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Abstract. We study bond percolation for a family of in�nite hyperbolic graphs.

We relate percolation to the appearance of homology in �nite versions of these graphs.

As a consequence, we derive an upper bound on the critical probabilities of the in�nite

graphs.
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1. Introduction

Let G D .V;E/ be an in�nite connected graph. Every edge is declared to be open

with probability p, otherwise it is closed. This endows subsets of edges with a
product probability measure by declaring edges to be open or closed independently
of the others, and creates a random open subgraph ". If a given edge e belongs
to an in�nite connected component of ", we say that (bond) percolation occurs.
If the graph G is edge-transitive, then the probability of percolation does not
depend on e and we may denote this probability by f .p/. Arguably, the most
studied parameter of percolation theory is the critical probability pc D pc.G/

which is the supremum of the set of p’s for which f .p/ D 0.

Ever since the seminal work of Kesten [14] percolation was extensively studied
on the lattices associated to Z

d , for background see [10]: in the present paper, we
are interested in percolation on regular tilings of the hyperbolic plane. This topic
was �rst introduced by Benjamini and Schramm [3], and further studied in [4, 11, 1]
among other papers. Speci�cally, our focus is on the family of graphs that we shall
denote by G.m/, for m � 4, that are regular of degree m, planar, and tile the plane
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by elementary faces of length m. For m D 4, the graph G.m/ is exactly the square
Z

2 lattice. The local structure of the graph G.5/ is represented in Figure 1.

Figure 1. The local structure of the graph G.5/

Our goal is to study the critical probabilities of these lattices. The simple lower
bound 1=.m�1/ � pc can be derived since 1=.m�1/ is the critical probability for
the m-regular tree, and our main concern here is on dealing with upper bounds.
Critical probabilities for hyperbolic tilings were studied numerically by Baek et
al. [1] and also by Gu and Zi� [11] who obtain a “Monte Carlo” upper bound
pc < 0:34 for G.5/. The best upper bound to date is due to Benjamini and
Schramm [3], and is based on expansion properties of the graph G.5/. When
computed it reads pc < 0:309. In the present paper we shall derive an improved
upper bound on critical probabilities that gives pc < 0:30 for G.5/.

We remark that we restrict ourselves to the hyperbolic tilings G.m/ because
they are self-dual and our method is better suited for this case, but results on
the critical probabilities for the self-dual case can lead to results for the general
case [15].

Classically, one uses �nite portions of the in�nite graph G to devise interme-
diate tools for studying percolation. For example, in the original Z2 setting, the
standard (by now) method that leads to the computation pc D 1=2 is to consider
n � n �nite grids and study the probability of the appearance of an open path
linking the south boundary to the north boundary (or east to west) [10]. In the
hyperbolic setting however, trying to mimic this approach directly quickly leads
to serious obstacles: what �nite portion of the in�nite graph G.5/ (say) should
one consider, and which parts of the boundary should be matched when looking
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for the appearance of �nite open paths? We shall overcome this di�culty by ap-
pealing to �nite graphs Gt .m/ that are everywhere locally isomorphic to G.m/,
meaning that every ball of radius t of Gt .m/ is required to be isomorphic to a ball
of radius t in the in�nite graph G.m/. We shall derive an upper bound pc � ph

on the critical probability by de�ning a quantity ph such that, when p > ph, then
with probability tending to 1 when t tends to in�nity, Gt .m/ must contain an open
cycle that can not be expressed as a sum modulo 2 of elementary faces. Our end
result will be an expression for the upper bound ph that involves only the structure
of the in�nite graph G.m/, but the existence of the �nite graphs Gt .m/ (which is
non-obvious) will be crucial to the derivation of ph.

Outline and results. Sections 2 and 3 are background. In Section 2 we give a
short description of a construction of the graphs Gt .m/ due to Širáň. We shall
need to consider the cycles of those graphs that are not expressible as sums of
faces, i.e. that are homologically non-trivial: we shall therefore need background
on homology that is dealt with in Section 3.

In Section 4 we study the appearance of homology in random subgraphs of the
�nite graphs Gt .m/. We introduce a crucial quantity D.p/ that we name the rank

di�erence function and that captures the limiting behaviour of the di�erence of
the dimensions of the homologies of the two random subgraphs of Gt .m/ chosen
through the parameters p and 1 � p. We then de�ne the quantity

ph D sup
°

p; p �
2

m
C D.p/ D 0

±

:

The main result of this section, Theorem 4.5, is that ph is an upper bound on
the critical probability of G.m/. We actually conjecture that for m � 5 (i.e. the
genuinely hyperbolic, or non-amenable, case) this upper bound is also a lower
bound, i.e. pc D ph. This would show that for these graphs the critical probability
is local in a sense close to [2]. That pc � ph was derived in [8] in a roundabout
way, through the study of the erasure-decoding capabilities of quantum codes
associated to the tilings Gt .m/. The present proof not only removes the reference
to quantum coding, it is intrinsically shorter and more direct.

Section 5 is dedicated to �nding an explicit expression for the rank di�erence
function D.p/, and hence for the upper bound ph. Our main result is Theorem 5.3,
which expresses D.p/ as the series:

D.p/ D
2

m

X

C

� 1

jV.C /j
.pjE.C/j.1 � p/j@.C/j � .1 � p/jE.C/jpj@.C/j/

�

; (1)
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where C ranges over all connected subgraphs of G.m/ containing a given ver-
tex, where V.C /; E.C / denote the vertex and edge set of C , and where @.C / de-
notes the set of edges with at least one endpoint in C , which are not in E.C /.
As mentioned, this expression for D.p/ does not involve the graphs Gt .m/ any-
more, but its proof crucially relies on their existence.

Section 6 proves that replacing D.p/ in (1) by a truncated series continues to
yield an upper bound on the critical probability pc of G.m/ (Theorem 6.1). This
allows us to compute explicit numerical upper bounds on pc . Finally, Section 7
summarizes the results with Theorem 7.1 and gives some concluding comments.

2. Finite quotient of the regular hyperbolic tilings

We are unaware of any method for constructing the required �nite versions of
G.m/ that does not involve a fair amount of algebra. In this section, we brie�y
recall Širáň’s method to construct such �nite versions of the regular hyperbolic
tiling G.m/. The �rst step is to construct G.m/ from a group of matrices over a
ring of algebraic integers. Then this group is reduced modulo a prime number to
yield the desired �nite graph.

Denote by Pk.X/ D 2 cos.k arccos.X=2// the k-th normalized Chebyshev
polynomial and let � D 2 cos.�=m2/. Let m � 5 and consider the group T .m/

generated by the two following matrices of SL3.ZŒ��/.

a D

0

B

@

Pm.�/2 � 1 0 Pm.�/

Pm.�/ 1 0

�Pm.�/ 0 �1

1

C

A

and

b D

0

B

@

�1 �Pm.�/ 0

Pm.�/ Pm.�/2 � 1 0

Pm.�/ Pm.�/2 1

1

C

A
:

The group T .m/ admits the presentation

T .m/ D ha; b j am D bm D .ab/2 D 1i: (2)

With this group we associate its coset graph. The coset graph associated
with (2) is de�ned to be the in�nite planar tiling whose vertex set, respectively
edge set and face set, is the set of left cosets of the subgroup hai, respectively the
set of left cosets of the subgroup habi and the subgroup hbi. A vertex and an edge,
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or an edge and a face, are incident if and only if the corresponding cosets have a
non-empty intersection.

For example, the coset hai D ¹1; a; a2; : : : ; am�1º de�nes a vertex of the graph
G.m/ and is incident to the m edges represented by the cosets

habi; ahabi; a2habi; : : : ; am�1habi:

We can see that the coset graph is m-regular and that its faces contain m edges.
It is straightforward to check that the coset graph associated with (2) is the in�nite
planar graph G.m/, see [17].

The basic idea to derive a �nite version of this tiling is to reduce the matrices
de�ning the group T .m/ modulo a prime number. We can reduce the coe�cients
of the matrices of T .m/ thanks to the ring isomorphism ZŒ�� ' ZŒX�=h.X/,
where h.X/ 2 ZŒX� is the minimal polynomial of the algebraic number �. This
induces a ring morphism �pW SL3.ZŒ��/ ! SL3.FpŒX�= Nh.X// where Nh.X/ is the
reduction modulo p of the polynomial h.X/. Denote by NT p.m/ the image of
the group T .m/ by the morphism �p. The coset graph associated with the group
NT p.m/ is de�ned from the cosets of NT p.m/, exactly like the coset graph of T .m/.

Širáň proved that for a well chosen family of prime numbers p, this construc-
tion provides a sequence of �nite tilings .Gt .m//t which is locally isomorphic to
the in�nite tiling G.m/ [17]. Precisely:

Theorem 2.1. For every integer m � 5, there exists a family of �nite tilings

.Gt .m//t�m and some constant K such that every ball of radius t of Gt .m/ is

isomorphic to every ball of radius t in G.m/. Furthermore, the number of vertices

of Gt .m/ is at most K t .

By construction, the graphs Gt .m/ are vertex transitive. Indeed, each element
of the group NT .m/ induces a graph automorphism of the coset graph by left
multiplication. An automorphism which sends a vertex xhai onto the vertex yhai

is given by the left multiplication by yx�1 of the cosets representing the vertices.
For the same reason, Gt .m/ is also edge-transitive and face-transitive.

To be sure that the faces of the graph Gt .m/ are not degenerate, we require
t � m. We will also use the fact that Gt is a self-dual graph. This is a consequence
of the local structure of the graph: every vertex has degree m and every face has
length m.
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3. Background on homology

3.1. Homology of a tiling of surface. A tiling of a surface is a graph cellularly
embedded in a smooth surface. For us only the combinatorial structure of the
surface plays a role, therefore a face of the tiling is represented as the set of edges
on its boundary. We denote by G D .V; E; F / such a tiling, where F is the set
of faces that, as far as homology is concerned, can be thought of simply as a
privileged set of cycles of the graph .V; E/. With a tiling of a surface, we associate
a dual tiling G� D .V �; E�; F �/. The vertices of this dual tiling are given by the
faces of G. Two vertices of G� are joined by an edge if the corresponding faces of
G share an edge. Since every edge of E belongs to exactly two faces of F , there
is a one-to-one correspondence between edges of G and edges of G�. Finally, for
every vertex v of V the set of edges of E incident to v de�nes a face of F � through
the above correspondence between E and E�. We assume the graph and its dual
have neither multiple edges nor loops. We shall also use G to refer indi�erently
to the graph .V; E/ and to the associated tiling .V; E; F /.

In the remainder of this section, we consider only �nite tilings. and we
order the sets V; E and F by V D ¹v1; v2; : : : ; vjV jº, E D ¹e1; e2; : : : ; ejE jº and
F D ¹f1; f2; : : : ; fjF jº. The incidence matrix of the graph .V; E/ is de�ned to be
the matrix B.G/ D .bij /i;j of MjV j;jE j.F2/ such that bij D 1 if the vertex vi is
incident to the edge ej , and bij D 0 otherwise.

To emphasize the F2-linear structure of some subsets of V , E and F , we
introduce the spaces of i-chains Ci :

C0 D
M

v2V

F2v; C1 D
M

e2E

F2e; C2 D
M

f 2F

F2f:

In other words, the space C0 D ¹
P

v �vv j �v 2 F2º is the set of formal sums
of vertices. The sets C1 and C2 are de�ned similarly. These chain spaces are
equipped with two F2-linear mappings @2 W C2 ! C1 and @1 W C1 ! C0 de�ned
by @2.f / D

P

e2f e and @1.e/ D
P

u2e u. These mappings are called boundary

maps.

A subset of the vertex set, respectively the edge set or the face set, can be
regarded as its indicator vector in C0, respectively C1 or C2. This yields one-
to-one correspondences between subsets and vectors, which allow us to interpret
geometrically the boundary maps. In subset language, the map @2 sends a subset
of faces onto the set of edges on its boundary in the standard sense, and the map @1

sends a subset of edges onto its “endpoints” which should be understood modulo
2, i.e. the set of vertices incident to an odd number of edges in the subset.
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The singletons ¹viº, respectively ¹eiº and ¹fiº, form a basis of the space C0,
respectively C1 and C2. The matrix of the map @1 in these singleton bases is equal
to the incidence matrix B.G/ of the graph .V; E/ and the matrix of the map @2 is
equal to the transpose of the incidence matrix B.G�/ of .V �; E�/.

We can easily prove that the composition of these applications is @1 ı @2 D 0,
implying the inclusion Im @2 � Ker @1. We can now introduce the F2-homology
of tilings of surfaces.

De�nition 3.1. The �rst homology group of a �nite tiling of a surface G, denoted

H1.G/, is the quotient space

H1.G/ D Ker @1= Im @2:

Note that H1.G/ is also an F2-vector space. The vectors of ker @1 are called
cycles. They correspond to the subsets of edges that meet every vertex an even
number of times. The set ker @1 of cycles of a graph is an F2-linear space that
we refer to as the cycle space of the graph [6]. The vectors of Im @2 are called
boundaries or sums of faces and they describe the sets of edges on the boundary
of a subset of F .

In what follows, we shall study the dimension of the homology group of
di�erent tilings of surfaces. We shall make repeated use of the following well
known formula for the dimension of the cycle space, called the cyclomatic number

of the graph, (also nullity or corank) [5, 6].

Lemma 3.2. The dimension of the cycle space of a graph G D .V; E/ composed

of � connected components, is jEj � jV j C �:

See e.g. [5] for a proof.
Figure 2(a) represents a square lattice of the torus. A cycle of trivial homology

is drawn on Figure 2(b). This cycle is clearly a sum of faces. Two examples
of cycles with non trivial homology are given in Figure 2(c) and (d). The �rst
homology group of this tiling of the torus is a binary space of dimension 2. It
is generated, for example, by an horizontal cycle which wraps around the torus,
such as the one in Figure 2(c) and a vertical cycle which wraps around the torus.
The cycle of Figure 2(d) is equivalent to the sum of these horizontal and vertical
cycles, up to a sum of faces.

3.2. Induced homology of a subtiling. Percolation theory deals with random
subgraphs of a given graph. In what follows, we introduce the homology of a
subgraph of a given tiling G.
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.a/ .b/

.c/ .d/

Figure 2. (a) A square tiling of the torus. The opposite boundaries are identi�ed.
(b) A cycle which is a boundary. (c) A cycle which is not a boundary. (d) A cycle which is
not a boundary.

The subgraphs that we consider are obtained by selecting a subset of edges.
Denote by G D .V; E; F / a tiling of surface and let us consider the subgraph G"

of G whose vertex set is exactly V and whose edge set is a given subset " of E. This
graph is not immediately endowed with a set of faces and with a homology group.
The proper notion of homology for our purpose is obtained by considering the
boundaries of the tiling G which are included in the subgraph G". More precisely,
the subset of edges " de�nes the subspace C "

0 D C0, the subspace C "
1 of C1 made

up of all formal sums of edges of ", and the subspace C "
2 of C2 made up of all

those vectors of C2 whose image under @2 is included in C "
1 . The mappings @"

1

and @"
2 are de�ned as the restrictions of @1 and @2 to C "

1 and C "
2 .

De�nition 3.3. Let G D .V; E; F / be a tiling of a surface and let " � E. The

induced homology group of G" is the quotient space

H1.G"/ D Ker @"
1=.Im @"

2/:

For more detailed background on the homology of surfaces and their tilings
see [13, 9].
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4. Appearance of homology in a random subgraph of Gt

4.1. Homology of a subgraph. This section is devoted to the analysis of the
induced homology of a subgraph of Gt .m/. To lighten notation we omit the indices
m and t and write G D Gt .m/. Following the notation of Section 3.2, " denotes a
subset of E and G" denotes the subgraph of G induced by ".

The decomposition of the graph G" into connected components induces a
partition of the edges of ": the set " is the disjoint union of the subsets "i � E, for
i D 1; 2; : : : ; r and where each set "i is the edge set of a connected component of
G". The following lemma proves that this decomposition of the graph G" induces
a decomposition of its homology group.

Lemma 4.1. Let " D [r
iD1"i be the partition of " derived from the decomposition

of the graph G" into connected components. Then, the dimension of the �rst

homology group of G" is at most

dim H1.G"/ �

r
X

iD1

dim H1.G"i
/:

Proof. Remark that the chain space C "
1 decomposes as C "

1 D ˚iC
"i

1 . This leads
to a similar decomposition of the cycle space of G".

Ker @"
1 D

r
M

iD1

Ker @
"i

1 :

However, the image of Im @"
2 has a slightly di�erent structure. First, the chain

space C "
2 is has no similar decomposition but it still contains the direct sum ˚iC

"i

2 .
Hence, the image of Im @"

2 contains the direct sum
Lr

iD1 Im @
"i

2 as a subspace. This
implies

dim H1.G"/ D dim
�

r
M

iD1

Ker @
"i

1 = Im @"
2

�

� dim
�

r
M

iD1

Ker @
"i

1 =

r
M

iD1

Im @
"i

2

�

:

To conclude, notice that this last quotient is the direct sum ˚iH1.Gt;"i
/.

The next lemma proves that if " is composed of small clusters, then it covers
no homology.



148 N. Delfosse and G. Zémor

Lemma 4.2. Let G" be a connected subgraph of G D Gt .m/. If " contains at

most t edges, then we have H1.G"/ D ¹0º.

Proof. Since G" is connected and contains less than t edges, it is included in a ball
of radius t . From Theorem 2.1, this ball is isomorphic with a ball of the planar
graph G.m/. But this ball is itself planar and in a planar graph, every cycle is a
boundary. Thus the group H1.G"/ is trivial.

The next lemma will allow us to compute the dimension of the induced ho-
mology group of every subgraph G" of G D Gt .m/. Since a set " � E can be
regarded as a subset of E�, it also de�nes a subgraph G�

" of the graph G�. Let us
denote by rank G" (rank G�

" ) the rank of an incidence matrix of G" (of G�
" ). By

Lemma 3.2 these ranks do not depend on the choice of the incidence matrix of the
graph. The dimension of the induced homology group is given by:

Lemma 4.3. For every " � E, we have

dim H1.G"/ D j"j �
2

m
jEj C 1 C rank G�

N" � rank G":

Proof. The group H1.G"/ is the quotient of the cycle space of G" by Im @"
2, the

set of boundaries of G which are included in the subgraph ".
By de�nition, the cycle space of G" is the kernel of the map @"

1. Moreover, the
incidence matrix of G" is a matrix of this linear map. Therefore, the dimension of
the cycle space of the subgraph G" is

dim ker @"
1 D j"j � rank G": (3)

The set of boundaries of G is the image of the map @2. We noticed in Section 3.1
that a matrix of the map @2 is given by the transpose of B.G�/, the incidence
matrix of G�. This means that the boundaries of G correspond to the sums of
rows of B.G�/. These are the vectors of the form xB.G�/, where x is a binary
vector.

Consider the incidence matrix of G�
N" , where N" denotes the complement of " in

E. This matrix can be obtained from B.G�/ by selecting the columns indexed by
the edges in N". Let us de�ne a map � which sends a sum of rows of B.G�/ onto
the same sum of rows in the matrix B.G�

N" /. It is the map

�W Im @2 �! C N"
1

xB.G�/ 7�! x N"B.G�
N" /;



A homological upper bound on critical probabilities for hyperbolic percolation 149

where x is a row vector of FjV j
2 and x N" is its restriction to the columns indexed by

the edges of N". Then, the boundaries of G included in ", are exactly the vectors of
the kernel of �. The dimension of this space is

dim Im @"
2 D dim ker � D dim Im @2 � dim Im � D rank G� � rank G�

N" : (4)

Now rank G� D dim Im @�
1 D jE�j � dim ker @�

1 . Applying Lemma 3.2 to
the dimension of the cycle space ker @�

1 of G� and the fact that G D Gt .m/

is connected, we get rank G� D jF j � 1 D .2=m/jEj � 1. Injecting this
last fact into (4), we obtain, together with (3), the formula for dim H1.G"/ D

dim ker @"
1 � dim Im @"

2.

4.2. The rank di�erence function. We now consider the probabilistic be-
haviour of the induced homology of a random subgraph of Gt D Gt .m/. To get
a distribution which locally coincides with the distribution of percolation events,
the subset of edges " is chosen by selecting each edge of Gt independently with
probability p. This de�nes a random subgraph Gt;" of the graph Gt .

The intuition we follow is that if we are below the critical probability of the
graph G.m/, then most connected components appearing in the random subgraph
Gt;" should be small. Thanks to Lemma 4.2, these clusters do not support any
non trivial homology. This implies that if p < pc.G.m// then the dimension of
the induced homology of Gt;" must be small. Conversely, if we compute, using
Lemma 4.3, the expected dimension of H1.Gt;"/ and �nd it to be large, we know
that p must be above the critical probability pc . These considerations lead us to
introduce the following quantity.

De�nition 4.4. The rank di�erence function associated with the family of graphs

.Gt /t is de�ned to be

D.p/ D lim sup
t

Ep

�rank G�
t; N" � rank Gt;"

jEt j

�

:

Though this function is de�ned from the family .Gt /t , Theorem 5.3 below
will show that it only depends on the in�nite graph G.m/. The local isomorphism
between Gt and G.m/ will be the key to removing the apparent dependence on Gt

of the function D.p/.

The rank di�erence function satis�es the following equation when p is below
the critical probability of G.m/.
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Theorem 4.5. If p < pc.G.m// then the rank di�erence function associated with

the family .Gt /t sati�es

p �
2

m
C D.p/ D 0:

Corollary 4.6. De�ning ph D sup¹p; p � 2
m

C D.p/ D 0º we have pc � ph.

Assume that p < pc.G.m//. By de�nition of the critical probability, for any
�xed edge e of the in�nite graph G.m/, the probability that e is contained in an
open connected component C.e/ of G.m/ of size strictly larger than t vanishes
when t ! 1. The following lemma shows that we observe a similar behaviour
in the �nite graphs Gt . It will be instrumental in proving Theorem 4.5.

Lemma 4.7. For every t � 0, �x an edge et of the graph Gt and denote by C.et/

its (possibly empty) connected component in the random subgraph Gt;". Then, the

probability that C.et / contains strictly more than t � 2 edges tends to 0 when t

goes to in�nity.

Proof. The complementary event depends only on what occurs inside the ball of
radius t centered on an endpoint of the edge et . Since this ball is isomorphic to the
ball with the same radius in G.m/, this event has the same probability in the space
G.m/ and in Gt .m/. Hence the result by the remark preceding the lemma.

Proof of Theorem 4.5. Thanks to Lemma 4.1, we have the following upper bound
on the dimension of the �rst homology group of Gt;":

dim H1.Gt;"/ �

r
X

iD1

dim H1.Gt;"i
/:

where "i is the edge set of the i-th connected component of Gt;".

From Lemma 4.2, all the components "i of size smaller than t have a trivial
contribution to H1.Gt;"/. For the other components, the dimension of H1.Gt;"i

/

is bounded by the number of edges in the component "i . Indeed, the induced
homology group of Gt;"i

is a quotient of the cycle space of this graph, whose
dimension is at most the number of edges in "i . This implies

dim H1.Gt;"/ � j¹e 2 Et such that jC.e/j > tºj;

where C.e/ denotes the connected component in Gt;" of the edge e and jC.e/j is
its number of edges.
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Let us denote by Xt D Xt .Gt;"/ the cardinality of the set

¹e 2 Et such that jC.e/j > tº:

To study the expectation of Xt , we de�ne a random variable Xe, associated with
each edge e 2 Et , which takes the value Xe.Gt;"/ D 1 if the size of C.e/ is larger
than t and which is 0 otherwise. Consequently, we have

Xt D
X

e2Et

Xe;

and by linearity of expectation, E.Xt / D
P

e E.Xe/. For every edge e 2 Et ,
this expectation of the random variable Xe is E.Xe/ D P.jC.e/j > t/. By edge-
transitivity of the graph Gt , this quantity does not depend on the edge e, thus
E.Xt / D jEt j P.jC.et /j > t/, for some �xed edge et of the graph Gt . Moreover,
from Lemma 4.7, this probability vanishes when t goes to in�nity. This allows us
to bound the expected dimension of the induced homology:

Ep

�dim H1.Gt;"/

jEt j

�

� Ep

� Xt

jEt j

�

D Pp.jC.et /j > t/ �! 0:

Since the right-hand side tends to 0 when t goes to in�nity, taking the superior
limit gives exactly 0, i.e.

lim sup
t

Ep

�dim H1.Gt;"/

jEt j

�

D 0:

To conclude the proof, we determine the expected dimension of the induced
homology group with the help of Lemma 4.3. We �nd

lim sup
t

Ep

�dim H1.Gt;"/

jEt j

�

D p �
2

m
C D.p/:

5. Computation of the rank di�erence function of hyperbolic tilings

The behaviour of the function D.p/ is di�cult to capture directly from its de�ni-
tion. The aim of this section is to provide an explicit combinatorial description of
the rank di�erence function D.p/ associated with the �nite tilings .Gt /t .

The next lemma enables us to replace the rank which appears in the de�nition
of D.p/ by a strictly graph-theoretical quantity.
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Lemma 5.1. Let �t;" denote the number of connected components of the graph

Gt;". We have:

rank Gt;" D jVt j � �t;":

Proof. By de�nition, the rank of the graph Gt;" is the rank of an incidence matrix
of this graph. The kernel of this incidence matrix is the cycle space of the graph
Gt;", which has dimension j"j�jVt jC�t;" from Lemma 3.2. The result follows.

The function D.p/ depends on the expected rank of the random submatrix Gt;".
This encourages us to examine the expected number of connected components
of the random subgraph Gt;". A key ingredient of our study is the following
decomposition of the random variable �t;".

Lemma 5.2. Let C be a connected subgraph of Gt . Denote by XC the random

variable which takes the value 1 if C is a connected component of the random

graph Gt;" and 0 otherwise. Then, we have

�t;" D
X

C2Ct

XC

where Ct denotes the set of connected subgraphs C of Gt .m/.

Moreover, we have Ep.XC / D pjE.C/j.1 � p/j@.C/j where @.C / is the set of

edges of Gt which are incident to at least one vertex of C , but which do not belong

to E.C /.

The proof of the above lemma is self-evident. Using this decomposition of
�t;", we derive the following exact expression of the rank di�erence function as a
function of the subgraphs of the in�nite graph G.m/.

Theorem 5.3. For m � 5 and 0 < p � 1=2, The rank di�erence function

associated with the graphs .Gt .m//t is equal to

D.p/ D
2

m

X

C2C.v/

� 1

jV.C /j

�

pjE.C/j.1 � p/j@.C/j � .1 � p/jE.C/jpj@.C/j
��

;

where C.v/ denotes the set of connected subgraphs C of G.m/ containing a �xed

vertex v.
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Proof. From Lemma 5.1, the rank di�erence function can be rewritten

D.p/ D lim sup
t

Ep

��t;" � �t; N"

jEt j

�

D lim sup
t

�

Ep

� �t;"

jEt j

�

� E1�p

� �t;"

jEt j

��

:

where we used the fact that, N" being the complement of " in Et , we haveEp.�t; N"/ D

E1�p.�t;"/.

Then, using the decomposition of �t;" proposed in Lemma 5.2 and the linearity
of expectation, we obtain

D.p/ D lim sup
t

1

jEt j

X

C2Ct

�

Ep.XC / � E1�p.XC /
�

:

Elimination of the large components. Now, remark that the main contribution
in this sum is given by the small components. To prove this, consider a sequence
of integers .Mt /t such that Mt ! C1. Then, we have

1

jEt j

X

C2Ct

jE.C/j�Mt

.Ep.XC / � E1�p.XC //

�
1

jEt j

X

C2Ct

jE.C/j�Mt

.Ep.XC / C E1�p.XC //

D
1

jEt j
Ep

�

X

C2Ct

jE.C/j�Mt

XC

�

C
1

jEt j
E1�p

�

X

C2Ct

jE.C/j�Mt

XC

�

�
1

jEt j

2jEt j

Mt

D
2

Mt

�! 0

To obtain the last inequality, remark that the sum of all the random variables
XC such that jE.C /j � Mt counts the number of connected components of the
subgraph Gt;" of size larger than Mt . Since connected components are disjoint,
this number cannot be larger than jEt j=Mt .
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The previous paragraph proves that, for every sequence Mt going to in�nity,
the rank di�erence function is given by

D.p/ D lim sup
t

1

jEt j

X

C2Ct

jE.C/j<Mt

.Ep.XC / � E1�p.XC //

Recentralization. In order to remove the dependency on t , we would like to
apply the local isomorphism between Gt .m/ and G.m/ and to express everything
as a function of the in�nite graph G.m/. First, we have to recenter all the
components C around a �xed vertex vt of the graph Gt . To move a connected
component C of the graph Gt onto a component which contains the vertex v D vt ,
we use a family of automorphisms of the graph Gt .m/. For every vertex w of
the graph Gt .m/, select �v;w , an automorphism of the graph Gt .m/ sending v

onto w. We take the identity for �v;v . Such an automorphism exists because the
graph Gt is vertex transitive, as explained in Section 2. From this �xed family of
automorphisms, we can reach all the connected subgraphs of Gt , starting from the
subgraphs containing v. Stated di�erently, we have

Ct D ¹C j C connected º D
[

w2Vt

¹�v;w.C / j C connected ; v 2 V.C /º

At the right-hand side of this equality, each component C of the graph appears
jV.C /j times. Moreover, the contribution Ep.XC / of the subgraph C , computed
in Lemma 5.2, depends only on jE.C /j and j@.C /j, which are both invariant under
the application of an automorphism �v;w . Hence, D.p/ is equal to

D.p/ D lim sup
t

1

jEt j

X

C2Ct

jE.C/j<Mt

.Ep.XC / � E1�p.XC //

D lim sup
t

1

jEt j

X

C2Ct .v/
jE.C/j<Mt

X

w2Vt

1

jV.C /j
.Ep.X�v;w.C// � E1�p.X�v;w.C///

D lim sup
t

1

jEt j

X

C2Ct .v/
jE.C/j<Mt

jVt j

jV.C /j
.Ep.XC / � E1�p.XC //

D lim sup
t

2

m

X

C2Ct .v/
jE.C/j<Mt

1

jV.C /j
.Ep.XC / � E1�p.XC //

where we have used jVt j
jEt j

D 2
m

since Gt is m-regular.
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Application of the local isomorphism. We now replace the graph Gt .m/ by
the in�nite graph G.m/. Since the balls of radius t are isomorphic in Gt .m/ and
in G.m/, we have that every �xed subgraph C inside such a ball has the same
probability of being a connected component whether it is of the random subgraph
Gt;" or of the open subgraph of G.m/. By choosing Mt D t � 1, we therefore get

D.p/ D lim sup
t

2

m

X

C2C.v/
jE.C/j<Mt

1

jV.C /j
.Ep.XC / � E1�p.XC // (5)

where C.v/ denotes the set of connected subgraphs C of G.m/ containing the �xed
vertex v.

We can now conclude the proof. The quantity .Ep.XC / �E1�p.XC // is equal
to .pjE.C/j.1 � p/j@.C/j � .1 � p/jE.C/jpj@.C/j/ From Lemma 5.2. It is positive by
Lemma 5.4 to be proven just below. Therefore all the terms of the sum in (5) are
positive, which means that the lim sup is in fact a limit. Since Mt ! C1, we get

D.p/ D
2

m

X

C2C.v/

� 1

jV.C /j
.pjE.C/j.1 � p/j@.C/j � .1 � p/jE.C/jpj@.C/j/

�

:

It remains to prove that the series has positive terms. This result relies on an
isoperimetric inequality.

Lemma 5.4. Let 0 < p < 1=2. For every connected subgraph C of G.m/, we

have

pjE.C/j.1 � p/j@.C/j � .1 � p/jE.C/jpj@.C/j > 0:

Proof. The parameter p is assumed to be smaller than 1=2. Thus, to prove that this
quantity is strictly positive it su�ces to show that for every connected subgraph
C of G.m/, we have jE.C /j < j@.C /j. This inequality is somewhat analogous to
the isoperimetric inequality that we recall now. The isoperimetric constant of the
graph G.m/ is de�ned to be

iE .G.m// D inf
° j@.C /j

jV.C /j

±

with C ranging over all �nite subgraphs (that can be assumed connected) of G.m/.
This number was computed exactly for hyperbolic graphs in [12]. It is

iE .G.m// D .m � 2/

s

1 �
4

.m � 2/2
: (6)
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In order to apply this to our problem, we write

j@.C /j

jE.C /j
D

j@.C /j

.m=2/jV.C /j � .1=2/j@.C /j
�

iE .G.m//

m=2 � iE .G.m//=2
(7)

where we have used the fact that the smallest rate j@.C /j=jE.C /j is achieved when
@.C / contains only edges with exactly one endpoint in C . In that case, we have
mjV.C /j D 2jE.C /jC j@.C /j. Using Equation (6) and (7), it is then easy to check
that, for all m � 5, we have

j@.C /j

jE.C /j
�

iE .G.5//

5=2 � iE .G.5//=2
� 1:62 > 1:

This proves the lemma.

6. Bound on the critical probability of the hyperbolic lattice G.m/

We showed in Theorem 4.5 that the critical probability of G.m/ is bounded from
above as pc.G.m// � ph with ph de�ned in Corollary 4.6. Theorem 5.3 provides
an exact formula for the rank di�erence function D.p/ as a sum of a series
depending on the connected subgraphs of G.m/. This gives a new expression
for ph that does not involve the �nite graphs Gt .m/ anymore, but it still leaves ph

di�cult to compute. We now show that by replacing the series D.p/ by its partial
sums, we obtain explicit upper bounds on ph and hence on pc .

Theorem 6.1. Let n � 0 and let Dn.p/ be a partial sum of the series D.p/

associated with the hyperbolic graph G.m/. Then, the solution ph.n/ 2 Œ0; 1�

of the equation

p � 2=m C Dn.p/ D 0

is an upper bound on ph and hence on pc.G.m//.

Proof. We have seen in Lemma 5.4 that all the terms of the series D.p/ are strictly
positive when p > 0. Thus, every partial sum Dn.p/ satis�es Dn.p/ < D.p/. As
a consequence, if ph.n/ is a solution of the equation p � 2=m C Dn.p/ D 0, then
we have ph.n/ � 2=m C D.ph.n// > 0. This proves that D.p/ does not satisfy
the criterion of Theorem 4.5 at p D ph.n/. Therefore ph.n/ is an upper bound
on ph.
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As a �rst application of this theorem, using only the fact that Dn.p/ � 0, we
recover the upper bound pc.G.m// � 2=m, proved in [7].

The �rst terms of the series, corresponding to the components of small size
can be computed easily. For example the number of connected subgraphs of size
0, that is with 0 edges, containing a �xed vertex of G.m/ is 1 and this subgraph
has a boundary @.C / of size m. This gives the partial sum

D0.p/ D
2

m
..1 � p/m � pm/:

Applying Theorem 6.1 to D0.p/, we get an upper close to 0:35. This is already
more precise than the upper bound in [8].

The next partial sum is given by

D1.p/ D D0.p/ C
2

m

�m

2
.p.1 � p/2.m�1/ � p2.m�1/.1 � p//

�

;

since there are m di�erent connected subgraphs of G.m/ composed of one edge
and containing a �xed vertex.

The �rst terms can be computed easily in this way. In a tree it is possible
to get an exact formula for the number of rooted connected subgraphs using
the Lagrange inversion theorem. However this enumeration problem becomes
extremely di�cult when the subgraphs start covering cycles. Moreover, the size of
the boundary and the number of vertices of the subgraph do not depend only on its
number of edges. We enumerated all the connected subgraphs of G.5/ (hyperbolic
animals, as in [16]) of size at most 8 by computer. The results are given in Table 1.
Using the partial sum D8.p/ that takes into account all the subgraphs of size at
most 8, we get an upper bound on pc.G.5// which is approximately 0:299973:

pc.G.5// � 0:299973:

To the best of our knowledge, the previous best upper bound was close to 0:309.
It is the combined conclusion of Theorem 2 of [3] and the computation of the
isoperimetric constant of regular hyperbolic lattices obtained in [12]. The present
work can be seen as a simpli�ed and re�ned version of a previous upper bound
pc.G.5// � 0:38 derived by the present authors and based on quantum information
theory arguments [8]. Gu and Zi� proposed a Monte-Carlo estimation of this
threshold of 0:265 [11] which is coherent with our upper bound.
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Table 1. Enumeration of the rooted subgraphs of G.5/ up to size 8.

jE.C/j jV .C/j @.C/ occurrence
0 1 5 1

1 2 8 5

2 3 11 30

3 4 14 200

4 5 17 1400

4 5 16 25

5 6 20 10146

5 6 19 450

5 5 15 5

6 7 23 75460

6 7 22 5775

6 6 18 90

7 8 26 572720

7 8 25 64200

7 8 24 480

7 7 21 1155

8 9 29 4418190

8 9 28 661950

8 9 27 13005

8 8 24 12840

8 8 23 180

7. Concluding comments

Summarising Theorems 4.5 and 5.3 we have proved :

Theorem 7.1. For m � 5 we have pc.G.m// � ph with

ph D sup¹p 2 Œ0; 1=2� j D.p/ C p �
2

m
D 0º

and

D.p/ D
2

m

X

C2C.v/

� 1

jV.C /j
.pjE.C/j.1 � p/@.C/ � .1 � p/jE.C/jp@.C//

�

;

where C.v/ denotes the set of connected subgraphs C of G.m/ containing a �xed

vertex v of the graph G.m/.
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The value ph can be thought of as a critical value for the appearance of
homology in the graph G.m/. It captures the following threshold : for p > ph,
open subgraphs of large �nite versions of G.m/ must have a �rst homology group
of dimension that scales linearly with the total number of edges of the �nite graph.
For p < ph, the dimension of the homology group is sublinear instead. This
bound is really meaningful only for the hyperbolic case m � 5 since for m D 4

(the square lattice), the dimension of the total homology group of �nite versions
of the in�nite grid (tori) is limited to 2.

A consequence of Theorem 7.1 is that ph gives an upper bound on the param-
eters of the quantum erasure channel that hyperbolic surface codes built on the
family Gt .m/ can sustain [8].

We conjecture :

Conjecture 7.2. For m � 5, pc D ph.

Recall that in hyperbolic lattices it has been shown that immediately beyond the
critical probability, the open subgraph contains in�nitely many in�nite connected
components [3]. The conjecture could be seen as a “�nite” (but unbounded)
version of this fact.
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