helmuth

�e de�nition of U , the fact that f3 � K, and the Cauchy–Schwarz inequality

then imply

k.1 � cos.k � x//H�;z.x/k1 � 16K yCp.z/.k/�13k yCp.z/k2
2;

which yields (4.4) after using (4.3).

To estimate kH�;zk2
2 note that Lemma 4.7 implies

H�;z.x/ � z˛.�; z/ j�j D � G�;z.x/

�e factor z˛ j�j is estimated using f1.z/ � K. To estimate D � G�;z use Parse-

val’s identity, f2.z/ � K, and Lemma 4.3:

kH�;zk2
2 � K2kD � G�;zk2

2

� K4k yD yCj�j�1k2
2

D K4.k yCj�j�1k2
2 � 1/

� cK4ˇ:

For the last inequality use the fact that supx H�;z.x/ D supx¤0 G�;z.x/, Lemma 4.7,

equation (4.1) and then Lemma 4.7 again. Using f1 � K gives

H�;z.x/ � K˛0.�; z/D.x/ C K2D � D � G�;z.x/:

A little manipulation shows that kD � D � G�;zk1 � k yD2 yC 2
p.z/

k1, so Lemma 4.3

implies

kD � D � G�;zk1 � cKˇ:

Equation 4.2 implies D.x/ � ˇ so it su�ces to show ˛0.�; z/ is bounded above.

�is follows from f2 � K:

˛0 D
Z

Œ��;��d

yG�;z.k/
d d k

.2�/d

� K

Z

Œ��;��d

yCp.z/.k/
d d k

.2�/d

� Kk yCj�j�1k1;

and this last integral is �nite for d � 3, and decreases as the dimension d increases.
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5. Convergence of the lace expansion

II. Diagrammatic bounds and convergence

To control the lace expansion it is necessary to show that y…�;z is small. �is is

done by obtaining bounds on norms of …
.N /

�;z
in terms of H�;z , G�;z , and I�;z .

�ese bounds are known as diagrammatic bounds. Coupled with Proposition 4.8

diagrammatic bounds are what make the hypothesis f .z/ � K powerful.

Obtaining diagrammatic bounds requires bounding the weight of walks con-

strained to have !j D x in terms of unconstrained walks. �is is best illustrated by

an example. Consider obtaining a bound for d
dz

G�;z.0; x/. For self-avoiding walk

(� D 0) this is straightforward: the Leibniz rule implies the derivative is a sum

over all self-avoiding walks from 0 to x together with a marked edge. Splitting

the walk at the marked edge and using the fact that self-avoiding walk is purely

repulsive yields

d

dz
G0;z.0; x/ � z�1G0;z � H0;z.0; x/: (5.1)

For � > 0 a similar argument is possible, but the weight on the second half of

the walk is not w�;z: memory of the �rst half of the walk is needed to know when

loops are erased. Section 5.1 derives identities for walks that play the role of equa-

tion (5.1) for � > 0. Section 5.2 uses these identities to derive the diagrammatic

bounds necessary to apply Lemma 4.5.

5.1. Decompositions for �-LWW. �e formulas presented in this section are

the result of tracking what happens when loop erasure is performed. �e reader

may �nd it helpful to draw examples while reading the text.

5.1.1. Decompositions from loop erasure. �e loop erasure of a walk can be

viewed as a last exit decomposition: if ! W x ! y then the second vertex in the

loop erasure is the �rst vertex visited after the last visit to x. Iterating this implies

the next proposition.

Proposition 5.1. Let ! be a walk. De�ne `0 D 0 and

`k D sup¹j j !j D !`k�1
º C 1

for k 2 N. Suppose there are n C 1 �nite values of `k such that `k � j!j. �en

LE.!/ D .!`0
; !`1

; : : : ; !`n
/:
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In Proposition 5.1 the restriction to �nite values at most j!j is due to the fact

that there will be an `k D j!j C 1, and then `kC1 D �1. �e loop erasure of a

walk ! induces a decomposition of !. Let � D LE.!/ D .!`0
; : : : ; !`k

/. De�ne,

for 0 � r < s � k,

��1 Œr; s� D ! Œ`r ; `s � 1� ; (5.2)

where, recalling Proposition 5.1, `kC1 D j!j C 1. See Figure 4.

0

t1 t2

t3

Figure 4. An illustration of the de�nition of ��1 Œr; s� and of the subdivision of a walk given

by equation (5.3). �e initial walk ��1 Œ0; t1�, drawn with a solid line, is the preimage of

the initial solid segment of the loop erasure of the walk. �e dashed and dotted curves are

��1 Œt1; t2� and ��1 Œt2; t3� respectively. �e small gaps in curves indicate the �ow of time.

Remark 5.2. It would be more accurate to write LE.!/�1 Œr; s� as the de�nition

requires knowledge of the walk ! whose loop erasure is �. As the walk ! will be

clear from context this will not cause any confusion.

�e following extension of the notion of the concatenation of two walks will

be notationally convenient. If !i W xi ! yi and y1 � x2 write !1 ˘ !2 for the

walk that consists of !1 followed by a step from y1 to x2 followed by the walk !2.

Fix a walk ! whose loop erasure is k steps long. A sequence of times

0 D t0 < t1 < t2 < � � � < tn D k

induces a decomposition of ! by using equation (5.2):

! D ��1 Œt0; t1� ˘ � � � ˘ ��1 Œtn�1; tn� : (5.3)

�is decomposition has two notable features. First, the loop erasure of the seg-

ments of the decomposition yield � Œti ; tiC1 � 1�. Second, each segment, barring

perhaps the �rst segment, never returns to its starting vertex. See Figure 4.

�e next de�nitions serve to formalize the fact that given the loop erasure

� D LE.! Œ0; j �/ of a walk ! up to time j , the remainder of ! has the e�ect

of erasing some of �, and then extending the remainder of � to complete the for-

mation of LE.!/.
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De�nition 5.3. Let A � Z
d . �e hitting time �!.A/ of A by ! is

�!.A/ D inf¹j � 0 j !j 2 Aº:

De�nition 5.4. Let � W x ! y be a self-avoiding walk, and let ! be a walk begin-

ning at y. Let �0 D � Œ0; j�j/. For k � 1 inductively de�ne

sk
� .!/ D �!.�k�1/; tk

!.�/ D ��1.!sk
� .!//; �k D �Œ0; tk

!.�///:

�e times sk
� .!/ are the shrinking times of � by !.

See Figure 5 for an illustration of shrinking times. �e walks �k in the de�-

nition are decreasing in length, and it follows that the times tk
!.�/ are decreasing

in k.

�!.�1/�!.�0/

Figure 5. An illustration of the shrinking times of the self-avoiding walk � (dashed) by !

(solid). �e gaps in ! are to indicate the progress of time. Note that the second hitting time

of � is not a shrinking time as it occurs on a portion of � that is erased at the �rst hitting

time.

5.1.2. Expected visits of �-LWW. �e next proposition gives a formula for the

expected number of visits of a closed �-LWW to a given vertex y. We will �rst

give an informal description of the formula. �e number of visits by a walk ! to

a vertex y can be expressed as

ˇ
ˇ¹j � 1 j !j D yº

ˇ
ˇ D

X

j �1

1¹!j Dyº:

Consider a walk with !j D y. �is naturally splits into two pieces: the walk

!.a/ up to time j , and the walk !.b/ after time j . �e splitting times introduced in

Section 5.1.1 then split each of !.a/ and !.b/ into k segments if there are k splitting

times. In Proposition 5.5 the segments of !.a/ are called !.i/ for i D 1; : : : ; k, and

the segments of !.b/ are called !.kCi/ for i D 1; : : : ; k. �e conditions Ai and Bi

are formalizations of the fact that these subwalks arise from splitting times.



86 T. Helmuth

Proposition 5.5. Fix x; y 2 Z
d , y ¤ x. �en

X

! W x!x

ˇ
ˇ¹j � 1 j !j D yº

ˇ
ˇw�;z.!/

D ˛0

X

k�1

X

x0;:::;xk

distinct

k
X

iD1

1¹x0Dxº1¹xkDyº�k

X

!.i/ W xi�1!xi

!.kCi/ W xk�iC1!xk�i

� k
Y

iD1

w�;z.!.i//1¹!.i/2Aiº
�

� k
Y

iD1

w�;z.!.kCi//1¹!.kCi/2Bi º
�

;

(5.4)

where Ai and Bi are de�ned as follows. A walk ! is in Ai if ! Œ1 W � does not hit

LE.!.j // for any j < i . A walk ! is in Bi if

(1) ! does not hit !k�j for j > i C 1,

(2) ! Œ1 W � hits !k�i at !k�i
0 ,

(3) ! hits !k�i�1 at !k�i
0 , and ! does not hit LE.!k�i�1/ n ¹!k�i

0 º.

Proof. Rewrite
ˇ
ˇ¹j � 1 j !j D yº

ˇ
ˇ as

P

j �1 1¹!j Dyº. To prove the claim it suf-

�ces to show that walks with !j D y are in bijection with the summands such that
ˇ
ˇ!.1/ ı � � � ı !.k/

ˇ
ˇ D j .

Suppose !j D y, and let � D LE.! Œ0; j �/. Let t`; s` be t`
!.�/ and s`

�.!/,

respectively. Assume there are k shrinking times for the walk !. Observing that

! closed implies tk D 0, sk D j!j implies

! Œ0; j � D ��1Œtk; tk�1� ˘ � � � ˘ ��1Œt2; t1� ˘ ��1Œt1; j�j� (5.5)

!Œj W � D !
�

j; s1
�

˘ � � � ˘ !Œsk�1; sk�: (5.6)

Call the subwalks on the right-hand sides of (5.5) and (5.6) the constituents of

! Œ0; j � and ! Œj W �, respectively. Call a walk ! W x ! x an excursion if the only

occurrences of x in ! are !0 and !j!j.
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Separating any initial excursions from x to x from the �rst subwalk comprising

! Œ0; j � gives the factor ˛0. To complete the claim, notice that any excursions

immediately after a shrinking time that occur prior to the next hitting time of �`

can be transferred to the previous subwalk comprising ! Œj W �. In the case of the

�rst constituent of ! Œj W � the excursions can be transferred to the last constituent

of ! Œ0; j �.

�e next proposition handles the case of visits to the initial vertex of a walk.

Proposition 5.6. We have

X

! W x!x
j!j�1

ˇ
ˇ¹j � 1 j !j D xº

ˇ
ˇw�;z.!/ D ˛0.˛0 � 1/: (5.7)

Proof. Write
ˇ
ˇ¹j � 1 j !j D xº

ˇ
ˇ as

P

j �1 1¹!j Dxº. Insert this into the left-hand

side of (5.7) and split each walk ! at time j . Summing the remainder after time j

gives a factor ˛0. Summing over j gives ˛0 � 1 as j � 1 implies the empty walk

is excluded.

To avoid explicitly writing the cumbersome right-hand side of (5.4) repeatedly

it will be convenient to introduce a short-hand de�nition:

De�nition 5.7. �e bubble chain BC�;z.x; y/ from x to y is de�ned to be

˛0.˛0 � 1/ if x D y and the right-hand side of (5.4) if x ¤ y.

�e next decomposition formula is the analogue of Proposition 5.5 for walks

! that are not closed. Some notation will be needed: for � a self-avoiding walk

ending at x de�ne BC
�

�;z
.x; y/ to be the bubble chain in Z

d n ¹�0; : : : ; �j�j�1º.
See Figure 6.

Proposition 5.8. Fix x; y; b 2 Z
d , x ¤ y, b ¤ x. �en

X

! W x!y

1¹x…!Œ1 W �º
ˇ
ˇ¹j � 1 j !j D bº

ˇ
ˇw�;z.!/

D
X

a2Zd

X

!.1/ W x!a
x…!Œ1 W �

X

!.2/ W a!y

!.2/Œ1 W �\LE.!.1//D;

.ıa;b C BC
LE.!.1//

�;z
.a; b//w�;z.!.1//w�;z.!.2//:

(5.8)
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!0 D x

!j!j D y

!j D b

v

Figure 6. An illustration of a contribution to to the sum in equation (5.8). For clarity, only

the loop erasure of each walk is shown. �e dashed black path is the bubble chain portion

of the walk. �e vertex v indicates the division between the path prior to the bubble chain

and after the bubble chain.

Proof. �is follows by writing
ˇ
ˇ¹j � 1 j !j D bº

ˇ
ˇ as

P

j �1 1¹!j Dbº and noting

that this splits, by applying equation (5.3) with � D LE.! Œ0; j �/, a walk ! into

(i) an initial segment !.1/ whose loop erasure is the subset of LE.! Œ0; j �/ that

is contained in LE.!/, (ii) a bubble chain from the endpoint of !.1/ to b whose

walks do not hit LE.!.1//; if the endpoint of !.1/ is b then it is also possible this

walk is null, and (iii) a walk !.2/ from the endpoint of !.1/ to y that does not,

after the �rst vertex, hit LE.!.1//.

�e restriction in Proposition 5.8 to walks ! that do not return to their initial

vertex is simply because this is the type of sum that will occur most frequently in

what follows.

5.1.3. Two-point functions and their derivatives. �e quantity I !
�;z

.a; b/

de�ned in equation (3.2) is inconvenient due to its dependence on the details

of !; the next de�nition introduces a simple upper bound.

De�nition 5.9. �e interaction two-point function I�;z.x; y/ is the function

I�;z.x; y/ D 1¹xDyº C 1¹x¤yº.1 � e���;z.x;yI;//:

Lemma 5.10. Let ! be a walk of length n, and let 0 � a < b � n.

I !
�;z.a; b/ � I�;z.!a; !b/: (5.9)

Proof. If !a D !b then (5.9) is an equality. If !a ¤ !b the inequality follows

because the loop measure is decreasing in its �nal argument.



Loop-weighted walk 89

�e important aspect of the next bound is that it is independent of �.

Proposition 5.11. Let � W x ! y be a self-avoiding walk. �en

d

dz
I

�

�;z
.x; y/ � 1¹x¤yºz�1

X

a2Zd

X

! W a!a
j!j�1

1¹x2!º1¹y2!ºw�;z.!/: (5.10)

Further, the right-hand side of (5.10) is an upper bound for d
dz

I�;z.x; y/ as well.

Proof. Di�erentiate, and then use e�x � 1 for x � 0.

De�nition 5.12. �e scaled two-point functions xG�;z.x; y/ and xH�;z.x; y/ are

de�ned by

xG�;z.x; y/ D ˛0.�; z/�1G�;z.x; y/;

xH�;z.x; y/ D ˛0.�; z/�1H�;z.x; y/:

Let xB�;z.x/ D xH�;z.x/2. An upper bound on BC�;z is obtained by dropping

the constraints Ai and Bi .

De�nition 5.13. De�ne B?
�;z.x; y/ by

B?
�;z.x; y/ D ˛0

8

<̂

:̂

X

k�1

�k xB�;z � � � � � xB�;z
„ ƒ‚ …

k terms

.x; y/ x ¤ y

˛0 � 1 x D y

(5.11)

Proposition 5.14. Let � be any self-avoiding walk ending at x. �en

BC
�

�;z
.x; y/ � BC�;z.x; y/ � B?

�;z.x; y/:

Proof. �e �rst inequality follows as the set of summands is increasing from

left to right and all summands are non-negative. For the second inequality note

that relaxing the conditions Ai and Bi increases the set of summands. Using

H�;z.x; y/ D H�;z.y; x/, which follows from �eorem 1.13, to reverse the

direction of the walks !.kCi/ gives the upper bound B?
�;z.x; y/.

�e next lemma shows that if a sum over walks satisfying some constraints is

upper bounded by relaxing the constraints, an upper bound on the derivative is

obtained by di�erentiating the upper bound. �is will be used frequently.
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Lemma 5.15. Suppose A; B are two sets of walks, and A � B . �en

d

dz

X

!2A

w�;z.!/ � d

dz

X

!2B

w�;z.!/:

Proof. Each summand is non-negative as the weight of a walk ! is proportional

to zj!j, and the set of summands on the right-hand side is larger.

�e formulas of Section 5.1.2 yield diagrammatic bounds on derivatives of

two-point functions by applying the identity

j!j D
X

a2Zd

j¹j � 1 j !j D aºj; (5.12)

where j D 0 is not included because there j!j C 1 vertices in a walk.

Proposition 5.16. For x 2 Z
d , x ¤ 0,

d

dz
xG�;z.x/ D d

dz
xH�;z.x/ � z�1.1 C kB?

�;zk1/ xG�;z � xH�;z.x/:

Proof. �e �rst equality is straightforward as xG�;z.x/ D ı0;x C xH�;z.x/ by equa-

tion (4.1). For the inequality observe that

d

dz
xH�;z.x/ D z�1

X

! W 0!x
0…!Œ1 W �

j!j w�;z.!/

Applying (5.12) and Proposition 5.8 yields

z�1
X

b2Zd

X

a2Zd

X

!.1/ W 0!a
0…!Œ1 W �

X

!.2/ W a!x

!.2/Œ1 W �\LE.!.1//D;

.ıa;b C BC
LE.!.1//

�;z
.a; b//

w�;z.!.1//w�;z.!.2//:

By Proposition 5.14 removing the restriction on the bubble chain gives an upper

bound. �e sum over b then gives the factor 1CkB?
�;zk1. Dropping the constraint

that !.2/ does not intersect LE.!.1// gives the claim.
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Proposition 5.17. We have

d

dz
˛0.�; z/ D z�1kB?

�;zk1:

Proof. As a zero step walk does not survive being di�erentiated,

d

dz
˛0.�; z/ D z�1

X

! W 0!0
j!j�1

j!j w�;z.!/:

�e proposition follows by (i) applying (5.12) to rewrite j!j, (ii) using Proposi-

tions 5.5 and 5.6 to recognize the resulting sum as the 1-norm of the bubble chain,

and (iii) using Proposition 5.14 to upper bound the norm of the bubble chain.

Proposition 5.18. We have

d

dz
kBC�;zk1 � z�1kB?

�;zk1.3˛0 � 1 � ˛2
0 C kB?

�;zk1/

C 2˛0z�1�k xH�;z � . xG�;z � xH�;z/k1.1 C kB?
�;zk1/3:

Proof. By Lemma 5.15 it su�ces to obtain bounds on the derivative of kB?
�;zk1.

For the summand with x D y an upper bound is

z�1kB?
�;zk1.˛0 � 1/ C z�1˛0kB?

�;zk1

by Proposition 5.17.

For x ¤ y di�erentiating equation (5.11) and using Proposition 5.17 gives an

upper bound z�1kB?
�;zk1˛�1

0 .kB?
�;zk1 � ˛0.˛0 � 1// if the derivative is applied

to ˛0. �e factor of ˛�1
0 can be dropped to give an upper bound as ˛0 � 1. When

the derivative is not applied to ˛0 we have, using Proposition 5.16, the upper bound

d

dz
kB?

�;zk1 D ˛0

d

dz

X

k�1

X

y

�k xH 2
�;z � � � � � xH 2

�;z
„ ƒ‚ …

k terms

.y/

� 2˛0

X

k�1

X

y

k�k
�

xH�;z

d

dz
xH�;z

�

� xH 2
�;z � � � � � xH 2

�;z
„ ƒ‚ …

k � 1 terms

.y/

D 2˛0z�1�k xH�;z � . xG�;z � xH�;z/k1.1 C kB?
�;zk1/3:

Summing these upper bounds gives the result.

5.2. Diagrammatic bounds. �e bounds derived in this section will be obtained

under the assumption that f .z/ � K for z < zc.�/. In particular the results of

Proposition 4.8 hold. It will also be assumed that the dimension d is su�ciently

large, i.e., ˇ is su�ciently small.
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5.2.1. Initial diagrammatic bounds

Proposition 5.19. If z < zc and f .z/ � K then ˛0.�; z/ � 1 C cˇ.

Proof. By de�nition and �eorem 1.13

˛0.�; z/ D exp.��;z.0// D 1 C
X

! W 0!0
j!j�1

w�;z.!/:

�e walks contributing to the sum have their last vertex a neighbour of 0, so

X

! W 0!0
j!j�1

w�;z.!/ D z� j�j D � H�;z.0/; (5.13)

which is bounded by z� j�j kH�;zk1. �e claim follows from z j�j � f1.z/ � K

and (4.6).

Proposition 5.20. If z < zc and f .z/ � K then kB?
�;zk1 � cˇ.

Proof. Repeatedly using kf � gk1 � kf k1kgk1 implies

kB?
�;zk1 � ˛0

�

.˛0 � 1/ C
X

k�1

�kk xH�;zk2k
2

�

;

�e interchange of summations is valid as each term is non-negative. By Propo-

sition 5.19, ˛0 � 1 C cˇ so ˛0 � 1 � cˇ. Since ˛0 � 1, k xH�;zk2
2 � kH�;zk2

2,

so equation (4.5) implies that for ˇ su�ciently small

X

k�1

�kk xH�;zk2k
2 � cˇ:

Proposition 5.21. Let I�;z.x/ D I�;z.0; x/. If z < zc and f .z/ � K then

kI�;zk1 � 1 C cˇ.

Proof. �e inequality 1 � e�x � x implies that 1 C k1¹x¤0º��;z.0; x/k1 is an

upper bound for kI�;zk1. �e factor of 1 is from the term 1¹xD0º in I�;z . Observe

that k1¹x¤0º��;z.0; x/k1 is bounded by

X

x¤0

X

y

X

! W y!y

j!j�1

1¹02!º1¹x2!º
w�;z.!/

j!j �
X

y

X

! W y!y

j!j�1

1¹02!ºw�;z.!/;
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as
P

x¤0 1¹x2!º � jrange.!/j � j!j. By translation invariance this is

X

y

X

! W 0!0
j!j�1

1¹�y2!ºw�;z.!/ D




X

! W 0!0
j!j�1

1¹y2!ºw�;z.!/




1
;

where the norm is with respect to y. To establish the proposition (i) bound 1¹y2!º
by
ˇ
ˇ¹j � 1 j !j D yº

ˇ
ˇ, (ii) apply Proposition 5.6 for the summands with y D 0,

(iii) apply Proposition 5.5 and Proposition 5.14 for the summands with y ¤ 0,

and (iv) observe that the sum of these two bounds is kB?
�;zk1 and apply Proposi-

tion 5.20.

5.2.2. Bounds for �.1/

Proposition 5.22. We have

�.1/.x/ D
X

m

�.1/
m

8

<

:

D z� j�j D � xH�;z.0/ x D 0

� xH�;z.x/I�;z.0; x/e��;z.0;x/ x ¤ 0;

Proof. For x D 0 the claim follows from the identities in equations (1.4), (1.5),

(2.15), and (5.13). For x ¤ 0 use equation (2.17). Recall the loop measure repre-

sentation of the second product, i.e., the expression for I !
X

given by equation (3.2).

�e desired bound follows by forgetting the constraint in the loop measure and the

rearrangement e��;z.0;x/ � 1 D e��;z.0;x/I�;z.0; x/.

Proposition 5.23. Suppose f .z/ � K. �e following bounds hold for u D 0; 1

and k 2 Œ��; ��d :

k jxj2u �.1/k1 � cˇ.1¹uD0º C k jxj2u xH�;zk1/;

and

k.1 � cos k � x/�.1/.x/k1 � cˇk.1 � cos k � x/ xH�;zk1:

Proof. �e triangle inequality, kf � gk1 � kf k1kgk1 with g D I�;z , and

1 � cos 0 D 0 imply

k jxj2u �.1/k1 � 1¹uD0ºz j�j k xH�;zk1

C kI�;z.0; x/e��;z.0;x/
1¹x¤0ºk1k jxj2u xH�;zk1

and

k.1 � cos k � x/�.1/.x/k1

� kI�;z.0; x/e��;z.0;x/
1¹x¤0ºk1k.1 � cos k � x/ xH�;zk1:



94 T. Helmuth

Using z j�j � f1.z/ � K by f3 � K and supx e��;z.0;x/ � ˛0.�; z/ implies

kI�;z.0; x/e��;z.0;x/
1¹x¤0ºk1 � ˛0kI�;z.0; x/1¹x¤0ºk1

� ˛0.kI�;z.0; x/k1 � 1/:

�e conclusion now follows from Propositions 5.19 and 5.21.

5.2.3. Bounds for �.N /, N � 2

Proposition 5.24. Let m � 2, x 2 Z
d , and N � 2. Let x0 D 0; x0

N �1 D x. �en

j�.N /
m .x/j �

X

Em

X

x1;:::;xN�1

x0
0

;:::;x0
N�2

X

!.1/ W 0!x1

j!.1/jDm1

X

!.2/ W x1!x0
0

j!.2/jDm2

: : :

X

!.2N�2/ W xN�1!x0
N�2

j!.2N�2/jDm2N�2

X

!.2N�1/ W x0
N�2

!x

j!.2N�1/jDm2N�1

N �1
Y

j D0

jI�;z.xj ; x0
j /j

2N �1
Y

kD1

˛�1
0 exp.��;z.range.!.k////;

(5.14)

where the summation is over valid vectors Em (recall De�nition 2.18) of subinterval

lengths such that
P

mi D m.

Proof. �is follows from Section 2.4.3. By Lemma 5.10 the factors of I !
�;z

can be

replaced by I�;z . As ˛! � 0 for any walk !, by Remark 2.19 the constraints on

subwalks can be ignored to give an upper bound. �is proves the claim.

Upper bounds on k�.N /.x/k1 can be e�ciently found by formulating Propo-

sition 5.24 in terms of multiplication and convolution operators. Let Mg and

Cg denote multiplication and convolution by g, respectively: Mgf D gf and

Cgf D g � f .

Lemma 5.25. Fix N � 2 and let xH D xH�;z , xG D xG�;z , and I D I�;z . �en

X

x

j�.N /.x/j � k.C xH�IM xH /.C xG�IM xH /N �2 xH � Ik1: (5.15)
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Proof. �e de�nition of a valid vector of lengths implies that summing (5.14) over

all valid vectors of lengths results in the sums over walks with indices 1, 2j , and

2N � 1 being replaced by xH�;z , and the remaining sums of walks are replaced

by xG�;z . Consulting Figure 3, this means that all horizontal solid lines except the

leftmost and rightmost are weighted by xG�;z , while the rest are weighted by xH�;z.

Formally,

ˇ
ˇ
ˇ�

.N /.x/
ˇ
ˇ
ˇ �

X

x1;:::;xN�1

x0
0

;:::;x0
N�2

�N �1
Y

j D0

I�;z.xj ; x0
j /
�

xH�;z.x0; x1/

�N �2
Y

j D0

xH�;z.x0
j ; xj C1/

��N �3
Y

j D0

xG�;z.x0
j ; xj C2/

�

xH�;z.x0
N �2; x0

N �1/:

(5.16)

Replace the factor I�;z.x0; x0
0/ by I�;z.y; x0

0/ in (5.16) and call the resulting func-

tion F.x; y/. As
P

x jF.x; 0/j D P

x j�.N /.x/j the quantity supy

P

x jF.x; y/j is

an upper bound for the left-hand side of (5.15). �e associativity of convolution

implies

X

x

jF.x; y/j D ..C xHCI /M xH .C xGCIM xH /N �2 xH � I /.y/: (5.17)

Equation (5.15) follows as C xGCI D C xG�I and C xHCI D C xH�I .

�e right-hand side of Lemma 5.25 can be easily estimated with the help of

the next lemma.

Lemma 5.26 (Lemma 4.6 of [14]). Given a sequence of non-negative even func-

tions f0; f1; : : : ; f2M on Z
d , de�ne Cj and Mj to be the operations of convo-

lution with f2j and multiplication by f2j �1 for j D 1; : : : ; M . �en for any

k 2 ¹0; : : : ; 2M º,

kCMMM : : :C1M1f0k1 � kfkk1
Y

kfj � fj 0k1; (5.18)

where the product is over disjoint consecutive pairs j; j 0 taken from the set

¹0; : : : ; 2M º n ¹kº.
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�e strange formatting of the bounds in the next proposition are strictly for ty-

pographic convenience; in applications we multiply through by the denominators

of the left-hand sides.

Proposition 5.27. Let N � 2. �en for z < zc and u 2 ¹0; 1º

k jxj2u
�.N /.x/k1

.2N � 1/u
� k jxj2u xH�;zk1.cˇ/N �2C1¹ND2º.1 C cˇ/N C1¹N�3º

and

k.1 � cos.k � x//�.N /.x/k1

.4N � 1/.2N � 1/

� k.1 � cos.k � x// xH�;z.x/k1.cˇ/N �2C1¹ND2º.1 C cˇ/N C1¹N�3º

Proof. Suppose that both

k jxj2u
�.N /.x/k1

.2N � 1/u
� k jxj2u xH�;zk1k xG�;z � xG�;zk1k xG�;z � xH�;zkN �2

1 kI�;zkN
1

(5.19)

and

k.1 � cos.k � x//�.N /.x/k1

.4N � 1/.2N � 1/

� k.1 � cos.k � x// xH�;z.x/k1k xG�;z � xG�;zk1k xG�;z � xH�;zkN �2
1 kI�;zkN

1 :

(5.20)

Suppose further that if N D 2 the same bounds hold with each term xG�;z re-

placed by xH�;z . �e claim then follows, as equation (4.1), the triangle inequality,

Cauchy–Schwarz, and xH�;z � H�;z imply

k xH�;z � xG�;zk1 D k xH�;z C xH�;z � xH�;zk1 � k xH�;zk1 Ck xH�;zk2
2 � cˇ; (5.21)

and Proposition 5.21 implies kI�;zk1 � 1 C cˇ. �e rest of the proof establishes

equations (5.19) and (5.20).

First observe that the di�erence between N D 2 and N � 3 is only that all

two-point functions in Lemma 5.25 are xH�;z for N D 2, while for N � 3 factors

of xG�;z arise.

If u D 0 equation (5.19) follows by applying Lemma 5.26 to the right-hand

side of Lemma 5.25, putting the sup norm on the �nal I�;z � xH�;z , and using the

inequality

k xG�;z � xH�;z � I�;zk1 � k xG�;z � xH�;zk1kI�;zk1:
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For u D 1, note that x D x1 C : : : x2N �1, where xj is the displacement along

the j th subwalk in a summand contributing to �.N /. As jxj2 � P jxi j2 it follows

that an upper bound is given by

2N �1
X

j D1

k.C xH�IM xH /.C xG�IM xH /N �2 xH � Ik1;

where the j th two-point function xG or xH is replaced with jxj2 xH . �e claim

follows by (i) applying Lemma 5.26 and putting the sup norm on the term in-

volving the factor of jxj2 (ii) noting that the resulting norms are of the form

k xH � xH � Ik1, kI � xG � xHk1, kI � I � xG � xGk1, or k xH � Ik1 and (iii)

iterating kf � gk1 � kf k1kgk1. �e uniform upper bound follows by using

k xH � xHk1 � k xH � xGk1.

To prove equation (5.20) let t D Pn
j D1 tj . �en (see [14, Section 4.2.3])

.1 � cos t / � .2n C 1/

n
X

j D1

.1 � cos tj /: (5.22)

Letting tj D k�xj where xj is the displacement along the j th subwalk the argument

used to prove (5.19) with u D 1 can be applied to give (5.20). �e prefactor

.4N � 1/.2N � 1/ arises as for an N edge lace there are 2N � 1 subwalks, so

n D 2N � 1 in equation (5.22).

5.3. Completion of the bootstrap. �is section begins by using the diagram-

matic bounds of Sections 5.2.2 and 5.2.3 to establish that … is small under the

hypothesis f .z/ � K.

Lemma 5.28. Fix z 2 .0; zc/ and assume d is su�ciently large. If f .z/ � K,

then there is a constant NcK independent of z and d such that

X

x2Zd

j…z.x/j � NcKˇ (5.23)

and
X

x2Zd

.1 � cos.k � x// j…z.x/j � NcKˇ yCp.z/.k/�1: (5.24)

Proof. �is follows by combining the bounds of Propositions 5.23 and 5.27 for

u D 0 with the bound k.1 � cos k � x/H�;z.x/k1 � cK.1 C ˇ/ yC �1
p.z/

.k/ of equa-

tion (4.4).



98 T. Helmuth

�e remainder of this section is devoted to verifying the hypothesis of

Lemma 4.5 for z1 D 0, z2 D zc.�/, a D 4 and b D 1 C O.ˇ/.

Lemma 5.29. �e function f obeys f .0/ D 1.

Proof. Clearly f1.0/ D 0. �e de�nition of p.z/ implies p.0/ D 0 as we have

˛0.�; 0/ D 1, so f2.0/ D 1. Lastly, f3.0/ D 0: U0 D 48 while �k
yG�;0 D 0.

Lemma 5.30. �e function f is continuous on Œ0; zc/.

Proof. It su�ces to show f1; f2; f3 are continuous on Œ0; r� for any r < zc.

For f1 this follows as ˛.�; z/ � ˛0.�; z/ � ��.z/, i.e., ˛.�; z/ has a convergent

power series representation.

Recall (see [14, Lemma 5.13]) that the supremum of an equicontinuous fam-

ily of functions over a compact interval is a continuous function, provided this

supremum is �nite. It follows that it is enough to prove a bound uniform in k on

the derivative of f2 (resp. f3) with respect to z. Since equicontinuity of a family

¹jg˛jº is equivalent to equicontinuity of ¹g˛º, the absolute value on yG�;z (resp.

�k
yG�;z) can be ignored. For f2 the derivative is

d

dz

yG�;z.k/

yCp.z/.k/

D 1

yCp.z/.k/2

�

yCp.z/.k/
d yG�;z.k/

dz
� yG�;z.k/

d yCp.z/.k/

dp

ˇ
ˇ
ˇ
pDp.z/

dp.z/

dz

�

:

Now note j yG�;z.k/j � ��.r/,
ˇ
ˇ d

dz
yG�;z.k/

ˇ
ˇ �

ˇ
ˇ d

dz
��.r/

ˇ
ˇ, j@p

yCp.k/j � j�j ��.r/2.

Further,

ˇ
ˇ
ˇ
ˇ

dp.z/

dz

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

d

dz
j�j�1

�

1 � ˛0.�; z/

��.z/

�
ˇ
ˇ
ˇ
ˇ

� j�j�1 ˛0.�; r/
d

dz
��;.r/��2

� .0/ C ��1
� .1/

d

dz
˛0.�; r/;

and d
dz

˛0.�; r/ is bounded above by d
dz

��.r/ by Lemma 5.15. A uniform bound

on the derivative then follows from

1

2
� yCp.z/.k/ � yCp.z/.0/ D ��.z/

˛0.�; z/
� ��.r/;

where the second last equality follows from the de�nition of p.z/, and the last

inequality from ˛0.�; z/ � 1.
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For f3 the calculation is essentially the same. Calculating the derivative shows

that what is needed is upper bounds on j yG�;z.k/j,
ˇ
ˇ d

dz
yG�;z.k/

ˇ
ˇ, j@p

yCp.k/j, and
ˇ
ˇ d

dz
p.z/

ˇ
ˇ, along with upper and lower bounds on yCp.z/. �ese bounds have already

been obtained.

�e next lemma completes the bootstrap argument.

Lemma 5.31. Suppose d is su�ciently large. Fix z 2 .0; zc/, and suppose

that f .z/ � 4. �en there is a constant c independent of z and d such that

f .z/ � 1 C cˇ.

Proof. We prove fj .z/ � 1 C cˇ for j D 1; 2; 3 in sequence.

Since ˛0.�; z/ and ��.z/ are both positive and �nite it follows that

˛0.�; z/

��.z/
D 1 � z˛.�; z/ j�j � y…�;z.0/ > 0: (5.25)

Equation (5.25) and Lemma 5.28 together imply

f1.z/ D z˛.�; z/ j�j � 1 C y…�;z.0/ � 1 C Nc4ˇ:

Proposition 5.19 implies ˛0 � 1 C Ncˇ, so f2 � 1 C O.ˇ/ follows if

yG�;z.k/

˛0.�; z/ yCp.z/.k/
D 1 C 1 � p.z/ j�j yD.k/ � yF�;z.k/

yF�;z.k/
(5.26)

is 1 C O.ˇ/, where

yF�;z.k/ � yG�;z.k/�1 D 1 � z˛.�; z/ j�j yD.k/ � y…�;z.k/:

By de�nition, p.z/ j�j D z˛.�; z/ j�j C y…�;z.0/. Hence the numerator of the

right-hand side of (5.26) is

1�p.z/ j�j yD.k/� yF�;z.k/ D y…�;z.0/.1� yD.k//�. y…�;z.0/� y…�;z.k//; (5.27)

which is bounded above by 4 Nc4ˇ. An alternative upper bound of the right hand

side of (5.27) follows from equations (5.23) and (5.24):

y…�;z.0/.1 � yD.k// � . y…�;z.0/ � y…�;z.k//

� Nc4ˇ.1 � yD.k// C Nc4ˇ.1 � p.z/ j�j yD.k//:

Since

.1 � yD.k// yCp.z/.k/ D 1 C yD.k/
„ƒ‚…

�1

p.z/ j�j � 1

1 � p.z/ j�j yD.k/
„ ƒ‚ …

�1

� 2; (5.28)
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the numerator of (5.26) is bounded by

3 Nc4ˇ.1 � p.z/ j�j yD.k// � 3 Nc4ˇ. yF�;z.0/ C .1 � yD.k///:

�e denominator of (5.26) is

yF�;z.k/ D yF�;z.0/ C . yF�;z.k/ � yF�;z.0//

D yF�;z.0/ C z˛.�; z/ j�j .1 � yD.k// C . y…�;z.0/ � y…�;z.k//:

Let N� D sup�2�SAP
��, and �? D max.1; N�/. For z � .2 j�j

p
�?/�1 Proposi-

tion 1.8 (if �? > 1) or neglecting loops (if �? � 1) implies

yF�;z.0/ � yC
z

p
�?.0/�1 � 1

2
:

�en 1 � yD.k/ � 0 and (5.24) imply

yF�;z.k/ � yF�;z.0/ � 2 Nc4ˇ � 1

2
� 2 Nc4ˇ:

For .2 j�j �?/�1 � z < zc.�/ equation (5.24), yFz.0/ > 0, and ˛.�; z/ � 1 imply

1 � p.z/ j�j yD.k/ D 1 � .1 � yF�;z.0// yD.k/ � 1 � yD.k/ C yF�;z.0/

and hence

yF�;z.k/ � yF�;z.0/ C 1

2
p

�?
.1 � yD.k// � Nc4ˇ.1 � p.z/ j�j yD.k//

�
� 1

2
p

�?
� Nc4ˇ

�

. yF�;z.0/ C .1 � yD.k///:

For z � .2 j�j �?/�1 or .2 j�j �?/�1 � z < zc these lower and upper bounds

combine to imply the right-hand side of (5.26) is 1 C O.ˇ/, and hence

f2.z/ D 1 C O.ˇ/:

Lastly consider f3.z/. As for f2, it su�ces to prove the claim for f3=˛0. Let

Og�;z.k/ D z˛.�; z/ j�j yD.k/ C y…�;z.k/;

so
yG�;z.k/

˛0.�; z/
D 1

1 � Og�;z.k/
:
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�e symmetry of D.x/ and …�;z.x/ implies that g�;z.x/ D g�;z.�x/, so applying

Lemma 5.7 of [14] (a general fact about even functions) gives

1

2
j�k

yG�;z.`/j � 1

2
. yG�;z.` � k/ C yG�;z.` C k// yG�;z.`/.j Og�;z.0/j � j Og�;z.k/j/

C 4 yG�;z.` � k/ yG�;z.`/ yG�;z.` C k/.
ˇ
ˇ Og�;z.0/

ˇ
ˇ �

ˇ
ˇ Og�;z.k/

ˇ
ˇ/

.
ˇ
ˇ Og�;z.0/

ˇ
ˇ� j Og�;z.`/j/:

Using f2.z/ � 1CO.ˇ/ bounds each factor of yG�;z by .1 C O.ˇ// yCp.z/. Further,

ˇ
ˇ Og�;z.0/

ˇ
ˇ �

ˇ
ˇ Og�;z.k/

ˇ
ˇ �

X

x

.1 � cos.k � x// .z˛.�; z/ j�j C j…z.x/j/

� z˛.�; z/ j�j .1 � yD.k// C Nc4ˇ yCp.z/.k/�1

� .2 C O.ˇ// yCp.z/.k/�1;

where the second inequality is by (5.24) and the third is by f1.z/ � 1 C O.ˇ/

and (5.28). Combining the bounds and using the de�nition of Up.z/ gives

f3.z/ � 1 C O.ˇ/.

Corollary 5.32. For d su�ciently large, �-LWW satis�es a k-space infrared

bound: there is a constant K D 1 C O.ˇ/ such that for 0 � z � zc.�/

yG�;z.k/ � K yCp.z/.k/:

Proof. �e proof of Lemma 5.31 showed that f2.z/ � 1 C O.ˇ/ without absolute

values on yG�;z , uniformly for z < zc. Taking a limit gives the claim.

�e fact that the quantities T�;z and S�;z de�ned below are small will be im-

portant in what follows.

De�nition 5.33. �e triangle diagram T�;z and square diagram S�;z are the quan-

tities

T�;z D k yH 3
�;zk1; S�;z D k yH 4

�;zk1:

Corollary 5.34. For d su�ciently large and z � zc the triangle and square dia-

grams are bounded above by cˇ.

Proof. For notational convenience write xH�;z D ˛�1
0 H�;z , and similarly for xG�;z .

By equation (4.1), ˛�1
0

yH�;z D ˛�1
0

yG�;z � 1. Corollary 5.32 implies

˛�1
0

yG�;z � .1 C O.ˇ// yCp.z/

since ˛0 � 1 C O.ˇ/. �e claim follows from Proposition 4.4.
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6. Proofs of the main results

To go beyond the k-space infrared bound of Corollary 5.32 requires control of

the derivatives of G�;z and …�;z with respect to z. �is control is established in

Section 6.1. �e remainder of the section establishes �eorem 1.9 using arguments

based on [11, Chapter 6]. �roughout let zc D zc.�/.

6.1. Further diagrammatic bounds. Having veri�ed that the bounds of Sec-

tion 5.2 holds for z < zc , the monotone convergence theorem implies they con-

tinue to hold at zc .

Proposition 6.1. For d su�ciently large and 0 < z � zc

d

dz
kB?

�;zk1 � z�1
c cˇ:

Proof. �e left-hand side is a polynomial with positive coe�cients, so it su�ces

to obtain an upper bound at z D zc. By Proposition 5.18, ˛0.�; zc/ � 1 C cˇ,

kB?
�;zc

k1 � cˇ, and Corollary 5.34, the claim follows.

Proposition 6.2. Let d be su�ciently large, 0 < z � zc , and v D 1; 2. �en

k@v
z

xG�;zk1 D k@v
z

xH�;zk1 � cˇz�v
c

Proof. As for Proposition 6.1 it su�ces to consider z D zc. �e equality of the

�rst two terms follows from equation (4.1). Proposition 5.16 implies

d

dz
xH�;z � z�1.1 C kB?

�;zk1/ xH�;z � xG�;z :

�e claim follows for v D 1 as k xH�;z � xG�;zk1 � cˇ by equation (5.21) and

kB?
�;zk1 � cˇ by Proposition 5.20.

For v D 2 apply Lemma 5.15. After computing the derivative and using the

triangle inequality (i) argue as for v D 1 for the term from di�erentiating z�1,

(ii) use Proposition 6.1 when di�erentiating kB?
�;zk1, and (iii) when di�erentiat-

ing either of the two-point functions use Proposition 5.16 and

k xH�;z � xH�;z � xG�;zk1 � k xH�;z � xH�;zk1 C k xH�;z � xH�;z � xH�;zk1;

and Corollary 5.34 to see that this is bounded by cˇ. Each term is therefore

bounded by cˇz�2
c .

Proposition 6.3. Let d be su�ciently large, 0 < z � zc , and v D 1; 2. �en

k@v
zI�;zk1 � cˇz�v

c
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Proof. For v D 1 note

d

dz
I�;z D d

dz
.1 � e���;z.0;x// � d

dz
��;z.0; x/:

�is bound is increasing in z, so considering zc is enough. Translation invariance,

as in the proof of Proposition 5.21, implies this is equal to the derivative in z of

kB?
�;zk1. �e claim follows for v D 1 from Proposition 6.1.

For v D 2 it is enough to bound the derivative of the bound of Proposition 5.18.

�is is similar to the arguments already given; the only new terms that arise occur

when di�erentiating k xH�;z � xG�;z � xH�;zk1, which is xH�;z � xG�;z � xH�;z.0/. By

Proposition 5.16 after taking a derivative the result is, up to a factor of .1CO.ˇ//,

a square diagram xH�;z � xG�;z � xH�;z � xG�;z.0/. Repeatedly using equation (4.1)

and Corollary 5.34 shows this is at most cˇ.

Proposition 6.4. For d su�ciently large, 0 < z < zc, and v D 1; 2

k@v
z…�;zk1 � cˇz�v

c (6.1)

Proof. �e Leibniz rule and Lemma 5.15 imply that the result of di�erentiating

… is a sum of terms of the form of the bounds of Proposition 5.11, but where

each term has one of the factors of xG�;z , xH�;z or I�;z di�erentiated. Given this,

the argument is as in the proofs of Proposition 5.23 and Proposition 5.27. Let us

describe the proof for N D 2. For N D 1 the proof is similar as e��;z.0;x/ � ˛0.

Consider v D 1. �ere are 3N � 1 terms arising when di�erentiating �
.N /

�;z
.

If xG�;z or xH�;z is di�erentiated apply Proposition 5.16 and place the sup norm on

this term when applying Lemma 5.26, and then use Proposition 6.2 to bound this

norm. If I�;z is di�erentiated use Lemma 5.26 placing the sup norm on a term

H�;z and use Proposition 6.3 to bound the one norm of the derivative of I�;z . �is

yields the claim as the factor of 3N � 1 is irrelevant for the convergence of the

series.

If v D 2 there are .3N � 1/2 terms. If both derivatives fall on a single factor

proceed as in the previous paragraph and use Proposition 6.2 or Proposition 6.3.

If the derivatives fall on distinct factors, one factor being I�;z , proceed as before.

For the remaining case, where two distinct factors of xH�;z (or xG�;z) are di�er-

entiated, place a sup norm on one term. �e new term to bound when applying

Lemma 5.26 is of the form k xH�;z � xG�;z � xG�;z � I�;zk1. It su�ces to bound

k xH � xG � xGk1, and this is bounded above by

k xH � xGk1 C k xH � xHk1 C k xH � xH � xHk1;

all of which are bounded by cˇ by Corollary 5.34.
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Corollary 6.5. Let d be su�ciently large and 0 < z � zc. �en

� d

dz
yFz.0/ � c > 0:

Proof. �e derivative is

� d

dz
yF�;z.0/ D j�j ˛.�; z/ C z j�j d

dz
˛.�; z/ C d

dz
y…�;z.0/: (6.2)

By Proposition 6.4,
ˇ
ˇ d

dz
y…�;z.k/

ˇ
ˇ is bounded above by a constant since zc is

bounded below by a term of order ˇ by Proposition 1.8. An argument as for

Proposition 5.17 shows the magnitude of the second term is bounded by a constant.

As ˛.�; z/ � 1 the �rst term dominates for d su�ciently large.

6.1.1. Derivatives of moments. �e next proposition (for � D 0) is [14, Exer-

cise 5.17].

Lemma 6.6. For d su�ciently large and 0 � z < zc

k jxj2 …�;z.x/k1 � cˇ

Proof. �is follows from yC �1
p.z/

� 1 � yD.k/ and (5.24).

Proposition 6.7. For 0 � z � zc the following bounds hold:

k jxj2 H�;z.x/k1 � cˇ (6.3)

and

k jxj2 H�;z.x/k2 � c: (6.4)

Proof. �e proof relies on the identity

ˇ
ˇx�

ˇ
ˇ
2

H�;z.x/ D �
Z

Œ��;��d
@2

k�

yH�;z.k/e�ik�x d d k

.2�/d
; (6.5)

where � is a unit basis vector of Zd . Omitting the subscripts � and z and letting a

subscript � denote partial di�erentiation with respect to k� the derivative can be

calculated:

yG�;�.k/ D z˛ j�j
yD�;�.k/

yF 2.k/
C 2.z˛ j�j/2

yD2
�.k/

yF 3.k/
C

y…�;�.k/

yF 2.k/

C 4z˛ j�j
yD�.k/ y…�.k/

yF 3.k/
C 2

y…2
�.k/

yF 3.k/
:
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To obtain an estimate of k jxj2 H�;zk1 take the absolute value of (6.5) inside of

the integral and estimate the resulting one norms. Using z˛ j�j � 1 C O.ˇ/ an

upper bound for the �rst two terms is

.1 C O.ˇ//
�



yD�;�.k/

.1 � yD.k//2





1
C 2





yD2
�.k/

.1 � yD.k//3





1

�

� cˇ;

where the second inequality follows by estimating the integrals, see [11, Appen-

dix A].

For the remaining terms, k jxj2 …�;zk1 � cˇ implies k y…�;�k1 � cˇ. Since
y…�.k/ D 0 when k� D 0 Taylor’s theorem and the above bound on k y…�;�k1
imply k y…�k1 � cˇ

ˇ
ˇk�

ˇ
ˇ. Lastly, j yD�.k/j1 � c

ˇ
ˇk�

ˇ
ˇ. �ese bounds combined

with the k-space infrared bound Corollary 5.32 imply each of the remaining terms

are bounded by cˇ. �is proves equation (6.3).

For k jxj2 H�;zk2 use Parseval’s identity: k 3jxj2 H�;zk2 D k@2
k

yH�;zk2. �e pre-

viously described bounds for the numerators along with Corollary 5.32 and Propo-

sition 4.4 imply that yG�;�.k/ is square integrable in su�ciently high dimensions.

�is implies equation (6.4).

Proposition 6.8. For d su�ciently large and 0 < z � zc

k@v
z jxj2 …�;zk1 � cˇz�v

c

Proof. Distribute the factor jxj2 along the factors of xH�;z and xG�;z as in the proof

of Proposition 5.27. �e proof is now essentially the same as for Proposition 6.4.

For each term place the sup norm on the factor with the term jxj2.

If a factor jxj2 G�;z has been di�erentiated once or twice, then the result-

ing term whose norm must be estimated has the form of either xH�;z � xG�;z or
xH�;z � xG�;z � xG�;z . In either case the factor jxj2 can again be split along the fac-

tors in the convolution. In the �rst case use equation (4.1), the triangle inequality,

and Young’s inequality to obtain

k.jxj2 xH�;z/ � xG�;zk1 � k jxj2 xH�;zk1 C k jxj2 xH�;zk2k xH�;zk2;

and then use Proposition 6.7 to see that this is bounded by cˇ. For the second case

arguing similarly gives

k.jxj2 xH�;z/ � xG�;z � xG�;zk1 � k.jxj2 xH�;z/ � xG�;zk1
C k.jxj2 xH�;z/ � xH�;zk1
C k jxj2 xH�;zk2k xH�;z � xH�;zk2:
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�e �rst case analysis implies the �rst two terms are bounded above by cˇ.

Parseval’s identity combined with Corollary 5.34 implies the last term is bounded

by cˇ. �e rest of the analysis of these terms is in the proof of Proposition 6.4.

�e cases in which all derivatives fall on factors without the term jxj2 can be

handled in the same manner as in the proof of Proposition 6.4 by using Young’s

inequality, the triangle inequality, and Corollary 5.34.

6.2. Linear divergence of ��.z/ as z % zc . Before proving the linear diver-

gence of the susceptibility it will be helpful to verify that it is only in�nite at the

critical point z D zc itself.

Lemma 6.9. For d su�ciently large and jzj � zc the inverse susceptibility yF�;z.0/

satis�es

j yF�;z.0/j � j�j
2

jzc � zj :

Proof. As yF�;zc
.0/ D 0 the fundamental theorem of calculus implies

jF�;z.0/j D
ˇ
ˇ
ˇ
ˇ

Z z

zc

� d

dz
yFz.0/ dz

ˇ
ˇ
ˇ
ˇ
:

Using yF�;zc
.0/ D 0, equation (6.2), and integrating from zc to z along the straight

line zt D .1 � t /zc C tz implies

ˇ
ˇ
ˇ yF�;z.0/

ˇ
ˇ
ˇ D j�j jz � zc j

ˇ
ˇ
ˇ
ˇ

Z 1

0

˛.�; zt/ C zt

d

dz
˛.�; zt / C j�j�1 d

dz
y…�;zt

.0/ dt

ˇ
ˇ
ˇ
ˇ
:

(6.6)

�e last two terms are bounded by cˇ, see the proof of Corollary 6.5. �e claim

follows by taking the dimension su�ciently large as
R

˛ D 1 C O.ˇ/.

De�ne constants A D A.�/ and D D D.�/ by

A.�/ D z�1
c

�

˛.�; zc/ j�j C zc j�j d

dz
˛.�; zc/ C d

dz
y…�;zc

.0/
��1

(6.7)

and

D.�/ D A.�/.�zc j�j ˛.�; zc/r2
k

yD.0/ � r2
k

y…�;zc
.0//: (6.8)

�eorem 6.10. For d large enough, the susceptibility of �-LWW diverges linearly

as z % zc:

��.z/ � Azc

zc � z
: (6.9)

�e constant A in (6.9) is as in equation (6.7).
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Proof. Recall yF�;z.0/ D yG�;z.0/�1 is zero at zc since ��.z/ % 1 as z % zc.

We get

��.z/ D 1

yF�;z.0/ � yF�;zc
.0/

D 1

zc � z

�

˛.�; zc/ j�j C z j�j ˛.�; zc/ � ˛.�; z/

zc � z

C
y…�;zc

.0/ � y…�;z.0/

zc � z

��1

:

�e claim follows from Proposition 6.8 and Proposition 5.17 combined with

˛0 � 1 C cˇ for z � zc, which implies di�erentiability of ˛0 at zc.

6.3. Growth rate and di�usive scaling. To establish the growth rate of �-LWW,

as well as the di�usive scaling, a Tauberian type theorem is needed. �e statement

and proof of the next lemma in [11] involve fractional derivatives of order 1 C �

for 0 < � < 1, but the arguments apply without modi�cation for two ordinary

derivatives.

Lemma 6.11 (Lemma 6.3.4 of [11]). Let

f .z/ D 1

�.z/
D

1
X

nD0

bnzn;

where �.z/ D P1
nD0 anzn. Suppose that

1
X

nD0

n2 janj Rn < 1;

so in particular, �.z/, �0.z/, and �00.z/ are �nite when jzj D R. Assume in addi-

tion that �0.R/ ¤ 0. Suppose that �.R/ D 0 and �.z/ ¤ 0 for jzj � R, z ¤ R.

�en

f .z/ D 1

��0.R/

1

R � z
C O.1/

uniformly in jzj � R, and

bn D R�n�1
� 1

��0.R/
C O.n�˛/

�

as n ! 1;

for every ˛ < 1.
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Recall that c�
n is the total mass of n-step �-LWW, i.e.,

c�
n D

X

x

X

! W 0!x
j!jDn

�nL.!/:

�eorem 6.12. For d su�ciently large and any ı < 1

c�
n D A.�/zc.�/�n.1 C O.n�ı//:

Proof. Apply Lemma 6.11 to yF�;z.0/. �e veri�cation of the hypotheses of the

theorem are the conclusions of Proposition 6.4, Corollary 6.5, and Lemma 6.9.

�e proof of the next theorem is essentially the proof for self-avoiding walk

in [11] verbatim; it is reproduced here for the sake of completeness. �e next

lemma, which will be used several times, is stated here for the convenience of the

reader.

Lemma 6.13 (Lemma 6.3.2 of [11]). Let f .z/ D P1
nD0 anzn. Let R > 0, and

suppose f 0.R/ D P1
nD0 n janj Rn�1 < 1, so in particular f .z/ converges for

jzj � R. �en for jzj � R

jf .z/ � f .R/j � f 0.R/ jR � zj :

If f 00.z/.R/ < 1, then for jzj � R

ˇ
ˇf .z/ � f .R/ � f 0.R/.z � R/

ˇ
ˇ � 1

2
f 00.R/ jR � zj2 :

�eorem 6.14. For d su�ciently large �-LWW is di�usive:

hj!.n/j2i�
n D Dn.1 C O.n�ı//

as n ! 1 for any ı < 1. �e constant D is that of (6.8).

Proof. Let r2
k

denote the k-space Laplacian. �en

hj!.n/j2i�;n D �r2
k

Oc�
n .0/

c�
n

:

Since Oc�
n .k/ is the coe�cient of zn in yG�;z.k/ Cauchy’s formula implies

� r2
k Oc�

n .0/ D 1

2�i

I r2
k

yF�;z.0/

yF�;z.0/2

dz

znC1
; (6.10)
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where the integral is around a small origin centred circle. De�ne E.z/ by

r2
k

yF�;z.0/

yF�;z.0/2
D r2

k
yFzc

.0/
�

d
dz

yFzc
.0/
�2

.zc � z/2
C E.z/:

Making this substitution into equation (6.10) and calculating the �rst integral im-

plies

�r2
k Oc�

n .0/ D r2
k

yFzc
.0/

�
d
dz

yFzc
.0/
�2

.n C 1/z�n�2
c C 1

2�i

I

E.z/
dz

znC1
:

Assuming the integral of E.z/ is O.nız�n
c / for every ı > 0 implies the theorem

by inserting the behaviour of c�
n given by �eorem 6.12.

To verify the assumption it su�ces by Lemma 6.13 to prove

jE.z/j � const: jzc � zj�1 for all jzj � zc .

Split E.z/ as E.z/ D T1.z/ C T2.z/ with

T1.z/ D
� d

dz
yF�;zc

.0/
��2 r2

k
yF�;z.0/ � r2

k
yF�;zc

.0/

.zc � z/2

and

T2.z/ D
�r2

k
yF�;z.0/

�

yF�;z.0/2 �
� d

dz
yF�;zc

.0/
�2

.zc � z/2
�

� d

dz
yF�;zc

.0/
�2 yF�;z.0/2.zc � z/2

:

�e numerator of T1.z/ is di�erentiable in z by Proposition 6.8, so (i) of

Lemma 6.13 implies the numerator is bounded above by a constant times jzc � zj.
It follows that jT1j � O.jzc � zj�1/.

For T2 note that yF�;z.0/2 � const. jzc � zj2 by Lemma 6.9 so

jT2.z/j � const: jzc � zj�4
�

yF�;z.0/ C d

dz
yF�;zc

.0/.zc � z/
�

�

yF�;z.0/ � d

dz
yF�;zc

.0/.zc � z/
�

;

as r2
k

yF�;z.0/ is bounded by a constant by Proposition 6.7. By (ii) of Lemma 6.13,

Proposition 6.8, and yF�;zc
.0/ D 0, the middle term is O.jzc � zj2/. Using (i) of

Lemma 6.13 for yF�;z.0/ in the last term shows the last term is O.jzc � zj/. �us

jT2.z/j � O.jzc � zj�1/, which proves the claim.
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Appendix A. Loop measure representation of �-LWW

�e purpose of this appendix is to provide a proof of �eorem 1.13. A fundamental

property of �-LWW is that it admits a loop measure representation. �e represen-

tation follows from a theorem of Viennot [18] and is proved via the theory of heaps

of pieces in Section A.3.

Remark A.1. �e methods of [10, Chapter 9] are su�cient to derive formulas

that would su�ce for the lace expansion analysis of �-LWW. �ese methods have

the bene�t of brevity, but they do not reveal the connection with the loop O.N /

model. For this reason we have chosen to present a more scenic route here.

�e rest of this section will take place in the context of an arbitrary graph G,

as specializing to Z
d does not provide any simpli�cation. �e theory of heaps of

pieces will be freely used; see [18] or [9] for an introduction.

A.1. Viennot’s theorem

De�nition A.2. A trivial cycle is a single edge of G. An oriented cycle is either

(i) an oriented cyclic subgraph of G or (ii) a trivial cycle in G.

An oriented cycle corresponds to an equivalence class of self-avoiding poly-

gons, where a self-avoiding polygon ! D .!0; : : : ; !k D !0/ is equivalent to

any cyclic permutation Q! D .!r ; !rC1; : : : ; !k; !1; : : : ; !r/. For example, a triv-

ial cycle ¹x; yº corresponds to the self-avoiding polygons .x; y; x/ and .y; x; y/,

while an oriented 3-cycle corresponds to walks of the form .x; y; z; x/ and cyclic

permutations thereof for x; y; z distinct.

De�nition A.3. A heap of (oriented) cycles is a heap of pieces whose labels are

oriented cycles. Two oriented cycles C1, C2 are concurrent if V.C1/\V.C2/ ¤ ;,

i.e., if the cycles share a vertex.

De�nition A.4. A pair .�; H/ where � is a self-avoiding walk from a to b and H

is a heap of cycles whose maximal elements’ labels each contain a vertex in � is

called a legal .a; b/ pair. Let V.a; b/ denote the set of legal .a; b/ pairs, and V

denote the set of all legal pairs.

�eorem 1.13, the loop measure representation of �-LWW, is a byproduct of

the proof of the following theorem of Viennot.
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�eorem A.5 ([18, Proposition 6.3]). �ere is a bijection �ab from the set V.a; b/

of legal .a; b/ pairs to the set of walks �.a; b/ from a to b. Further,

(1) the multi-set of edges in a legal .a; b/ pair .�; H/ is the same as the multi-set

of edges in the walk �ab..�; H//;

(2) the multi-set of oriented cycles ¹`.x/ j x 2 H º for a heap .H; `; �/ is the

same as the multi-set of oriented cycles that are erased by applying loop

erasure to �ab..�; H//.

�eorem A.5 is not proven in [18]. For the sake of completeness and the conve-

nience of the reader a proof is given in Section A.2. �e remainder of this section

consists of a heuristic description of the proof; see also Figure 7 which depicts the

proof strategy.

Let ! be a walk from a to b. Trace ! until the �rst time a vertex is visited

twice. �is identi�es a �rst closed subwalk C1 D .!�?
!

; : : : ; !�!
/. Remove C1 by

performing a single loop erasure, and form a heap of pieces consisting of a sin-

gle piece labelled C1. �e �rst time a vertex is visited twice by the walk LE1.!/

identi�es a second closed subwalk, call this C2. Remove C2 and form a new heap

of pieces by adding a second piece labelled C2 to the heap consisting of C1. Con-

tinuing in this manner removes all of the closed subwalks from !, resulting in a

self-avoiding walk � from a to b. Each maximal piece in the heap is labelled by

a cycle that shares a vertex with �. In other words, this procedure converts each

walk from a to b into a legal pair .�; H/.

Conversely, consider a legal pair .�; H/. To invert the procedure what is re-

quired is a way to reduce the heap to the empty heap one piece at a time, while

inserting the labels of the removed pieces into the (initially) self-avoiding walk �.

�is is relatively straightforward: the maximal pieces of the heap H have labels

that share a vertex with �, and hence the maximal pieces can be ordered by using

the linear order on vertices in �. Take the maximal piece in this order, remove it

from the heap to get a heap H 0, and glue the corresponding label into � to get a

walk �0. �e maximal elements of H 0 have labels that share a vertex with �0, and

hence this procedure can be iterated.

�ese operations are in fact inverses of one another. �e next section makes

the preceding discussion precise.
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Figure 7. �e �gure illustrates the bijection between valid pairs .�; H/ and walks ! whose

loop erasure is �. �e left-hand side shows the results of successive applications of LE1,

culminating in a self-avoiding walk. �e right hand side shows the heaps of oriented cycles

generated, with the walk displayed in dotted gray. Each heap has been given a distinguished

vertex. �e vertex indicates the oriented cycle that is maximal in the walk order as well

as the location at which this oriented cycle is glued in to the corresponding walk when

performing loop addition.
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A.2. Proof of Viennot’s theorem. �e theorem requires two algorithms, one

which inserts oriented cycles into a given walk, and one which removes oriented

cycles from a walk. Removing oriented cycles is achieved by loop erasure.

�e other algorithm is introduced now.

De�nition A.6. Let ! be a walk of length n, and let C be an oriented cycle of

length k. Assume that C and ! have a vertex in common, and let i be the minimal

index such that !i is a vertex in C . Let .c0; : : : ; ck/ be the unique representative

of C such that c0 D !i . �e loop insertion ! ˚ C of C into ! is the walk

.!0; : : : ; !i�1; c0; : : : ; ck; !iC1; : : : ; !n/:

In words, to insert a loop C into a walk ! we �nd the �rst vertex !i in ! that

is contained in C . C is then rooted at !i , ! is traversed until just before reaching

!i , C is traversed, and then the remainder of ! is traversed.

Lemma A.7. Let ! be a walk, and let C be the oriented cycle removed to create

LE1.!/. �en LE.!/ ˚ C D !.

Proof. �e de�nition of �?
! and the de�nition of loop erasure implies that the

�rst vertex in common between LE1.!/ and C is !�?
!

, and hence the closed self-

avoiding walk representing C that is inserted by loop insertion is .!�?
!

; : : : ; !�!
/.

Given a collection of oriented cycles that intersect a walk it is necessary to

determine the order in which the cycles should be inserted. �e next de�nition

gives the correct order for inverting loop erasure.

De�nition A.8. Let ! be a walk, and C1; : : : ; Ck a collection of oriented cycles

that each share a vertex with !. Let tj D min¹i j !i 2 Cj º. �e walk order on the

oriented cycles is given by setting Cm � Cn if tm � tn.

�e following algorithm, called the loop addition algorithm, constructs a walk

beginning at the vertex a and ending at the vertex b from a legal .a; b/ pair .�; H/.

(1) Set !0 D �.

(2) Suppose H i�1 ¤ ;. Set !i D !i�1 ˚ C , where C is maximal in the walk

order among the labels of the maximal pieces of H i�1. Let y be the piece

whose label is C , and set H i D H i�1 n ¹yº.
(3) If H i�1 D ;, output ! D !i�1. Otherwise go to 2.
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�e algorithm is well-de�ned as the labels of the maximal pieces in a heap

must be vertex disjoint, so the walk order is a strict total order on the maximal

pieces of the heap. Note that at each step of the algorithm the walk !i begins at

the vertex a and ends at b, so ! is a walk from a to b as claimed.

Lemma A.9. Suppose .�; H/ 2 V. Suppose the output of the loop addition algo-

rithm is !. If C is the last oriented cycle inserted, then the oriented cycle removed

by loop erasure applied to ! is C .

Proof. �e proof is by induction on the size of H . Suppose C was the .k C 1/st

oriented cycle added.

(1) If C was the label of a maximal element in H k�1 then C is vertex disjoint

from the kth added oriented cycle C 0. �e de�nition of the walk order implies

that the �rst vertex C shares with !k�1 occurs prior to the �rst vertex in C 0

because C is disjoint from C 0. It follows that C is the oriented cycle erased

by loop erasure, as C closes prior to C 0, which was previously (by induction)

the �rst oriented cycle to close.

(2) If C was not the label of a maximal piece in H k�1 then C is the label of

a piece that was below the kth inserted piece. Suppose the kth piece had

label C 0. As C intersects C 0, C is inserted into the subwalk C 0 of !k�1.

By induction C 0 was the �rst oriented cycle to close in !k�1, so C is the �rst

oriented cycle to close in !k .

To construct a legal pair .�; H/ from a walk is fairly straightforward. By ap-

plying loop erasure oriented cycles are removed, and they naturally form a heap

by using the heap composition operation. More precisely, we have the (total) loop

erasure algorithm.

(1) Set !0 D � and H 0 D ;, where ; is the empty heap of oriented cycles.

(2) If !i�1 is not a self-avoiding walk, set !i D LE1.!i�1/, and if C is the

closed self-avoiding walk removed from !i�1, let H i D H ı ¹ xC º where xC
is the oriented cycle corresponding to C .

(3) If !i�1 is a self-avoiding walk, output .!i�1; H i�1/: Otherwise go to 2.

Single loop erasure removes a subwalk of length at least 2 from any non-simple

walk at each step, so iteratively applying LE1 stabilizes on a self-avoiding walk in

a �nite number of iterations. It follows that the total loop erasure is well de�ned.

Lemma A.10. �e output of the loop erasure algorithm applied to a walk

! D .!0; : : : ; !n/ is a pair .�; H/ 2 V.!0; !n/.
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Proof. At each step of the algorithm the maximal pieces of the heap H i share

a vertex with the remaining walk !i , and the algorithm only terminates once the

remaining walk is self-avoiding. Removing a cycle cannot change the initial vertex

of a walk, so �0 D !0. If the �nal vertex of ! is removed it must be that visiting

the �nal vertex completes a cycle, and hence � ends at !n.

Proof of �eorem A.5. We claim that loop erasure and loop addition are inverses

of one another, and prove the claim by induction. Suppose the claim holds between

walks whose loop erasure removes k oriented cycles and pairs .�; H/ 2 V.a; b/

whose heap H has k pieces.

On the one hand, inserting the �nal oriented cycle C in the loop addition algo-

rithm yields a walk, and C is the �rst oriented cycle removed by loop erasure by

Lemma A.9. By induction it follows that loop erasure applied to the loop addition

of a pair .�; H/ 2 V.a; b/ returns .�; H/.

On the other hand when a single oriented cycle C is removed from ! the cycle

C is minimal in the walk order and the removed oriented cycle is the label of a

maximal piece. So the reconstruction of the heap formed by loop erasure proceeds

as if the piece with label C was not present, and hence (by induction) recreates

LE1.!/ correctly. Lemma A.7 then implies that ! is the output of applying loop

erasure and then loop addition.

A.3. Proof of �eorem 1.13. �e proof of �eorem 1.13 follows from two cal-

culations. �e �rst is a straightforward consequence of the fact that the bijec-

tion between walks and legal pairs is given by loop erasure. Let T denote the

set of trivial heaps of oriented cycles, and H the set of heaps of oriented cycles.

Let EC.�/ denote the set of oriented cycles that do not share a vertex with the set �,

and let H� denote the set of heaps H such that .�; H/ is a legal pair. �e de�nition

of �-LWW, �eorem A.5, and the heap theorem [18, Proposition 5.3] imply

xw�;z.�/ D
X

! W LE.!/D�

w�;z.!/ (A.1)

D zj�j X

H2H�

w�;z.H/

D zj�j

X

T 2T.EC.�//

.�1/jT jw�;z.T /

X

T 2T
.�1/jT jw�;z.T /

; (A.2)
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where

w�;z.H/ D
Y

x2H

w�;z.`.x//

for a heap .H; `; �/. In particular note that this de�nition assigns a weight z2� to

a trivial cycle.

�e second calculation is an expression for sums over trivial heaps of oriented

cycles. �eorem 1.13 follows by applying Proposition A.11 to the numerator and

denominator of (A.2) and cancelling common factors. �is calculation is a cal-

culation involving formal power series; to see that it holds as a relation between

power series, note that for z su�ciently small the �nal expressions are bounded

by random walk quantities, which converge.

Proposition A.11. We have

X

T 2T.EC.A//

.�1/jT jw�;z.T / D exp
�

�
X

x2Zd

X

! W x!x
j!j�1

1¹range.!/\AD;º
w�;z.!/

j!j
�

:

Proof of �eorem 1.13. Let Nz D sz. �en w�;z.!/ D w�; Nz.!/ when s D 1. Using

this observe that

X

T 2T.EC.A//

.�1/jT jw�;z.T / D exp

Z 1

0

d

ds
log

X

T 2T.EC.A//

.�1/jT jw�; Nz.T /:

In calculating the derivative the Leibniz rule for di�erentiating sk can be inter-

preted as selecting one of the k vertices contained in the cycles of a trivial heap.

�e selected vertex distinguishes a self-avoiding polygon. �eorem A.5 can be

applied to transform this into a walk weighted by w�;z . �e factor of �1 in the

exponent arises from the application of �eorem A.5, as the distinguished cycle

carried a factor of �1. Lastly, the term j!j�1 arises from the integration of sj!j�1

from 0 to 1; the missing factor of s is due to the di�erentiation which distinguished

a vertex.

A.4. Relation to correlations of the O.N/ cycle gas. Note that equation (A.1)

and equation (A.2) imply that G�;z.0; x/ is given by a ratio of partition functions.

�e denominator is a sum over oriented mutually disjoint cyclic subgraphs, where

the weight of a subgraph H is zjE.H/j.��/#H , where #H denotes the number of

cyclic subgraphs contained in H . �e numerator is a sum over self-avoiding walks

from 0 to x along with disjoint cyclic subgraphs; the weight is the same as for the

denominator except for the fact that the walk does not receive a factor of �.
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For each cycle of length at least 3 summing over the possible orientations of

the cycles results in a model of unoriented cycle, where each unoriented cycle has

weight �2�, except for trivial cycles, which have weight ��. De�ning the two-

point correlation in the O.N / cycle gas to be the ratio described in the previous

paragraph gives the relation between the O.N / cycle gas and �-LWW. Note that

if cycles of length two are assigned loop activity 0 this yields a precise correspon-

dence between �-LWW and the O.�2�/ cycle gas.
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