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Bipartite dimer representation

of squares of 2d-Ising correlations

Béatrice de Tilière1

Abstract. �e combinatorial Bosonisation identities of [5] show that the square of

2d-Ising order and disorder correlations are equal to ˙ the ratio of bipartite dimer partition

functions. In this self-contained paper, we give an alternative proof of these identities us-

ing the approach of [2]. Our proof is more direct and allows to see the e�ect of order and

disorder on XOR-Ising polygon con�gurations.
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1. Introduction

Let G D .V; E/ be a �nite, planar embedded graph. Consider the Ising model on

the graph G with coupling constants J D .Je/e2E, and denote by ZIsing.G; J/ the

Ising partition function.

Following Kadano� and Ceva [9], we introduce order and disorder in the

model: order amounts to adding i �
2

to coupling constants along n paths of the

graph G joining 2n, pairwise distinct, vertices u1; : : : ; u2n, see Figure 1 (left, blue

paths); disorder amounts to negating coupling constants of dual edges of m paths

of the dual graph G
� joining 2m, pairwise distinct, faces f1; : : : ; f2m of G,

see Figure 1 (left, green paths); all paths are assumed to be pairwise disjoint,

see also Remark 2. Denote by xJ D .xJe/e2E the modi�ed coupling constants,

and by h�u1
: : : �u2n

�f1
: : : �f2m

i.G;J/ the Ising correlation de�ned as the ratio

ZIsing.G; xJ/=ZIsing.G; J/.

1 Supported by the ANR Grant 2010-BLAN-0123-02.
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Figure 1. (Colors in on-line version). Left: order and disorder in the Ising model on G.

Center: image of order and disorder in the bipartite graph GQ. Right: dimer weight function

�.xJ/ associated to the modi�ed coupling constants xJ, expressed as a function of the original

coupling constants J. Note that �.xJ/ is de�ned locally, implying that dimer weights of

quadrangle-edges that are not crossed by an order or disorder line, are the usual dimer

weights.

When there is no disorder, the correlation h�u1
: : : �u2n

i.G;J/ is, up to an explicit

constant, the usual 2n-spin correlation, see [9] or equation (14); � is the �eld

consisting of the values of the spins at vertices of the graph. Disorder has the e�ect

of favoring spins to be di�erent across the disorder paths. It amounts to modifying

the state space and cannot, strictly speaking, be thought of as a �eld. Nevertheless,

since the e�ect on the partition function is independent of the choice of paths [9],

it is commonly written as a �eld �. �is way of writing is also favored by the

duality relation which exists between the �elds � and �, see Point 5. of Remark 1.

Mixed correlations involving � and � are very classical objects of study in the

Ising model, see for example [12, 1, 14].

Consider the dimer model on the �nite, planar, bipartite graph GQ D .VQ; EQ/

constructed from G, see Figure 1 (center). Suppose that edges of GQ are assigned

the weight function �.J/ D .�.J/e/e2EQ , de�ned in Figure 1 (top right), and denote

by Zdimer.G
Q; �.J// the corresponding dimer partition function. Consider also the

modi�ed weight function �.xJ/ obtained from the modi�ed coupling constants xJ:

�.xJ/ is de�ned as in Figure 1 (top right, with J replaced by xJ); expressing �.xJ/

as a function of the coupling constants J yields Figure 1 (right: top, middle and

bottom). Written in the notation of this paper, the combinatorial Bosonisation

identities of Dubédat, see [5] (Point 1 of Lemma 3, p. 16), are stated as follows.
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�eorem 1.1 ([5]). �e squared Ising correlation

h�u1
: : : �u2n

�f1
: : : �f2m

i2
.G;J/

is equal to ˙ the following ratio of bipartite dimer partition functions:

h�u1
: : : �u2n

�f1
: : : �f2m

i2
.G;J/ D .�1/j�j Zdimer.G

Q; �.xJ//

Zdimer.GQ; �.J//
; (1)

where j�j is the number of edges in the union of the n paths de�ning order

(the blue paths of Figure 1).

Remark 1. (1) Bosonisation identities in conformal �eld theory consist in ex-

pressing squares of free-fermionic correlations as correlations of the free �eld [20].

�e result of Dubédat is important because it proves that Bosonisation also holds

true in the setting of discrete models. Indeed, the Ising model is the archetype

of a lattice free-fermionic model, and the dimer model is a classical example of

lattice bosonic model. More references on the subject, as well as a description of

the right hand-side of equation (1) using a discrete version of the free �eld, can

be found in the original paper by Dubédat [5].

�e other important aspect of Dubédat’s result is that, since explicit computa-

tions can be done in the dimer model using Kasteleyn techniques [7, 8, 16], it gives

a way of computing squares of critical Ising spin correlations in the plane [5, 4];

see [3] for the proof of conformal invariance of critical Ising spin correlations.

(2) �e proof of �eorem 1.1 uses the argument of [2]. �e common thread

between the approaches of [5] and [2] is that they use a sequence of expansions

starting from two independent Ising models. �e advantage of the approach of [2]

is that it uses one layer less of Kramers and Wannier duality [10, 11], and it allows

to geometrically keep track of XOR-Ising polygon con�gurations. �e latter arise

from the low-temperature expansion [10, 11] of the XOR-Ising model, also known

as the polarization of the model, obtained by taking the product of the spins of two

independent Ising models, see [6, 15, 18]. �e paper [2] thus provides a coupling

between the XOR-Ising model on G and the bipartite dimer model on GQ.

�e point of this paper is to highlight that the expansions used in [2] also hold

for the modi�ed weights xJ. �is is apparent as we go through the di�erent steps

of the proof in Section 3. As a consequence, we have that the coupling between

the XOR-Ising model and the dimer model also holds for the modi�ed weights,

and we can identify the e�ect of order and disorder (the modi�ed weights xJ) on

the XOR-Ising model.
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(3) �eorem 1.1 is stated for the Ising model with free boundary conditions.

In Section 2.2 we explain how, by transforming the graph and keeping it planar,

and possibly adding disorder, all boundary conditions enter the framework of free

boundary ones.

(4) Consequences of �eorem 1.1 are expressions as ratio of dimer partition

functions for: the square of Ising spinor variables correlations, spin correlations,

and magnetization. �is is explained in Section 4.

(5) By [9], order and disorder correlations satisfy Kramers and Wannier dual-

ity:

.�1/j�jh�u1
: : : �u2n

�f1
: : : �f2m

i.G;J/ D .�1/j��jh�f1
: : : �f2m

�u1
: : : �u2n

i.G�;J�/;

where edges of the dual graph G� are assigned dual coupling constants J� D J
�.J/,

de�ned by: J� D
�

J
�
e� D �1

2
ln.tanh Je/

�

e�2E�
: In particular, when the graph G

has no disorder, order correlations of G are mapped to disorder correlations of

the dual graph G
�, with dual coupling constants. �eorem 1.1 allows to recover

a new proof of Kramers and Wannier duality. Indeed, it holds for the numerator

and the denominator of the right-hand-side of (1) as a consequence of the follow-

ing two facts: modi�ed coupling constants also satisfy the duality relation, i.e.,

J�
e� D �1

2
ln.tanh Je/; and cosh�1.2J�

e�/ D tanh.2Je/, for all choices of coupling

constants J.

Outline

� Section 2. De�nition of the Ising model, of order and disorder. Treatment

of other boundary conditions. De�nition of the dimer model on the bipartite

graph GQ.

� Section 3. Proof of �eorem 1.1 using the approach of [2].

� Section 4. Consequences of �eorem 1.1 for squares of Ising spinor variables

correlations, spin correlations, and magnetization.
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David Cimasoni and Adrien Kassel for their interest in expressing the square of

Ising spin correlations, using the approach of [2]. We are also grateful to the

referee for his/her many comments, which have helped increase the quality of this

paper.
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2. De�nitions and boundary conditions

2.1. Two-dimensional Ising model, order and disorder. Consider a �nite, pla-

nar graph G D .V; E/, together with a collection of positive coupling constants

J D .Je/e2E indexed by edges of G. �e Ising model on G, with coupling con-

stants J, is de�ned as follows. A spin con�guration � is a function of the vertices

of G taking values in ¹�1; 1º. �e probability on the set of spin con�gurations

¹�1; 1ºV, is given by the Ising Boltzmann measure PIsing, de�ned by

PIsing.�/ D
1

ZIsing.G; J/
exp

�

X

eDuv2E

Je�u�v

�

; for all � 2 ¹�1; 1ºV;

where

ZIsing.G; J/ D
X

�2¹�1;1ºV

exp
�

X

eDuv2E

Je�u�v

�

is the normalizing constant, known as the Ising partition function.

It is convenient to consider the graph G as embedded in the sphere. Suppose

that the embedding of the dual graph G� is such that dual vertices are in the in-

terior of the faces of G, and such that primal and dual edges cross exactly once.

Following Kadano� and Ceva [9], we introduce order and disorder in the system.

Given positive integers n and m, let u1; : : : ; u2n be 2n, pairwise distinct, vertices

of G and f1; : : : ; f2m be 2m, pairwise distinct, vertices of the dual graph G�. Con-

sider n loop-free paths 
1; : : : ; 
n of G, such that 
j has endpoints u2j �1, u2j ,

and m loop-free paths 
�
1 ; : : : ; 
�

m of G�, such that 
�
j has endpoints f2j �1, f2j ,

see Figure 1 (left). Denote by � the set of edges of the paths 
1; : : : ; 
n, and by

�� the set of edges dual to edges of the paths 
�
1 ; : : : ; 
�

m. Note that �� is indeed

a subset of edges of the primal graph G and not of the dual graph. All paths are

assumed to be pairwise disjoint, see also Remark 2.

De�ne the following modi�ed coupling constants xJ D .xJe/e2E:

xJe D

8

ˆ

ˆ

<

ˆ

ˆ

:

Je C i
�

2
if e 2 �;

�Je if e 2 ��;

Je otherwise;

for all e 2 E: (2)

�en, ZIsing.G; xJ/ D
P

�2¹�1;1ºV exp
� P

eDuv2E
xJe�u�v

�

is the corresponding mod-

i�ed Ising partition function.
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Remark 2. If only order or only disorder is introduced in the system, the modi�ed

Ising partition function is independent of the choice of paths of � or ��. If both

order and disorder are considered, then changing the paths might induce a sign

change [9]. In writing the proofs, it is nevertheless convenient to have pairwise

disjoint paths. We thus assume that the embedded planar graph G and its dual G�

are such that paths of � and �� can be chosen to be pairwise disjoint. �is is the

only assumption we make on the graphs G and G�; examples use a piece of Z2

simply because it is easier to draw.

2.2. Boundary conditions. �e Ising model introduced in Section 2.1 is also

known as the Ising model with free-boundary conditions. We now discuss how to

handle other boundary conditions. Since the graph G is embedded in the sphere,

�xing boundary conditions amounts to �xing spins on boundary vertices of a face

F of G. We suppose that boundary edges of the face F are not covered by edges of

� or ��.

Consider �rst plus-boundary conditions, meaning that all spins on boundary

vertices of F are +1. Denote by E@F the set of boundary edges of the face F. �en,

up to the constant1
Q

e2E@F
eJe , the modi�ed Ising partition function is equal to

the one of the graph G
0 obtained from G by contracting the face F into a single

vertex, and where this vertex is �xed to having spin C1, see Figure 2 (left). Since

the modi�ed partition function is invariant under the transformation � $ �� ,

it is up to a factor 1
2
, the modi�ed partition function of the graph G

0 with free

boundary conditions. �e graph G0 is also planar and embedded in the sphere, so

that it enters the framework of this paper. A mixture of plus and free-boundary

conditions can be handled in a similar way, by contracting all edges with �xed +1

spins, see Figure 2 (right).

Figure 2. Contraction of vertices and edges to handle plus-boundary conditions (left) and

plus-free-boundary conditions (right).

1 the constant does not depend on the modi�ed coupling constants xJ because, by assumption,

boundary edges of F are not covered by � and ��
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Consider now Dobrushin boundary conditions, meaning that the boundary of

the face F is split into two connected components, one having +1 spins and the

other -1 spins. Up to a constant, the modi�ed Ising partition function is equal to

the one of the graph G0 obtained by contracting all vertices and edges of the face F

having respectively +1 spins and -1 spins, see Figure 3 (center). Let u be the vertex

with �xed -1 spin, then the modi�ed partition function of G0 is equal to the one

where the spin at u is +1 and coupling constants on edges incident to u are negated.

We now have an Ising model with two vertices on the boundary of a face of degree

2 with �xed +1 spins. Up to a constant, the modi�ed Ising partition function is

equal to the one of the graph G
00

obtained by contracting the two vertices into a

single vertex with +1 spin, and adding a disorder line, see Figure 3 (right). Up to a

constant 1
2

it is equal to the modi�ed partition function of the graph G
00

with free

boundary conditions, and enters again the framework of this paper.

Figure 3. Contraction of vertices and edges, and introduction of a disorder line to handle

Dobrushin boundary conditions.

2.3. Dimer model on the bipartite graphGQ. �e bipartite graphGQ D .VQ; EQ/

is constructed from the graph G and its dual G� as follows. Let us �rst de�ne the

quad-graph, denoted G˘, whose vertices are those of G and of the dual graph G�.

A dual vertex is then joined to all primal vertices on the boundary of the corre-

sponding face. �e embedding of G˘ is chosen such that its edges do not intersect

those of G and G�, see Figure 4 (left, grey lines). Consider the graph obtained by

superimposing the primal graph G, the dual graph G�, the quad-graph G˘, and by

adding a vertex at the crossing of each primal and dual edge. �en, the dual of this

graph, denoted by GQ, is the graph on which the dimer model lives, see Figure 4

(right). It is bipartite and consists of quadrangles and legs connecting the quad-

rangles: legs are edges crossing those of the quad-graph G˘; in each quadrangle,

two edges are “parallel” to an edge e of G and two edges are “parallel” to the dual

edge e� of G�, see Figure 5.
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Figure 4. Left: planar embedding of the graph G (plain black lines), dual graph G� (wide-

dotted black lines), the “tiny-dotted” line is a spread out way of representing the vertex of

G
� corresponding to the outer-face (in the planar embedding) of G, and the quad-graph GQ

(grey lines). Right: the bipartite graph GQ (plain black lines).

quadrangle leg

edge e of G

edge of the quad-graph G˘

edge e� of G�

Figure 5. Zoomed-in picture of the circled region of Figure 4.

Suppose that edges of GQ are assigned a positive weight function � D .�e/e2GQ .

�e dimer model on GQ with weight function �, is de�ned as follows. A dimer

con�guration of GQ, also known as a perfect matching, is a subset of edges M of

G
Q such that every vertex is incident to exactly one edge of M, see Figure 8. Let

us denote by M.GQ/ the set of dimer con�gurations of the graph G
Q.

�e probability measure we consider on the set of dimer con�gurations M.GQ/

is the dimer Boltzmann measure Pdimer, de�ned by

Pdimer.M/ D

Q

e2M �e

Zdimer.GQ; �/
for all M 2 M.GQ/;

where

Zdimer.G
Q; �/ D

X

M2M.GQ/

Y

e2M

�e

is the normalizing constant known as the dimer partition function.
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3. Proof of �eorem 1.1

We now turn to the proof of �eorem 1.1. �e key result is �eorem 5.5 of [2],

which in the case of a �nite, planar graph G embedded in the sphere (genus 0 case),

reads

ŒZIsing.G; J/�2 D 2jVj
�

Y

e2E

cosh.2Je/
�

� Zdimer.G
Q; �.J//; (3)

where the dimer weight function �.J/ is de�ned from the coupling constants J as

follows:

�.J/e D

8

ˆ

ˆ

<

ˆ

ˆ

:

1 if e is a leg;

tanh.2Je/ if e is “parallel” to a primal edge e of G;

cosh�1.2Je/ if e is “parallel” to the dual edge e� of an edge e of G:

(4)

�is result is also proved in the genus 0 and 1 case in [5]. Both proofs use a se-

quence of expansions starting from two independent Ising models. Dubédat starts

from one Ising model living on the graph G and the other on the dual graph G�. He

then uses Kramers and Wannier duality to have the square of the Ising model par-

tition function. One of the expansions he uses is of the “high-temperature type”,

in the sense that there is no geometrical mapping between con�gurations before

and after the expansion.

�e approach of [2] is more transparent: it starts from two independent Ising

models living on the same graph G, and while doing expansions, allows to keep

track of XOR-Ising polygon con�gurations. �e latter are polygon con�gurations

separating clusters of ˙1 spins of the XOR-Ising model [6, 15, 18], obtained by

taking the product of the spins of the two independent Ising models. It provides a

coupling between the bipartite dimer model on GQ and the XOR-Ising model on G.

By looking at the proof of equation (3) in [2], we see that this equation actu-

ally holds for all choices of coupling constants, in particular negative or complex.

�us, for the modi�ed coupling constants xJ of equation (2), we have

ŒZIsing.G; xJ/�2 D 2jVj
�

Y

e2E

cosh.2xJe/
�

� Zdimer.G
Q; �.xJ//; (5)

where �.xJ/ is given by equation (4) with J replaced by xJ.
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Let us express the modi�ed weights �.xJ/ as a function of the original coupling

constants J. By equation (4), we need to compute tanh.2xJe/ and cosh.2xJe/, for an

edge e of G. We have

tanh.2xJe/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

tanh.2Je/ if e … � [ ��;

tanh.2Je C i�/ D tanh.2Je/ if e 2 �;

tanh.�2Je/ D � tanh.2Je/ if e 2 ��:

(6)

and

cosh.2xJe/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

cosh.2Je/ if e … � [ ��;

cosh.2Je C i�/ D � cosh.2Je/ if e 2 �;

cosh.�2Je/ D cosh.2Je/ if e 2 ��:

(7)

As a consequence, we have that the weight function �.xJ/ written as a function of

the original coupling constants is given by, see also Figure 1 (right),

�.xJ/e D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1 if e is an external edge;

tanh.2Je/ if e is “parallel” to an edge e of G, e … ��;

� tanh.2Je/ if e is “parallel” to an edge e of G, e 2 ��;

cosh�1.2Je/ if e is “parallel” to the dual edge e�

of an edge e of G, e … �;

� cosh�1.2Je/ if e is “parallel” to the dual edge e�

of an edge e of G, e 2 �:

(8)

From equation (7), we also have that the term
Q

e2E cosh.2xJe/ in equation (5) is

equal to .�1/j�j
Q

e2E cosh.2Je/. Taking the ratio of equations (5) and (3) yields

�eorem 1.1. �

In the paper [2], equation (3) is proved for graphs embedded in surfaces of

genus g. We now give an outline of the proof in the genus 0 case. We do so for

several reasons: �rst, in the genus 0 case the proof greatly simpli�es, it is thus

rather short and makes this paper self-contained; second, it is by looking at the

proof that one sees that equation (3) does not require positivity of the coupling

constants; �nally, it allows to see the e�ect of order and disorder (of the modi�ed

weights xJ) on XOR-Ising polygon con�gurations.

�e proof of equation (3) has two steps. �e �rst, based on an idea of [13],

is to show that the square of the Ising partition function is equal, up to an explicit

constant, to a weighted sum over pairs of non-intersecting polygon con�gurations

of the graph G and of its dual graph G�, where polygon con�gurations of the graph

G
� arise from the low-temperature expansion of the XOR-Ising model. �e second
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step, based on ideas of [13, 19, 5], is to map the weighted sum over pairs of non-

intersecting polygon con�gurations of the graphs G and G� onto the dimer model

on the bipartite graph GQ.

3.1. Step 1: polygonal representation of the square of the Ising partition func-

tion. A polygon con�guration of the graph G is a subset of edges P such that every

vertex of G is incident to an even number of edges of P. �e set of polygon con-

�gurations of G is denoted by P .G/. �e set of polygon con�gurations P .G�/ of

the dual graph G� of G is de�ned similarly.

In Proposition 1.1 of [2], we prove that the square of the Ising partition function

is equal, up to a constant, to a weighted sum over pairs of non-intersecting polygon

con�gurations of the graph G and of its dual graph G�, see Figure 6. �e result

holds for any choice of coupling constants. It is proved for graphs embedded

in surfaces of genus g, using an idea of Nienhuis [13]. In particular, for graphs

embedded in the sphere, it reads

ŒZIsing.G; J/�2

D C

X

¹.P;P�/2P .G/�P .G�/ W P\P�D;º

�

Y

e�2P�

cosh�1.2Je/
��

Y

e2P

tanh.2Je/
�

;
(9)

where

C D 2jVjC1
�

Y

e2E

cosh.2Je/
�

:

Remark 3. From [13], see also [2], we know that polygon con�gurations of the

dual graph G� arise from the low-temperature expansion [10, 11] of the XOR-Ising

model.

�e proof of equation (9) in the genus g case is rather complicated because

of homology considerations which come into play. In the genus 0 case, it greatly

simpli�es, and can be written as follows.

Proof of equation (9) in the genus 0 case. �e square of the modi�ed partition

function is equal to

ŒZIsing.G; J/�2 D
X

�;� 02¹�1;1ºV

Y

eDuv2E

eJe�u�v eJe� 0

u� 0

v :

For every pair of spin con�gurations �; � 0, denote by � the XOR-Ising con�g-

uration, obtained by taking the product �� 0,

�u D �u� 0
u for all u 2 V;

whence � 2 ¹�1; 1ºV.
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Figure 6. �e square of the modi�ed Ising partition function can be written as a weighted

sum over pairs of non-intersecting primal (pink) and dual (turquoise) polygon con�gura-

tions of G and G�.

Since � and � 0 take values in ¹�1; 1º, we have � 0 D �� , and the square of the

modi�ed partition function can be written as

ŒZIsing.G; J/�2 D
X

�;�2¹�1;1ºV

�

Y

eDuv2E

eJe�u�v.1C�u�v/
�

:

Let us now �x a XOR-spin con�guration � . Denote by V1
� ; � � � ; V

k�
� the partition of

vertices of V corresponding to clusters of ˙1 spins of � . For every ` 2 ¹1; � � � ; k�º,

let E`
� be the subset of edges joining vertices of V`

� . Set E� D
Sk�

`D1
E

`
� and .E� /c D

EnE� . �en, for every e D uv 2 E� , �u�v D 1, and for every e 2 .E� /c , �u�v D �1,

implying that

ŒZIsing.G; J/�2 D
X

�2¹�1;1ºV

X

�2¹�1;1ºV

Y

eDuv2E�

e2Je�u�v :

Exchanging the sum over spins �’s and the product over edges of E� yields

ŒZIsing.G; J/�2 D
X

�2¹�1;1ºV

k�
Y

`D1

h

X

�`2¹�1;1ºV
`
�

�

Y

eDuv2E`
�

e2Je�u�v

�i

: (10)

�at is, for every ` 2 ¹1; � � � ; k�º, we have the partition function of an Ising model

on G`
� D .V`

� ; E`
�/, with modi�ed, doubled coupling constants 2J. Using Kramers

and Wannier high-temperature expansion [10, 11, 17] for each of these modi�ed
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Ising models, we obtain

k�
Y

`D1

h

X

�`2¹�1;1ºV
`
�

�

Y

eDuv2E`
�

e2Je�u�v

�i

D

k�
Y

`D1

h

2jV`
� j

�

Y

e2E`
�

cosh.2Je/
�

X

P2P .G`
� /

�

Y

e2P

tanh.2Je/
�i

D 2jVj
�

Y

e2E�

cosh.2Je/
�

k�
Y

`D1

h

X

P2P .G`
� /

�

Y

e2P

tanh.2Je/
�i

:

(11)

Plugging (11) into the square of the modi�ed partition function (10) yields

ŒZIsing.G; J/�2 D C
0

X

�2¹�1;1ºV

�

Y

e2.E� /c

cosh�1.2Je/
�

k�
Y

`D1

�

X

P2P .G`
� /

Y

e2P

tanh.2Je/
�

;

where C
0 D 2jVj

�
Q

e2E cosh.2Je/
�

.

�e proof is concluded by assigning, as in the low-temperature expansion, dual

polygon con�gurations separating clusters of spins of XOR-Ising con�gurations.

Note that the constant C
0 and the constant C of the statement di�er by a factor 2

because two spin con�gurations are assigned to a given dual polygon con�gura-

tion.

In particular, when the coupling constants are the modi�ed weights xJ, the result

is

ŒZIsing.G; xJ/�2 D C

X

¹.P;P�/2P .G/�P .G�/ W P\P�D;º

�

Y

e�2P�

cosh�1.2xJe/
��

Y

e2P

tanh.2xJe/
�

;

(12)

where

C D 2jVjC1
�

Y

e2E

cosh.2xJe/
�

:

Returning to the computations of equations (6) and (7), the modi�ed weights

tanh.2xJe/ and cosh�1.2xJe/ can be expressed as a function of the original weights

tanh.2Je/ and cosh�1.2Je/, see Figure 7.
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u1

u2

u3

u4

f1

f2

f3

f4

f5 f6

e

e

e�

e�

-cosh�1.2Je/

-tanh.2Je/

tanh.2Je/

cosh�1.2Je/

Figure 7. Modi�ed edge-weights for the weighted sum over pairs of non-intersecting poly-

gon con�gurations of the graph G and its dual graph G�, induced by the modi�ed coupling

constants xJ.

We see that adding order and disorder into the system only a�ects weights

of edges along, or crossing, � and ��. Since polygon con�gurations of the dual

graph are the XOR-Ising polygon con�gurations, we understand the e�ect of order

and disorder on the XOR-Ising model.

3.2. Step 2: bipartite dimer representation of the polygon representation.

We proceed as in [2]. �e weighted sum over pairs of non-intersecting primal and

dual polygon con�gurations naturally maps to a 6-vertex model [13]. �is 6-vertex

model is free-fermionic when polygon edge-weights arise from two independent

Ising models (because Œcosh�1.2Je/�2 C Œtanh.2Je/�2 D 1, which holds for any

choice of coupling constants). �e free-fermionic 6-vertex model then maps to

the dimer model on the graph G
Q de�ned in Section 2.3 [19, 5]. �e mapping

from pairs of non-intersecting primal and dual polygon con�gurations of G and

G
�, to dimer con�gurations of GQ can be explained without going through the

6-vertex model. It is summarized in Figure 8.

As a consequence, we obtain

X

¹.P;P�/2P .G/�P .G�/ W P\P�D;º

�

Y

e�2P�

cosh�1.2Je/
��

Y

e2P

tanh.2Je/
�

D
1

2
Zdimer.G

Q; �.J//;

(13)

where the dimer weight function �.J/ is given by equation (4).

�e proof of equation (3) is concluded by combining equations (9) and (13).
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Figure 8. Mapping between pairs of non-intersecting primal and dual polygon con�gura-

tions of G and G� and dimer con�gurations of GQ [13, 19, 5]. Top: mapping on the local

level. Bottom: mapping on the global level. Given a pair of non-intersecting primal and

dual polygon con�gurations, there are two possible leg con�gurations for the correspond-

ing dimer con�guration; then the con�guration of quadrangles with 2 or 4 matched legs is

�xed, and quadrangles having 0 matched leg each have two possible dimer con�gurations.

Right: mapping of the weights.

4. Consequences

As a consequence of �eorem 1.1, we obtain expressions as ratio of bipartite dimer

partition functions for squares of quantities of interest in the study of the Ising

model. �roughout this section, we use the notation of Sections 1, 2, and 3.

First, following [9], we consider 2n-spinor variables. �is amounts to taking

m D n and choosing uj , fj in such a way that uj is on the boundary of the face

of G de�ned by the dual vertex fj . �en, specifying �eorem 1.1 to this choice

of vertices yields an expression for squares of spinor variables correlations as the

ratio of bipartite dimer partition functions.

Next, let us consider 2n-spin correlations EŒ�u1
: : : �u2n

�. �is enters the

framework of this paper by conditioning �� to be the empty set. More precisely,

by Kadano� and Ceva [9], 2n-spin correlations are equal to

EŒ�u1
: : : �u2n

� D .�i/j�j ZIsing.G; xJ/

ZIsing.G; J/
D .�i/j�jh�u1

: : : �u2n
i.G;J/; (14)

where

xJe D

8

<

:

Je C i
�

2
if e 2 �;

Je otherwise:



136 B. de Tilière

Computing the corresponding dimer weight function �.xJ/ using equation (8) yields

�.xJ/e D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1 if e is an external edge;

tanh.2Je/ if e is “parallel” to an edge e of G;

cosh�1.2Je/ if e is “parallel” to the dual edge e�

of an edge e of G, e … �;

� cosh�1.2Je/ if e is “parallel” to the dual edge e�

of an edge e of G, e 2 �:

(15)

As a consequence of �eorem 1.1, we obtain the following.

Corollary 1. �e square of 2n-spin correlations EŒ�u1
: : : �u2n

�2 is the following

ratio of bipartite dimer partition functions:

EŒ�u1
: : : �u2n

�2 D
Zdimer.G

Q; �.xJ//

Zdimer.GQ; �.J//
;

where the dimer weight function �.xJ/ is given by equation (15).

Finally, let us express the magnetizationE
CŒ�u�, which is the expected value of

a single spin u under plus-boundary conditions (if free boundary conditions were

considered, the magnetization would be equal to zero by symmetry). Recall that

�xing plus-boundary amounts to taking all spins on boundary vertices of a face F

of G to be C1. Magnetization enters the framework of this paper by conditioning

�� to be the empty set, � to be a single path 
 , and by using the procedure of

Section 2.2 for treating plus-boundary conditions. More precisely, by [9], the

magnetization is equal to

E
CŒ�u� D .�i/j
 j

ZC
Ising.G; xJ/

ZC
Ising.G; J/

;

where ZC
Ising.G; xJ/ is the modi�ed, plus-boundary condition Ising partition func-

tion, modi�ed along a single path 
 of the graph G, where 
 joins a vertex on the

boundary of F to the vertex u; this quantity is independent of the choice of bound-

ary vertex. Let us suppose that 
 does not use edges on the boundary of F, and let

G
0 be the graph obtained from G by contracting the face F into a single vertex v,

see Figure 2 (left). Note that in G0, the path 
 joins the vertices v and u. Using the

argument of Section 2.2 for handling plus-boundary conditions, we obtain

ZC
Ising.G; xJ/

ZC
Ising.G; J/

D

1

2

�

Y

e2E@F

eJe

�

ZIsing.G0; xJ/

1

2

�

Y

e2E@F

eJe

�

ZIsing.G0; J/

D
ZIsing.G0; xJ/

ZIsing.G0; J/
:



Bipartite dimer representation of squares of 2d-Ising correlations 137

Since 
 does not use boundary edges of the face F, it has the same number of edges

in the graphs G and G0. We have thus proved the following.

Lemma 4.1. �e magnetization E
CŒ�u� in the graph G, is equal to the pair-spin

correlation EŒ�u�v� in the graph G0.

As a consequence, the expression as ratio of bipartite dimer partition functions

for the square of the magnetization is a speci�c case of Corollary 1.
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