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Abstract. In this paper we study the Brauer loop model on a strip and the associated

quantum Knizhnik–Zamolodchikov (qKZ) equation. We show that the minimal degree so-

lution of the Brauer qKZ equation with one of four di�erent possible boundary conditions,

gives the multidegrees of the irreducible components of generalizations of the Brauer loop

scheme of [16, Knutson–Zinn-Justin ’07] with one of four kinds of symplectic-type sym-

metry. This is accomplished by studying these irreducible components, which are indexed

by link patterns, and describing the geometric action of Brauer generators on them. We also

provide recurrence relations for the multidegrees and compute the sum rules (multidegrees

of the whole schemes).
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1. Introduction

1.1. Background. Recently there has been renewed interest in the connection
between quantum integrable systems and algebraic geometry, see e.g. [11, 12, 19,
22]. A particularly explicit realization of this correspondence can be found in
the case of the Brauer loop model [18, 5, 9] and its geometric counterpart, the
Brauer loop scheme [16, 17]. As part of the dictionary between these two subjects
(cf. [19]), the type of symmetry of the geometric object determines the boundary
conditions of the integrable model. In the setup of [16, 17], the Brauer loop
scheme has symmetry governed by an algebra of type yA, so that the corresponding
R-matrix satis�es the ordinary Yang–Baxter equation and the Brauer loop model
has periodic boundary conditions. It is expected that other types will lead to
other boundary conditions (see [8] for some experiments in that general direction).
Among them, type yC is particularly natural: according to its Dynkin diagram (see
Section 1.3), it should correspond to models de�ned on a strip, with a bulk de�ned
in terms of ordinary R-matrices satisfying the Yang–Baxter equation, and two
boundaries, each with a K-matrix satisfying the re�ection (or boundary Yang–
Baxter) equation.

The purpose of this paper is to validate this hypothesis by, on the one hand,
introducing and studying the Brauer loop model on a strip with various boundary
conditions, and on the other, describing their geometric counterparts, leading to
four distinct type yC Brauer loop schemes.

1.2. Results. More speci�cally, we study the type yC quantum Knizhnik–
Zamolodchikov (qKZ) equation – by this we mean the generalization due to
Cherednik [2] of the original qKZ equation [10] to all types – associated to the
Brauer R-matrix and to either a trivial or nontrivial K-matrix at both boundaries,
with a further re�nement consisting in identifying or not the two boundaries. Tak-
ing into account the obvious left/right symmetry, these boundary conditions lead
to four possibilities, denoted by the superscripts i (identi�ed), c (closed), o (open),
m (mixed). We are interested in a polynomial solution for a speci�c value of the
shift parameter of the qKZ equation.1 Note that the Brauer qKZ equation is very
nontrivial because, in contradistinction with the more usual case of the Hecke
algebra, the R-matrix has three terms, so that a polynomial solution is not obvi-
ously related to the action of an algebra (say, the double a�ne Hecke algebra [3])

1 We expect polynomiality to be only possible for discrete values of this parameter, and the
one we choose to give the lowest possible degree among these polynomial solutions.
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on polynomials, i.e., it does not immediately reduce to a standard representation
theory problem.

We study in Section 2 polynomial solutions of the qKZ equation. We discuss
various properties they possess, including recurrence relations. We determine in
particular a lower bound on their degree, and that if there exists a solution which
saturates this bound, then it is unique up to multiplication by a constant; however,
contrary to type yA, we cannot show at this stage the existence of such a solution
in types yC.

Before turning to the geometry, let us mention some motivation and physical
applications. In Section 3, we recall that setting the loop weight to 1 results in
the shift parameter of the qKZ equation being zero, and show that the polynomial
solution mentioned above is an eigenvector of the inhomogeneous transfer ma-
trix of the Brauer loop model with the same boundary conditions. In the physical
range of parameters where the Boltzmann weights are positive, it is in fact the
ground state of the transfer matrix, making it particularly interesting to calculate.
Equivalently, since the transfer matrix is stochastic, the entries of the ground state
can be interpreted as (unnormalized) probabilities of the connectivity of bound-
ary points on a half-in�nite strip. (The normalization is in fact computed in the
present work). This paves the way to the calculation of more physically interesting
quantities such as correlation functions. The model on a strip is particularly inter-
esting because it should help with the computation of the boundary-to-boundary
current, similarly to the work [6] on the noncrossing loop model.

Next we come to the geometric construction. In Section 4, we de�ne four (con-
ical, a�ne) schemes, which we call type yC Brauer loop schemes, corresponding
to the four cases ¹i; c; o;mº mentioned above. We provide di�erent descriptions,
either as in�nite periodic matrices or as �at limits of certain orbits generalizing
nilpotent orbits. We also de�ne the group action that these schemes are natu-
rally equipped with, and in particular the torus action. We then describe their
irreducible components, following a similar study in [16] in type yA, in terms of
link patterns, giving a �rst hint of the connection to the loop model, since these
link patterns form the natural basis of the space on which the Brauer algebra acts.
The construction makes use of several type C analogues of the classi�cation of
B-orbits of upper triangular matrices which square to zero [20]. As a byproduct,
we point out the connection to a symplectic analogue of the commuting variety,
which was one of the motivations of [16].

Finally, Section 5 provides the exact connection between the Brauer loop
model and the Brauer loop scheme in various types. This can be summarized
by the following meta-theorem:
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Theorem. The multidegrees of the irreducible components of the Brauer loop

scheme form a polynomial solution of the qKZ equation.

(Multidegrees are a convenient reformulation of equivariant cohomology in
our setting;2 equivalently, they can be thought of as equivariant volumes up to
overall normalization.) This statement will be made more precise later (see The-
orem 5.1). The proof involves the detailed analysis of the action of certain SL2

subgroups on the Brauer loop schemes.
An interesting feature is that in type yC, it is not possible to solve the qKZ

equation explicitly in order to exhibit a polynomial solution (contrary to the case
of type yA, see [9], where one can at least in principle compute it inductively).
Therefore, the geometry provides an explicit solution of the qKZ problem, which
by de�nition has all the desired properties (polynomiality in all variables, minimal
degree).

The analysis of Section 5 is rather technical, and unfortunately, we have not
been able to do without a case-by-case analysis depending on the boundary con-
dition, a fully general approach (similar to the analysis of [19]) being outside the
scope of this paper. We have therefore decided to give the full proofs only in
types i; c. In addition, we have mentioned in parallel the case of type yA (denoted
p for periodic), not only to summarize the main results of [16, 17] and for compar-
ison purposes, but also because some of the proofs and results we give are new
even in type yA.

The conclusion wraps up the proof of the main theorem and discuss sum rules.
On the geometric side, these correspond to the multidegrees of the full Brauer
loop schemes. (In fact, using a combination of �at deformation and equivariant
localization, some formulae, albeit not particularly explicit, are already provided
in Section 4.2.2). On the physical side, they are the normalization constants for
the probabilities of the connectivity of boundary points on the half-in�nite strip.
Using recurrence relations, we provide alternative formulae for them as Pfa�ans
or determinants.

In the appendices we give some small size solutions of the qKZ system as well
as some technical results that are needed in the proofs.

1.3. Dynkin diagrams. Since the models and geometry we consider are based
on the a�ne Dynkin diagrams of type yA and yC, we brie�y describe our conven-
tions concerning these.

2 Since our solution of the Yang–Baxter equation is rational, we obtain on the geometric side
ordinary cohomology, as opposed to K-theory or elliptic cohomology.
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First introduce the following notation: given an integerL � 2, de�ne the group
� acting on Z by generators

� i 7! i C L in type yA;

� i 7! i C 2L, i 7! 2L � i C 1 in type yC.

Equivalence classes in Z=� are canonically identi�ed with edges in the Dynkin
diagram of yAL�1, yCL, respectively. We denote by cl.i/ the class of i 2 Z in
Z=�. The standard choice of representatives is 1; : : : ; L (they also correspond
to the choice of variables z1; : : : ; zL in the weights, see below), and when there
is no risk of confusion we identify such representatives i and cl.i/. For future
purposes, also de�ne the action of � D �e [ �o (where �e are translations and
�o are re�ections when acting on Z) on Z � Z by .i; j / 7! ..i/; .j // if  2 �e,
.i; j / 7! ..j /; .i// if  2 �o, and cl.i; j / to be the class of .i; j / under this
action.

We also choose the somewhat clumsy (but standard) convention to index a node
by the edge to its left, except for the leftmost node of type yC which is labelled 0,
see Figure 1.

2

:::

L

1
0 1 LL�1

Figure 1. Dynkin diagrams for the a�ne yAL�1 (left) and yCL (right) root systems.

Similarly, the root lattices are de�ned as follows. We start with a countable set
of generators of the form s and zi , i 2 Z. Then we take the quotient of the abelian
group they generate with the relations (for all i 2 Z):

� ziCL D zi C s in type yAL�1;

� ziC2L D zi C s, z2L�iC1 D �zi in type yC.

The result is isomorphic to ZLC1, a possible choice of generators being s,
z1; : : : ; zL.

In all types, the simple roots are then de�ned by ˛i D zi � ziC1, with i being
the index of a node in the Dynkin diagram. More explicitly, and if we use the
variables s; z1; : : : ; zL, we have

� in type yAL�1, ˛i D zi � ziC1 for 1 � i � L � 1, and ˛L D zL � z1 � s;

� in type yCL, ˛i D zi � ziC1 for 1 � i � L� 1, ˛0 D �2z1 � s and ˛L D 2zL.
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We also need the commutative ring generated by s and zi , i 2 Z, i.e., the
quotient of ZŒs; zi ; i 2 Z� with the same relations above. Re�ections w.r.t. simple
roots act on it in the following way (with the same choice of variables):

� in type yAL�1,

�if .: : : ; zi ; ziC1; : : :/ D f .: : : ; ziC1; zi ; : : :/ 1 � i � L � 1;

�Lf .z1; : : : ; zL/ D f .zL � s; : : : ; z1 C s/I

� in type yCL

�if .: : : ; zi ; ziC1; : : :/ D f .: : : ; ziC1; zi ; : : :/ 1 � i � L � 1;

�0f .z1; : : :/ D f .�z1 � s; : : :/;

�Lf .: : : ; zL/ D f .: : : ;�zL/:

Finally, we de�ne the divided di�erence operators, acting on functions of s,
z1; : : : ; zL:

@i WD
1

˛i

.1 � �i /: (1)

2. The quantum Knizhnik–Zamolodchikov equation

The qKZ equation3 that we will be studying is based on the Brauer algebra.
We will look at �ve di�erent boundary conditions, which we will refer to as
periodic (p), closed (c), identi�ed (i), open (o), and mixed (m). The �rst of these
corresponds to the type yA root system while the other four correspond to the type
yC root system. We state some previous results for periodic [5, 9] and closed [7],
but for the other boundary conditions the results are original.

Our aim, as explained in the introduction, is to give a geometric meaning to
the qKZ solutions of type yC, as was done for the periodic case in [5, 9, 16, 17],
however we will include the periodic case in all our statements in order to make
references and comparisons to it.

3 also called “di�erence Knizhnik–Zamolochikov equation” because it is naturally expressed
in terms of the additive spectral parameter. This is due to the fact that our solution of the Yang–
Baxter equation is rational.
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2.1. The Brauer algebra. We list here the aspects of the Brauer algebra [1, 25]
that are common to all boundary conditions. The Brauer algebra is built from the
Temperley–Lieb generators ¹ei j i D 1; : : : ; L � 1º and the crossing generators
¹fi j i D 1; : : : ; L� 1º, graphically depicted as

ei WD

i iC1

fi WD

i iC1

;

which satisfy the rule-of-thumb “strings are pulled tight, closed loops give a
weight of ˇ”, explicitly (see e.g. [24])

e2
i D ˇei ; fiei D ei ; (2a)

f 2
i D 1; eifi D ei ; (2b)

eiei˙1ei D ei ; fiei˙1ei D fi˙1ei ; (2c)

fifiC1fi D fiC1fifiC1; eiei˙1fi D eifi˙1: (2d)

One can show that all relations that can be derived from the graphical depiction
are a consequence of (2), so that the Brauer is de�ned by generators ei , fi ,
i D 1; : : : ; L� 1, and relations (2).

Using the parametrization ˇ D A��
A��=2

, and the de�nition

r.z/ WD .AC z/.2A � z � �/;

we de�ne for i D 1; : : : ; L� 1 the R-matrices

LRi .z/ WD
.2A � �/.A � z/

r.z/
C
.2A � �/z

r.z/
ei C

.A � z/z

r.z/
fi ; (3)

with the graphical depiction

LRi .zi � ziC1/ D

zi ziC1

:
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By the relations (2) the R-matrices satisfy unitarity

LRi .z/ LRi.�z/ D 1; (4)

and the Yang–Baxter equation (YBE)

LRi .z/ LRiC1.z C w/ LRi.w/ D LRiC1.w/ LRi.z C w/ LRiC1.z/: (5)

The R-matrix also has the important property

LRi .A/ D
1

ˇ
ei : (6)

An important remark is that equations (4) and (5) are nothing but the relations
of the symmetric group for the operator �i

LRi .zi � ziC1/. In the two paragraphs
that follow, we shall extend the Brauer algebra (i.e., make a choice of boundary
conditions for the loop model) in order to obtain relations of the a�ne Weyl groups
yA or yC.

2.1.1. Type yA. The periodic Brauer algebra has two additional generators, eL
and fL, which act between sites L and 1 and satisfy all the relations (2) under the
identi�cation L C 1 � 1. The graphical depiction is the natural analogue of the
one for the ordinary Brauer algebra, where diagrams are drawn on a (periodic)
strip.

One may wish to add the following relations involving idempotent elements I1

and I2:

I1I2I1 D ˇ2I1 I2I1I2 D ˇ2I2;

I1 WD e1e3 : : : eL�1; I2 WD e2e4 : : : eL; L even;

I1 WD e1e3 : : : eL; I2 WD e2e4 : : : eL�1; L odd:

(in particular, they will be satis�ed in the representation below).
De�ning the R-matrix using the same formula (3) for i D 1; : : : ; L, equa-

tions (4) and (5) are satis�ed with indices mod L, i.e., we obtain the relations of
the a�ne Weyl group of type yAL�1.

The periodic Brauer algebra has a representation on the vector space with
canonical basis indexed by link patterns. In the periodic case, the latter are chord
diagrams that connect the L points around a circle in pairs, see Figure 2. If L is
odd one site is left unpaired, referred to either as a �xed point or as a connection
to in�nity. We refer to the set of periodic link patterns of size L as LPp

L, and it has
.2dL=2e � 1/ŠŠ elements.
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1

2 3

4

5

67

8

Figure 2. An example periodic link pattern for L D 8.

The Brauer generators act on the link patterns in the natural graphical way,
by pasting the strip around the disk; for example,

e2

2 3

D

2 3

; f2

2 3

D

2 3

:

2.1.2. Type yC. Let us now add two more generators to the ordinary Brauer
algebra, e0 and eL, with relations

e2
0 D e0; e2

L D eL; (7a)

e1e0e1 D e1; eL�1eLeL�1 D eL�1; (7b)

e0f1e0 D e0e1e0; eLfL�1eL D eLeL�1eL: (7c)

These do not appear in every version of the type yC boundary conditions. In the
closed case, we shall use neither, i.e., stick to the ordinary Brauer algebra; in the
mixed case, we shall need the one-boundary Brauer algebra, i.e., add eL; and in the
identi�ed and open cases, we shall use the two-boundary Brauer algebra including
both e0 and eL.

For identi�ed and open boundaries we also have the idempotent relations

I1I2I1 D I1 I2I1I2 D I2;

I1 WD e0e2 : : : eL; I2 WD e1e3 : : : eL�1; L even;

I1 WD e0e2 : : : eL�1; I2 WD e1e3 : : : eL; L odd:

The type yC link patterns are a string of sites numbered from 1 to L, connected
to each other in pairs or (if allowed by the boundary conditions) to a boundary, or
(in the odd size closed case) left unpaired. See Figure 3 for examples.
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1 2 3 4

Figure 3. Example closed, identi�ed, open and mixed link patterns for L D 4.

We can represent the link patterns by tuples of numbers, where the i th repre-
sents the site that site i is connected to, with l representing the left boundary, r
representing the right, b representing the generic boundary, and � representing the
unpaired site (or connection to in�nity) in the odd closed case. For example, the
link pattern in Figure 2 is .7; 4; 6; 2; 8; 3; 1; 5/, and the link patterns in Figure 3 are
¹.3; 4; 1; 2/; .3; b; 1; b/; .3; r; 1; l/; .3; r; 1; r/º. The link pattern sets and respective
sizes are

LPi
LW

bL=2c
X

j D0

 

L

2j

!

.2j � 1/ŠŠ

LPc
LW .2dL=2e � 1/ŠŠ

LPo
LW

bL=2c
X

j D0

2L�2j

 

L

2j

!

.2j � 1/ŠŠ

LPm
L W

bL=2c
X

j D0

 

L

2j

!

.2j � 1/ŠŠ :

We will sometimes refer to the number of chords in a link pattern: this refers to the
number of links connecting sites to sites or sites to boundaries. It does not count
the unpaired site in the odd closed or periodic cases. For example, the numbers of
chords in the link patterns in Figure 3 are 2, 3, 3, and 3 respectively.

The standard graphical depiction for e0 and eL (used in the open and mixed
cases) is

e0 D

1

; eL D

L

;

however for identi�ed boundaries the graphical depiction is

e0 D

1

; eL D

L

;
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where the dots signify a connection to a single generic boundary. In other words,
identi�ed and open Brauer algebras are the same, but we use di�erent representa-
tions and therefore corresponding graphical depictions.

The boundary generators act on link pattern in a similar way to the bulk
generators. The generator is placed on top of the link pattern, and a new link
pattern is formed according to the resulting connections between the sites. For
example, in the open case

e0

1

D

1

;

and in the identi�ed case

eL

L

D
L

:

We now de�ne the K-matrices, graphically denoted by

LK0.w/ DW
w�s=2

�w�s=2

; LKL.w/ DW
�w

w

:

Let
k.w/ WD .AC 2w/:

For a given boundary condition, if e0 or eL exists we de�ne the K-matrix to be

LK0;L.w/ WD
.A � 2w/

k.w/
C

4w

k.w/
e0;L: (8)

If the boundary generator doesn’t exist, we de�ne the K-matrix to be the identity.
With these two possible de�nitions, and by (7), the K-matrices satisfy unitarity

LK0.w/ LK0.�w/ D LKL.w/ LKL.�w/ D 1;

and the boundary Yang–Baxter equation (re�ection equation)

LK0.z/ LR1.z C w/ LK0.w/ LR1.w � z/

D LR1.w � z/ LK0.w/ LR1.z C w/ LK0.z/;

LKL.z/ LRL�1.z C w/ LKL.w/ LRL�1.w � z/

D LRL�1.w � z/ LKL.w/ LRL�1.z C w/ LKL.z/:

Again, these relations are simply those satis�ed by boundary generators of the
a�ne Weyl group yCL.
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2.2. The quantum Knizhnik–Zamolodchikov equation

2.2.1. Type yA. For each i we de�ne the scattering matrix

Si WD LRi�1.zi � zi�1 � s/ : : : LR1.zi � z1 � s/��1 LRL�1.zi � zL/ : : : LRi .zi � ziC1/

D

. . .

. . .

. . .

. . .

z1 zi�1 ziC1 zLzi

zi � s

;

where � is an operator that rotates a link pattern by one clockwise step,4 and
s is a new (nonzero) parameter. The quantum Knizhnik–Zamolodchikov (qKZ)
equation is then [10]

Si j‰.: : : ; zi ; : : : /i D j‰.: : : ; zi � s; : : : /i ; (9)

where j‰i is a vector belonging to the space spanned by LPp
L,

j‰.z1; : : : ; zL/i D
X

�2LPp
L

 �.z1; : : : ; zL/ j�i :

We will sometimes include a subscript to indicate the size L of the system if
necessary. Here we are interested in a stronger version, called the qKZ system,
which is the following system:

LRi .zi � ziC1/ j‰.: : : ; zi ; ziC1; : : : /i D j‰.: : : ; ziC1; zi ; : : : /i ; 1 � i � L� 1;

(10)

� j‰.z1; : : : ; zL/i D j‰.z2; : : : ; zL; z1 C s/i : (11)

It is easy to show that (10)–(11) implies (9), though the converse is in general not
true. We refer to (10) as exchange relations, and (11) as the rotation equation.

4 Adding � , rather than simply the �i
LRi , corresponds to considering the extended a�ne Weyl

group of type yAL�1.
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2.2.2. Type yC. Cherednik considered generalizations of the qKZ equation to
other types [2]. For type yC there is no longer a need for � , but instead we use the
boundary operators. The scattering matrix is de�ned for each i as

Si WD LRi�1.zi � zi�1 � s/ : : : LR1.zi � z1 � s/

LK0.zi � s=2/ LR1.z1 C zi / : : : LRL�1.zL C zi /

LKL.zi/ LRL�1.zi � zL/ : : : LRi .zi � ziC1/

D

. . .

. . .

. . .

. . .

z1 zi�1 ziC1 zLzi

�zi

zi � s

:

The qKZ equation is then as before

Si j‰.: : : ; zi ; : : : /i D j‰.: : : ; zi � s; : : : /i ; (12)

where

j‰.z1; : : : ; zL/i D
X

�2LPa
L

 �.z1; : : : ; zL/ j�i ; a 2 ¹i; c; o;mº;

and the qKZ system is

LRi .zi � ziC1/ j‰.: : : ; zi ; ziC1; : : : /i D j‰.: : : ; ziC1; zi ; : : : /i ; 1 � i � L� 1;

(13)

LK0.�z1 � s=2/ j‰.z1; : : : ; zL/i D j‰.�z1 � s; : : : ; zL/i ; (14)

LKL.zL/ j‰.z1; : : : ; zL/i D j‰.z1; : : : ;�zL/i ; (15)

which implies the qKZ equation. We will refer to (14) and (15) as boundary
exchange relations.

2.3. Solution. In what follows we shall be interested in solutions of the systems
(10)–(11) and (13)–(15) which are polynomials in their arguments z1; : : : ; zL as
well asA and �. It is easily seen that these polynomials will be homogeneous. The
shift parameter is taken to be sp;i;c D � or so;m D �=2, because as we shall show in
Section 5, polynomial solutions exist at these values. We will also show that the
minimal degree solution is unique up to a constant.
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The qKZ system gives us a set of relationships between the components of j‰i,
as well as giving special linear factors and symmetries that must appear in some
components based on the associated link pattern. We will explore these in detail
in the next section. We will also show that any solution of the qKZ system must
satisfy an in�nite number of recurrence relations.

Remark. In the periodic and closed cases all the components can be written as
divided di�erence operators acting on just one component, but in the other cases
this is not possible. We will not use this approach, for more details see [7, 9].

2.3.1. Factors and symmetries. Here we will list all the symmetries and factors
dictated by the qKZ system, both for the bulk and the boundaries. Note that for
the periodic model only the bulk rules apply, and the rotation equation (11) is an
extra restriction.

First we de�ne the modi�ed divided di�erence operator for 0 < i < L, with
˛i D zi � ziC1 as in Section 1.3,

@0
i WD .AC ˛i /@i

1

AC ˛i

:

The rules obtained from the qKZ system (13)–(15) are listed below for a compo-
nent  � corresponding to a link pattern � . Again, the rules for the boundaries
only apply if there is a non-trivial K-matrix, since if the K-matrix is trivial the
boundary exchange relation merely implies a symmetry.

For i D 0 .

i. If �.1/ ¤ l; b, then there is no link pattern � for which e0 j�i D j�i. So we
have

@0

 �

k.�z1 � s=2/
D 0;

implying that  � D k.�z1 � s=2/S0
� , where S0

� is a polynomial in z1; : : : ; zL

that is invariant under .z1 C s=2/ $ .�z1 � s=2/.

ii. Otherwise there is a small link from site 1 to the left boundary (or the generic
boundary if identi�ed), and the boundary exchange relation gives us the
relationship

k.�z1 � s=2/.�@0/ � D 2
X

�¤�W e0j�iDj�i

 �: (16)
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For i D L .

i. If �.L/ ¤ r; b, then there is no � for which eL j�i D j�i. So we have

@L

 �

k.zL/
D 0;

implying that  � D k.zL/S
L
� , where SL

� is a polynomial in z1; : : : ; zL that is
even in zL.

ii. Otherwise there is a small link from site L to the right boundary (or the
generic boundary if identi�ed), and the boundary exchange relation gives us
the relationship

k.zL/.�@L/ � D 2
X

�¤�W eLj�iDj�i

 �: (17)

For general i , 0 < i < L .

i. If �.i/ ¤ i C 1, then there is no � for which ei j�i D j�i. So we have

.2A � zi C ziC1 � �/.�@0
i/ � D  � C  fi � ; (18a)

.2A � zi C ziC1 � �/.�@0
i/ fi � D  � C  fi � : (18b)

Specializing the coe�cient of j�i in the i th exchange relation to

zi D AC ziC1

gives

�i �

ˇ
ˇ
zi DACziC1

D 0;

implying that � (and equivalently, fi � ) contains a factor of .ACzi �ziC1/.

Additionally, if .�.i/; �.i C 1// D .l; l/, .r; r/ or .b; b/, then fi j�i D j�i,
and (18) becomes

@i

 �

r.zi � ziC1/
D 0;

implying that  � D r.zi � ziC1/S
i
� , where S i

� is a polynomial in z1; : : : ; zL

that is symmetric in zi and ziC1.
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ii. Otherwise there is a small link from site i to site i C 1, and the i th exchange
relation gives us the relationship

r.zi � ziC1/.�@i/ � D .2A � �/
X

�¤�Wei j�iDj�i

 �: (19)

2.3.2. Maximally factorized components. The rules above give many linear
factors for certain components, some of which are a result of the symmetry
conditions. In every case except closed, there are some components for which
there are a quadratic (in L) number of these small factors. We refer to these as
the maximally factorized components. In the even periodic case, there is one such
component, from which all the others can be determined by means of the qKZ
system (see however our remark at the start of Section 2.3). In the open, identi�ed
and odd periodic cases there is more than one maximally factorized component.

We use  � to refer to the maximally factorized components, and they are
labelled by the following link patterns:

�p WD .L=2C 1; : : : ; L; 1; : : : ; L=2/; L even;

�
p
k

WD �k ..LC 1/=2; : : : ; L� 1; 1; : : : ; .L� 1/=2; �/; L odd;

�i
1 WD .b; : : : ; b/; �i

2 WD .L; b; : : : ; b; 1/;

�o
k WD .r; : : : ; r

„ ƒ‚ …

k

; l; : : : ; l
„ ƒ‚ …

L�k

/; k D 0; : : : ; L;

�m WD .r; : : : ; r/:

The explicit formulas for the components are (the periodic case comes from [9];
only  L

�
p
0

is given for odd size, the others can be obtained by application of (11)):

 L
�p D

Y

1�i<j �L
j �i<L=2

.AC zi � zj /
Y

1�i<j �L
j �i>L=2

.A � zi C zj � s/S;
�p.z1; : : : ; zL/; (20a)

 L

�
p
0

D
Y

1�i<j �L
j �i<.L�1/=2 or i>.L�1/=2

.AC zi � zj /

Y

1�i<j �L
j �i>.L�1/=2

.A � zi C zj � s/S;

�
p
0

.z1; : : : ; zL/;
(20b)

 L

�i
1

D 2L
Y

1�i<j �L

r.zi � zj /S
¹1;:::;L�1º

�i
1

.z1; : : : ; zL/; (20c)
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 L

�i
2

D 2L�1 k.�z1 � s=2/k.zL/
Y

2�i<j �L�1

r.zi � zj /

L�1
Y

iD2

..AC z1 � zi /.AC zi � zL/

.A � z1 � zi � s/.AC zi C zL//S
¹0;2;:::;L�2;Lº

�i
2

.z1; : : : ; zL/;

(20d)

 L
�o

k
D 2L

k
Y

iD1

k.�zi � s=2/

L
Y

iDkC1

k.zi /

Y

1�i<j �k

r.zi � zj /r.�zi � zj � s/
Y

kC1�i<j �L

r.zi � zj /r.zi C zj /

k
Y

iD1

L
Y

j DkC1

..AC zi � zj /.A � zi � zj � s/

.AC zi C zj /.A � zi C zj � s//

S
¹0;:::;k�1;kC1:::;Lº

�o
k

.z1; : : : ; zL/;

(20e)

 L
�m D 2L

Y

1�i<j �L

r.zi � zj /r.�zi � zj � s/S
¹0;:::;L�1º
�m .z1; : : : ; zL/; (20f)

where the S functions are polynomials whose superscripts denote their symme-
tries as de�ned in the previous section.

2.3.3. Recurrence relations. Here we will describe recurrence relations that
are satis�ed by solutions to the qKZ system (10)–(11) or (13)–(15). The �rst
proposition describes a ‘bulk’ recurrence relation, which involves setting one of
the variables to be dependent on another, and the second considers a ‘boundary’
recurrence relation, which is only valid in cases with a nontrivial boundary, and
involves setting one variable to a constant. Recall that we have set sp;i;c D � and
so;m D �=2.

The proofs of the two propositions depend on the following two lemmas.

Lemma 2.1. If, for a polynomial vector jˆ.1/i, some integer 0 < i < L, and a

polynomial f which is coprime to �if and does not contain the factor r.ziC1�zi /,

we have

LRi .zi � ziC1/jˆ
.1/i D

f

.�if /
�i jˆ

.1/i;
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then jˆ.1/i D f jˆ.2/i where jˆ.2/i is a polynomial vector that satis�es the i th

exchange relation.

If in addition jˆ.1/i satis�es the kth exchange relation for some k ¤ i , then

LRk.zk � zkC1/jˆ
.2/i D

.�kf /

f
�k jˆ.2/i:

Thus if f does not contain the factor r.zk � zkC1/, jˆ.1/i also contains any factor

of �kf that is not in f .

Remark. An equivalent statement can be made for the K-matrices.

Proof. Straightforward, using polynomiality of the vectors and the fact that the
only denominator in the equations which is not explicit is that of theR-matrix.

Lemma 2.2. We de�ne the following operators on link patterns: Let 'i acting on

a link pattern insert a small loop from site i to iC1while increasing the size of the

link pattern by 2, and let Q'0 (resp. Q'L) insert a small loop from the �rst (resp. last)

site to the left (resp. right) boundary, which increases the size of the link pattern

by 1.

We have the following identities:

LRj �1.zj � zj C2/ LRj .AC zj � zj C2/

LRj C1.zj �1 � zj C2/ LRj .zj �1 � .AC zj //

LRj �1.zj �1 � zj /'j

D
r.AC zj � zj �1/r.zj C2 � zj /

r.zj �1 � zj /r.AC zj � zj C2/
'j ı LRj �1.zj �1 � zj C2/I

(21)

LRj .zj �1 � .AC zj // LRj �1.zj �1 � zj /'j D
r.AC zj � zj �1/

r.zj �1 � zj /
'j �1I (22)

LK0.�A � z1 � s=2/ LR1.�A � 2z1 � s/ LK0.�z1 � s=2/ '1

D
k.AC z1 C s=2/k.�z1 � s=2� �=2/

k.�z1 � s=2/k.AC z1 C s=2� �=2/
'1I

(23)

LKL.zL�1/ LRL�1.AC 2zL�1/ LKL.AC zL�1/ 'L�1

D
k.�zL�1/k.AC zL�1 � �=2/

k.AC zL�1/k.�zL�1 � �=2/
'L�1I

(24)
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LR1.�A=2� z2 � s=2/ LK0.�z2 � s=2/ LR1.A=2� z2 � s=2/ Q'0

D
k.AC z2 C s=2/k.A � z2 � s=2 � �/

k.A� z2 � s=2/k.AC z2 C s=2 � �/
Q'0 ı LK0.�z2 � s=2/I

(25)

LRL�1.�A=2C zL�1/ LKL.zL�1/ LR1.A=2C zL�1/ Q'L

D
k.A� zL�1/k.AC zL�1 � �/

k.AC zL�1/k.A� zL�1 � �/
Q'L ı LKL.zL�1/I

(26)

where (23)–(26) are only true in the boundary cases where the relevantK-matrix

is nontrivial.

Proof. These are easily proved by the de�nitions, in the same way as the Yang–
Baxter and boundary Yang–Baxter equations.

We will also repeatedly use the fact r.AC z/ D r.�z � �/.

Proposition 2.3. Given a polynomial solution j‰Li of the qKZ system for size L,

we can construct a polynomial solution j‰L�2i of the qKZ system for size L � 2

by taking out any two neighbouring sites, by

ˇ
ˇ‰L.z1; : : : ; zj ; AC zj ; : : : ; zL/

˛

D pj .zj jz1; : : : ; Ozj ; Ozj C1; : : : ; zL/ 'j

ˇ
ˇ‰L�2.zj jz1; : : : ; Ozj ; Ozj C1; : : : ; zL/

˛

;

(27)

where the notation Ozi means that zi is missing from the list of arguments. The

proportionality factors for di�erent boundary conditions are

p
p
j .zj j : : : ; Ozj ; Ozj C1; : : : / D 2

Y

i<j

r.zi � zj /
Y

i>j C1

r.AC zj � zi /; (28a)

pi
j .zj j : : : ; Ozj ; Ozj C1; : : : /

D 2 k.�zj � �=2/k.AC zj /
Y

i<j

r.zi � zj /
Y

i>j C1

r.AC zj � zi /

Y

i¤j;j C1

r.AC zi C zj /;

(28b)

pc
j .zj j : : : ; Ozj ; Ozj C1; : : : /

D 2
Y

i<j

r.zi � zj /
Y

i>j C1

r.AC zj � zi/
Y

i¤j;j C1

r.AC zi C zj /;
(28c)
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po
j .zj j : : : ; Ozj ; Ozj C1; : : : /

D 2 .A � �=2/.2A � �=2/k.�zj � �=2/k.AC zj /k.�zj � �=4/

k.AC zj � �=4/
Y

i<j

r.zi � zj /
Y

i>j C1

r.AC zj � zi/

Y

i¤j;j C1

r.AC zi C zj /r.zi � zj � �=2/r.�zj � zi � �=2/;

(28d)

pm
j .zj j : : : ; Ozj ; Ozj C1; : : : /

D 2 .A � �=2/.2A � �=2/k.�zj � �=2/k.AC zj /
Y

i<j

r.zi � zj /
Y

i>j C1

r.AC zj � zi /

Y

i¤j;j C1

r.AC zi C zj /r.zi � zj � �=2/r.�zj � zi � �=2/:

(28e)

(The constant factors are included for technical reasons that will be explained

later.)

Proof of Proposition 2.3. First we note that the j th exchange relation implies
ˇ
ˇ‰L.zj C1 D AC zj /

˛

D 'j j‰
.1/
L�2;j .zj jz1; : : : ; zj �1jzj C2; : : : ; zL/i; (29)

for some vector in the space of link patterns of sizeL�2. We note that the exchange
relations for i ¤ j � 1; j; j C 1 are still valid for this new vector j‰

.1/
L�2;j i.

We will drop the subscript L � 2 here. Applying both sides of (21) to j‰
.1/
j i,

we have via (29)

'j Q�j �1j‰
.1/
j i D

r.AC zj � zj �1/r.zj C2 � zj /

r.zj �1 � zj /r.AC zj � zj C2/
LRj �1.zj �1 � zj C2/'j j‰

.1/
j i;

where Q�j �1 swaps zj �1 and zj C2. We de�ne '�
j as an upside-down loop between

sites j and j C 1, so that 'j'
�
j D ej and '�

j 'j D ˇ. We can then multiply by '�
j

and use Lemma 2.1 to get

j‰
.1/
j i D

Y

i<j

r.zi � zj /
Y

i>j C1

r.AC zj � zi / j‰
.2/
j i; (30)

with j‰
.2/
j i satisfying the exchange relations

LRi .zi � ziC1/j‰
.2/
j i D �i j‰

.2/
j i i ¤ j � 1; j; j C 1;

LRj �1.zj �1 � zj C2/j‰
.2/
j i D Q�j �1j‰

.2/
j i:
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By applying LRj .zj �1 � .zj CA// LRj �1.zj �1 �zj / to j‰L.zj C1 D ACzj /i, and
using (22) and (29), we have

j‰
.2/
j .zj jz1; : : : ; zj �1jzj C2; : : : ; zL/i

D j‰
.2/
j �1.zj jz1; : : : ; zj �2jzj �1; zj C2; : : : ; zL/i:

In other words, j‰
.2/
j i and j‰

.2/

k
i are related by an obvious rearrangement of

arguments. Thus we can drop the subscript j and simplify the argument notation:
j‰.2/.zj jz1; : : : ; zj �1; zj C2; : : : ; zL/i.

Finally we consider the di�erent boundary conditions separately.

� Periodic. The rotation equation for j‰Li at zj C1 D A C zj leads to the
rotation equation for j‰.2/i, so j‰.2/i is a solution to the qKZ system of size
L� 2. Thus j‰L�2i D j‰.2/i and the proportionality factor (30) is the same
as in (28).

� Closed and identified. From (14) we have

LK0.�z1 � s=2/r.z1 � zj /j‰
.2/.zj j : : : /i

D r.�z1 � zj � s/ �0j‰.2/.zj j : : : /i; j > 1;
(31a)

LKL.zL/r.AC zj � zL/j‰
.2/.zj j : : : /i

D r.AC zj C zL/ �Lj‰.2/.zj j : : : /i; j < L � 1:
(31b)

This implies via the K-matrix version of Lemma 2.1 that

j‰.2/.zj j : : : /i D
Y

i¤j;j C1

r.AC zi C zj /j‰
.3/.zj j : : : /i; for all j:

Applying (23) to j‰.1/i leads to

j‰.3/.�A�z1 ��jz3; : : : /i D
k.AC z1 C �=2/k.�z1 � �/

k.�z1 � �=2/k.AC z1/
j‰.3/.z1jz3; : : : /i;

implying

j‰.3/.zj j : : : /i D k.�zj � �=2/k.AC zj /j‰
.4/.zj j : : : /i:

A similar argument can be made for j D L� 1 using (24) but this results in
the same factors.

Now j‰L�2i D j‰.3/i for the closed case and j‰L�2i D j‰.4/i for the
identi�ed case, and the proportionality factors are as given in (28).
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� Mixed and Open. We have again equations (31), but this time s D �=2

so they imply separate factors. Using Lemma 2.1 and its K-matrix version,
we thus have

j‰.2/.zj j : : : /i

D
Y

i¤j;j C1

r.AC zi C zj /r.�zi � zj � �=2/r.zi � zj � �=2/j‰.3/.zj j : : : /i;

for all j .

Again we can consider (23) and (24), and this time the two produce
di�erent factors, implying that for the mixed case

j‰.3/.zj j : : : /i D k.�zj � �=2/k.AC zj /j‰
.4/.zj j : : : /i;

and for the open case,

j‰.3/.zj j : : : /i

D k.�zj � �=2/k.AC zj /k.�zj � �=4/k.AC zj � �=4/j‰.4/.zj j : : : /i:

Now j‰L�2i D j‰.4/i and the proportionality factors are as given in (28).

Note that the recurrence relation at j implies that if a link pattern does not have
a small loop from j to j C 1, then the corresponding component in the solution
of the qKZ system disappears when zj C1 D AC zj , which is consistent with the
factors found in Section 2.3.1. A similar statement will be true of the following
proposition.

Proposition 2.4. Given a polynomial solution j‰Li of the type yC qKZ system for

size L, we can construct a polynomial solution j‰L�1i of the qKZ system for size

L � 1 by taking out the �rst or last site (i� the K-matrix at the chosen boundary

is nontrivial), by

j‰L..A� s/=2; z2; : : : ; zL/i D p0.z2; : : : ; zL/ Q'0 j‰L�1.z2; : : : ; zL/i (32)

and

j‰L.z1; : : : ; zL�1;�A=2/i D pL.z1; : : : ; zL�1/ Q'L j‰L�1.z1; : : : ; zL�1/i : (33)
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The proportionality factors for di�erent boundary conditions are

pi
0.z2; : : : ; zL/ D 2

L
Y

j D2

k.A � zj � �=2/k.AC zj � �=2/

4
; (34a)

po
0.z2; : : : ; zL/ D 2.2A� s/

L
Y

j D2

P

16
; (34b)

where

P D k.A � zj � �=4/k.AC zj � 3�=4/k.AC zj � �=4/k.A � zj � 3�=4/;

pi
L.z1; : : : ; zL�1/ D 2

L�1
Y

j D1

k.AC zj /k.A � zj � �/

4
; (34c)

po
L.z1; : : : ; zL�1/

D 2.2A � s/

L�1
Y

j D1

k.AC zj /k.A� zj � �/k.A� zj � �=2/k.AC zj � �=2/

16
;

(34d)

pm
L .z1; : : : ; zL�1/

D 2

L�1
Y

j D1

k.AC zj /k.A� zj � �/k.A � zj � �=2/k.AC zj � �=2/

16
:

(34e)

(The constant factors are again included for technical reasons.)

Proof. The proof is very similar to the bulk case, so we will skip some details. Let
us �rst consider the left boundary. The left boundary exchange relation implies

j‰L.z1 D .A � s/=2/i D Q'0j‰.1/. Oz1/i;

for some vector in the space of link patterns of size L� 1. Equation (25) leads by
the K-matrix version of Lemma 2.1 to, for the identi�ed case,

j‰.1/i D
Y

j >1

k.A� zj � �=2/k.AC zj � �=2/j‰.2/i;

and for the open case,

j‰.1/i D
Y

j >1

k.A�zj ��=4/k.ACzj �3�=4/k.ACzj ��=4/k.A�zj �3�=4/j‰.2/i:
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Similarly, (26) leads to for the identi�ed case

j‰.1/i D
Y

j <L

k.AC zj /k.A� zj � �/j‰.2/i;

and for the open and mixed cases

j‰.1/i D
Y

j <L

k.AC zj /k.A� zj � �/k.A� zj � �=2/k.AC zj � �=2/j‰.2/i:

In every case, j‰L�1i D j‰.2/i.

2.3.4. Uniqueness of minimal degree solutions. We can show that any solution
to the qKZ system satis�es an in�nite number of recurrence relations. Choosing
zL as the specialization variable, via the qKZ system we can show that j‰Li has
two-site recurrences at the following points, where 1 � j � L � 1 and t is a
non-negative integer:

� for type yA, zL D AC zj � t s and zL D �AC zj C .t C 1/s;

� for type yC, zL D ˙A˙ zj � t s and zL D ˙A� zj � .t C 1/s;

and the type yC cases have one site recurrences at the points:

� for i; o, zL D .˙A� .2t C 1/s/=2;

� for i; o;m, zL D �A=2C t s and zL D A=2� .t C 1/s.

Two polynomial solutions of the qKZ system are proportional i� their propor-
tionality factor is a constant, a fact which is a direct consequence of the exchange
relations. However it is conceivable that this constant could include one of the
extra variables from a larger solution, for example

ˇ
ˇ‰o

1.z1/
˛

could have an overall
factor depending on z2. We will concentrate on solutions whose overall factor
is a constant with respect to the variables of a system of any size. We call these
minimal solutions.

The in�nite number of recurrence relations and the requirement that the solu-
tion is polynomial indicates that the minimal solution is unique.

In each boundary case, we can calculate the minimal solution of the qKZ
system of smallest meaningful size to provide a grounding for the recurrence
relations. In p and c, because there is only a two-site recurrence, we take both
L D 1 and L D 2. For i and m, we only need L D 1. In all of these cases the
vector only has one element, which must therefore both be polynomial and satisfy
 .z1/ D  .z1 C�/, an impossible requirement unless is in fact a constant. Thus
for all these cases the smallest solution is a constant.



Type yC Brauer loop schemes and loop model with boundaries 187

In o, the smallest meaningful system is L D 1, but
ˇ
ˇ‰o

1.z1/
˛

already has two
components. However it is possible to show that the solution is linear, by assuming
a polynomial form of arbitrary degree and trying to solve the system. The solution
is (up to a constant)

 o
` .z1/ D 2.AC 2z1/;

 o
r .z1/ D 2.A � s � 2z1/:

The recurrence relations tell us the total degree (in the zi as well as in A and
�, making the solutions homogeneous) of a solution of any qKZ system of size L
given a solution of size L� 2 or L� 1. With the small size solutions given above,
we thus know the degree of solutions to systems of all sizes:

Total degree p i c o m
pj 2.L� 2/ 2.2L� 3/ 4.L� 2/ 2.4L� 5/ 4.2L� 3/

p0;L - 2.L� 1/ - 4L� 3 4.L� 1/

j‰Li 2b L
2

cb L�1
2

c L.L� 1/ 4b L
2

cb L�1
2

c L.2L� 1/ 2L.L� 1/

Note that these degrees are exhausted by the factors listed in (20), thus all the
unknown symmetric functions in those expressions must be constant.

3. The Brauer loop model

For this section we will set ˇ D 1, which implies that � D s D 0. The Brauer loop
model is a statistical mechanical model of crossing loops, based on the Brauer
algebra. At this special point, the transfer matrix becomes stochastic and the
ground state eigenvalue is 1. In this section we will show that the ground state
eigenvector is a solution to the qKZ system at � D s D 0, and that the would-be
unique minimal qKZ solution for general � becomes the ground state eigenvector
when � ! 0.

3.1. De�nition and transfer matrix. The Brauer loop model is de�ned on a ver-
tically semi-in�nite square lattice, on a cylinder in type yA or on a strip in type yC.
Loops are drawn on the faces in three possible ways, and the model is integrable
via the Yang–Baxter equation when the probabilities of these con�gurations are



188 A. Ponsaing and P. Zinn-Justin

given by the (unchecked) R-matrix

R.w � z/ WD
2A.A �w C z/

r.w � z/
C
2A.w � z/

r.w � z/

C
.A �w C z/.w � z/

r.w � z/

DW w

z

;

with r.z/ D .AC z/.2A � z/.

We describe the con�guration probabilities of the smallest repeating element
of the lattice by the transfer matrix T .wjz1; : : : ; zL/, which acts on the vector space
spanned by link patterns LPN . We will de�ne the transfer matrix explicitly in the
following sections, separately for types yA and yC. The transfer matrix is stochastic,
so the ground state eigenvalue is 1; one can check that in the physical range of
parameters where Boltzmann weights are positive, the Perron–Frobenius theorem
applies so that the associated eigenvector is unique up to normalization (so that
this remains true for generic values of the parameters). We can also use the Yang–
Baxter equation (and if necessary the boundary YBE) to show that two transfer
matrices with di�erent values of w commute, so the eigenvector does not depend
on w. Additionally, the entries of the transfer matrix are homogeneous rational
functions ofw; zi andA, thus the ground state can be normalized so that its entries
are homogeneous polynomials in the zi and A without a common factor. The
ground state eigenvector equation is therefore

T .wjz1; : : : ; zL/ j‰.z1; : : : ; zL/i D j‰.z1; : : : ; zL/i ;

and j‰i is written in the basis of link patterns as

j‰.z1; : : : ; zL/i D
X

�2LPN

 �.z1; : : : ; zL/ j�i ;

where  �.z1; : : : ; zL/ are coprime polynomials.

From the YBE, the transfer matrix satis�es the interlacing relation

LRi .zi � ziC1/T .wj : : : ; zi ; ziC1; : : : / D T .wj : : : ; ziC1; zi ; : : : / LRi .zi � ziC1/:

(35)
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It also has the recurrence relation

TL.wjz1; : : : ; zi ; ACzi ; : : : ; zL/'i D 'i ıTL�2.wjz1; : : : ; Ozi ; OziC1; : : : ; zL/; (36)

where 'i is as de�ned in Proposition 2.3.

Each of the above statements is true for every boundary condition, but the
proofs di�er slightly. For further details see for example [7, 9].

3.1.1. Type yA. The periodic Brauer loop model is drawn on a semi-in�nite
cylinder, of which the smallest repeating element is one row. The transfer matrix
is therefore de�ned as

T .wjz1; : : : ; zL/ WD trw .R.w � zL/ : : :R.w � z1// ;

which can be depicted graphically as

T .wjz1; : : : ; zL/ D

zL z1

w :

In addition to the properties already listed, this transfer matrix satis�es the rotation
property

T .wjz2; : : : ; zL; z1/ � D � T .wjz1; : : : ; zL/: (37)

3.1.2. Type yC. The Brauer loop model for type yC is de�ned on a semi-in�nite
strip. At the boundaries the loop con�gurations are described by the (unchecked)
K-matrices, which are depicted as

K0.w/ DW
�w

w

; KL.w/ DW
�w

w

; (38)

and de�ned as follows for the di�erent boundary conditions, with k.w/ D AC2w:
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Identi�ed:

K i
0.w/ WD

�AC 2w

k.A �w/
C
4.A �w/

k.A �w/
;

K i
L.w/ WD

A � 2w

k.w/
C

4w

k.w/
I

Closed:
Kc

0.w/ D Kc
L.w/ WD 1I

Open:

Ko
0.w/ WD

�AC 2w

k.A �w/
C
4.A �w/

k.A �w/
;

Ko
L.w/ WD

A � 2w

k.w/
C

4w

k.w/
I

Mixed:

Km
0 .w/ WD 1;

Km
L .w/ WD

A � 2w

k.w/
C

4w

k.w/
:

The transfer matrix for these models describes two rows of the lattice (the
smallest repeating element),

T .wjz1; : : : ; zL/

WD trw.K0.w/R.z1 C w/ � � �R.zL C w/KL.w/R.w � zL/ � � �R.w � z1//;

graphically depicted as

T .wjz1; : : : ; zL/ D

z1 z2 zL�1 zL

�w

w :
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In addition to the interlacing condition (35), the boundary YBE implies the bound-
ary interlacing conditions

LK0.�z1/T .wjz1; : : : / D T .wj�z1; : : : / LK0.�z1/; (39a)

LKL.zL/T .wj : : : ; zL/ D T .wj : : : ;�zL/ LKL.zL/: (39b)

In the cases whereK0;L D 1, these turn into symmetries. There are also boundary
recurrence relations in addition to the bulk recurrence relation (36), which are only
valid if the associated K-matrix is non-trivial:

TL.wjA=2; z2; : : : ; zL/ Q'0 D Q'0 ı TL�1.wjz2; : : : ; zL/;

TL.wjz1; : : : ; zL�1;�A=2/ Q'L D Q'L ı TL�1.wjz1; : : : ; zL�1/;

where Q'0 and Q'L are de�ned as in Proposition 2.4.

3.2. Relationship between the loop model and the qKZ system. For the pur-
poses of this section, we will use jˆi to denote a solution of the qKZ system with
s D 0, and j‰i to denote the ground state of the Brauer loop model with loop
weight ˇ D 1.

Some of the statements made about jˆi in Section 2 are not valid at s D 0. In
particular, the number of recurrence relations satis�ed by the solution is no longer
in�nite – there are 2.L�1/ recurrence relations for the periodic case, 4.L�1/C2

for identi�ed, open and mixed, and 4.L � 1/ for closed. Thus uniqueness of
the solution is not guaranteed; indeed, any solution could be multiplied by a
polynomial that has the symmetry of the appropriate Weyl group to make a new
solution. Finally, we note that the prefactor in (21) is equal to 1, so the calculation
of the proportionality factor is not valid.

However it is still true that any solution of the qKZ system at s D 0 has a
recurrence to a smaller size solution. Thus there is a family of solutions to the qKZ
system of di�erent sizes, each of which can be obtained from a larger solution by
recurrence. In this section we will show that any member of this family is a ground
state of the Brauer loop model transfer matrix, and vice versa, and that there is a
unique recursive family of solutions with coprime entries.

Further, any recursive family of polynomial solutions to the qKZ system for
general s of the kind considered in Section 2, when taken at s D 0, will give
the family of ground state eigenvectors of the Brauer transfer matrix, up to a
symmetric factor.

Proposition 3.1. The ground state of the Brauer transfer matrix with coprime

entries is a solution to the qKZ system at s D 0.
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Proof for type yA. This proposition is also stated in [9]. We apply the interlacing
condition (35) at any i to the eigenvector j‰i,

LRi .zi � ziC1/ j‰i D T .wj : : : ; ziC1; zi ; : : : / LRi .zi � ziC1/ j‰i :

Since the eigenvector is unique, we can deduce that

LRi.zi � ziC1/ j‰.: : : ; zi ; ziC1; : : : /i D bi .z1; : : : ; zL/ j‰.: : : ; ziC1; zi ; : : : /i :

It is not hard to show that b is either 1 or r.ziC1�zi /

r.zi �ziC1/
, by the fact that the elements

of j‰i are coprime polynomials. Similarly, using the rotation property (37) of the
transfer matrix we �nd

� j‰.z1; : : : ; zL/i / j‰.z2; : : : ; zL; z1/i ;

and the proportionality factor must be 1 by positivity of the ground state when the
arguments are all set to 0. Thus j‰i satis�es (11).

Acting on j‰i with the scattering matrix S1, we thus �nd

S1.z1; : : : ; zL/ j‰.z1; : : : ; zL/i D

L�1
Y

j D1

bj .z1; : : : ; zL/ j‰.z1; : : : ; zL/i :

But it is not hard to show that

Si .z1; : : : ; zL/ D T .w D zi jz1; : : : ; zL/; (40)

which means that the product of bj s should be equal to one, indicating that bj D 1

for all j and showing that j‰i satis�es (10).

Proof for type yC. To show (40) for the identi�ed and open cases we must note
that while Si uses the algebraic K-matrices de�ned in (8), T uses the graphical
versions de�ned in (38). At the right boundary, we have LKL.w/ D KL.w/, but at
the left boundary we need the relation

LK0.w/ D
w

�w

D

w

�w

: (41)

By applying the boundary interlacing conditions (39) to the eigenvector one
can show that it satis�es the boundary exchange relations up to a proportionality
factor, in the same way as for the bulk. Again we can act the scattering matrix
S1 on j‰i and show that the proportionality factors must all be 1. Thus j‰i

satis�es (13)–(15). When the K-matrix is the identity the proof is trivial.



Type yC Brauer loop schemes and loop model with boundaries 193

When s D 0 the qKZ equation becomes an invariance equation,

S
.L/
i .z1; : : : ; zL/ jˆL.z1; : : : ; zL/i D jˆL.z1; : : : ; zL/i for all i: (42)

Proposition 3.2. Let jˆLi and jˆL�2i be solutions of (42) for sizes L and L� 2

respectively, such that

jˆL.: : : ; zi ; AC zi ; : : : /i D pi 'i jˆL�2.: : : ; Ozi ; OziC1; : : : /i ; for all i;

and such that jˆL�2i has no overall symmetric factor. Then jˆL�2i is a ground

state eigenvector of the Brauer transfer matrix of size L� 2.

Proof. We consider the action of '�
i�1 on the scattering matrix when zi�1 D

�AC zi . For type yA, by the property of the R-matrix (6), we have

'
�
i�1Si .: : : ;�AC zi ; zi ; : : : /'i�1 D T .zi j : : : ; Ozi�1; Ozi ; : : : /:

For type yC, this statement is also true, but to prove it we must again use (41).
This is only necessary of course in the identi�ed and open cases, where the left
K-matrix is non-trivial.

Acting '�
i�1Si .: : : ;�AC zi ; zi ; : : : / on jˆ.: : : ;�AC zi ; zi ; : : : /i gives

T .zi j : : : ; Ozi�1; Ozi ; : : : / jˆL�2.: : : ; Ozi�1; Ozi ; : : : /i D jˆL�2.: : : ; Ozi�1; Ozi ; : : : /i ;

so that
jˆL�2.: : : ; Ozi�1; Ozi ; : : : /i / j‰L�2.: : : ; Ozi�1; Ozi ; : : : /i ;

by uniqueness of the ground state. Since both jˆi and j‰i have no overall
symmetric factors, and j‰i satis�es the qKZ system, they must be proportional
by a constant.

3.3. Solution. The expressions for the maximally factorized components given
in (20) apply to the Brauer loop model simply by setting s D 0. In addition, for
� D 0 [7] gives a non-recursive expression for the component corresponding to
the maximally crossing closed link pattern, which has �.i/ D i C L=2. We will
not need this expression.

3.3.1. Sum rules. Finally, we de�ne the sum rule of the ground state as the sum
of all its entries, noting again that the entries have been de�ned to be coprime (up
to a constant factor that will be explained in Section 4.1.2),

Za
L WD

X

�

 a
� :
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Because we have set � D 0, Za
L is a symmetric polynomial of the arguments

z1; : : : ; zL, and in type yC, an even polynomial in these variables. The proof is
standard and we describe it brie�y. First we write Za

L D hvj‰ai where v is the
covector with constant entries 1 in the basis of link patterns. Then we note that at
� D 0, from (3), hvj LRi .z/ D hvj, and similarly, from (8), hvj LK0;L.z/ D hvj. We
now apply (10) and conclude that �i leaves hvjˆai invariant for all i D 0; : : : ; L,
which is the desired symmetry.

This means that the recurrence relations satis�ed by the components of the
ground state extend to many more recurrence relations for ZL:

� for all i ¤ j ,

Z
p
L.zj D AC zi/ D pp.zi j Ozi ; Ozj / Z

p
L�2. Ozi ; Ozj /I

� for all i ¤ j , a 2 ¹i; c; o;mº,

Za
L.zj D A˙ zi / D pa.˙zi j Ozi ; Ozj / Z

a
L�2. Ozi ; Ozj /I

� for all i ¤ j , a 2 ¹i; c; o;mº,

Za
L.zj D �A˙ zi/ D pa.�zi j Ozi ; Ozj / Z

a
L�2. Ozi ; Ozj /I

� for all i; a 2 ¹i; o;mº,

Za
L.zi D ˙A=2/ D pa

L. Ozi / Z
a
L�1. Ozi/:

One of the results of this paper is explicit expressions for the i,o and m sum
rules. These are given in Section 4.2.2 and Section 5.6, along with the p and c
cases that have been done before [7, 9].

4. The Brauer loop schemes

Following [16], there are essentially two ways to de�ne the Brauer loop schemes
in various types: either in terms of in�nite periodic matrices (i.e., loop algebras);
or as �at limits of certain nilpotent orbit closures. We provide both interpretations
below.
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4.1. The in�nite strip picture

4.1.1. De�nitions. Fix a positive integer N . Consider the algebra R WD ¹M D

.Mij /i;j 2Zº of complex upper triangular matrices that are in�nite in both direc-
tions, and the subalgebra RZ mod N of the .N;N/-periodic ones:

RZ mod N WD ¹M 2 R j MSN D SNM º;

where S D .ıi;j �1/ 2 RZ mod N is the shift operator. Then we de�ne the algebra
MN to be the quotient of RZ mod N by the ideal generated by SN :

MN WD RZ mod N =hS
N i:

MN is of dimension N 2. A fundamental domain for M 2 MN is

M
0

?

N

N

where the left diagonal is the main diagonal, and everything left of it is zero, while
the right diagonal is theN th diagonal, and everything on it or right of it is ignored.
There is some freedom in choosing which N rows we put in the fundamental
domain, i.e., in sliding the latter along the diagonal. In what follows, we identify
an element ofMN and any of its representatives when there is no risk of confusion.

The de�nitions above are directly relevant to type yA (periodic boundary con-
ditions), and so we shall also write RZ mod N D R

p
Z mod N

, MN D M
p
N .

Assume now that N D 2n is even. The new ingredient we introduce for type
yC is the antidiagonal symplectic form J :

Jij WD ıiCj;N C1 "i i; j 2 Z; "i WD

´

1 i D 1; : : : ; n .mod N/;

�1 i D nC 1; : : : ; N .mod N/:

Note that SnJSn D �J . De�ne the adjoint of M to be M � WD J�1MT J where
J�1 D �J ; explicitly,

M
�
ij D "i"jMN �j C1;N �iC1:
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Note that RZ mod N D R
�
Z mod N , and the same for hSN i. We thus de�ne

Ri
Z mod N WD ¹M 2 RZ mod N j M D �M �º;

M
i
N WD Ri

Z mod N=.hS
N i \Ri

Z mod N /;

Rc
Z mod N WD ¹M 2 RZ mod N j M D M �º;

M
c
N WD Rc

Z mod N=.hS
N i \Rc

Z mod N /:

(Note that the de�nitions above would be una�ected by the changeJ ! SnJS�n.)
Ri

Z mod N
is a Lie subalgebra of RZ mod N , and RZ mod N D Ri

Z mod N
˚Rc

Z mod N

as a Ri
Z mod N

-module.

A fundamental domain is (assuming that in the previous picture the chosen
rows are from 1 to N )

M
0

?

N

N

where the dashed lines are symmetry axes (i.e., entries that are mirror images
w.r.t. one of the axes are either equal or opposite). In Rc

Z mod N
, the entries on the

symmetry axes are zero, whereas in Ri
Z mod N , they are free.

Assuming that N is a multiple of 4, i.e., that n D 2m, we can introduce a
second symplectic form J 0 D SmJS�m and a second notion of adjoint

M
�
ij D "iCm"j CmMnC1�j;nC1�i :

This leads to more de�nitions:

Ro
Z mod N WD ¹M 2 RZ mod N j M D �M � D �M �º;

M
o
N WD Ro

Z mod N =.hS
N i \ Ro

Z mod N /;

Rm
Z mod N WD ¹M 2 RZ mod N j M D M � D �M �º;

M
m
N WD Rm

Z mod N =.hS
N i \ Rm

Z mod N /;

i.e., a fundamental domain of the form
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M

0

?

N

N

We �nally de�ne in each type the (unreduced) Brauer loop scheme to be

zEa
N WD ¹M 2 M

a
N j M 2 D 0º; a 2 ¹p; i; c; o;mº:

As in [16], noting that among the equations of the scheme are M 2
ii D 0, we prefer

to de�ne the (generically reduced) Brauer loop scheme as

Ea
N WD ¹M 2 M

a
N j M 2 D 0 and Mi i D 0 for all iº; a 2 ¹p; i; c; o;mº:

As sets, zEa
N andEa

N are identical, but as schemes, the latter is generically reduced
(as we shall prove), and conjecturally reduced, whereas the former is neither. The
distinction is rather inessential in type yA (see however [16, Section 7]), but less
so in type yC, see the discussion before (44). Note that Ea

N � .Ma
N /�D0 with the

notation .Ma
N /�D0 D ¹M 2 M

a
N j Mi i D 0 8iº.

4.1.2. Group action and multidegrees. Invertible elements of R act by conju-
gation on R, and among them, the subgroup

BZ mod N WD ¹M 2 R� j there exists � 2 C�; SNM D �MSN º;

leaves RZ mod N and hSN i invariant, thus acts on MN .
A maximal torus TZ mod N of BZ mod N consists of diagonal matrices with the

same property:

TZ mod N WD BZ mod N \ ¹diagonal matricesº:

It is of dimension N C 1. Note however that scalar matrices act trivially by
conjugation, so only TZ mod N =C

�, of dimension N , acts on M
p
N .

We add to TZ mod N an additional C� 3 q which acts on M 2 M
p
N by scaling:

M ! qM .
The corresponding Lie algebra tZ mod N has elements of the form diag.zi /i2Z,

where ziCN D zi C � for all i , where � D exp �. Also introduce the generator A
(where q D expA) of the extra C�. Then the group of characters of TZ mod N �C�

(viewed as a lattice in tZ mod N ˚C) is the abelian group generated by the zi , i 2 Z,
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� and A with relations ziCN D zi C �. Furthermore, the commutative ring they
generate is the equivariant cohomology ring of a point, or of Mp

N :

H�
TZ mod N �C�.M

p
N / Š ZŒ.zi /i2Z; A; ��=hzi C � � ziCN ; i 2 Zi:

Comparing with the notations of Section 1.3, we �nd that we must identifyL D N ,
s D �, and then H�

TZ mod N �C� is the embedding ring for the root lattice of type yA,
with one additional variable A (corresponding to the extra circle).

A convenient algebraic framework for computations in equivariant cohomol-
ogy of a vector space endowed with a linear group action is to use multide-

grees; we refer to [21] for details. To any subvariety X of Mp
N which is invari-

ant by action of TZ mod N � C�, we can thus associate its multidegree mdegX in
H�

TZ mod N �C�.M
p
N /. Because the real action is .TZ mod N =C

�/ � C�, all our mul-
tidegrees depend only on zi � zj (and more precisely, are sums of products of the
weights AC zi � zj , i � j < i CN ).

We now discuss type yC. We de�ne

zBZ mod N WD ¹M 2 BZ mod N j there exists � 2 C�; MM � D �º;

zTZ mod N WD zBZ mod N \ TZ mod N :

We could set the scalar � to 1 because conjugation by a scalar is trivial, but we
prefer to keep it for reasons which will become clear.

There are corresponding Lie algebras for which M CM � D u, � D expu. In
particular,

QtZ mod N WD ¹M D diag.zi/ 2 tZ mod N j zN �iC1 D u� ziº:

Then we have

H�
zTZ mod N �C�

.Mi
N /

Š H�
zTZ mod N �C�

.Mc
N /

Š ZŒ.zi/i2Z; A; �; ˛�=hzi C � � ziCN ; zi C zN �iC1 � u; i 2 Zi:

We can as before de�ne multidegrees of subvarieties of Mi;c
N ; because of the

trivial conjugation by scalar matrices, the parameter u is redundant, and will be
set to 0 in what follows (it can be recovered by substituting zi 7! zi � u=2). We
recover at this stage the embedding ring for the root lattice of type yC of Section 1.3
with the following correspondence: L D N=2 D n, s D �.
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Similarly, de�ne

zzBZ mod N WD ¹M 2 BZ mod N j there exists �; � 2 C�; MM � D �; MM � D �º;

zzTZ mod N WD
zzBZ mod N \ TZ mod N :

Here the scalar factors become relevant: indeed, it is easy to see by combining the
various equations (in particular, using .J 0J /2 D SN ) that �2 D ��2, so that, for
� ¤ 1, one cannot set simultaneously � and � to 1. Writing � D exp v, with the
relation 2v D 2u� �, the Lie algebra of the corresponding maximal torus is

QQtZ mod N WD ¹M D diag.zi / 2 tZ mod N j zN �iC1 D u � zi ; zn�iC1 D v � ziº:

Finally, we have for a 2 ¹o;mº

H�
zzTZ mod N �C�

.Ma
N / Š ZŒ.zi /i2Z; A; �=2; v�=hzi C � � ziCN ;

zi C zN �iC1 � v � �=2;

zi C zn�iC1 � v; i 2 Zi;

where we have replaced uwith vC �=2. The parameter v is redundant and will be
set to 0 (it can be recovered by zi 7! zi �v=2). We also recover the embedding ring
for the root lattice of type yC of Section 1.3, but with a di�erent correspondence:
L D N=4 D m, s D �=2.

At this stage, one would like to introduce the multidegrees of the components
of the Brauer loop scheme. We note that zEa

N and Ea
N are invariant by action of

TZ mod N �C� for a D p, zTZ mod N �C� for a 2 ¹i; cº, zzTZ mod N �C� for a 2 ¹o;mº,
and therefore so are their irreducible components.

The most natural quantities are the multidegrees of the primary top-dimen-
sional components of the scheme zEa

N (we conjecture equidimensionality, in which
case “top-dimensional” can be omitted). However for practical reasons, it is much
easier to deal with (reduced) varieties. Let us therefore de�ne the Ea

� to be the
(reduced) irreducible top-dimensional components of zEa

N or Ea
N , where the in-

dexing set for � will be determined to be the Brauer link patterns in Section 4.3.
Then we write

�a
� WD m� mdegEa

� ; a 2 ¹p; i; c; o;mº; (44)

where the multidegree is relative to M
a
N , and m� D 2#¹chords.�/ºC#¹�xed points.�/º

(the number of �xed points is one if L is odd and a 2 ¹p; cº, zero otherwise).5

5 In Section 4.3, we shall introduce another “periodic” diagram for �. It is important to note
that in the de�nition of m� we mean the number of chords and �xed points of the ordinary,
nonperiodic (for a ¤ p) diagram of �.
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We shall show (see Appendix B) thatm� is the multiplicity ofEa
� in zEa

N , i.e., that
�a

� is the multidegree of the primary component of zEa
N associated to Ea

� .

4.1.3. Relation to loop algebras. Since all matrices we consider commute with
SN , it is natural to consider t D SN as a scalar. We immediately conclude
that RZ mod N Š RN ˚ t gN ˚ t2gN ˚ � � � , where gN D g

p
N is the space of

N �N matrices, i.e., the Lie algebra glN .C/, andRN is the space ofN �N upper
triangular matrices; thus identifying RZ mod N with the Borel subalgebra of the
loop algebra glN .CŒt; t

�1�/. Then MN Š RZ mod N =tRZ mod N .

Similarly, denote by gi
N the space of matrices M 2 glN that satisfy JM C

MT J D 0, where by abuse of notation we use the same letter J for the �nite
matrix

J WD

0

B
B
B
B
B
B
B
B
B
@

0 � � � 1
::: : :

:

1

�1

: :
: :::

�1 � � � 0

1

C
C
C
C
C
C
C
C
C
A

; (45)

and its in�nite periodic counterpart de�ned earlier.

gi
N is the symplectic Lie algebra spN .C/. Now de�ne gc

N to be the space of
matrices satisfying JM�MT J D 0. One has gN D gi

N ˚gc
N as a spN .C/-module

by conjugation.

Then Ra
Z mod N

Š Ra
N ˚ t ga

N ˚ t2ga
N ˚ � � � for a 2 ¹i; cº (where Ra

N D

RN \ga
N ), which identi�esRi

Z mod N
with the Borel subalgebra of the loop algebra

spN .CŒt; t
�1�/.

Finally, de�ne sp0
N .C/ to be the Lie algebra of matrices satisfying J 0M C

MT J 0 D 0, where

J 0 WD

0

B
B
B
B
B
B
B
B
B
@

0 1

: :
:

�1

0 1

: :
:

�1 0

1

C
C
C
C
C
C
C
C
C
A

:
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As a Lie algebra, spN .C/ \ sp0
N .C/ Š spn.C/ ˚ spn.C/, i.e., two copies of

the symplectic Lie algebra. However, RN \ spN .C/ \ sp0
N .C/ is not its Borel

subalgebra. De�ne the spaces go
N D gi

N \ sp0
N .C/, g

m
N D gc

N \ sp0
N .C/, and

Ra
N D RN \ ga

N , so that Ra
Z mod N Š Ra

N ˚ t ga
N ˚ t2ga

N ˚ � � � for a 2 ¹o;mº.

4.2. The Brauer loop schemes as a �at limit

4.2.1. Orbit closures and their �at degeneration. Let us de�ne the map from
gN to MN that takes M to M� C tM>, where M� (resp. M>) indicates the upper
(resp. strict lower) triangle of M . (Equivalently, in terms of the strip picture, this
amounts to the parameterization

M�

M>0

?

N

N

of the fundamental domain).
The connection to loop algebras suggests that we should think of t as a nu-

merical parameter which provides a one-parameter family of products on gN . By
varying the value of t , one interpolates between ordinary matrix product on gN (at
t D 1, a generic �ber) and a degenerate product at the special �ber t D 0 (denoted
� in [16]), which is the one onMN , which makesMN isomorphic to the semi-direct
productRN �.gN=RN /, with multiplication .‡;ƒ/.‡ 0; ƒ0/ D .‡‡ 0; ‡ƒ0C‡ 0ƒ/.

More explicitly, de�ne for any a 2 ¹p; i; c; o;mº

Da
N It WD ¹M 2 ga

N j .M� C tM>/
2 D 0º; t ¤ 0;

and Da
N I0 D limt!0D

a
N It to be the �at limit as t ! 0.

If a 2 ¹p; i; cº, this is equivalent to saying that Da
N I0 is the normal cone of

Da
N \RN insideDa

N WD Da
N I1. This is not so for a 2 ¹o;mº (note that it isM , not

M� C tM>, that is in ga
N ).

Proposition 4.1. Da
N I0 � zEa

N as schemes.

Proof. First, one checks that in each case a 2 ¹i; c; o;mº, the symmetry ofM 2 ga
N

turns into the symmetry ofM� C tM> 2 M
a
N . It then follows from the above (see

also [16, Section 2.3]) that in the limit t ! 0, the equation .M� C tM>/
2 D 0 in
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ga becomes, essentially tautologically, the equationM 2 D 0 in M
a
N . This implies

the inclusion of schemes.

In principle there may be more equations in the �at limit of the ideal generated
by .M� CtM>/

2 D 0 as t ! 0. In fact, we conjecture that there are not, so that the
inclusion of Proposition 4.1 is an equality. It will be a consequence of the results
below that Da

N I0 D Ea
N as sets, so that the Brauer loop schemes can be de�ned

alternatively as the normal conesDa
N I0. We shall also prove (Appendix B) that the

multiplicities of the Ea
� inside Da

N I0 and zEa
N are equal. Note that some of these

results are new even in type yA, proving some conjectures of [16].

The group BZ mod N (or zBZ mod N , zzBZ mod N ) does not act on ga
N ; instead, we

have an action of GLN (orSpN , orSpN \Sp0
N ). At the level of the torus action, it is

easy to see that the Cartan tori of the latter identify with subgroups of codimension
one inside the Cartan tori of the former. In terms of Lie algebras, it means that
we must restrict to the subalgebra given by � D 0. The degeneration respects that
torus action, and therefore

mdegDa
N I0j�D0 D mdegDa

N : (46)

By standard arguments,Da
N is an orbit closure, and therefore irreducible. Further-

more, we check smoothness at a speci�c point (with the assumption that n D N=2

is even if a D c; see the discussion in the next section) by an elementary Zariski
tangent space computation, and conclude that Da

N is generically reduced. For
a 2 ¹p; i; cº, the smooth point is

M D

0

B
B
B
B
B
B
B
B
@

1

0 : :
:

1

0 0

1

C
C
C
C
C
C
C
C
A

; a 2 ¹p; iº;

M D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 0

0 �1

0 : :
:

1 0

0 �1

0 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

; a D c; N D 0 .mod 4/;

where blocks are n � n.
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For a 2 ¹o;mº, it is easy to see that there is a decomposition CN D WC ˚W�

which is orthogonal w.r.t. both J and J 0, and such that J 0 D ˙iJ when restricted
to W˙ ˝W˙. With respect to this decomposition, M 2 Do

N is block diagonal, so
that one simply hasDo

N Š Di
N=2I1

�Di
N=2I1

(as schemes), and no further check is
necessary. Finally, for a D m, using the same decomposition, one �nds this time
that M 2 Dm

N has o�-diagonal blocks X 2 Hom.WC; W�/; X
� 2 Hom.W�; WC/:

Dm
N Š

´ 

0 X�

X 0

! ˇ
ˇ
ˇ
ˇ
ˇ
XX� D X�X D 0

µ

:

The smooth point is then

X D

0

B
B
B
B
B
B
B
B
B
@

1

: : :

1

0

: : :

0

1

C
C
C
C
C
C
C
C
C
A

;

where the number of 1’s is m D N=4.

We now compute the multidegree of Da
N using localization.

4.2.2. Localization. We now wish to use equivariant localization techniques to
compute the multidegree (i.e., equivariant cohomology class) of the orbit closure
Da

N . Da
N is a conical a�ne variety, with unique �xed point 0, which is of course

singular, so we cannot directly apply localization to it. Instead, we �nd a resolution
of singularityQa

N ofDa
N , then express 1 as a linear combination of �xed points in

the appropriately localized equivariant cohomology ofQa
N , and then �nally push

forward using the resolution map: by de�nition the pushforward of 1 is mdegDa
N

(viewed as an element of the equivariant cohomology of ga
N , which is the same as

that of a point), whereas each �xed point is sent to 0, whose class is the product
of weights inside ga

N .

We skip the detailed proofs (see also [16, Proposition 7]) and simply provide
the formulae in each case.

� a D p. This is the case considered in [16]. Write N D 2nC r with r 2 ¹0; 1º.
Q

p
N is the cotangent bundle of the (type A) Grassmannian:

Q
p
N D ¹.V;M/ j M 2 g

p
N ; dimV D n; ImM � V � KerM º:
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The �xed points are the coordinate subspaces VI D span¹ei ; i 2 I º (where
e1; : : : ; eN is the standard basis ofCN ), indexed by n-subsets I of ¹1; : : : ; N º,
and localization gives

mdegDp
N D 2r

N
Y

i;j D1

.AC zi � zj /
X

I�¹1;:::;N º
jI jDn

Y

i2I;j 62I

1

.zj � zi /.AC zi � zj /
:

� a D i. De�ne the cotangent bundle of the Lagrangian (type C) Grassmannian:

Qi
N D ¹.V;M/ j M 2 gi

N ; V
? D V; ImM � V � KerM º:

Lagrangian coordinate subspaces are indexed by signs " D ."1; : : : ; "n/ 2

¹C1;�1ºn: explicitly,

V" WD span .¹ei ; 1 � i � n; "i D �1º [ ¹eN �iC1; 1 � i � n; "i D C1º/ :

Then,

mdegDi
N

D A�n
Y

1�i�j �n

.A˙ zi ˙ zj /
X

"2¹C1;�1ºn

n
Y

i;j D1
i�j

1

."izi C "j zj /.A� "izi � "j zj /
:

� a D c. For n D N=2 even, the situation is similar to the identi�ed case:

Qc
N D ¹.V;M/ j M 2 gc

N ; V
? D V; ImM � V � KerM º;

mdegDc
N

D An
Y

1�i<j �n

.A˙ zi ˙ zj /
X

"2¹C1;�1ºn

n
Y

i;j D1
i�j

1

"izi C "j zj

n
Y

i;j D1
i<j

1

A � "izi � "j zj
:

For n odd, the map .V;M/ 7! M is not generically one-to-one since the rank
of a generic element of Dc

N is n � 1 (not n). The resolution of singularities
is slightly more complicated and we shall skip the details, noting that it is
simpler to use the recurrence relation (43) to deduce the sum rule in odd size
from that in even size.
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� a D o. Recall thatDo
N D Di

N=2I1
�Di

N=2I1
, so the resolution of singularities

is simply Qo
N D Qi

N=2
�Qi

N=2
. We conclude immediately

mdegDo
N D .mdegDi

N=2/
2:

� a D m. We use again the decomposition discussed at the end of last section,
i.e., M �

�
0 X�

X 0

�

with X 2 Hom.WC; W�/. The resolution of singularities
is given by

Qm
N D ¹.VC; V�; X/ jV ?

C D VC; V
?

� D V�;

ImX� � VC � KerX;

ImX � V� � KerX�º;

and by localization one gets, writing n D 2m,

mdegDm
N D

Y

1�i;j �m

.A˙ zi ˙ zj /
X

"2¹C1;�1ºm

"02¹C1;�1ºm

m
Y

i;j D1
i�j

1

."izi C "j zj /."
0
izi C "0

j zj /

m
Y

i;j D1

1

A � "izi � "0
j zj

:

Remark. It was shown in [16, section 7] that the type yA localization formula
can also be derived via an integral over the unitary group. Similar results can be
obtained in type yC, with integrals over the compact symplectic group.

4.3. Irreducible components. This section will outline the relationship between
the irreducible components of the scheme Ea

N and the link patterns of the Brauer
loop model with boundary condition a. We recall the notion of link patterns
introduced in Section 2, see Figures 2 and 3. We now describe a map from link
patterns of type yC to link patterns of type yA with certain symmetries.

Given a link pattern � 2 LPa
L, we de�ne Q� according to the following simple

symmetry rules:

(1) For a D i, c, we have L D n D N=2 and

� if �.j / D k ¤ b, then Q�.j / D k and Q�.N � j C 1/ D N � k C 1;

� if �.j / D b, then Q�.j / D N � j C 1.
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(2) For a D o, m, we have L D m D N=4 and

� if �.j / D k ¤ l; r , then

Q�.j / D k;

Q�.nC j / D nC k;

Q�.N � j C 1/ D N � k C 1;

and

Q�.n� j C 1/ D n � k C 1:

� If �.j / D l , then Q�.j / D N � j C 1 and Q�.n � j C 1/ D nC j .

� If �.j / D r , then Q�.j / D n � j C 1 and Q�.N � j C 1/ D nC j .

For example:

1 2 3 4

7�!

1

2 3

4

5

67

8
; 1 2 3 4 7�!

1

2 3

4

5

67

8
;

1 2
7�!

1

2 3

4

5

67

8
;

1 2

7�!

1

2 3

4

5

67

8
:

It is Q� , rather than � , that will appear naturally in the geometry, e.g., for de�ning
the irreducible components, and as the distinction between � and Q� is either
irrelevant or obvious from context, we will drop the Q notation. As to the pictorial
description, we shall simply call this new representation the periodic diagram of
the link pattern � .

De�ne si .M/ D
PiCN

j Di MijMj;iCN forM 2 E
p
N (note that this is well-de�ned

despite the quotient by hSN i).
Given a matrix M of size N , we de�ne the so-called rank matrix rm.M/ as

rm.M/ij WD rkMi WN;1Wj ;

where Mi WN;1Wj denotes the submatrix south-west of entry .i; j /.
We recall from now on that detailed proofs are only provided for a 2 ¹i; cº, and

occasionally for a D p when they are not already present in [16, 17].
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4.3.1. Irreducible components of Ea
N

for identi�ed and closed boundaries.

In type yA, it is known that Ep
N is equidimensional of dimension 2n2, and that Ep

N

decomposes into its irreducible components Ep
� indexed by periodic link patterns

[16, 23].

In this section we will prove a similar statement: that the top-dimensional
irreducible components ofEi

N andEc
N are indexed by link patterns in LPi

n and LPc
n

respectively. (As mentioned previously, equidimensionality is only conjectured
for these two cases.) We �nd that the dimensions of the two schemes are

dim.Ei
N / D n.nC 1/;

dim.Ec
N / D 2

�
n2

2

�

:

We also show that the top-dimensional components are generically reduced.

We conjecture that the same statement is true for Eo
N and Em

N , and that their
respective dimensions are

dim.Eo
N / D 2m.mC 1/;

dim.Em
N / D m.2mC 1/:

However the inductive proof of Theorem 4.2 (using an appropriately de�ned zzBN )
presented technical challenges that obstructed the proofs of Theorem 4.3 and
Theorem 4.5. Thus for the rest of this section a 2 ¹p; i; cº unless stated otherwise.

If M 2 Ea
N , recall from Section 4.2.1 that we can write M as a pair .‡;ƒ/,

where ‡ belongs to O
a
N D

®

‡ 2 Ra
N j ‡2 D 0

¯

, and ƒ 2 ga
N =R

a
N such that

ƒ‡ C ‡ƒ (i.e., its strict lower triangular part) is 0. We will assume the diagonal
of M to be zero (i.e., consider the reduced scheme Ea

N ).

We de�ne the Borel subgroups

BN WD ¹M 2 GLN j Mij D 0; j < iº;

zBN WD ¹M 2 BN j M�1 D M �º;

where M � D J�1MT J with the symplectic form as given in (45). Acting by
conjugation with BN leavesRp

N and therefore Op
N invariant, and similarly for zBN ,

R
i;c
N and O

i;c
N . We will use the notation � for conjugation.
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De�nition 4.1.

Invi
N WD ¹� involution of ¹1; : : : ; N º j �.i/ D N � �N �iC1 C 1º;

Invc
N WD ¹� 2 Invi

N j �.i/ ¤ N � i C 1 8iº:

Example 4.1.

Invi
4 D

8

<

: � �

��

1 2

34

;
�

�

1 2

34

;
�

�

1 2

34

;

1 2

34

;

1 2

34

;

1 2

34
9

=

;
;

Invc
4 D

8

<

: � �

��

1 2

34

;

1 2

34

;

1 2

34
9

=

;
:

The following de�nitions give unique matrix representations of the involutions
de�ned above.

De�nition 4.2. For � 2 Invi
N we de�ne the matrix � i

< 2 O
i
N as

�

� i
<

�

ij
WD

8

ˆ̂
<

ˆ̂
:

0 j � i;

�ıi;�.j / n < i < j;

ıi;�.j / else:

For � 2 Invc
N we de�ne �c

< 2 O
c
N as

�

�c
<

�

ij
WD

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0 j � i;

0 j C i D N C 1;

�ıi;�.j / N � j C 1 < i � n:

ıi;�.j / else:

Example 4.2.

.351624/i< D

0

B
B
B
B
B
B
B
@

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 �1

0 0 0 0 0 0

0 0 0 0 0 0

1

C
C
C
C
C
C
C
A

; .563421/c< D

0

B
B
B
B
B
B
B
@

0 0 0 0 1 0

0 0 0 0 0 �1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1

C
C
C
C
C
C
C
A

:
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Theorem 4.2. For a 2 ¹i; cº, each zBN -orbit of Oa
N contains exactly one �a

< where

� 2 Inva
N . Orbits are thus naturally labelled by these involutions.

Remark. This is a modi�cation of the main theorem in [20], which applies to
a D p, and the proof follows that given there.

Proof. We use induction from size N � 2 to size N . For N D 2 we could have
that Oa

2 3 X D 0 (which is trivial), or, for a D i, the upper-right entry of X is
nonzero. The latter case is conjugate to .2; 1/i< by a diagonal matrix.

We now consider general N . For any matrix X 2 O
a
N , we can form the matrix

yX 2 O
a
N �2 by truncating the �rst and last row and column of X . Assuming

that the theorem is true for N � 2, there is a unique O� 2 Inva
N �2 such that

Ow WD O�a
< D yU yX yU�1 for some yU 2 zBN �2. De�ne U0 2 zBN as

U0 WD

0

B
@

1
yU

1

1

C
A :

The matrix Y D U0XU
�1
0 has its middle N � 2 � N � 2 block equal to Ow. Its

�rst row is free (not including entry .1; 1/, which equals 0), and its last column
is decided from the �rst row by the symmetry of O

a
N . Our aim is to �nd a

transformation matrix T 2 zBN so that T Y T �1 D �a
< DW w for a unique� 2 Inva

N .
We note that rank is preserved by conjugation, so rk Y D rkX D rkw.

We now de�ne U1 2 zBN with �rst row
 

1
h

�

N �1
X

sD2

Owj �1;s�1 Y1;s

i

2<j <N �1
0

!

;

middle N � 2�N � 2 block equal to the N � 2 identity matrix, and other entries
decided by the symmetry of zBN . Let Z D U1Y U

�1
1 . If rk Y D rk yX , then

rkw D rk Ow, so the �rst and last row and column ofwmust be zero. Then T D U1,
and Z D w.

If rk Y D rk yX C 1 (this is only possible for a D i), then rkw D rk Ow C 1, so
w1N D 1 and all other extra entries must be zero. We de�ne U2 2 zBN as

U2 WD

0

B
B
@

1
p

Z1N

IN �2
p

Z1N

1

C
C
A
;

then w D U2ZU
�1
2 and T D U2U1.
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Finally, if rk Y D rk yX C 2, we de�ne k to be the column index of the �rst
nonzero entry in the �rst row of Z. We de�ne U3 2 zBN as having diagonal 1
except for

.U3/11 D
1

Z1k

;

.U3/NN D Z1k ;

and kth row given by

.U3/kj D
Z1j

Z1k

; k < j < N;

.U3/kN D
Z1N

2Z1k

:

By the symmetry of zBN the .N � k C 1/th column is also nontrivial:

.U3/ik D

8

ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
ˆ̂
ˆ̂
ˆ
ˆ̂
:

�Z1N

2Z2
1k

k > n; i D 1;

�Z1;N �iC1

Z1k

k > n; 1 < i < N � k C 1;

Z1N

2Z2
1k

k � n; i D 1;

Z1;N �iC1

Z1k

k � n; 1 < i � n;

�Z1;N �iC1

Z1k

k � n; n < i < N � k C 1;

and all other entries of U3 are zero. Then w D U3ZU
�1
3 and T D U3U1.

As a consequence, zBN � Ea
N for a 2 ¹i; cº breaks into disjoint components,

labelled by involutions. We denote these by F a
� :

De�nition 4.3. We set

F a
� WD ¹M D .‡;ƒ/ 2 Ea

N j there exists U 2 zBN WU‡U�1 D �a
<º:
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Theorem 4.3. The sets F a
� with the highest dimension have � corresponding to a

link pattern.

Remark. This is the analog of [16, Theorem 3] for a D p.

Proof. We have

dim.F a
�/ D dim. zBN � �a

</C dim¹ƒ 2 ga
N =R

a
N j .�a

<ƒCƒ�a
</> D 0º:

To obtain the dimension of the zBN -orbit, we calculate the dimension of the tangent
space at �a

<. This is ¹.U�a
< � �a

<U/º, where U is in the Lie algebra of zBN ; that
is, U is weakly upper-triangular with U D �U �.

The second term is

dim¹ƒ 2 ga
N =R

a
N j .�a

<ƒCƒ�a
</> D 0º

D dim.ga
N =R

a
N / � dim¹.�a

<ƒCƒ�a
</> j ƒ 2 ga

N =R
a
N º:

The dimension of ga
N =R

a
N is n2 for a D i and n.n � 1/ for a D c.

To calculate the dimensions of ¹.U�a
< ��a

<U/º and ¹.�a
<ƒCƒ�a

</>º, we note
that no more than two entries of �a

< will ever be involved in calculating a single
entry of the matrices. Thus we can do the calculations for N D 2; 4; 6; 8 by brute
force, and the results will extend easily to larger sizes. We �nd

dim.F i
�/ D n2 C #

a0

a

C #
a0

a

b0

b

C 2#
a0

a

b0

b

;

dim.F c
�/ D n.n � 1/C #

a0

a

b0

b

C 2#
a0

a

b0

b

:

The highest dimension is thus

max.dim.F i
�// D n.nC 1/;

max.dim.F c
�// D 2

�
n2

2

�

;

which occurs if � has as few �xed points as possible and no instances of

a0

a

b0

b

:

These � correspond to link patterns.
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Corollary 4.4. The sets F a
� with highest dimension minus one, i.e. dim.F p

� / D

2n2 � 1, dim.F i
�/ D n.n C 1/ � 1, dim.F c

�/ D 2
j

n2

2

k

� 1, have � being an

involution that looks like a link pattern except for:

a D p W one pair of �xed points,

a D i W one instance of
a0

a

b0

b

, or one pair of �xed points at a and a0,

a D c W one instance of
a0

a

b0

b

:

De�nition 4.4. For � a link pattern 2 LPa
L, we de�ne Ea

� as the closure of F a
� .

The projection .‡;ƒ/ 7! ‡ makes F� a vector bundle over the orbit zBN � �a
<.

As the closure of a vector bundle over the orbit of a connected group, Ea
� is

irreducible. Theorem 4.3 says that the Ea
� are the top-dimensional components

of Ea
N (we conjecture that there are no other components; this can probably be

proved in a similar way as in the periodic case [23]).

Theorem 4.5. Each Ea
� is generically reduced (as a component of Ea

N ).

Remark. This proof is similar to that of [16, Theorem 4].

Proof. We need to show that the Zariski tangent space at a generic point has the
same dimension as Ea

N . The tangent space is given by the set of all matrices
P 2

�

M
a
N

�

�D0
that satisfy the derivative of the de�ning equation M 2 D 0:

P�t C �tP D 0;

where � is the matrix representation of � (with diagonal zeroed out) that belongs
to Ea

N , and �t is � multiplied by a generic diagonal matrix with restrictions
necessary for the result to belong to M

a
N . We note that both P and �t have zero

diagonal. To compute the dimension of this set we consider the individual matrix
components of the above equation:

0 D .P�t C �tP /ij

D Pi�.j /tj Œi < �.j / < j < i C N�C P�.i/j t�.i/Œi < �.i/ < j < i CN�;

(47)
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where Œa� stands for 1 if a is true and 0 if a is false. In this equation, only two loops
ever interact, so we only need to consider small size examples (up to N D 8). For
a D i there are 7 base cases that need to be considered. We will give 4 example
calculations for a D i here, the rest are similar.

We �rst note that due to symmetry, the RHS of (47) is the same for .i; j / as
for .j 0; i 0/, meaning that only one of these will contribute to the dimension. We
also note that if j D i 0, the RHS is automatically zero due to symmetry. Thus we
will only give nontrivial equations where j < i 0.

(1)

� D

a b

b0a0
i j

a b0 0 D Pabtb0

b a 0 D Pba0 ta C Pb0atb0

b0 a 0 D Pb0a0 ta

After applying the known symmetries of Pij and tj , there are only 2 inde-
pendent equations in this list.

(2)

� D

a �.a/

�.a0/a0 i j

a �.a0/ 0 D P�.a/�.a0/t�.a/

�.a0/ a 0 D Pa0ata0

These 2 equations are independent.

(3)

� D

a

b

�.a/

�.a0/

b0

a0

i j

a b0 0 D Pab tb0 C P�.a/b0 t�.a/

b a 0 D Pb�.a/ta C Pb0atb0

�.a/ b 0 D P�.a/b0 tb C Pabta

�.a0/ b 0 D P�.a0/b0 tb C Pa0b ta0

Here we have only included those equations that don’t already appear in the
previous example, thus for every pair of chords that are mirror images we
must add 2 equations. The above four equations are independent, so in total
there are 6 equations in this example.
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(4)

� D
a

b �.a/

�.b/

�.b0/

�.a0/b0

a0

i j

a �.b/ 0 D Pab t�.b/ C P�.a/�.b/t�.a/

a �.b0/ 0 D P�.a/�.b0/t�.a/

a b0 0 D Pa�.b0/tb0 C P�.a/b0 t�.a/

b a 0 D Pb�.a/ta C P�.b/at�.b/

�.a/ b0 0 D P�.a/�.b0/tb0

�.a/ b 0 D P�.a/�.b/tb C Pabta

�.b/ �.a/ 0 D P�.b/at�.a/ C Pb�.a/tb
�.b0/ a 0 D Pb0atb0

�.b0/ �.a/ 0 D P�.b0/at�.a/ C Pb0�.a/tb0

b0 �.a/ 0 D Pb0at�.a/

There are 8 independent equations in this list, and as before we must add 4
equations, giving a total of 12.

The other cases can be treated in the same way, and we �nd that there are 2
equations for every pair of chords in the periodic diagram of � , which comes
to n.n � 1/ equations. The dimension of the larger space

�

M
i
N

�

�D0
is 2n2, thus

the dimension of the Zariski tangent space is 2n2 �n.n� 1/ D n.nC 1/, the same
as F i

� .

For a D c there are 6 base cases to consider. Recall that the symmetry implies
that Pi i 0 D 0 and ti D 0 if �.i/ D i 0. We give here two examples.

(1)

� D

�

�
a

b

�.a/

�.a0/

b0

a0

i j

a b0 0 D P�.a/b0 t�.a/

b a 0 D Pb�.a/ta

�.a/ b 0 D Pab ta

�.a0/ b 0 D Pa0bta0

These 4 equations are all independent.
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(2)

� D
a

b �.a/

�.b/

�.b0/

�.a0/b0

a0

i j

a �.b/ 0 D Pab t�.b/ C P�.a/�.b/t�.a/

a �.b0/ 0 D P�.a/�.b0/t�.a/

a b0 0 D Pa�.b0/tb0 C P�.a/b0 t�.a/

b a 0 D Pb�.a/ta C P�.b/at�.b/

�.a/ b0 0 D P�.a/�.b0/tb0

�.a/ b 0 D P�.a/�.b/tb C Pab ta

�.b/ �.a/ 0 D P�.b/at�.a/ C Pb�.a/tb
�.b0/ a 0 D Pb0atb0

�.b0/ �.a/ 0 D P�.b0/at�.a/ C Pb0�.a/tb0

b0 �.a/ 0 D Pb0at�.a/

There are 8 independent equations in this list.

We �nd that there are 2 equations for every pair of chords that are not mirror
images, as well as 1 for every �xed point-chord pair, in total n.n � 1/ � 2

�
n
2

˘

equations. The dimension of the larger space
�

M
c
N

�

�D0
is 2n.n � 1/, so the

dimension of the Zariski tangent space is 2
j

n2

2

k

, the same as F a
� .

4.3.2. De�ning Equations. We �rst �nd another characterization of the Ea
� .

From its de�nition,Ea
N , and therefore its irreducible components, are invariant by

conjugation and scaling, i.e., under the action of the group BZ mod N � C� (resp.
zBZ mod N �C�, zzBZ mod N �C�). The latter is a semi-direct product of TZ mod N �C�

and UZ mod N , where

UZ mod N WD ¹M 2 BZ mod N j Mi i D 1 8iº;

and similarly for zBZ mod N and zzBZ mod N , with zUZ mod N D UZ mod N \ zBZ mod N

and zzUZ mod N D UZ mod N \
zzBZ mod N . Since the use of the full group does not

signi�cantly simplify the orbit structure, we investigative below dense orbits under
zUZ mod N in the Ea

� , a 2 ¹i; cº.

Theorem 4.6.

Ea
� D zUZ mod N � ¹�t j t diagonal 2 M

a
N º:

Proof. First we compute the dimension of zUZ mod N � ¹�tº. It is not hard to show
that each zUZ mod N -orbit contains only one �t . Given this, we have

dim. zUZ mod N � ¹�tº/ D dim.¹�tº/C dim. zUZ mod N � .�t//;
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where the second term, the dimension of a zUZ mod N -orbit for a generic choice of
t , is equal to the number of equations de�ning the in�nitesimal stabilizer

¹P 2 QuZ mod N j P�t � �tP D 0º:

where QuZ mod N is the Lie algebra of zUZ mod N . We call this number d a
P .

Unlike the periodic case, we cannot calculate the number of equations de�ning
the in�nitesimal stabilizer in the same way as for Theorem 4.5. Instead, we have

d i
P D n2 � #.a � a0/;

d c
P D n.n � 1/;

and

dim
�

¹� itº
�

D nC #.a � a0/;

dim
�

¹�ctº
�

D 2
jn

2

k

;

so

dim
�

zUZ mod N � ¹�tº
�

D n.nC 1/;

dim
�

zUZ mod N � ¹�tº
�

D 2

�
n2

2

�

:

For � a link pattern, we note that zUZ mod N � ¹�t j t invertibleº � F a
� , because

the upper triangular part of any matrix in the former is zBN -conjugate to �<.

Therefore, zUZ mod N � ¹�t j t invertibleº D zUZ mod N � ¹�tº � F a
� D Ea

� . Since
zUZ mod N � ¹�tº has the same dimension as Ea

� , and the latter is irreducible, they
must be equal.

A similar statement holds for a 2 ¹o;mº, i.e., Ea
� D

zzUZ mod N � ¹�tº.

Theorem 4.7. Any M 2 Ea
� satis�es the following equations:

(1) M 2 M
a
N ;

(2) M 2 D 0;

(3) sk.M/ D sl .M/ when l 2 cl.k/ [ cl .�.k//;

(4) rm.M/ � rm.�/.6

6 Note that the symmetries in condition (1) implies rm.M /ij D rm.M /kl when .k; l/ 2

cl .i; j /.
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Proof. For a D p this was proved in [16]. For a 2 ¹i; cº only equations (3) and (4)
are new; one easily checks that they are satis�ed by �t , and that they are invariant
by conjugation by zBZ mod N .

We conjecture that these are the de�ning equations of Ea
� . At least, we know

that these equations de�ne a set that is the union of Ea
� and of lower dimensional

pieces, because the other top-dimensional components contain matrices that do
not satisfy the equations. If this conjecture is true, it implies the following:

Conjecture 4.1. For any link pattern � 2 LPa
L and its associated periodic link

pattern Q� as described at the start of Section 4.3, we have

E
p
Q�

\ M
a
N D Ea

� :

Once again, one can prove the slightly weaker statement that Ep
Q�

\ M
a
N has

Ea
� as its unique top-dimensional component, because intersecting with any other

component of Ea
N reduces its dimension, some equation of Theorem 4.7 for Ep

�

being violated.

4.4. The permutation sector. For simplicity we assume in this section that
N D 2n D 4m (the case n D 2mC 1 can be treated analogously).

De�ne the permutation subspace Mperm
N to be the linear subspace of MN

M
perm
N WD ¹M 2 MN j Mij D 0 for m < i � j � 3m or 3m < i < j � 5mº:

(Compared to the de�nition in [16, Section 5], we have shifted by m along the
diagonal in order for the subspace to be invariant under the symmetry of type yC.)

In the strip picture, choosing the fundamental domain to be between rowsmC1

and 5m, we have

X

Y

0

0

?

?0

?

N

N

where we label the two n � n submatrices X and Y for convenience.
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Now de�ne

E
a;perm
N WD Ea

N \ M
perm
N ; a 2 ¹p; i; cº:

In [16], it is explained how the equations satis�ed byM inEp;perm
N only involve

X and Y , and are:

E
p;perm
N D ¹XY and YX upper triangularº;

(so that it is isomorphic to the so-called “upper-upper scheme”

¹X; Y 2 gln j XY and YX upper triangularº;

see [14], times some irrelevant vector space), and that Ep;perm
N is a complete

intersection, allowing us to compute its multidegree:

mdegEp;perm
N D AN

Y

m<i<j �3m
or

3m<i<j �5m

.AC zi � zj /.2AC zj � zi � �/:

The same argument works for a 2 ¹i; cº. The symmetry axes are

X

Y

0

0

?

?0

?

N

N

so that we �nd

E
i;perm
N D ¹Y D X�; XY and YX upper triangularº;

E
c;perm
N D ¹Y D �X�; XY and YX upper triangularº;

where X� D J�1XT J , and J denotes the n � n skew-symmetric matrix of the
type of (45). That is, Ei;perm

N andEc;perm
N are isomorphic to the “symplectic upper-

upper scheme” ¹X 2 gln j XX� and X�X upper triangularº times some irrelevant
vector spaces (the latter being due to the ? entries, being careful that the symmetry
imposes linear relations between them, and in particular imposes zeroes on the
symmetry axis in Ec;perm

N ).
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The counting of equations goes as follows: taking into account the symmetry
of M , there are 2m.m C 1/ (resp. 2m2) linear equations de�ning Ei;perm

N (resp.
E

c;perm
N ). In both cases, similarly taking into account the symmetry of XX� and

X�X , there are 2m.m � 1/ quadratic equations. The total number of equations is
therefore equal to 4m2 (resp. 2m.2m � 1/), which is the codimension of Ea

N �

E
a;perm
N ; therefore Ea;perm

N is a complete intersection, and its multidegree is the
product of the weights of its equations:

mdegEi;perm
N D

Y

1�i�j �m

.AC zi � zj /.A � zi � zj � �/

Y

1�i<j �m

.2AC zj � zi � �/.2AC zi C zj /

Y

mC1�i�j �2m

.AC zi � zj /.AC zi C zj /

Y

mC1�i<j �2m

.2AC zj � zi � �/.2A � zi � zj � �/;

(48a)

mdegEc;perm
N D A2m

Y

1�i<j �m

.AC zi � zj /.A � zi � zj � �/

.2AC zj � zi � �/.2AC zi C zj /
Y

mC1�i<j �2m

.AC zi � zj /.AC zi C zj /

.2AC zj � zi � �/.2A� zi � zj � �/:

(48b)

As a complete intersection Ea;perm
N is equidimensional (of the same dimension

as Ea
N ), and therefore a union of top-dimensional components of Ea

N . In order to
�nd which, we simply test whether �t belongs to M

perm
N . We easily �nd

E
a;perm
N D

[

�W�.¹1;:::;mº/D¹mC1;:::;2mº

Ea
� :

Such link patterns are in bijection with permutations of ¹1; : : : ; mº.

Considering m� D 2n for all such link patterns, we can also write

X

�W�.¹1;:::;mº/D¹mC1;:::;2mº

�a
� D 2n mdegEa;perm

N ; a 2 ¹i; cº;

where the RHS is given explicitly by (48).
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Note that we have Ei
� Š Ec

� � Cn for all such � , or

�i
� D

m
Y

iD1

.A � 2zi � �/

2m
Y

iDmC1

.AC 2zi / �
c
� ; �.¹1; : : : ; mº/ D ¹mC 1; : : : ; 2mº:

(The prefactor is due to the di�erent embedding space.)

4.5. Commuting varieties. In [14], it is shown that one particular component of
the upper-upper scheme is the singular �ber of a one-parameter �at family whose
generic �ber is the commuting variety

Cn WD ¹X; Y 2 gln j XY D YXº:

In [16], this was used to provide a formula for the degree of the commuting
variety; in our notations, one has

degCn D degEp
.2n;2n�1;:::;1/

;

� D
1

2

2n

2n�1

::: ;

(and more generally, equality of multidegrees with the appropriate correspon-
dence of torus actions).

Assume now n even. Using the exact same argument, one can show that
a particular component of the “symplectic upper-upper scheme” (see previous
section) is the singular �ber of a one-parameter �at family whose generic �ber
is the “symplectic commuting variety”

zCn WD ¹X 2 gln j XX� D X�Xº:

This implies that

deg zCn D degEi
.n;n�1;:::;1/ D degEc

.n;n�1;:::;1/

D 1; 11; 1583; 3186265; 92351668113 : : : ; n D 2; 4; : : : ;

� D
1

2

n

n�1

:::

:::

:
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In principle, an explicit formula for the (multi)degree of zCn can be obtained by
repeated application of divided di�erence operators and by using some formulae
of [7] in type a D c. We shall not reproduce them here because they are rather
cumbersome.

5. From the Brauer loop schemes to the loop model

We now provide the link between the geometric construction of Section 4 to the
loop model of Sections 2 and 3. As explained in Section 2.3 and Section 4.1.2, the
correspondence of parameters is as follows.

� The length of the loop model L is related to the size N of the matrices by:
L D N for a D p, L D N=2 for a 2 ¹i; cº, L D N=4 for a 2 ¹o;mº.

� The shift s of the qKZ equation is related to the equivariance parameter � by:
� D s for a 2 ¹p; i; cº, � D s=2 for a 2 ¹o;mº.

The precise theorem, as advertised in the introduction is:

Theorem 5.1. In all types a 2 ¹p; i; c; o;mº, the vector jˆi D
P

�2LPa
L
�a

� j�i of

multidegrees �a
� D m� mdegEa

� of the irreducible components of the Brauer loop

scheme Ea
N satis�es the qKZ system (10–11) or (13–15), as well as the recurrence

relations (27), (32) and (33) (up to normalization), thus identifying it with the

unique (up to normalization) minimal degree polynomial solution of the qKZ

system.

The rest of this section is dedicated to the proof of this theorem.

5.1. Lévy subgroups. The geometric interpretation of the quantum Knizhnik–
Zamolodchikov equation follows the same general philosophy that was outlined
in [9] and then developed in [16, 17]. It is based on a combination of “cutting” –
intersecting with hypersurfaces – and “sweeping” – taking the image under Lévy
subgroups, similarly to the pullbacks/pushforwards in convolution actions [4].

Let B � SL2 be the group of 2 � 2 invertible upper triangular matrices inside
the group of 2� 2matrices of determinant 1. We start with the following standard
lemma: (see also [17, lemma 8] and [16, lemma 1]; the use of GL2 instead of SL2

makes no di�erence)
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Lemma 5.2. Let X be a variety in a vector space V equipped with an SL2-rep-

resentation, such that X is B-invariant and conical. If the generic �ber of the

map

� W SL2 �BX �! V

is �nite over Image�, call its cardinality k; otherwise let k D 0. (The latter occurs

i� X is SL2-invariant.) Then

k mdeg.Image �/ D �@i mdegX;

where @i is the divided di�erence operator @if D .f � �f /=˛ as de�ned in

Section 1.3, and ˛ is the root of SL2.

The multidegree is w.r.t. the Cartan torus of SL2.
To each node i in the Dynkin diagram of yA or yC, we can associate groups

B.i/ � SL.i/
2 (isomorphic to B � SL2) de�ned by

SL.i/
2 D

´

M D .Mjk/j;k2Z

ˇ
ˇ
ˇ
ˇ
ˇ
MSN D SNM;

MM � D 1 if a 2 ¹i; c; o;mº;

MM � D 1 if a 2 ¹o;mº;

Mjk D ıjk unless .j; k/ 2 cl

 ´

i

i C 1
;

´

i

i C 1

!

;

ˇ
ˇ
ˇ
ˇ

Mi i Mi;iC1

MiC1;i MiC1;iC1

ˇ
ˇ
ˇ
ˇ

D 1

µ

;

and
B.i/ D SL.i/

2 \BZ mod N :

Note that in all types, the isomorphism from SL.i/
2 to SL2 consists in extracting

the 2�2 submatrix at rows and columns i; iC1. When there is no risk of confusion
we shall identify SL.i/

2 and SL2 via this isomorphism.
Next, given P 2 SL.i/

2 and M 2 Ra
Z mod N

, one can consider conjugating:
PMP�1. Two problems arise at this stage. Firstly, the result has entries below
the diagonal. There are various ways to deal with this: the one we choose here
is to restrict ourselves to matrices sitting in the subspace Ra

Z mod N
\ ¹Mi i D

MiC1;iC1 D Mi;iC1 D 0º, which is stable under the SL.i/
2 action. Secondly,

this does not descend to an action on (appropriate subspaces of) M
a
N , because

the action does not preserve the ideal generated by SN . In [17], this di�culty is
circumvented by working insideRa

Z mod N
, i.e., taking preimages of subvarieties of
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M
a
N before taking their image (“sweeping” them) under SL.i/

2 and then taking the
image again in M

a
N . Here, to slightly simplify the discussion, we shall by abuse

of notation identify such a subvariety with its preimage.

Taking into account the fact that the multidegree depends on the embedding
space, we are led to the following modi�cation of the lemma.

� For “closed boundaries,” that is, for a D c and i D 0; L or for a D m and
i D 0, the lemma applies without any changes to the multidegrees w.r.t. Ma

N ,
the divided di�erence operators being the ones de�ned in (1).

� In all other cases, to apply the lemma to multidegrees w.r.t. Ma
N , the divided

di�erence operator of (1) has to be conjugated, i.e., replaced with

@0
i D .AC ˛i /@i

1

AC ˛i

;

(the factor AC ˛i being the weight of Mi;iC1).

5.2. Geometry of the exchange relations. We start with the exchange rela-
tions (10) or (13), i D 1; : : : ; L�1. Note that in type yA, the rotation equation (11)

is trivially satis�ed due to the cyclic nature of the Brauer loop scheme (see [17]),
so equation (10) is also valid at i D L.

We rewrite this equation here for convenience:

LRi .zi � ziC1/ jˆ.: : : ; zi ; ziC1; : : : /i D jˆ.: : : ; ziC1; zi ; : : : /i ; (49)

where jˆi D
P

�2LPa
L
�a

� j�i.

As explained in Section 2.3.1, when writing (49) in components, there are two
cases to consider, depending on whether �.i/ ¤ i C 1 or �.i/ D i C 1. We treat
them separately below.

5.2.1. The fi action. We assume that � 2 LPa
L is such that �.i/ ¤ i C 1.

Our goal is to prove (18) for the multidegrees �a
� . The geometric procedure is as

follows:

� “Sweep” Ea
� with SL.i/

2 .

� “Cut” the result with .M 2/iC1;iCN D 0, and show that it producesEa
� [Ea

fi �
.

Equation (18) will then be a translation into multidegrees of this construction.
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We shall need the following

Lemma 5.3. (1) If M;M 0 are generic elements of components Ea
� and Ea

�0 with

�.i/ ¤ i C 1, � 0.i/ ¤ i C 1, such that M 0 D PMP�1, P 2 SL.i/
2 , then sj .M/ D

sj .M
0/ if j 2 cl.i/; cl.i C 1/, and ¹si .M/; siC1.M/º D ¹si .M

0/; siC1.M
0/º; and

for a �xed M 0 (resp. M ), the set of possible cosets of P in SL.i/
2 =B.i/ (resp.

B.i/n SL.i/
2 ) consists of exactly two points, corresponding to whether these si ; siC1

are in the same order, or reversed.

(2) In the particular case where M D �t , t generic diagonal, then the two

classes of P have representatives
�

1 0
0 1

�

and i
�

0 1
1 0

�

; in the latter case,

P�tP�1 D fi� t
0;

with t 0 the diagonal matrix obtained from t by switching diagonal entries at

j 2 cl.i/; cl.i C 1/. M and M 0 playing symmetric roles, an analogous result

holds for M 0 D �t .

Proof. P conjugates the matrices M 2, M 02, and in particular (restricting to rows
i; i C 1 and columns i C N; i C N C 1), their 2 � 2 submatrices around the
N th diagonal, which are upper triangular with eigenvalues si .M/; siC1.M/ and
si .M

0/; siC1.M
0/. Generically these eigenvalues are distinct because �.i/ ¤ iC1

or � 0.i/ ¤ i C 1, so that P D b0�1P0b where b, b0 are upper triangular matrices
which diagonalize these 2 � 2 submatrices, and P0 is as in the second part of the
lemma. The rest is a direct computation.

The degree of the sweeping map. We compute the cardinality of the generic
�ber of the map SL.i/

2 �B.i/Ea
� ! SL.i/

2 �Ea
� . Since the SL.i/

2 action is a group
action, we may assume that the �ber ¹.P;M/ j PMP�1 D M 0º is that of an
element M 0 of Ea

� , and furthermore that it is of the form M 0 D �t . We are in
the situation of Lemma 5.3 with M;M 0 2 Ea

� . We conclude that there are two
possibilities:

� if fi� ¤ � , (i.e., if at least one of i or i C 1 is paired in � (not connected to
the boundary), or in type a D o if they are connected to di�erent boundaries),
then only the �rst coset, namely, P 2 B.i/, leads to M 0 2 Ea

� , and therefore
the �ber (in SL.i/

2 �B.i/Ea
� ) is a point;

� if fi� D � (i.e., if both i and i C 1 are connected to the (same) boundary),
then both cosets lead to M 0 2 Ea

� , and the �ber consists of two points.
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In conclusion, we �nd that

cardinality of a generic �ber of SL.i/
2 �B.i/E

a
� ! SL.i/

2 �Ea
� D

´

1 if fi� ¤ �;

2 if fi� D �:

(50)

Determination of the result of sweeping and cutting. The generic �ber be-
ing �nite, the image has same dimension as the source, i.e., dim.SL.i/

2 �Ea
�/ D

dimEa
� C 1. An elementary calculation shows that the only equation of Ea

N

that SL.i/
2 �Ea

� violates is .M 2/iC1;iCN D 0. Noting that ¹.M 2/iC1;iCN D 0º

is a Cartier divisor in the (irreducible) variety SL.i/
2 �Ea

� , we conclude that
.SL.i/

2 �Ea
�/ \ ¹.M 2/iC1;iCN º is a subscheme of Ea

N of pure dimension dimEa
N ,

therefore a union of its top-dimensional components Ea
� .

In order to determine which, we apply again Lemma 5.3. We �rst compute the
image of M D �t :

.SL.i/
2 �¹�tº/\ ¹.M 2/iC1;iCN D 0º D B.i/ � ¹�tº [ B.i/ � ¹fi� t

0º;

with t 0 as in the lemma. Finally, taking the union over t and the closure of the

BZ mod N (resp. zBZ mod N , zzBZ mod N ) orbit, we obtain:

.SL.i/
2 �Ea

�/ \ ¹.M 2/iC1;iCN D 0º D Ea
� [Ea

fi � : (51)

The equation above is only an equality of sets; however since Ea
N is generically

reduced in top dimension (Theorem 4.5), both sides of the equation are generically
reduced (which is all that matters for multidegree purposes).

Multidegree equality. Using (50) and applying Lemma 5.2, we have

mdeg SL.i/
2 �Ea

� D 2ı�;fi � .�@0
i/mdegEa

� :

Next we intersect the variety SL.i/
2 �Ea

� with the hypersurface

¹.M 2/iC1;iCN D 0ºI

by the properties of multidegrees, this multiplies its multidegree with

mdeg¹.M 2/iC1;iCN D 0º D 2AC ziC1 � ziCN D 2AC ziC1 � zi � �:

Finally, we apply (51), noting that the factor of 2 when � D fi� is compensated
by the fact that E� D Efi � , and �nd

.2AC ziC1 � zi � �/.�@0
i/mdegEa

� D mdegEa
� C mdegEa

fi � :
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Equivalently, using (44) and noting that � and fi� have the same number of
chords, we �nd

.2AC ziC1 � zi � �/.�@0
i/�

a
� D �a

� C �a
fi � : (52)

5.2.2. The ei action. We now assume that � 2 LPa
L is such that �.i/ D i C 1,

and we wish to prove that (19) is satis�ed by the multidegrees �a
� .

Fully interpreting geometrically the ei equation (19) is rather complicated
(see [26] and [17, arXiv v1] for the case of type yA). Given such a link pattern
� , the geometric construction is:

� cut Ea
� with Mi;iC1 D 0, producing F1;

� throw away the SL.i/
2 -invariant components (giving

S

�2".�;i/X
a
�;i , to be

de�ned below), and then sweep with SL.i/
2 , producing F2;

� �nally, cut with .M 2/iC1;iCN D 0, producing F3, and show that

F3 D
[

�¤�Wei �D�

Ea
� \ ¹si .M/ D siC1.M/º:

The multidegree of F3 is the desired expression.
Here we shall only provide a semi-geometric proof of (18), as in [17]: we shall

stop at the �rst stage in the construction, i.e., only analyze F1 above, and then use
the (already proven) fi equation (52) to conclude.

The auxiliary varieties Xa
�;i

. Denote by j�j the number of crossings of �.

Proposition 5.4. Given � a link pattern such that �.i/ ¤ i C 1 and j�j � jfi�j:

� If fi� ¤ �, thenEa
� \¹si.M/ D siC1.M/º has a single geometric component.

Call it Xa
�;i .

� If fi� D �, Ea
� \ ¹si .M/ D siC1.M/º has two geometric components, one of

which is SL.i/
2 -invariant. Call Xa

�;i the other one.

In both cases Ea
� \ ¹si .M/ D siC1.M/º is generically reduced at Xa

�;i .

Proof. (We only give the full proof for a 2 ¹p; i; cº.) This is similar to [17,
Proposition 9]. Since �.i/ ¤ i C 1, Ea

� 6� ¹si .M/ D siC1.M/º (as can be checked
on say �t ), so all the geometric components of Ea

� \ ¹si .M/ D siC1.M/º have
dimension dimEa

N � 1. We use the decomposition

Ea
� \ ¹si .M/ D siC1.M/º D

G

�

.Ea
� \ ¹si.M/ D siC1.M/º \ F� /;
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and consider only pieces of dimension dimEa
N � 1.

We start from F� itself. For it to have dimension � dimEa
N � 1, according to

Corollary 4.4, � can have one pair of the form

a0

a

b0

b

for a 2 ¹i; cº,

or a pair of �xed points for a 2 ¹p; iº.

We then intersect with ¹si .M/ D siC1.M/º. There are three possibilities.

(1) �.¹i; i C 1º/ 6� ¹i; i C 1; N � i; N � i C 1º. The equation si .M/ D siC1.M/

being zBN -invariant and linear in ƒ (in the M D ‡ C ƒ decomposition,
cf. Section 4.3.1), F� \ ¹si .M/ D siC1.M/º is a subvector bundle of F� ,
where the dimension of the �ber can be easily evaluated, say at ‡ D �a

<,
where the extra equation ƒi$�.i/ D ƒiC1$�.iC1/ reduces it by one com-
pared to that of F� . This implies that � must be a link pattern (otherwise the
dimension is too low).

(2) �.i/ D N�i , �.iC1/ D N�iC1, in which caseF� � ¹si .M/ D siC1.M/º.
For the dimension to be right, � cannot have any other crossing pairs of the
same form or any �xed points.

(3) �.i/ D i C 1, �.i C 1/ D i .

Now we want to intersect withEa
�. This immediately excludes case (3), because

if �.i/ D iC1, the rank condition (equations (4) in Theorem 4.7) ofEa
� at .i; iC1/

is violated, so F� \ Ea
� is empty. We are left with cases (1) and (2); in both,

F� \ ¹si .M/ D siC1.M/º is a subvector bundle of F� , so is an open (irreducible)
variety of the target dimension.

If � di�ers from � outside ¹i; i C 1º, then it is easy to see that some of the
equations of Theorem 4.7 of Ea

� are violated by say �t with ti ¤ 0, ti t�.i/ D

tiC1t�.iC1/. Indeed, the si .�t/ only have the repeats of the pairings of � , so
� cannot have more pairings than � (otherwise equations (3) of Theorem 4.7
would be violated). Inversely, assuming the pairings of � are a strict subset
of those of � , i.e., there exists i < �.i/ D j , but �.i/ ¤ j , then the rank
condition (equation (4) of Theorem 4.7) of � at .i; j / would be violated (and in
fact, in that case, the intersection would be empty). It follows that the dimension
of F� \ ¹si .M/ D siC1.M/º \ Ea

� is less than the target. Therefore the two
possibilities reduce to the following case.
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(1) � D �, in which case of course

Ea
� \ ¹si .M/ D siC1.M/º \ F� D F� \ ¹si .M/ D siC1.M/º:

� If fi� D �, we show in Appendix C that F� \ ¹si .M/ D siC1.M/º is
SL.i/

2 -invariant.

� If fi� ¤ �, we call Xa
�;i the closure of F� \ ¹si .M/ D siC1.M/º (with

its reduced structure).

(2) �.i/ D N � i , �.i C 1/ D N � i C 1 and is identical to � elsewhere, i.e.,

� D

i iC1

N �iC1 N �i

.....
. ; � D

i iC1

N �iC1 N �i

.....
. :

This situation can only occur when fi� D �. In this case, we claim that

F� D Ea
� \ F� \ ¹si .M/ D siC1.M/º:

That F� D F� \ ¹si .M/ D siC1.M/º is obvious.

Next, we note that
zBN � �i

< � zBN � � i
<:

Indeed, the matrix P with submatrix
0

B
B
B
@

i=t 1=t 0 0

0 t 0 0

0 0 1=t 1=t

0 0 0 �i t

1

C
C
C
A

at rows i; i C 1; N � i; N � i C 1 and identity elsewhere is symplectic and
sends �i

< to P�i
<P

�1 D � i
< CO.t2/.

This implies that E� \ F� D F� \ F� is a vector bundle over zBN � � i
<; the

dimension of its �ber is greater or equal to that of F� by semi-continuity of
rank, and less than or equal to that of F� by obvious inclusion. But according
to the dimension count in the proof of Theorem 4.3, the latter two are equal,
and therefore there is equality of dimensions, which implies E� \ F� D F� .

In this case, we call F� (with its reduced structure) Xa
�;i .

In all cases, note that, as the closure of a vector bundle over an open
(irreducible) variety, Xa

�;i is irreducible. Generic reducedness in Ea
� \ ¹si .M/ D

siC1.M/º is shown in Appendix B.
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Remark. One can also analyze the case j�j < jfi�j, cf. [17, Appendix B] in type yA,
with similar conclusions as when � D fi�, but we shall not need it here.

Determination of the result of cutting. We recall that a link pattern � such that
�.i/ D i C 1 is �xed. De�ne

".�; i/ WD ¹� ¤ � j ei� D �; j�j � jfi�jº;

e.g.,

a D i W � D
1

2 3

4
; ".�; 1/ D

8

ˆ̂
<

ˆ̂
:

1

2 3

4
;

1

2 3

4
;

1

2 3

4

9

>>=

>>
;

;

a D c W � D
1

2 3

4
; ".�; 2/ D

8

ˆ
<̂

ˆ
:̂

1

2 3

4

9

>
>=

>
>;

:

Then one has e�1
i .�/ � ¹�º D

S

�2".�;i/¹�; fi�º.

Proposition 5.5. The geometric components of Ea
� \ ¹Mi;iC1 D 0º are the Xa

�;i ,

� 2 ".�; i/, as well as one extra SL.i/
2 -invariant component in the cases a 2 ¹p; cº.

The multiplicity of Xa
�;i in E� \ ¹Mi;iC1 D 0º is 1 except for the single case

(in type a D o) of � connecting i; i C 1 to distinct boundaries, i.e., �.i/ D r ,

�.i C 1/ D `, in which case the multiplicity is 2.

Proof. The proof is along the same lines as that of Proposition 5.4. Since �.i/ D

i C 1, Ea
� 6� ¹Mi;iC1 D 0º and Ea

� \ ¹Mi;iC1 D 0º is of dimension dimEa
N � 1.

Once again we use the decomposition

Ea
� \ ¹Mi;iC1 D 0º D

G

�

.Ea
� \ ¹Mi;iC1 D 0º \ F� /:

Intersecting with ¹Mi;iC1 D 0º amounts to imposing �.i/ ¤ i C 1 (assuming for
a D p that i ¤ N , a case we can always avoid by cyclic symmetry), in which case
this equation is automatically satis�ed. So we have

Ea
� \ ¹Mi;iC1 D 0º D

G

�W �.i/¤iC1

.Ea
� \ F� /;

and we must consider only pieces of dimension dimEa
N � 1.
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(1) If � is a link pattern, since among the equations (3) of Theorem 4.7 for Ea
�

are si .M/ D siC1.M/, we have Ea
� \F� D Ea

� \F� \ ¹si .M/ D siC1.M/º,
where F� \ ¹si .M/ D siC1.M/º is irreducible and of the target dimension.
Now, using the exact same reasoning as in the proof of Proposition 5.4, if �
di�ers from � outside of ¹i; iC1; �.i/; �.iC1/º (and their images under the
symplectic symmetry), then an equation among those of Theorem 4.7 forEa

�

is not satis�ed, and the intersection has too low dimension.

This implies that ei� D � . Furthermore, if jfi� j � j� j, i.e., if i and i C 1

are both connected to the boundary in � , or the arches coming from them do
not cross, then an additional equation of type (4) of Theorem 4.7, namely if
say i C 1 is connected to j , the rank condition at .i C 1; j /, is violated, and
similarly in other cases. So jfi� j < j� j.

We conclude in the end that � 2 ".i; �/, fi� ¤ � . In that case, from
Theorem 4.7, Ea

� \ F� � F� \ ¹si .M/ D siC1.M/º. In fact, one can
easily show the equality – the proof is given in type yA in [17, Appendix B],
but it works in all types, so we shall not repeat it here. In the proof of
Proposition 5.4 we have seen that F� \ ¹si.M/ D siC1.M/º is irreducible
and that its closure is Xa

�;i .

The other two cases are obtained by assuming that F� is of dimension
dimEa

N � 1, applying Corollary 4.4 again, and eliminating cases by more of
the same dimension considerations. In the end we �nd either:

(2) � has a crossing of the form

a0

a

b0

b

;

which forces it to be �.i/ D N � i , �.i C 1/ D N � i C 1, and �.j / D �.j /

for j ¤ i; i C 1. In this case we claim that F� \ E� D F� . This is
identical to case (2) in the proof of Proposition 5.4. First we check that
zBN � � i

< � zBN � � i
<. Indeed, the matrix P with submatrix

0

B
B
B
@

t 0 0 0

0 1=t �1=t 0

0 0 t 0

0 0 0 1=t

1

C
C
C
A

at rows i; iC1; N�i; N�iC1 and identity elsewhere is symplectic and sends
� i

< to P� i
<P

�1 D � i
< CO.t2/. We then conclude that E� \ F� D F� \ F�
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is a vector bundle over zBN � � i
<, and that the dimension of its �ber matches

that of F� , which implies E� \ F� D F� .

If a D c, we show in Appendix C that F� is SL.i/
2 -invariant.

If a D i, F� D Xa
�;i with �.i/ D N � i C 1, �.i C 1/ D N � i , i.e., this is

the second case considered in the proof of Proposition 5.4. We �nd this way
Xa

�;i with fi� D �; or,

(3) � has two �xed points which forces it to be �.i/ D i , �.i C 1/ D i C 1

and �.j / D �.j / for j ¤ i; i C 1. This is only possible for a D p, and the
corresponding component is SL.i/

2 -invariant, as discussed in [17, sect. 5.4].

What we have obtained is a set-theoretic decomposition of

Ea
� \ ¹Mi;iC1 D 0º;

and we need to calculate multiplicities. This computation is performed in Appen-
dix B.

Multidegree equality. As usual, intersections of (irreducible) varieties with
hypersurfaces result in the multidegree identities

mdeg.Ea
� \ ¹Mi;iC1 D 0º/ D .AC zi � ziC1/mdegEa

� ;

mdeg.Ea
� \ ¹si .M/ D siC1.M/º/ D .2A � �/mdegEa

�:

Finally, the decomposition of Proposition 5.5 combined with Proposition 5.4
translates into

.ACzi �ziC1/mdegEa
� D

X

�2".�;i/

2
ı�i ;r ı�iC1;`.2A��/mdegEa

� .mod Ker @0
i /;

where we have used Lemma 5.2 to take care of the SL.i/
2 -invariant terms.

We now apply �@0
i and multiply by 2AC ziC1 � zi � �:

.2AC ziC1 � zi � �/.AC zi � ziC1/.�@i/mdegE�

D .2A � �/
X

�2".�;i/

2
ı�i ;r ı�iC1;`.2AC ziC1 � zi � �/.�@0

i/mdegE�

D .2A � �/
X

�2".�;i/

2
ı�i ;r ı�iC1;`.mdegE� C mdegEfi �/ (using eq. (52))

D .2A � �/
X

�2e�1
i

.�/�¹�º

2
ı�i ;b=`=rı�iC1;b=`=r mdegE�:
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Now note that all the � 2 e�1
i .�/�¹�º such that i and iC1 are not both connected

to a boundary have the same number of chords as � , whereas the ones such that
they are have one extra chord, which matches the power of 2 above; therefore,
using (44), we �nd

.2AC ziC1 � zi � �/.AC zi � ziC1/.�@i/�
a
� D .2A � �/

X

�¤�Wei �D�

�a
�:

5.3. Geometry of the boundary exchange relations. In what follows we are
necessarily in type yC.

5.3.1. The invariant components

Proposition 5.6. Given a link pattern � , Ea
� is SL.L/

2 -invariant if and only if

�.L/ ¤ LC 1.

Proof. The SL.L/
2 -invariance of Ea

� when �.L/ ¤ LC 1 is given in Appendix C.
Conversely, if �.L/ D LC 1, SL.L/

2 ��t has entries below the diagonal, so the
corresponding component cannot be invariant.

Multidegree equality. Assume now that �.L/ ¤ LC 1 (or, using the alternate
notation, �.L/ ¤ r). Note that this is necessarily the case if a 2 ¹c;mº.

We apply Lemma 5.2, minding, as explained right below it, the conjugation of
the divided di�erence operator, and �nd:

�a
� is an even polynomial in zL �

´

1 a 2 ¹c;mº;

AC 2zL a 2 ¹i; oº; �.L/ ¤ r:

With the exact same arguments, we �nd at the left boundary:

�a
� is an even polynomial in z1 �

´

1 a D c;

A � 2z1 C � a 2 ¹i; o;mº; �.1/ ¤ `:

5.3.2. The noninvariant components. We now assume that �.L/ D L C 1

(which implies a 2 ¹i; oº). The geometric construction corresponding to the
boundary exchange relation (15) is the following:

� cut Ea
� with ML;LC1 D 0;

� throw away the SL.L/
2 -invariant components, and sweep with SL.L/

2 , produc-
ing

[

�¤�WeL�D�

Ea
�:
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Determination of the result of cutting. Given a link pattern � such that �.L/ ¤

LC1, de�ne Y a
� to be the closure of F�0 , where �0 is obtained from � by permuting

the images of L and LC 1, i.e.,

� D
L

LC1
; �0 D

L

LC1
:

Note that �0 is no longer a link pattern; in fact, acording to Corollary 4.4, dimY a
� D

dimEa
N � 1.

Lemma 5.7. Y a
� � Ea

� \Ea
eL�:

Proof. This is exactly [17, lemma 15] at i D L intersected with M
a
N , taking into

account the remark after Conjecture 4.1.

In fact, just as in [17, lemma 15], we conjecture equality.

Proposition 5.8. The geometric components of Ea
� \ ¹ML;LC1 D 0º are the Y a

� ,

� 2 e�1
L .�/ � ¹�º and some SL.L/

2 -invariant pieces. The multiplicity of Y a
� in

Ea
� \ ¹ML;LC1 D 0º is 1.

Proof. (We give the proof for a D i) The proof is very similar to that of Proposi-
tion 5.5. Ea

� \¹ML;LC1 D 0º is of dimension one less thanEa
N , so we decompose

Ea
� \ ¹ML;LC1 D 0º D

G

�W�.L/¤LC1

.Ea
� \ F� /;

and consider pieces of dimension dimEa
N � 1.

(1) If � is a link pattern, we show in Appendix C that any irreducible component
of Ea

� \ F� of dimension dimEa
N � 1 is SL.L/

2 -invariant.

The other two cases are obtained by assuming F� is of dimension
dimEa

N � 1, applying Corollary 4.4 again, and eliminating cases by more
of the same dimension considerations. In the end we �nd one of the follow-
ing two cases.
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(2) � has a crossing of the form

a0

a

b0

b

;

which forces it to be of the form �0 described above, where � is a link
pattern such that eL� D � , � ¤ � . In this case, according to Lemma 5.7,
F� \ Ea

� D F� and its closure is Y a
� .

(3) � has two �xed points which forces it to be �.L/ D L, �.L C 1/ D L C 1

and �.j / D �.j / for j ¤ L;L C 1. The corresponding component is
SL.L/

2 -invariant, as proved in Appendix C.

The multiplicity computation is performed in Appendix B.

The degree of the sweeping map. The �ber of the map

SL.L/
2 �B.L/Y

a
� �! SL.L/

2 �Y a
�

is more di�cult to study than in Section 5.2.1 because we have the identity
sL.M/ D sLC1.M/ (by symplectic symmetry), which means the block of M 2

on the N th diagonal provides us no useful information. Instead we proceed as
follows.

Since the SL.L/
2 action is a group action, we can as usual look at the �ber

¹.P;M/ j PMP�1 D M 0º of an elementM 0 2 Y a
� . Consider the ranks of succes-

sive submatrices ofM 0 southwest of entries .�.L/; L�1/; .�.L/; L/; .�.L/;LC1/,
respectively. Since M 0 2 Y a

� , these must be of the form r; r; r C 1, where r is the
number of pairings inside ¹�.LC 1/C 1; : : : ; L� 1º, e.g.,

� D
�.LC1/

LC1

L
�.L/

; �0 D
�.LC1/

LC1

L
�.L/

; r D 2:

Now conjugateM 0 with P 2 SL.L/
2 ; the e�ect is to mix columns L and LC1, and

the same ranks for P�1M 0P (for generic P ) are r; r C 1; r C 1. This violates the
rank equations of M unless P does not send column LC 1 to L, i.e., P 2 B.L/.
This is equivalent to saying that the �ber of the map SL.L/

2 �B.L/Y a
� ! SL.L/

2 �Y a
�

is of cardinality 1.
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Determination of the result of sweeping. According to Lemma 5.7, Y a
� � Ea

�,

and Ea
� is SL.L/

2 -invariant by Proposition 5.6. So SL.L/
2 �Y a

� � Ea
�, and since the

�ber above is �nite, and dimY a
� D dimEa

N � 1, SL.L/
2 �Y a

� and Ea
� have the same

dimension. We conclude from irreducibility of Ea
� that

SL.L/
2 �Y a

� D Ea
�: (53)

Multidegree identity. Proposition 5.8 implies that

.AC 2zL/mdegEa
� D

X

�¤�WeL�D�

mdegY a
� :

We then sweep with SL.L/
2 , apply Lemma 5.2 with the generic �ber of cardi-

nality 1, and obtain using (53)

.AC 2zL/.�@L/mdegEa
� D

X

�¤�WeL�D�

mdegEa
�:

Finally, noting that � has one more chord than the � ¤ � such that eL� D � ,
we have

.AC 2zL/.�@L/�
a
� D 2

X

�¤�WeL�D�

�a
�:

5.4. Geometry of the recurrence relations. This section follows closely [16,
Section 6], which covers the periodic case. Here we consider a 2 ¹i; cº.

5.4.1. The bulk recurrence

Proposition 5.9. Fix an i , 0 < i < n. For a link pattern � D 'i O� ,

�a
�.ziC1 D AC zi / D A2pa

i .zi j : : : ; Ozi ; OziC1; : : : /�
a
O�.: : : ; Ozi ; OziC1; : : : /;

where pi
i and pc

i are given in (28), and 'i was de�ned in Lemma 2.2.

Remark. Note that if �.i/ ¤ i C 1, Mi;iC1 D 0 so the multidegree disappears
when .AC zi � ziC1/ D 0.

Proof. We de�ne the hyperplane

H a D M
a
N \ ¹Mjk D 0 j .j; k/ 2 cl.i; i C 1/º;

and the linear spaces

Li D C.ei;iC1 � eN �i;N �iC1/; Lc D C.ei;iC1 C eN �i;N �iC1/;
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noting M
a
N D H a � La. The equations de�ning Ea

� can be written as

qjM
dj

i;iC1 C rj D 0; j D 0; 1; : : : ; (54)

where in the j th equation, dj is the highest power ofMi;iC1, qj is the coe�cient of

M
dj

i;iC1, and rj is the remainder. Now call‚a
� the scheme de�ned by the equations

qj D 0, 8j . This can also be thought of as the result of taking Mi;iC1 to in�nity
in Ea

� . Then by [15, Corollary 2.6], we have

mdeg
M

a
N
Ea

�

ˇ
ˇ
ACzi �ziC1D0

D mdegH a ‚
a
�

ˇ
ˇ
ACzi �ziC1D0

:

We can now extract some factors of the RHS by examining the de�ning equations
of ‚a

� .
Amongst the de�ning equations of Ea

� are the de�ning equations of Ea
N :

.M 2/kl D

l�1
X

j DkC1

MkjMjl D 0; l � k < N; l ¤ N � k C 1:

Writing these equations in the form (54), we �nd that dj can either equal 1 or 0.
For dj D 1we must have k D i or l D iC1, meaning that the following equations
form part of the de�nition of ‚a

� :

Mjk D 0; .j; k/ 2 cl.i C 1; a/; a ¤ i; i C 1; N � i C 1;

Mjk D 0; .j; k/ 2 cl.b; i/; b ¤ i; i C 1; N � i;

and with these substituted into the remaining equations we �nd no dependence on
Mjk when .j; k/ 2 cl.i; a/ for all a ¤ iC1, cl.b; iC1/ for all b ¤ i , or cl.iC1; i/
(see Figure 4).

i
iC1

N �i
N �iC1

N
�

i
N

�
iC

1

N
C

i
N

C
iC

1

Figure 4. The fundamental region of a generic matrix with i or c-type symmetry. The black
entry has been taken to in�nity. In the de�ning equations of ‚a

� , there is no dependence
on those entries shaded with slanted lines, and the grey entries are equal to zero.
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Taking the leading coe�cient ofMi;iC1 in each of the other equations satis�ed
by Ea

� (as listed in Theorem 4.7), we �nd these are also independent of all the
matrix elements with an index of i , iC1,N � i , orN � iC1. We further �nd that
they are exactly the equations of Theorem 4.7 that are satis�ed on Ea

O�
, where O� is

the involution of size N � 4 that is � with the links from i to i C 1 and N � i to
N � i C 1 removed. Since, as observed after Theorem 4.7, these equations de�ne
Ea

O�
up to lower dimensional pieces, and the �at limit of Ea

� is equidimensional,
we conclude that after removal of rows and columns i , iC1,N � i , andN � iC1,
we obtain Ea

O�
(up to embedded components, which are irrelevant for multidegree

purposes).

We can therefore relate the multidegree of ‚a
� to the multidegree of Ea

O�
, by

intersecting ‚a
� successively with a series of hyperplanes and using the inductive

de�nition of the multidegree. The hyperplanes we use are the ones de�ned by
Mjk D 0 for j or k in cl.i/ or cl.i C 1/ (with the exception of .j; k/ 2 cl.i; i C 1/

and, in the closed case, any choice of j and k for which j D N � k C 1, because
the matrix entries on the symmetry axis are already zero by de�nition). The result
of intersecting H a with these hyperplanes is Ma

N �4, so we have

mdegH i ‚
i
�

ˇ
ˇ
ACzi �ziC1D0

D A2.A � 2zi � �/.3AC 2zi /

n
Y

a¤i;iC1

.2AC za C zi/.A � za � zi � �/

i�1
Y

aD1

.AC za � zi /.2A � za C zi � �/

n
Y

aDiC2

.AC za � zi � �/.2A � za C zi/mdeg
M

i
N�4

Ei
O� ;

mdegH c ‚
c
�

ˇ
ˇ
ACzi �ziC1D0

D A2

n
Y

a¤i;iC1

.2AC za C zi /.A� za � zi � �/

i�1
Y

aD1

.AC za � zi /.2A � za C zi � �/

n
Y

aDiC2

.AC za � zi � �/.2A � za C zi/mdeg
M

c
N�4

Ec
O� :

Using (44), we have the result.
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Similar arguments can be used to reproduce Proposition 5.9 in the cases
a 2 ¹o;mº.

5.4.2. The boundary recurrence

Proposition 5.10. For a link pattern � D Q'n O� ,

�i
�.zn D �A=2/ D A pi

n.z1; : : : ; zn�1/ �
i
O�.z1; : : : ; zn�1/;

and for a link pattern � D Q'0 O� ,

�i
�.z1 D .A � �/=2/ D A pi

0.z2; : : : ; zn/ �
i
O�.z2; : : : ; zn/;

where pi
n and pi

0 are given in (34).

Remark. As before, if �.n/ ¤ n C 1 (resp. �.1/ ¤ N ), then Mn;nC1 D 0

(MN1 D 0) and the multidegree disappears when zn D �A=2 (z1 D .A � �/=2).
Further, note that the proposition only refers to the identi�ed case; in the closed
case the below proof does not work because Mn;nC1 and MN1 are both zero by
de�nition, and thus do not appear in the de�ning equations. Since we only consider
the identi�ed case we will drop the i superscript for the proof.

Proof. Right boundary: We de�ne

H D MN \ ¹Mn;nC1 D 0º; L D Cen;nC1:

As before we write the de�ning equations of E� in the form qjM
dj

n;nC1 C rj D 0,
and call ‚� the scheme de�ned by qj D 0 for all j . Again by [15, Corollary 2.6],

mdegE�

ˇ
ˇ
AC2znD0

D mdegH ‚�

ˇ
ˇ
AC2znD0

:

From the de�ning equations ofEN we �nd in the de�nition of‚� the following
equations (see Figure 5):

Mjk D 0; .j; k/ 2 cl.a; n/; a ¤ n; nC 1;

and we also �nd no dependence on Mjk for .j; k/ 2 cl.n; a/ 8a ¤ n C 1 or
.j; k/ 2 cl.nC 1; n/. We again �nd that the rest of the equations de�ning ‚� are
exactly the equations de�ning E O� , where O� is the involution of size N � 2 that is
� with the link from n to nC 1 removed.
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n
nC1

n
C

1

N
C

n

Figure 5. The fundamental region of a generic matrix with i-type symmetry. The black
entry has been taken to in�nity. In the de�ning equations of ‚� , there is no dependence
on those entries shaded with slanted lines, and the grey entries are equal to zero.

Intersecting ‚� with hyperplanes de�ned by Mjk D 0 for j or k in cl.n/,
excepting .j; k/ 2 cl.n; nC 1/, we �nd

mdegH ‚�

ˇ
ˇ
AC2znD0

D A

n�1
Y

aD1

.3AC 2zj /.3A � 2zj � 2�/

4
mdeg

M
i
N�2

E O� ;

and again using (44), we have the result.

Left boundary: The previous argument can be slightly modi�ed, to obtain

mdegE�

ˇ
ˇ
A�2z1��D0

D A

n
Y

aD2

.3A � 2zj � �/.3AC 2zj � �/

4
mdeg

M
i
N�2

E O� ;

where O� is the involution of size N � 2 that is � with the link from 1 to N
removed.

A similar argument can be made to reproduce Proposition 5.10 in the case
a D o, as well as in the case a D m where only the right boundary statement
applies.

5.5. The specialization � D 2A. We mention an interesting specialization of
the �� , which is � D 2A. Note that this corresponds to the loop weight ˇ being
in�nite.
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Proposition 5.11. One has

�
p
� j�D2A D AL.�1/j�j

Y

1�i<j �L
j ¤�.i/

.AC zi � zj /;

�i
� j�D2A D AL.�1/j�j

L
Y

iD1

.AC 2zi /
Y

1�i<j �L
j ¤�.i/

.AC zi � zj /.AC zi C zj /;

�c
� j�D2A D AL.�1/j�j

Y

1�i<j �L
j ¤�.i/

.AC zi � zj /.AC zi C zj /;

�o
� j�D2A D AL

Y

1�i<j �L

.zi � zj /.zi C zj /.AC zi � zj /.AC zi C zj /

L
Y

iD1

8

ˆ̂
<

ˆ
:̂

AC 2zi �.i/ D `;

�2zi �.i/ D r;

0 otherwise;

�m
� j�D2A D

8

ˆ̂
<

ˆ̂
:

AL
Y

1�i<j �L

.zi � zj /.zi C zj /.AC zi � zj /.AC zi C zj /

� D .b; : : : ; b/;

0 otherwise;

where j�j is de�ned as the number of crossings of � , plus (the location of the

unpaired site minus one) in odd size for a 2 ¹p; cº.

Proof. The recurrence relations (27), (32) and (33), combined with the qKZ
system (10)–(11) or (13)–(15), provide an in�nite number of values for the �� ,
even after the specialization � D 2A. So we only need to check that all these
equations are satis�ed by the expression in the proposition. We leave it as an
exercise to the reader (see also [9, Lemma 2] for a similar proof).

It would be interesting to �nd a geometric interpretation of this specialization.

5.6. Conclusion. Noting that ALj�a
� for all � and all types a because this is

nothing but the product of weights of the equations Mi i D 0, i D 1; : : : ; L, it
is natural to rede�ne the �a

� by dividing them by AL; since Ea
N actually sits in

.Ma
N /�D0, we rede�ne

 a
� D m� mdeg.Ma

N
/�D0

Ea
� :
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The  a
� satisfy the qKZ system (10)–(11) or (13)–(15), as well as recurrence

relations of the form (27), (32) and (33). This shows existence of the would-be
solution of the qKZ system that was studied in Section 2, where its uniqueness
was proved.

In particular, by setting � D 0, we conclude from Proposition 3.2 that the  a
�

are the entries of the ground state of the Brauer loop model.

We also show:

Proposition 5.12. The greatest common denominator of the a
� j�D0, and therefore

of the  a
� , is 1.

Here we ignore possible numerical factors, i.e., consider the gcd as polynomi-
als with coe�cients in Q.

Proof. In types a 2 ¹p; cº, we use Proposition 5.11: the greatest common denomi-
nator of the �a

�=A
Lj�DAD0 is clearly 1.

In other types, we use Proposition 3.1: j‰i =gcd. �/ is the ground state eigen-
vector and therefore a solution of the qKZ system. But so is j‰i, so that the gcd
must be a Weyl-group invariant polynomial. We then use the fully factorized com-
ponents (20): from the degree of j‰i, the factors S must be equal to 1. Further-
more, by inspection, no nontrivial Weyl-group invariant polynomial divides them.
(Alternatively, we can use the form of the fully factorized components directly at
� D 0, since as remarked at the beginning of Section 3.3 they are the same as those
at generic � in which we set � D 0, and conclude by degree).

Consider now the sum rule Za
L D

P

�2LPa
L
 a

� at � D 0. It satis�es the
recurrence relations given in (43). These combined with the symmetry properties
specify Za

L as a function of say z1 at a certain number of points. In Appendix D,
this number is carefully computed for each type a and compared to the degree in
each variable ofZa

L. The former is found to be strictly lower than that the latter, so
that Za

L is speci�ed uniquely by these recurrence relations, along with the initial
condition 1 in size 0.

With the exception of the mixed case, the result can be written in determinant
or Pfa�an form. The expression for the periodic case comes from [9], and the
closed case comes from [7]. First de�ne

b.zi ; zj / D
.A2 � .zi � zj /

2/.A2 � .zi C zj /
2/

z2
i � z2

j

:
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The sum rules are

Z
p
L D

8

ˆ
ˆ̂
ˆ
<

ˆ
ˆ̂
ˆ
:

2L=2
Y

1�i<j �L

Ai;j Pf Bi;j;L; L even;

.�2/.LC1/=2
Y

1�i<j �L

Ai;j Pf

"

Bi;j;L Œ�1�1�j �L

Œ1�1�i�L 0

#

; L odd;

(55a)

Zi
L D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

2L=2
Y

1�i<j �L

b.zi ; zj / Pf Ci;j;L; L even;

2.LC1/=2
Y

1�i<j �L

b.zi ; zj / Pf

"

Ci;j;L Œ1�1�j �L

Œ�1�1�i�L 0

#

; L odd;

(55b)

Zc
L D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

2L=2
Y

1�i<j �L

b.zi ; zj /Pf Di;j;L; L even;

2.L�1/=2
Y

1�i<j �L

b.zi ; zj / Pf

"

Di;j;L Œ1�1�j �L

Œ�1�1�i�L 0

#

; L odd;

(55c)

and

Zo
L D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

.2A/L
Y

1�i<j �L

b.zi ; zj /
2 detCi;j;L; L even;

2.2A/L
Y

1�i<j �L

b.zi ; zj /
2 det

"

Ci;j;L Œ1�1�j �L

Œ�1�1�i�L 0

#

; L odd;

(55d)

where

Ai;j D
A2 � .zi � zj /

2

zi � zj
;

Bi;j;L D
h zi � zj

A2 � .zi � zj /2

i

1�i;j �L
;

Ci;j;L D
h.5A2 � 2z2

i � 2z2
j /

b.zi ; zj /

i

1�i;j �L
;

and

Di;j;L D
h 1

b.zi ; zj /

i

1�i;j �L
:
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Now we can compare these results to the localization formulae of Section 4.2.2.
It is an elementary check that based on them, the multidegree of Da

N divided
by AL satis�es the same recurrence relations (43) and the same initial condition
mdegDa

0 D 1. We therefore conclude

Theorem 5.13. We have the equality of multidegrees:

X

�2LPa
L

�a
� j�D0 D mdegDa

N ;

where N D L; 2L; 4L depending on a D p; i=c; o=m.

Recall that this multidegree is also equal to that of the �at limit ofDa
N , namely

Da
N I0 (see Section 4.2.1 for its de�nition). It is shown in Appendix B.1 that this

implies that Da
N I0 D Ea

N as sets and that m� is the multiplicity of Ea
� in either

Da
N I0 or zEa

N (which are conjecturally equal as schemes).

Appendices

A. Small size examples

A.1. Identi�ed case. L D 2:

 i
bb D 4.2A � s C z2 � z1/.AC z1 � z2/;

 i
21 D 2.A � s � 2z1/.AC 2z2/:

L D 3:

 i
21b D 4.A� s � 2z1/.AC z2 � z3/.AC z2 C z3/

.7A3 � 9A2s C 3As2 � 3Asz1

C 2s2z1 � 3Az2
1 C 2sz2

1 � 4A2z2 C 3Asz2

C 2sz1z2 C 2z2
1z2 � Az2

3 � 2z2z
2
3/;

 i
bbb D 8.2A � s C z3 � z2/.2A � s C z3 � z1/.2A � s C z2 � z1/

.AC z2 � z3/.AC z1 � z3/.AC z1 � z2/;

 i
3b1 D 4.A� s � z1 � z2/.A � s � 2z1/.AC 2z3/

.AC z2 � z3/.AC z2 C z3/.AC z1 � z2/;
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 i
b32 D 4.A� s � z1 � z2/.AC 2z3/.AC z1 � z2/

.7A3 � 7A2s C 2As2 � Asz1 C s2z1 � Az2
1 C sz2

1

C 4A2z2 � 3Asz2 C s2z2 C 2sz1z2 C 2z2
1z2

� 3Az2
3 C sz2

3 � 2z2z
2
3/:

A.2. Closed case. L D 3:

 c
21� D 4.AC z2 � z3/.AC z2 C z3/

.3A2 � 3As C s2 C sz1 C z2
1 � 2Az2 C sz2 � z2

3/;

 c
�32 D 4.A� s � z1 � z2/.AC z1 � z2/

.3A2 � 2As � sz1 � z2
1 C 2Az2 � sz2 C z2

3/;

 c
3�1 D 4.A� s � z1 � z2/.AC z2 � z3/.AC z2 C z3/.AC z1 � z2/:

L D 4:

 c
3412 D 4.AC z1 � z2/.AC z2 � z3/.AC z3 � z4/

.AC z3 C z4/.A � s � z1 � z2/

.5A3 � 6A2s C 3A2z2 � 3A2z3 C 2As2 � Asz1 � 3Asz2

C 2Asz3 � Az2
1 � 2Az2z3 � Az2

4 C s2z1 C s2z2 C sz2
1

C sz1z2 C sz1z3 C sz2z3 C z2
1z2 C z2

1z3 � z2z
2
4 � z3z

2
4/;

 c
2143 D 4.AC z2 � z3/

.23A7 � 59sA6 � 7z2A
6 C 7z3A

6 C 60s2A5 � 10z2
1A

5 � 11z2
2A

5

� 11z2
3A

5 � 10z2
4A

5 � 10sz1A
5 C 9sz2A

5 � 19sz3A
5

C 2z2z3A
5 � 28s3A4 C 3z3

2A
4 � 3z3

3A
4 C 28sz2

1A
4 C 23sz2

2A
4

C 19sz2
3A

4 C z2z
2
3A

4 C 14sz2
4A

4 � 10z2z
2
4A

4 � 18z3z
2
4A

4

C 28s2z1A
4 C 4s2z2A

4 C 18z2
1z2A

4 C 18sz1z2A
4 C 24s2z3A

4

C 10z2
1z3A

4 � z2
2z3A

4 C 10sz1z3A
4 C 5s4A3 C 3z4

1A
3 C 3z4

4A
3

C 6sz3
1A

3 � 5sz3
2A

3 C 3sz3
3A

3 � 4z2z
3
3A

3 � 20s2z2
1A

3

� 18s2z2
2A

3 C 4z2
1z

2
2A

3 C 4sz1z
2
2A

3 � 11s2z2
3A

3 C 9z2
1z

2
3A

3

C 3z2
2z

2
3A

3 C 9sz1z
2
3A

3 � 2sz2z
2
3A

3 � 9s2z2
4A

3 � 11z2
1z

2
4A

3

C 9z2
2z

2
4A

3 C 4z2
3z

2
4A

3 � 11sz1z
2
4A

3 C 21sz2z
2
4A

3 C 30sz3z
2
4A

3

C 16z2z3z
2
4A

3 � 23s3z1A
3 � 9s3z2A

3 � 18sz2
1z2A

3 � 18s2z1z2A
3
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� 14s3z3A
3 � 4z3

2z3A
3 � 4sz2

1z3A
3 � sz2

2z3A
3 � 4s2z1z3A

3

C 16z2
1z2z3A

3 C 16sz1z2z3A
3 � 5sz4

1A
2 � 3sz4

4A
2 C z2z

4
4A

2

C 3z3z
4
4A

2 � 10s2z3
1A

2 C 2s2z3
2A

2 � 4z2
1z

3
2A

2 � 4sz1z
3
2A

2

� s2z3
3A

2 � z2
1z

3
3A

2 C z2
2z

3
3A

2 � sz1z
3
3A

2 C 5sz2z
3
3A

2

C s3z2
1A

2 C 5s3z2
2A

2 � 11sz2
1z

2
2A

2 � 11s2z1z
2
2A

2 C 2s3z2
3A

2

� z3
2z

2
3A

2 � 11sz2
1z

2
3A

2 � 3sz2
2z

2
3A

2 � 11s2z1z
2
3A

2 C 2s2z2z
2
3A

2

C z2
1z2z

2
3A

2 C sz1z2z
2
3A

2 C 4s3z2
4A

2 C z3
2z

2
4A

2 C 4z3
3z

2
4A

2

C 14sz2
1z

2
4A

2 � 10sz2
2z

2
4A

2 � 3sz2
3z

2
4A

2 C 4z2z
2
3z

2
4A

2

C 14s2z1z
2
4A

2 � 15s2z2z
2
4A

2 C z2
1z2z

2
4A

2 C sz1z2z
2
4A

2

� 19s2z3z
2
4A

2 � z2
1z3z

2
4A

2 � z2
2z3z

2
4A

2 � sz1z3z
2
4A

2

� 19sz2z3z
2
4A

2 C 6s4z1A
2 C 3s4z2A

2 � 3z4
1z2A

2 � 6sz3
1z2A

2

� 3s2z2
1z2A

2 C 3s4z3A
2 � z4

1z3A
2 � 2sz3

1z3A
2 C 4sz3

2z3A
2

� 7s2z2
1z3A

2 C s2z2
2z3A

2 � 4z2
1z

2
2z3A

2 � 4sz1z
2
2z3A

2� 6s3z1z3A
2

� 2s3z2z3A
2 � 22sz2

1z2z3A
2 � 22s2z1z2z3A

2 C 2s2z4
1AC s2z4

4A

C z2
1z

4
4A � 2z2

2z
4
4A � z2

3z
4
4AC sz1z

4
4A � 2sz2z

4
4A � 3sz3z

4
4A

� 2z2z3z
4
4AC 4s3z3

1AC 3sz2
1z

3
2AC 3s2z1z

3
2AC 2z3

2z
3
3A

C sz2
2z

3
3A � 2s2z2z

3
3A � 2z2

1z2z
3
3A � 2sz1z2z

3
3AC 2s4z2

1A

� z4
1z

2
2A � 2sz3

1z
2
2AC 5s2z2

1z
2
2AC 6s3z1z

2
2A � 2z4

1z
2
3A

� 4sz3
1z

2
3AC 2sz3

2z
2
3AC s2z2

1z
2
3AC 2s2z2

2z
2
3AC z2

1z
2
2z

2
3A

C sz1z
2
2z

2
3AC 3s3z1z

2
3A � s3z2z

2
3A � 2sz2

1z2z
2
3A � 2s2z1z2z

2
3A

� s4z2
4AC z4

1z
2
4AC 2sz3

1z
2
4A � sz3

2z
2
4A � 3sz3

3z
2
4A � 4s2z2

1z
2
4A

C 4s2z2
2z

2
4AC z2

1z
2
2z

2
4AC sz1z

2
2z

2
4AC s2z2

3z
2
4AC z2

1z
2
3z

2
4A

C z2
2z

2
3z

2
4AC sz1z

2
3z

2
4A � 2sz2z

2
3z

2
4A � 5s3z1z

2
4AC 5s3z2z

2
4A

C sz2
1z2z

2
4AC s2z1z2z

2
4AC 6s3z3z

2
4A � 2z3

2z3z
2
4AC 3sz2

1z3z
2
4A

C 3s2z1z3z
2
4AC 9s2z2z3z

2
4AC 6z2

1z2z3z
2
4AC 6sz1z2z3z

2
4A

C sz4
1z2AC 2s2z3

1z2AC 4s3z2
1z2AC 3s4z1z2A � sz4

1z3A

� 2s2z3
1z3A � s2z3

2z3AC 2s3z2
1z3AC 3sz2

1z
2
2z3AC 3s2z1z

2
2z3A

C 3s4z1z3AC s4z2z3A � 2z4
1z2z3A � 4sz3

1z2z3AC 6s2z2
1z2z3A

C 8s3z1z2z3A � z3
3z

4
4 C sz2

2z
4
4 � z2z

2
3z

4
4 C s2z2z

4
4 C z2

1z2z
4
4

C sz1z2z
4
4 C s2z3z

4
4 C z2

1z3z
4
4 C sz1z3z

4
4 C sz2z3z

4
4 C z4

1z
3
2

C 2sz3
1z

3
2 C s2z2

1z
3
2 � sz3

2z
3
3 � s2z2

2z
3
3 � z2

1z
2
2z

3
3 � sz1z

2
2z

3
3

C 2sz4
1z

2
2 C 4s2z3

1z
2
2 C 2s3z2

1z
2
2 C sz4

1z
2
3 C 2s2z3

1z
2
3 � s2z3

2z
2
3
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� z2
1z

3
2z

2
3 � sz1z

3
2z

2
3 C s3z2

1z
2
3 � s3z2

2z
2
3 � 2sz2

1z
2
2z

2
3 � 2s2z1z

2
2z

2
3

� sz4
1z

2
4 � 2s2z3

1z
2
4 � z2

1z
3
2z

2
4 � sz1z

3
2z

2
4 C s2z3

3z
2
4 C z2

1z
3
3z

2
4

C z2
2z

3
3z

2
4 C sz1z

3
3z

2
4 C sz2z

3
3z

2
4 � s3z2

1z
2
4 � s3z2

2z
2
4

� 2sz2
1z

2
2z

2
4 � 2s2z1z

2
2z

2
4 C z3

2z
2
3z

2
4 C sz2

2z
2
3z

2
4 C s2z2z

2
3z

2
4

C z2
1z2z

2
3z

2
4 C sz1z2z

2
3z

2
4 � s4z2z

2
4 � z4

1z2z
2
4 � 2sz3

1z2z
2
4

� 3s2z2
1z2z

2
4 � 2s3z1z2z

2
4 � s4z3z

2
4 � z4

1z3z
2
4 � 2sz3

1z3z
2
4

C sz3
2z3z

2
4 � 3s2z2

1z3z
2
4 � z2

1z
2
2z3z

2
4 � sz1z

2
2z3z

2
4 � 2s3z1z3z

2
4

� 2s3z2z3z
2
4 � 4sz2

1z2z3z
2
4 � 4s2z1z2z3z

2
4 C s2z4

1z2

C 2s3z3
1z2 C s4z2

1z2 C s2z4
1z3 C 2s3z3

1z3 C s4z2
1z3 C z4

1z
2
2z3

C 2sz3
1z

2
2z3 C s2z2

1z
2
2z3 C 2sz4

1z2z3 C 4s2z3
1z2z3 C 2s3z2

1z2z3/;

 c
4321 D 4.AC z1 � z2/.AC z3 � z4/.AC z3 C z4/.A� s � z1 � z2/

.11A4 � 18A3s C 8A3z2 � 8A3z3 C 10A2s2 � 3A2sz1 � 11A2sz2

C 8A2sz3 � 3A2z2
1 C A2z2

2 � 8A2z2z3 C A2z2
3 � 3A2z2

4 � 2As3

C 3As2z1 C 5As2z2 � 2As2z3 C 3Asz2
1 C 2Asz1z3 � Asz2

2

C 6Asz2z3 C 2Asz2
4 C 2Az2

1z3 � 2Az2
2z3 C 2Az2z

2
3 � 2Az2z

2
4

� s3z1 � s3z2 � s2z2
1 � s2z1z2 � s2z1z3 � s2z2z3 � sz2

1z2

� sz2
1z3 � sz1z

2
2 C sz1z

2
4 C sz2

2z3 C sz2z
2
4 � z2

1z
2
2 C z2

1z
2
4

C z2
2z

2
3 � z2

3z
2
4/:

A.3. Open case. L D 2:

 o
r` D 4.A� s � 2z1/.AC 2z2/.AC z1 � z2/.AC z1 C z2/

.A � s � z1 � z2/.A� s � z1 C z2/;

 o
`` D 4.AC 2z2/.AC z1 � z2/.AC z1 C z2/.AC 2z1/

.2A � 2s � z1 � z2/.2A � 2s � z1 C z2/;

 o
rr D 4.AC z1 � z2/.A � s � 2z2/.A � s � z1 � z2/.A � s � 2z1/

.2A � 2s � z1 C z2/.2A � s C z1 C z2/;

 o
`r D 4.A� s � z1 � z2/.AC z1 � z2/.AC z1 C z2/

.11A3 � 26A2s C 19As2 � 4s3 � 3A2z1 C Asz1 C 2s2z1 � 2Az2
1

C 2sz2
1 C 3A2z2 � 7Asz2 C 4s2z2 � 8Az1z2 C 10sz1z2

C 4z2
1z2 � 2Az2

2 � 4z1z
2
2/;

 o
21 D 2.A� s/.A � s � 2z1/.AC 2z2/.2A � s/

.5A2 � 7As C 2s2 � 2sz1 � 2z2
1 � 2z2

2/:
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A.4. Mixed case. L D 2:

 m
21 D 2.A � s/.AC 2z2/.4A

2 � 5As C 2s2 C 2sz1 C 2z2
1 � 2z2

2/;

 m
rr D 4.2A � s C z1 C z2/.2A� 2s � z1 C z2/.A � s � z1 � z2/.AC z1 � z2/:

B. Multiplicity computations

B.1. Multiplicity of Ea
� in zEa

N
. We consider here the tangent cone of zEa

N at
the point �t (t generic diagonal) of Ea

� , which is de�ned by taking the leading
terms of the ideal of equations of zEa

N expanded around that point. Let us write
M D �tCP . Among the equations for P , we obtain of course all the equations of
the tangent space, which were computed in the proof of Theorem 4.5; furthermore,
the diagonal entries now satisfy M 2

ii D 0, or equivalently P 2
ii D 0. Also, the

equations .P�t C �tP /ij D 0 are now nontrivial when j D �.i/, resulting in
(after simplifying with tj ¤ 0)

Pi i C Pjj D 0; i D �.j /:

In principle there may be more equations in the ideal of leading terms; as we shall
see, this is already enough to get a bound on the multiplicity, which we shall then
show is saturated.

According to the above, the other nonlinear equations concern the diagonal
entries of P ; they all satisfy P 2

ii D 0, but those connected by either � or
by the symplectic symmetry are equal, so the number of independent variables
that square to zero is exactly the number of chords in the link pattern, plus
the number of �xed points (the latter only occur for odd L, a 2 ¹p; cº). So
we �nd that the tangent cone sits inside a scheme of degree equal to m� D

2#¹chords.�/ºC#¹�xed points.�/º, and is of the same dimension (the would-be extra
equations cannot change the dimension of the tangent cone, since the point �t
is smooth in Ea

N , as found in the proof of Theorem 4.5). Therefore the degree
of the tangent cone is less than or equal to m� . Since the equations of zEa

N are
invariant by conjugation and the union of orbits by conjugation of the �t is dense
in Ea

� (Theorem 4.6), this is also true of the multiplicity of Ea
� in zEa

N . Therefore,
we have

mdeg zEa
N �

X

�

m� mdegEa
� D

X

�

�a
� ;

where inequality is here in the sense of multidegrees with positive multigrading,
see e.g. [17, lemma 12] for details. We now specialize the multidegrees by setting
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� D 0 (this corresponds to equivariance w.r.t. a codimension 1 subtorus, and does
not spoil positivity of the multigrading).

According to Theorem 5.13 and (46),

mdegDa
N I0j�D0 D

X

�

�a
� j�D0;

and according to Proposition 4.1, Da
N I0 � zEA

N as schemes. Therefore the in-

equality, mdeg zEa
N � mdegDa

N I0 is an equality, and zEa
N andDa

N I0 have the same
top-dimensional irreducible components, with the same multiplicities. Finally,
the equation above determines them to be:

multiplicity of Ea
� in zEa

N D m� D 2#¹chords.�/ºC#¹�xed points.�/º:

B.2. Multiplicity of Xa
�;i

. In this section, given a link pattern � such that j�j �

jfi�j, we compute the multiplicity of Xa
�;i in either Ea

� \ ¹si .M/ D siC1.M/º or
Ea

� \ ¹Mi;iC1 D 0º (assuming � 2 ".�; i/).
We consider a point of the form �t where the tj ’s are nonzero and ti t�.i/ D

tiC1t�.iC1/. By direct inspection, �t 2 Xa
�;i . First we compute its Zariski tangent

space in Ea
N . This is the exact same calculation that was performed in the proof

of Theorem 4.5, so we do not repeat it here. In fact all the cases that we need here
are given in the proof. For a D i:

(2) If i and i C 1 are both connected to the boundary in �, then the counting is
the same.

(3) If one of the two is connected to the boundary in �, say iC1, then naively there
is one less independent equation because ti t�.i/ D tiC1t�.iC1/. However, the
two equations which become proportional involve the variable Pi;iC1, which
is here equal to Mi;iC1 D 0 either from Theorem 4.7 in Ea

� or by de�nition
in Ea

� \ ¹Mi;iC1 D 0º, so that we are back to the original count.

(4) Finally, if neither is connected to the boundary, then we lose two equations.
Once again, reimposing Pi;iC1 D Mi;iC1 D 0 gives one more equation.
Similarly, consider the rank condition on the interval Œi C 1; �.i/� for either
Ea

� or Ea
�: rm.M/iC1;�.i/ D rm.�/iC1;�.i/ D rm.�/iC1;�.i/ D r , where

.j1; �.j1//; : : : ; .jr ; �.jr// are all the chords inside Œi C 1; �.i/�. Now con-
sider the .r C 1/� .r C 1/ submatrix ofM with row indices i C 1; j1; : : : ; jr

and column indices �.j1/; : : : ; �.jr/; �.i/. Its determinant must vanish; ex-
panding at �rst order M D �t C P , the only contribution in the expansion
of the determinant is obtained by matching ja with �.ja/, a D 1; : : : ; r , and
therefore i C 1 with �.i/. This implies PiC1;�.i/ D 0, which recreates the
second missing equation.



Type yC Brauer loop schemes and loop model with boundaries 249

For a D c:

(1) In odd size, if either i or i C 1 is a �xed point of �, then the counting is the
same.

(2) Otherwise, we lose two equations involving Pi;iC1 and PiC1;�.i/, which just
as above, are recovered by imposing Mi;iC1 D 0 and the rank condition in
the interval Œi C 1; �.i/�.

So in all cases, we �nd that the number of equations is the same as in the
proof of Theorem 4.5, so at this stage the dimension we would get out of this
computation is dimEa

N , which is one more than the target dimension dimXa
�;i .

However, we have not yet used the additional equation: si .M/ D siC1.M/,
which is valid either by de�nition Ea

� \ ¹si.M/ D siC1.M/º or from Theorem 4.7
in Ea

� \ ¹Mi;iC1 D 0º. If we expand at �rst order we obtain

t�.i/P�.i/;i C Pi;�.i/ti D t�.iC1/P�.iC1/;iC1 C PiC1;�.iC1/tiC1:

One can check explicitly in all cases that this equation is independent from the
ones above, thus showing that the dimension is equal to that of Xa

�;i .
Note that the reasoning above fails in type a D o in the case that �.i/ D r ,

�.i C 1/ D `, in the sense that the tangent space has dimension one more than
that of the space. In this case one needs to consider the tangent cone itself, which
turns out to be of degree 2.

B.3. Multiplicity of Y a
� . Recall that given a link pattern � such that �.L/ ¤

L C 1, we can associate to it the involution �0 where the images of L and L C 1

are swapped. By de�nition of Y�, �0t , t generic diagonal, is in Y a
� . We wish

to calculate the Zariski tangent space of �0t inside Ea
� \ ¹ML;LC1 D 0º, where

� D eL.�/.
It is not hard to check that the counting of equations is the same as in the

proof of Theorem 4.5 for �t in type a D i, except the equations involving only
¹L;LC 1; �.L/; �.LC 1/º which we redo here:

�0 D

�.LC1/

LC1
L

�.L/

; tLPL;LC1 C tLC1P�.LC1/;�.L/ D 0:

So we have one less equation than for �t , whereas we need one more.
The �rst extra equation is obviously ML;LC1 D 0 which implies PL;LC1 D 0.

The second equation comes from the rank condition (Theorem 4.7) for Ea
� in the

interval Œ�.L/; L�, which implies P�.L/;L D 0.
In total, we �nd that the Zariski tangent space has dimension one less thanEa

N ,
which is the dimension of Y a

� .
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C. SL
.i /

2
-invariance of certain subvarieties of Ea

N

Consider a subvariety V � Ea
N , and its image under conjugation by a subgroup

SL.i/
2 , as de�ned in Section 5.1. As a �rst remark, to prove SL.i/

2 -invariance of V ,

we only need to show that dim.SL.i/
2 �V / D dimV , since SL.i/

2 �V contains V and
is irreducible of the same dimension as V .

Next, note that if V is to be SL.i/
2 -invariant, then in particular SL.i/

2 �V � Ea
N .

It is easy to see that the only equation of Ea
N that is potentially violated by

sweeping with SL.i/
2 is .M 2/iC1;iCN D 0. Explicitly, if M D PM 0P�1 with

M 0 2 V , then

.M 2/iC1;iCN D PiC1;iC1PiC1;i ..M
02/i i � .M 02/iC1;iC1/�P 2

iC1;i.M
02/i;iCN C1:

(56)

Note that .M 2/i;iCN C1 is well-de�ned in the quotient spaceMa
N only ifMi;iC1 D

0 in V , which will be the case below.
Also, if, as in all cases below, one has V � ¹si.M/ D siC1.M/º, then the

equation above simpli�es to

.M 2/iC1;iCN D �P 2
iC1;i.M

02/i;iCN C1: (57)

C.1. Bulk case. Here i D 1; : : : ; L� 1.

C.1.1. F� \ ¹si D si C1º for �.i / ¤ i C 1; fi � D �. This is case (1) of the proof
of Proposition 5.4 with fi� D �. Necessarily, a D i. Call

V D F� \ ¹si .M/ D siC1.M/º:

First we check that .M 2/iC1;iCN D 0 in SL.i/
2 �V . Since all entries of M 2

to the left of and below .i; i C N C 1/ are known to be zero, this equation is
zBN -invariant and so we only need to use (57) with M 0 D �i

< C ƒ where
ƒ 2 ga

N =R
a
N . Now

.M 02/i;iCN C1 D .�i
</i;N �iC1ƒN �iC1;N CiC1 D ƒ�iC1;iC1:

By a similar calculation,

0 D .M 02/iC1;iCN D ƒ�i;i :

These two entries are related by the symplectic symmetry .a; b/ 7! .1� b; 1� a/

and are therefore equal. So .M 02/i;iCN C1 D 0.
By density and zBN -invariance, this implies that SL.i/

2 �V � .SL.i/
2 �Ea

�/\E
a
N D

Ea
� from Section 5.2.1.
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We also learnt in the proof of Lemma 5.3 that sweeping can only permute si
and siC1, so we conclude that SL.i/

2 �V � Ea
� \ ¹si D siC1º. The latter being of

the same dimension as the former, we conclude that V is SL.i/
2 -invariant.

C.1.2. F� where � is a link pattern except �.i / D N �i , �.i C1/ D N �i C1.

This is case (2) of the proof of Proposition 5.5. Here, a D c, and V D F� .
We follow the same reasoning as above, and consider (56) withM 0 D � i

< Cƒ.
First we �nd that si .M 0/ D ƒ�i;i and siC1.M

0/ D ƒ�iC1;iC1, and once again
these entries are related by the symplectic symmetry so si .M 0/ D siC1.M

0/.
Therefore, we are reduced to (57), and we have:

.M 02/i;iCN C1 D .� i
</i;N �iƒN �i;iCN C1:

But ƒN �i;iCN C1 is such that the sum of its row and column is equal to 1 mod N ,
which means it is on the axis of the symplectic symmetry, which means in type
a D c that it is zero.

So SL.i/
2 �V � Ea

N . Sweeping can at best permute si and siC1 and leave the
other sj unchanged, and preserves the equation Mi;iC1 D 0, so

SL.i/
2 �V � .Ea

� \ ¹Mi;iC1 D 0º/ [
[

�¤�

.Ea
� \ ¹sj D s�.j /; j ¤ i; i C 1º/:

It is easy to check that the RHS is of dimension Ea
N � 1, just like V itself. By the

same argument as above, we conclude that V D F� is SL.i/
2 -invariant.

C.2. Boundary case. We only do the right boundary, i.e., i D L. The left
boundary can be treated similarly.

C.2.1. Ea
� where �.L/ ¤ L C 1. Here V D Ea

� . If �.L/ ¤ L C 1, then any
M 2 Ea

� satis�es ML;LC1 D 0 by Theorem 4.7. This means that PMP�1 is

still upper triangular for P 2 SL.L/
2 . Also, sL.M/ D sLC1.M/ by symplectic

symmetry, so once again we are reduced to (57). But .M 02/L;LCN C1 D 0 because
.M 02/� D M 02, and the sum of the row and column indices of that entry is equal
to 1 mod N .

Therefore, SL.L/
2 �Ea

� � Ea
N . and by the usual dimension argument, it must be

equal to Ea
� .

C.2.2. Ea
� \ F� , where �.L/ D L C 1 and � is a link pattern, �.L/ ¤ L C 1.

Let V be an irreducible component of Ea
� \F� of dimension dimEa

N � 1 (if there
exists any, in which case it is necessary top-dimensional). By Proposition 5.6,
whose proof is right above, Ea

� is SL.L/
2 -invariant.
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Now consider the rank equation southwest of the entry .�.L/; L/. Being in F�

implies that the rank is equal to the number of pairings of � inside ¹�.L/; : : : ; Lº,
which we call r . For Ea

� \ F� to be nonempty, this implies (equations (4) of
Theorem 4.7) that the number of pairings of � inside ¹�.L/; : : : ; Lº must be at

least r . But �.L/ D L C 1 and �.L/ ¤ L C 1, so the number of pairings of �
in ¹�.L/; : : : ; L � 1º is the same, i.e., at least r , whereas that of � is only r � 1.
This means that � possesses at least one pairing that � does not, say i $ �.i/,
�.L/ � i < L. This means the equation (3) of Theorem 4.7 si .M/ D s�.i/.M/ is

generically violated in Ea
� , and since sweeping with SL.L/

2 does not a�ect them,
that dim.SL.L/

2 �V / � dimEa
N � 1.

C.2.3. F� , where � is a link pattern except �.L/ D L; �.LC1/ D LC1. Set
V D F� , with � as in the third case of the proof of Proposition 5.8. As explained
in the proof for Ea

� above, ML;LC1 D 0 in V implies that SL.L/
2 �V � Ea

N .
Furthermore, as easily checked on a matrix of the form M D �< C L, one has
sL.M/ D sLC1.M/ D 0 in V . This equation is preserved by sweeping (easily
checked since the whole 2� 2 submatrix of entries with row and column equal to
L;LC 1 mod N is actually zero). No top-dimensional component of Ea

N has this
equation, soEa

N \¹sL.M/ D sLC1.M/º is of dimension dimEa
N �1, which is the

dimension of V .

D. Bound on the degree of the polynomials �a
�

We wish to bound the degree of �a
� D m� mdegEa

� as a polynomial in one of the
variables z1; : : : ; zL.

Recall that from the de�nition of multidegrees [21], any multidegree in M
a
N is

a sum of products of (distinct) weights of Ma
N . This gives a �rst “naive” bound

on the degree of �a
� in a given variable zi : it is less or equal to the number of

coordinates in M
a
N whose weight has a zi -dependence. See Table 1.

However, this bound is not enough for our purposes. We can re�ne it as
follows. We focus at �rst on the multidegree of the whole of Ea

N rather than �a
� .

Suppose we apply the inductive de�nition of the multidegree by intersecting Ea
N

with hyperplanes given by the vanishing of entries of the form Mij and Mj i for
�xed i . Each time the multidegree is multiplied by a factor of the weight of Mij ,
the intersection is trivial and the dimension stays constant. Since all variables
whose weight have a zi -dependence belong to that row/column, we have a bound
on the degree in zi :
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degree in zi of mdegEa
N

� number of entries of the form Mij or Mj i � .dimEa
N � dimEa

N �.1;2;4//;

since the resulting variety (after all intersections) is simply the Brauer loop scheme
one size below (L ! L � 1). More precisely, in all cases except a 2 ¹m; oº,
the entries of the form Mij or Mj i are in fact exactly those whose weight have
zi -dependence, and the inequality above is an equality; if a 2 ¹m; oº,Mi;iCn does
not have such a dependence, so the LHS is equal either to the RHS, or the RHS
minus one. In other words,

degree in zi of mdegEa
N

D naive degree bound � .dimEa
N � dimEa

N �.1;2;4//C .0 or 1/Œa 2 ¹m; oº�:

a naive degree bound dim dim shift
p 2.L� 1/ L2=2; .L2 � 1/=2 L;L � 1

i 2.2L� 1/ L.LC 1/ 2L

c 4.L� 1/ L2; L2 � 1 2L; 2.L� 1/

o 4.2L� 1/ 2L.LC 1/ 4L

m 2.4L� 3/ L.2LC 1/ 4L � 1

a re�ned degree bound # recurrences
p L � 2; L � 1 2.L� 1/

i 2.L� 1/ 2.2L� 1/

c 2.L� 2/; 2.L� 1/ 4.L� 1/

o 4L � 3� 2.2L� 1/

m 4.L� 1/� 2.2L� 1/

Table 1. Degree bounds for �a
� and number of available recurrences. The re�ned degree

bound (fourth column) is equal to the �rst column minus the third, plus one when there
is a �. If two numbers are shown they correspond to even/odd cases.

Finally, we can calculate the number of recurrence relations of the type of (43)

and �nd that it is always greater than the degree. This allows us to derive the
explicit expression (55), and shows that 1 is the correct choice for a 2 ¹m; oº in
the equation above.

Now if we consider individual components Ea
� rather than the whole scheme,

the same argument applies except after intersecting, we only have an upper bound
on the resulting scheme (it is a subscheme of Ea

N �.1;2;4/
), so that we obtain an

upper bound for the degree:

degree in zi of �a
�

� naive degree bound � .dimEa
N � dimEa

N �.1;2;4//C 1Œa 2 ¹m; oº�:

The result is shown in Table 1.
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