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Regular colored graphs of positive degree

Razvan Gurau and Gilles Schae�er1

Abstract. Regular colored graphs are dual representations of pure colored D-dimensional

complexes. These graphs can be classi�ed with respect to a positive integer, their degree,

much like maps are characterized by the genus. We analyze the structure of regular colored

graphs of �xed degree and perform their exact and asymptotic enumeration. In particular

we show that the generating function of the family of graphs of �xed degree is an algebraic

series with a positive radius of convergence, independent of the degree. We describe the

singular behavior of this series near its dominant singularity, and use the results to establish

the double scaling limit of colored tensor models: interestingly the behavior is qualitatively

very di�erent for 3 � D � 5 and for D � 6.
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1. Introduction

1.0.1. Context. In this article a colored graph is a rooted connected bipartite

graph such that each edge has a color in ¹0; 1; : : : ; Dº and each vertex is inci-

dent to exactly one edge of each color. Colored graphs appear naturally in the

crystallization theory of manifolds [13] and in colored tensor models [7] (or col-

ored group �eld theory). They are dual to colored triangulations of piecewise

linear orientable .D C 1/-dimensional pseudo-manifolds [5, 8]. Although not all

.D C 1/-triangulations can be properly colored, colored graphs are fundamental

because any orientable topological manifold in any dimension admits a colored

triangulation [14] and any triangulation in any dimension can be transformed into

a colored triangulation by a barycentric subdivision.

To each colored graph is associated an invariant, its degree [9], which is a

non negative integer. For D D 2 the degree reduces to the genus of the dual

(2-dimensional) triangulation. Unlike the genus however, the degree is not a

topological invariant of the dual pseudo-manifold for D � 3. Be that as it may,

classifying graphs in terms of the degree o�ers a �rst rough classi�cation of

triangulations of pseudo-manifolds in any dimension. It also plays a distinctive

role in tensor models, where this classi�cation allows access to subsequent orders

in their 1=N expansion, as this expansion is indexed by the degree (exactly like

the 1=N expansion of matrix models is indexed by the genus).

1.0.2. Our results. Our main result is a structural analysis of rooted colored

graphs of �xed degree, which yields on the one hand an exact and an asymptotic

enumeration of these graphs, and on the other hand leads to the construction of

the double scaling limit of colored tensor models.

The structural analysis we perform relies on the reduction of colored graphs

via a precise algorithm to some terminal forms of the same degree, which we call

reduced schemes. The number of reduced schemes of a given degree is �nite and

the number of graphs sharing a scheme is exponentially bounded. More precisely

we show:

Theorem 1. For any �xed dimension D � 3 and degree ı � 0, there exist

a �nite set zS0
ı

of reduced schemes of degree ı and root edge of color 0, and

triples .P zS .u/; U zS ; B zS/ zS2zS0
ı

consisting in a monomial and two integer parameters

associated to the schemes such that the generating function of colored graphs of

degree ı rooted at an edge of color 0 with respect to the number of black vertices is
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H 0
ı .z/ D T .z/

X

zS2zS0
ı

h P zS .u/

.1 � u2/U zS
CB zS .1 �D2u2/B zS

i

uDzT .z/DC1
;

where T .z/ is the unique power series solution of the equation

T .z/ D 1C zT .z/DC1:

Previous classi�cations in terms of the degree exist [9], but, while the number

of terminal forms identi�ed in [9] is �nite at �xed degree, there is no control

over the number of graphs associated to a terminal form. Our approach is instead

reminiscent of the classi�cation of maps of �xed genus performed in [3], or that of

simplicial decompositions of surfaces with boundaries in [1], and more generally

of Wright’s approach to the enumeration of labeled graph with �xed excess [16, 17].

From our main theorem we are able to extract the leading terms in the singular

expansion of the generating functions of colored graphs of degree ı.

Theorem 2. For any �xed D � 3 and ı � 1, the generating function of colored

graphs of degree ı has a dominant singularity at z0 D DD=.D C 1/DC1 and a

singular expansion in a slit domain around z0 of the form

H 0
ı .z/ D Kı.1 � z=z0/� Bmax

2

h

1CO
�r

1 � z

z0

�i

;

where Bmax is the maximum of a simple integer linear program:

Bmax D max.2cC C 3q � 1 j .D � 2/cC CDq � ıI cC; q 2 N/:

In particular Bmax roughly grows linearly with ı and for �xed D we determine the

largest linearity factor max.Bmax=ı/ and for which ı it is obtained:

3 � D � 5 D D 6 D � 7

max.Bmax=ı/
2

D � 2

2

D � 2
D 3

D

3

D

which ı ı D N � .D � 2/ all ı ı D N �D

Moreover the constants Kı have combinatorial interpretations, which for 3 �
D � 5 involve Catalan numbers.

1.0.3. Discussion. From a probabilistic point of view the above result implies

that we can give a description of large random colored graphs of �xed degree.

It was shown in [10] that upon scaling edge lengths by a factor k�1=2 and letting

k go to in�nity, the degree 0 colored graphs with 2k vertices converge in the
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sense of Hausdor�-Gromov to the Continuum Random Tree. Our results suggest

that more generally k�1=2 is the proper scaling for which uniform random rooted

colored graphs of �xed degree ı � 1 have a non-trivial continuum limit when the

number of vertices goes to in�nity.

Another major outcome of our results is the so-called double scaling limit of

colored tensor models. Although the number of colored graphs with 2k vertices

grows super-exponentially with k, we can give a meaning to a resummation of the

generating series of graphs of �xed degree. Balancing the singular behavior of

these generating series around the critical point z0 with the scaling in N we can

take the double limit N !1, z ! z0 in a correlated way and exhibit a regime in

which graphs with arbitrary large degree contribute. As suggested by Theorem 2,

this regime leads to two completely diverse behaviors, depending whether D � 5,

where the double scaling limit series is summable, or D � 6 where it is not.

Together with the parallel result obtained in [4] by di�erent methods and for a

simpler model, these are the �rst results of this kind in the realm of tensor models.

A number of very di�cult questions remain open. Prominent among them is

the following. A given topology (say spherical) can be represented by graphs of

arbitrary degree. It is a di�cult open question whether the number of triangula-

tions of a �xed topological manifold is exponentially bounded or not in the num-

ber of simplices (the so called Gromov question [15] in the case of the spherical

topology). In view of our results the question can now translate in �nding an ex-

ponential bound on the number of reduced schemes to which graphs representing

a given topology can reduce.

1.0.4. Organization of the paper. In Section 2 we state some de�nitions and

elementary properties of colored graphs. In Section 3 we perform a �rst classi-

�cation of colored graphs in terms of cores. In Section 4 we discuss chains and

in particular show that the number of cores of �xed degree is not �nite due to

the presence of in�nite chains. This leads us to the notion of reduced schemes in

Section 5, where we show that the number of reduced schemes of �xed degree is

�nite. Sections 6 and 7 contain the proofs of two technical results. In Section 8

we compute the generating series of graphs associated to a reduced scheme and

in Section 9 we identify the reduced schemes with leading singular behavior at

criticality.
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2. Notation and generalities on colored graphs

From now on in this article, an integer D � 3 is �xed.

De�nition 1. A rooted, closed, connected colored graph G (henceforth called a

colored graph for short) is a connected bipartite .DC1/-regular graph with black

and white vertices and colored edges, such that:

� the colors of edges are taken in the set ¹0; : : : ; Dº,
� each vertex is incident to exactly one edge of each color,

� an edge of G, denoted r.G/, is distinguished and it is called the root edge.

Multiple edges are allowed, but, due to the color constraints, self-loops are not.

An example is presented in Figure 1 on the top left.

Figure 1. A colored graph G (where the root edge is represented as crossed), the open

colored graph op.G/, and a face .0; 3/ of G.

We denote colored graphs by capital letters like G; G1, etc.. We distinguish

white vertices by a white dot index (vı; wı, etc.) and black vertices by a black dot

index (v�; w�, etc.).

We include among the colored graphs the trivial colored graphs (or ring

graphs) consisting in an edge closing onto itself and having no vertex (see Figure 2

on the left). The edge is necessarily the root of the graph and has a color

c 2 ¹0; : : : ; Dº, hence there are D C 1 distinct ring graphs. We denote them

Rc , where c is the color of the edge.
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cc

Figure 2. A ring graph Rc and a trivial open graph E
c D op.Rc/.

It will be convenient to regard the edges of a graph as being formed by pairs of

matched half-edges (each half-edge being hooked to one of the end vertices of the

edge) and to allow for slightly more general structures, called pre-graphs, in which

some of the half-edges are left unmatched. From here on half-edges incident to

white vertices will be denoted with a white dot index (e.g. hı; h0
ı, etc.) and half-

edges incident to black vertex will be denoted with a black dot index (e.g. h�; h0
�,

etc.).

De�nition 2. A nontrivial open colored graph G is a pre-graph with exactly two

unmatched half-edges h� and hı of the same color c, which becomes a colored

graph G by matching the two half-edges into an edge of color c and marking this

edge as the root edge r.G/ of G.

A trivial open colored graph Ec consists in a unique edge of color c with no

end vertex and becomes a ring graph Rc upon matching the two ends of the edge.

Open colored graphs will be denoted by emphasized capital letters (e.g. G;G1,

etc.).

We denote cl.G/ (and call it the closure of G) the colored graph obtained

by matching the two half-edges of the open colored graph G into a root edge.

Conversely, given a colored graph G, we denote op.G/ (and call it the opening

of G) the unique open colored graph G such that cl.G/ D G (see Figure 1 on the

top right for an example). Of course, cl.Ec/ D Rc and op.Rc/ D E
c as depicted

in Figure 2 on the right. Open colored graphs are not rooted.

A non trivial open colored graph G (which is a pre-graph, having two half-

edges) can be transformed into a graph Gr.G/ by simply erasing the half-edges.

Two of the vertices of Gr.G/ have coordination D, while all the others have

coordination D C 1. The edges of Gr.G/ are colored.

The following de�nition is illustrated in Figure 3.

De�nition 3. An open colored subgraph H of a nontrivial open colored graph G,

denoted H � G, is a non trivial open colored graph such that Gr.H/ is a subgraph

of Gr.G/.
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By extension an open colored subgraph H of a colored graph G, denoted

H � G is an open colored subgraph of op.G/.

Figure 3. Examples of open colored subgraphs of an open colored graph.

A half-edge, say hı, of an open colored subgraph H � G can either be one of

the half-edges of G or belong to an edge e of G, which we denote hı 2 e.

Let G be a colored graph. In view of the bipartiteness and regularity

constraints, G has an equal number k.G/ of black and white vertices, and by

construction it also has .D C 1/k.G/ edges. Let us de�ne the faces of G as its

bicolored connected components: more precisely, given 0 � c ¤ c0 � D, the

faces of color ¹c; c0º are the connected components of the subgraph consisting of

edges that have color c or c0, and they form a set of cycles since every vertex in

the subgraph has degree 2 (see Figure 1 on the bottom for an example). Observe

that with this de�nition the ring graph Rc has D faces, one for each color di�erent

from c.

Let F cc0

p .G/ denote the number of faces of color ¹c; c0º and length 2p of the

colored graph G. We denote

F cc0

.G/ D
X

p�1

F cc0

p .G/;

Fp.G/ D
X

0�c<c0�D

F cc0

p .G/;

and

F.G/ D
X

p�1

Fp.G/;

the total number of faces of color ¹c; c0º of G, the total number of faces of length

2p of G and the total number of faces of G.
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De�nition 4. Let the reduced degree (the degree for short) of G be the integer

ı.G/ de�ned by the relation

ı.G/ D 1

2
D.D � 1/k.G/CD � F.G/: (1)

Proposition 1 ([7]). The degree ı.G/ of a non trivial colored graph G is a non

negative integer.

Proof. Each of the DŠ cyclic permutations � of the colors ¹0; : : : ; Dº induces a

unique embedding of the graph G in a compact oriented surface upon requiring

that � describes the clockwise arrangement of edges around black vertices and

the counterclockwise arrangement of edges around white ones. The resulting

combinatorial map G� , called in [7] a jacket of G, has .DC 1/k.G/ edges, 2k.G/

vertices and
P

c F c �.c/.G/ faces since its faces are precisely the faces of color

¹c; �.c/º of G. Euler’s formula yields the relation

2k.G/C
X

c

F c �.c/.G/ D .D C 1/k.G/C 2 � 2g� ;

where g� denotes the genus of G� . Taking into account that each face of G (say

with colors ¹c; c0º) is counted by 2.D � 1/Š cycles � (those such that �.c/ D c0

and those such that �.c0/ D c), we have

X

�

X

c

F c �.c/.G/ D 2.D � 1/ŠF.G/;

and upon summing over all � we obtain ı.G/ D 1
.D�1/Š

P

� g� . The positivity of

ı.G/ thus follows from that of the genera of all jackets. �

Observe that the degree of a ring graph is zero, ı.Rc/ D 0. The following

corollary summarizes the relations we shall need on colored graphs:

Corollary 1. Let G be a nontrivial colored graph with 2k.G/ vertices,

.DC1/k.G/ edges, degree ı.G/ and F.G/ faces, Fp.G/ of which have length 2p.

Then

D.D C 1/k.G/ D 2
X

p�1

pFp.G/; (2)

D.D � 1/k.G/ D 2F.G/C 2ı.G/ � 2D; (3)

.D C 1/ı.G/C 2F1.G/ D D.D C 1/C
X

p�2

Œ.D � 1/p �D � 1�Fp.G/: (4)
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Proof. The �rst equation follows by observing that in the graph G there are a total

of D.DC1/k.G/ pairs of edges at vertices of G, and that each such pair is a corner

on some face. The second is the de�nition of the degree. The third one is a simple

linear combination of the �rst two. �

Equation (4) already suggests that the classical case D D 2, which we do not

consider here, is very di�erent from D � 4. On the one hand when D D 2,

the coe�cient of F2.G/ in the right hand side is negative, so that the number

of large faces (or the degree of the largest face) can be arbitrarily large even if

ı.G/ and F1.G/ are �xed. On the other hand when D � 4, the right hand sum

has only positive coe�cients and the number of large faces (or the degree of the

largest face) is bounded by .D C 1/ı.G/C 2F1.G/. The case D D 3 is a priori

intermediate in the sense that faces of degree 4 could proliferate at �xed ı.G/ and

F1.G/ (since the coe�cient of F2.G/ is zero in this case), but we shall see later

that this does not happen, and the dichotomy is really between D D 2 and D � 3.

3. The core of a rooted colored graph

3.1. First attempts to de�ne the core. A melon with external color c (or simply

a melon) Oc in a colored graph G is an open colored subgraph of G consisting of

D parallel edges joining two vertices, and two half-edges of color c (one on each

vertex of Oc). Depending on the external color c, there are D C 1 distinct types

of melons. The melon removal of Oc in G consists in cutting the two edges of G

corresponding to the half-edges of Oc , deleting O
c , and gluing the two remaining

half-edges to recreate an edge of color c (see Figure 4).

O
c

c

c

c

Figure 4. The removal of a melon.
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We would like to de�ne the core of a rooted colored graph as “the” graph

obtained by a maximal sequence of melon removals. However in this “de�nition”,

it is not clear that the core is uniquely de�ned. We will therefore follow an

alternative approach, which is reminiscent of an old result of Tutte [18] about

2-connected graphs, that is, graphs that cannot be disconnected by removing

a single vertex. In the modern phrasing of [2], Tutte’s result states that any

2-connected graph G with set of vertices V and set of edges E (which we denote

G D .V;E/) can be decomposed into an arborescent structure called its RMT-tree

by a careful analysis of all its 2-cuts, that is, its pairs ¹x; yº of vertices such that

GjVn¹x;yº is not connected. Our interest in this result arises from the following

lemma.

Lemma 1. Non trivial colored graphs are 2-connected.

Proof. Consider a colored graph G D .V;E/ containing a white vertex wı such

that G0 D GjVn¹wıº is not connected and let G1 be a connected component of G0.

Let ` denote the number of edges between wı and vertices of G1. By hypothesis

there is at least one other connected component in G0 so that 1 � ` � D. Let us

consider the subgraph of G induced by wı and the vertices of G1. In this subgraph

all the black vertices and all the white vertices except wı have degree DC1, while

wı has degree 1 � ` � D: double counting of edges yields a contradiction. �

In view of this lemma one could directly apply Tutte’s result to colored graphs

and obtain a decomposition by describing the resulting RMT-trees, and this was

our approach in an earlier version of this article. However it turns out to be easier

to derive the decomposition we need from a direct analysis of 2-edge-cuts.

3.1.1. 2-edge-cuts in colored graphs. A 2-edge-cut of a 2-connected graph

G D .V;E/ is a pair of edges ¹e; e0º such that the graph G�¹e; e0º D .V;En¹e; e0º/
is not connected (see Figure 5 left hand side). Again by double counting of edges,

one easily checks that the two edges of a 2-edge-cut in a colored graph must have

the same color. A simple cycle of a graph G is a cycle visiting each vertex of G at

most once.

Lemma 2. Let G be a 2-connected graph. Then ¹e; e0º is a 2-edge-cut in G if and

only if any simple cycle visiting e also visits e0.

Proof. Let e D ¹x; yº and let Cycle be a simple cycle visiting e. Then G � ¹e; e0º
has two connected components, one containing x and the other containing y.
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But Cycle � e is a path from x to y and e0 is the only edge connecting the two

components in G � ¹eº.
Conversely if ¹e; e0º is not a 2-edge-cut then there exists a path in G � ¹e; e0º

between any two vertices, and in particular between the endpoints of e. �

Lemma 3. Let ¹e; e0º and ¹e; e00º be two distinct 2-edge-cuts in a 2-connected

graph G. Then ¹e0; e00º is also a 2-edge-cut of G. Moreover if two oriented cycles

visit e in the same direction, then they both visit e0 and e00 in the same order after e.

Proof. Any cycle visiting e0 visits also e (since ¹e; e0º is a 2-edge-cut) and thus

also e00 (since ¹e; e00º is a 2-edge-cut), and we conclude by Lemma 2. Next

assume that there exist two oriented cycles .e; Path1; e0; Path0
1; e00; Path00

1/ and

.e; Path2; e00; Path0
2; e0; Path00

2/ that visit e in the same direction. But then the path

Path2 would connect the two connected components of G�¹e; e0ºwithout visiting

e or e0. �

A proper cut-set of a 2-connected graph G is a maximal set Cut of edges such

that any 2 edges of Cut form a 2-edge-cut. In view of the previous lemma, an edge

can belong to at most one proper cut-set, so that we de�ne the cut-set of an edge

as the unique proper cut-set it belongs to if it exists, or the edge itself otherwise.

Lemma 4. Let G D .V;E/ be a non trivial colored graph and let e0 be an edge of

G with non-trivial cut-set Cut. Then there exists a unique way to cyclically arrange

the edges of Cut as .e0; : : : ; e`/ and a unique partition V0; : : : ;V` of V such that

E D Cut [ EV0
[ : : : [ EV`

, where EVi
are edges connecting only vertices in Vi ,

and for all i D 0; : : : ; `, ei connects a black vertex of Vi to a white vertex of ViC1

with indices taken modulo `C 1 (see Figure 5).

Proof. Since G is 2-connected, there exists a simple cycle visiting e0, and this

cycle also visits the other edges in Cut. Orient this cycle so that e0 is visited from its

black to its white endpoint and let .e0; e1; : : : ; e`/ describe the cyclic arrangement

of the edges of Cut along this oriented cycle. Then ¹ei ; eiC1º forms a 2-edge-cut

and one of the components of G�¹ei ; eiC1º contains the edges eiC2; : : : ; ei�1. Let

Vi denote the vertex set of other component. Then the Vi are disjoint and form

a partition of V and the other required properties are immediate. The uniqueness

follows from the fact that any other cycle traversing e0 has to visit the edges of Cut

in the same order (Lemma 3). �
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We will be especially interested in the cut-set of the root edge r.G/ of a colored

graph G. The list .G0; : : : ;G`/ of open components of the cut-set of the root r.G/

is the set of open colored graphs obtained by cutting each edge of this cut-set into

two half-edges: with the notation of the lemma, the vertex set of Gi is Vi and

the two half-edges of Gi arise from ei and eiC1 respectively. The set of closed

components of the cut-set of the root is then the set of colored graphs obtained

from the open components by reconnecting in each of them the unique available

pair of half-edges to form a root edge: .cl.Gi /; i D 0; : : : ; `/. These de�nitions

are illustrated by Figure 5.

Figure 5. A 2-edge-cut, the set-cut of the root edge and the corresponding open and closed

components.

Finally the following immediate lemma will be useful.

Lemma 5. Let Cut0 and Cut00 be two distinct cut-sets in a colored graph G. Then

there is an open component G0 of Cut0 containing Cut00, and an open component

G
00 of Cut00 containing Cut0.

Proof. Assume Cut00 is not contained in any of the open components of Cut0, and

let e00
i ; e00

j be two edges of Cut00 appearing in two di�erent components G0
p and G

0
q

of Cut0. Then any cycle visiting e00
i also visits e00

j , and thus e0
p and e0

pC1 and so that

Cut0 and Cut00 are not disjoint. �
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3.2. Melons and melonic graphs. An important ingredient in our approach are

the open melonic graphs, de�ned inductively (see Figure 6) below.

De�nition 5. An open colored graph M with half-edges of color c is a

� melonic graph if

– either it is trivial, that is M D E
c D op.Rc/,

– or all the open components of the cut-set of the root edge of cl.M/ are

prime melonic graphs;

� prime melonic graph if it is non trivial and by cutting all the edges incident

to the vertices vı and v� of M which carry the external half-edges of M into

pairs of half-edges and subsequently deleting vı, v� and all the half-edges

attached to them one obtains D (one for each c0 ¤ c) open melonic graphs.

Observe that if vı and v� are connected by an edge in M, then this edge is cut

twice and this creates a trivial melonic graph.

A colored graph G is melonic if op.G/ is an open melonic graph. In particular

a ring graph Rc is melonic.

c

c

c

c

c

vı

v�

c0

Figure 6. Illustration of the de�nition of melonic graphs.

In the previous literature (see e.g. [7, 8]) melonic graphs have been de�ned

as the graphs that can be obtained from some ring graph Rc by cutting edges and

inserting recursively melonsOc0
. Let us now recall the (known) consistence of this

de�nition with ours. Let GŒec  O
c � denote the rooted colored graph obtained by

the insertion of a melon O
c at a non-root edge ec (of color c) of G, i.e. by cutting

ec into two half-edges and gluing these half-edges to those of Oc in the unique

way that makes the result bipartite. The insertion at the root edge r.G/ D ¹vı; v�º
of G can be performed in two ways: either such that the root of GŒr.G/  O

c �

is hooked to the white vertex vı or such that the new root edge is hooked to the

black vertex v�.
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Proposition 2. A colored graph with root edge of color c is melonic if and only

if it can be obtained from the ring graph Rc by a sequence of melon insertions.

Proof. By induction, observing that the only prime melonic open graphs with two

vertices are the O
cs. �

Our interest in melonic graphs arises from the following two known results

(e.g. [7, 8]):

Proposition 3. The degree of G and GŒec  O
c � are the same.

Proof. By construction GŒec  O
c � has two more vertices and

�
D
2

�

more faces

than G, hence by Equation (3) they have the same degree. �

Theorem 3 ([7, 8]). A rooted colored graph G is melonic if and only if it has

degree 0.

Proof. Propositions 2 and 3 and the remark that the reduce degree of a ring graph

is zero immediately imply that melonic graphs have degree 0.

In order to prove the other implication, observe that if G is non trivial and

ı.G/ D 0, then from eq. (4) it ensues that F1.G/ � D.D C 1/=2, hence there

exists a face with colors .c1; c2/ of length two (i.e. formed by the two edges

ec1 D ¹vı; v�º and ec2 D ¹vı; v�º) of G.

If for all c ¤ c1; c2 the two vertices are connected by a unique edge ec D
¹vı; v�º, then G D Rc0

Œec0  O
c0

� and G is melonic. Else, there exists c such that

the edge of color c hooked to vı (denoted ec
1) is di�erent from the edge of color

c hooked to v� (denoted ec
2). As ı.G/ D 0 all the jackets G� of G are planar,

including �.c1/ D c; �.c/ D c2, hence ¹ec
1; ec

2º is a 2-edge-cut of G. Cutting ec
1

and ec
2 into pairs of half-edges ec

1 D hh1
ı; h1

�i and ec
2 D hh2

ı; h2
�i and reconnecting

the half-edges the other way around into two new edges f1 D hh1
ı; h2

�i and

f2 D hh2
ı; h1

�i, G splits into two colored graphs G1 (containing the edge f1) and

G2 (containing the edge f2). Some care must be taken with the root:

� if r.G/ ¤ ec
1; ec

2 and r.G/ belongs let’s say to G1, then r.G1/ D r.G/ and

r.G2/ D f2,

� if r.G/ D ec
1 or r.G/ D ec

2 then r.G1/ D f1 and r.G2/ D f2.

As k.G1/ C k.G2/ D k.G/ and F.G1/ C F.G2/ D F.G/ C D, it follows

that ı.G1/ D ı.G2/ D 0 and taking into account that k.G1/; k.G2/ < k.G/, the

theorem follows by induction. �
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3.3. The core decomposition. Two open colored subgraphs of an open colored

graph G are totally disjoint if their edge sets are disjoint and their half-edges

belong to di�erent edges of G. We shall be particularly interested in open colored

subgraphs that are open melonic graphs: for short we refer to these as open melonic

subgraphs. Recall that open colored subgraphs are assumed non trivial, and so are

open melonic subgraphs.

The following lemma is illustrated in Figure 7.

Lemma 6. If two open melonic subgraphs of a rooted colored graph G are not

totally disjoint then their union is an open melonic subgraph of G.

Proof. First observe that if M is an open melonic subgraph of G with half-edges

hı 2 e and h� 2 e0, then the edges e and e0 of G form a 2-edge-cut of G, unless

e D e0 D r.G/, in which case M D op.G/. Indeed, since each vertex of M has the

same degree (counting the half-edges) in M and in G, all the edges of G incident

to a vertex of M are in M, except for e and e0.

Now if M1 and M2 are two open melonic subgraphs of G with half-edges

h1
ı 2 e1 and h1

� 2 e0
1, and h2

ı 2 e2 and h2
� 2 e0

2 respectively, then the two cuts

¹e1; e0
1º and ¹e2; e0

2º:
� either belong to two di�erent cut-sets: in this case, in view of Lemma 5,

either M1 � M2 or M2 � M1 (or M1 and M2 are totally disjoint but this

contradict the hypothesis).

� or belong to the same cut-set: in this case, since M1 and M2 are not totally

disjoint, there are two edges e00
1 2 ¹e1; e0

1º and e00
2 2 ¹e2; e0

2º such thatM1[M2

is the component of G � ¹e00
1 ; e00

2º not containing the root. In particular the

closed components of the cut-set of the root of cl.M1[M2/ are the union of

the closed components of the cut-sets of the roots of cl.M1/ and cl.M2/ and

they are all prime melonic graphs, so that M1 [M2 is melonic. �

Figure 7. Two non-disjoint melonic subgraphs of a colored graph.
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A maximal melonic subgraph of a colored graph G is a (non trivial) open

melonic subgraph which is maximal for inclusion.

Lemma 7. The maximal melonic subgraphs of G are totally disjoint.

Proof. This is an immediate consequence of Lemma 6. �

De�nition 6. The core of an open colored graph G is the open colored graph yG
obtained from G by deleting each of its maximal melonic subgraphs and gluing

the resulting pairs of half-edges to reform edges. The core yG of a colored graph G

is the colored graph obtained by deleting each of the maximal melonic subgraphs

of G, i.e. yG is the closure of the core of op.G/.

Observe that if one of the two half-edges of G belongs to a melonic subgraph

then this half-edge is considered to be cut and re-glued. If both half-edges of G

belong to the same melonic subgraph, then G is melonic and the core is a trivial

one edge graph E
c .

A colored graph is melon-free if it does not contains a melonic subgraph.

Observe that according to our conventions, the ring graphs Rc are considered

melon-free: in view of Proposition 2 they are in fact the only melon-free graphs

of degree 0. By construction the core of an open colored graph G (or of a colored

graph G) is melon-free.

The following characterization (which is in fact not used in the rest of the

paper) more generally relates our construction to the initial discussion of this

section and is a direct consequence of Proposition 2.

Proposition 4. The core of a colored graph G is the unique melon-free graph

that can be obtained from G by a sequence of melon removals (discussed in

Section 3.1).

By de�nition of the core yG of a colored graph G, for each non-root edge

e D ¹wı; w�º with color c in yG,

� either there is a maximal melonic subgraph in G, which we denoteMe, whose

half-edges have color c and respectively point to wı and w�,

� or there is an edge ¹wı; w�ºwith color c in G and this edge is not involved in

any melonic subgraph of G, and in this case we set Me D E
c by convention.
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Considering the root edge r. yG/ D ¹vı; v�º of a nontrivial core yG to be formed

of two matched half-edges hı and h�, for each of these half-edges:

� either there is a maximal melonic subgraph denoted Mı (resp. M�) whose

white (resp. black) half-edge is hı (resp. h�)

� or the root edge of G is hooked directly to vı (resp. v�), and in this case we

set Mı D E
c (resp. M� D E

c).

If the core is trivial, that is yG D Rc, then G is melonic: op.G/ is then the (possibly

trivial) melonic subgraph Mr.Rc / associated to the unique edge r.Rc/ of Rc .

The core decomposition of a colored graph G is the tuple

. yGI .Mı;M�;Me2
; : : : ;Me

.DC1/k. yG/
//;

where e2; : : : ; e
.DC1/k. yG/

is a canonical list of the edges of yG excluding the root

edge. The following theorem, exempli�ed in Figure 8, summarizes and is an

immediately consequence of the above discussion.

Figure 8. The maximal melonic subgraphs of a colored graph, and its core decomposition

(only the nontrivial melonic subgraphs are represented).

Theorem 4 (core decomposition). The core decomposition is one-to-one between

� colored graphs G with 2k.G/ vertices and degree ı.G/,

� pairs . yGI .Mı;M�;M2 : : : ;M
.DC1/k. yG/

// where

– yG is a melon-free colored graph with 2k. yG/ vertices and degree

ı. yG/ D ı.G/, and

– for all i 2 ¹ı; �; 2; : : : ; .D C 1/k. yG/º, Mi is a possibly trivial open

melonic graph with 2k.Mi/ vertices,

such that 2k. yG/C
P

i 2k.Mi/ D 2k.G/.
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Proof. The core decomposition is clearly injective since all the components of G

have been kept in the decomposition as well as the correspondence between edges

of the core and subgraphs. Conversely any such pair yields a rooted colored graph

G by substitution of the Mi in yG and all substituted melonic subgraphs become

totally disjoint maximal melonic subgraphs in G, so that yG is the core of G and

the core decomposition gives back the Mi .

The relation between k. yG/, k.Mi / and the k.G/ follows from the remark

that the core decomposition is a partition of the vertex set of G, while the fact

that a rooted colored graph and its core have the same degree follows from

Proposition 3. �

4. Chains

4.1. Maximal chains. The set of cores of �xed degree is not �nite. This is due

to the presence of chains of .D � 1/-dipoles (to be de�ned precisely below) of

arbitrary length. It follows that, in order to provide a useful classi�cation of graphs

at �xed degree, we need to re�ne further the core decomposition by identifying

and removing maximal chains. The de�nition below is slightly di�erent from the

one found in [5].

De�nition 7. A .D � q/-dipole in a colored graph G is a couple of vertices

connected by exactly D � q parallel edges, none of which is the root of the graph.

A .D � q/-dipole is attached to the rest of the graph by q C 1 pairs of half-edges

of the same color. It is possible that one of these half-edges belongs to the root

edge r.G/ or that two of these half-edges are matched to form the root edge r.G/

(see Figure 9 below).

Figure 9. Examples of .D � 1/-dipoles for D D 4.
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The parallel edges of a dipole are called internal edges of the dipole. The edges

of G to which the half-edges of a dipole belong are called external edges of the

dipole.

A .D � 1/-dipole is said to have external colors .c1; c2/ if a pair of half-edges

has color c1 and the other one has color c2.

Although dipoles are de�ned for arbitrary colored graphs, in the rest of the text

we will only be interested in dipoles of melon-free colored graphs.

Dipoles can join together to form chains of dipoles (as in Figure 10). The chains

of .D � 1/-dipoles are especially important: as we will see below, the degree of a

graph does not depend of the length of such chains hence all the cores which only

di�er by the length of the internal chains of .D�1/-dipoles have the same degree.

`ı`ı

`�`� rı

rı r�

r�
„ ƒ‚ …

pD2sC1

„ ƒ‚ …

pD2s

Figure 10. Two chains, with odd and even length respectively (with D D 4).

One would like to identify the maximal vertex disjoint chains of .D�1/-dipoles

in a core. The case D D 3 is slightly subtle and requires a re�nement of the naive

de�nition of a chain.

De�nition 8. A chain with external colors .c1; c2/ (which can coincide) in a

melon-free colored graph G is a connected sub-pre-graph (see Figure 10) made

of

� two left half-edges `ı and `� having the same color c1,

� two right half-edges r� and rı having the same color c2,

� 2p internal vertices, p � 1, forming a sequence d1; : : : ; dp of .D�1/-dipoles,

satisfying the following axioms.

– The white (resp. black) vertex of d1 is incident to `ı (resp. `�).

– The white (resp. black) vertex of dp is incident to rı (resp. r�).

– Two half-edges of the dipole di are joined to two half-edges of the

dipole diC1 for each i D 1; : : : ; p � 1.

– The root of G is not one of the internal edges of the chain (i.e. neither

an internal edge of a dipole, nor an edge connecting two consecutive

dipoles). Observe however that the root edge can contain one of the

half-edges `ı; `�; rı; r�, or it can consist in any matching of a pair of

half-edges: h`ı; `�i; h`ı; r�i; h`�; rıi or hrı; r�i (see Figure 11).
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– The half-edges `ı; `� and respectively rı; r� are not matched together

in a non-root edge of G (i.e. the two half-edges at the same end of

the chain do not belong to the same non-root edge in G, as in this

case the chain would be a melonic subgraph). On the contrary, `ı and

r� and respectively `� and rı can be matched together (see Figure 11),

in a non-root edge.

A chain is proper if it contains at least 4 internal vertices (or equivalently at

least two .D � 1/-dipoles). A chain is maximal if it is not contained in a larger

chain.

Figure 11. Chains with half-edges matched.

With this de�nition we have the following important results.

Lemma 8. Each chain of G can be extended in a unique way to a maximal chain.

Proof. Let us consider a chain and its two left half-edges `ı and `�. If the two

half-edges are incident to a .D � 1/-dipole in G and neither of the two belongs

to the root edge r.G/, then the chain can be extended to the left by adding the

.D � 1/-dipole. The chain can similarly be extended to the right. The crucial

point is that in order to decide whether a chain can be extended, one only tests the

half-edges at the same end of the chain.

Extending maximally the chain, one obtains the same maximal chain, irrespec-

tive of the order in which the left/right extensions are performed. �
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A comment is important at this point. Observe that Lemma 8 works because

we have allowed a left and right half-edge to be matched in a non-root edge,

but it would not work otherwise. Indeed, consider the case at the bottom of

Figure 11. If the chain can be extended only if the left and right half-edges are not

matched together, then one obtains two di�erent maximal extensions (including

respectively the last dipole on the left or on the right) of the same chain.

Lemma 9. If D � 4, two distinct maximal chains in a melon-free colored graph

G cannot share an internal vertex. If D D 3, two distinct maximal proper chains

in a melon-free colored graph G cannot share an internal vertex.

Proof. Assume �rst that the rooted colored graph G contains two maximal chains

that share a .D � 1/-dipole. But then these chains are the maximal left/right

extension of the dipole, hence coincide.

Now, if two chains share a vertex but no .D� 1/-dipoles, then this vertex must

belong to two distinct .D � 1/-dipoles. Parallel edge count shows that this is not

possible for D � 4.

As illustrated by the right hand side of Figure 12, for D D 3 a vertex uı can

belong to two 2-dipoles uı � v� and uı � w�. None of the edges incident at uı

can be the root edge r.G/. If uı � v� belongs to a proper chain, then w� has to

belong to the same chain (since the chain has at least 4 internal vertices), hence

there exists a vertex w0
ı which is connected to w� by a pair of non-root edges and

to uı by at least one non-root edge.

Applying the same reasoning to the uı�w� dipole, we conclude that the graph

reduces to a double cycle of length 4 (on the right in Figure 12), and none of the

edges can be the root of G, which is impossible. �

Note that, as shown in Figure 12, in D D 3 a maximal proper chain can share

vertices with a .D � 1/-dipole (a 2-dipole), but this is not possible for D � 4.

v�v�v�

uıuıuı w� w�w�

w0
ıw0

ı

Figure 12. A proper chain and a 2-dipole sharing vertices in D D 3 and the double cycle

graph of length 4.
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4.2. Classi�cation of chains. There are two main types of proper chains,

depending on the way the half-edges are involved in the faces of G.

Let us consider a proper chain with external colors .c1; c2/, and let us denote

the external colors of the �rst dipole from the left in the chain .c1; c0/. The two

left half-edges `ı and `� belong to the same face with colors .c1; c/ for all c ¤ c0.

The last face, with colors .c1; c0/, travels horizontally to the next dipole. Iterating

we are in one of the two cases below:

� either the face .c1; c0/ does not travel horizontally through the entire chain,

that is there exists a dipole in the chain such that its right external color is

neither c1 nor c0

� or the face .c1; c0/ travels horizontally along the chain all the way to the right

half-edges.

Furthermore the chains can have an even or odd number of dipoles, hence the

chains are in one of the two cases below:

� either the chain has an odd number of dipoles, hence lı and rı are both on

the top of the chain, and l� and r� are both on the bottom

� or the chain has an even number of dipoles, hence lı and r� are both on the

top of the chain, and l� and rı are both on the bottom.

Correspondingly the chains are classi�ed into the two following cases.

Broken chains. A proper chain with external colors .c1; c2/ is broken (or a B chain)

if for all c ¤ c1, `ı and `� are in the same face of color ¹c; c1º and consequently

rı and r� are in the same face of color ¹c; c2º for all c ¤ c2.

Broken chains are subdivided further into chains with equal external colors

c2 D c1 (BD chains) and chains with distinct external colors, c2 ¤ c1 (B¤ chains).

Furthermore, for each of the two cases the chains can have an even (BDI ı�
�ı

resp.

B¤I ı�
�ı

chains) or an odd (BDI ıı
��

resp. B¤I ıı
��

chains) number of dipoles.

Unbroken chains. Chains that are not broken are unbroken (U chains). Let us

consider separately chains of external colors .c1; c2 ¤ c1/ and .c1; c1/.

� External colors .c1; c2 ¤ c1/: `ı has color c1 and belongs to a face of color

¹c1; c2º/ which does not contain `�. This face travels horizontally and leaves

the chain through rı (which has color c2). The chain has an odd number of

dipoles (U¤; ıı
��

chain).
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� External colors .c1; c1/: again there is a face containing `ı and not `� (since

the chain is not broken), which has to travel horizontally and leave the chain

via r�. There is only one such face traveling horizontally between `ı and r�,

with color ¹c1; c0º (and a parallel face of color ¹c1; c0º goes through `� and rı).

The color c0 is referred to as the secondary color of the unbroken chain.

The chain has an even number of dipoles (UD; ı�
�ı

chain).

We call internal faces of a chain the faces involving only the internal edges of

the chain, and external faces of the chain the faces involving the half-edges.

Lemma 10. The numbers F int.B/ of internal faces of a broken proper chain B

with 2k.B/ vertices and F int.U / of internal faces of an unbroken proper chain U

with 2k.U / vertices are respectively

F int.B/ D D.D � 1/

2
k.B/ �D

and

F int.U / D D.D � 1/

2
k.U / �D C 1:

Proof. By connecting the left (resp. the right) external half-edges of the chain B

(resp. U ) into edges ` D h`ı; `�i and r D hrı; r�i and marking ` as root, the chain

becomes a melonic graph GB (resp. GU ) with 2k.B/ (resp. 2k.U /) vertices and

F.GB/ D F int.B/C 2D (resp. F.GU / D F int.U /C 2D � 1 faces. �

We associate to every kind of chain a chain-vertex (see Figure 13). The chain-

vertices have four half-edges, each incident to a black or white square (tracking

the vertices of the �rst respectively last dipole in the chain). For broken chains

the top and bottom squares are connected by all the external faces, while for the

unbroken ones one external face travels horizontally.

Each chain-vertex admits a minimal realization as a proper chain of .D � 1/-

dipoles:

� BDI ı�
�ı

requires four dipoles,

� B¤I ı�
�ı

requires two dipoles,

� BDI ıı
��

requires three dipoles,

� B¤I ıı
��

requires three dipoles,

� U¤; ıı
��

requires three dipoles,

� UD; ı�
�ı

requires two dipoles.
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Figure 13. The six chain-vertices for D D 3.

5. Schemes

5.1. Reduced schemes and the scheme of a colored graph

De�nition 9. A rooted scheme (see Figure ??) is a connected rooted graph with

colored edges having two types of vertices:

� regular black and white vertices of degree D C 1, each incident to one edge

of each color,

� chain-vertices of the 6 types BDI ı�
�ı

; B¤I ı�
�ı

; BDI ıı
��

; B¤I ıı
��

; U¤; ıı
��

; UD; ı�
�ı

,

having two white and two black squares each;

and edges connecting:

� a black regular vertex and a white regular,

� a black (or white) regular vertex with a white (or black) square,

� a black and a white square.

A scheme is reduced if

� it is melon free,

� the left (and right) half-edges of any chain-vertex are not matched together

into a non-root edge (they can however be matched in the root edge), and
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� the left (or right) half-edges of any chain-vertex or .D � 1/-dipole are not

matched both at the same time to the left (or right) half-edges of any other

chain-vertex or .D � 1/-dipole.

Figure 14. An example of scheme.

De�nition 10. The scheme zG of a melon-free colored graph yG is obtained by

replacing each maximal proper chain of yG by the corresponding chain-vertex

(since maximal proper chains are vertex disjoint this can be done independently

for each chain).

By construction, the scheme of a melon-free colored graph is reduced.

Observe that for D D 3, replacing simultaneously the maximal chains of

a melon-free colored graph by chain-vertices is not always possible: isolated

.D � 1/-dipoles are chains (although not proper chains), and are not necessarily

vertex disjoint. This is why we restrict our attention to maximal proper chains.

The following theorem is an immediate consequence of the previous discus-

sion.

Theorem 5. There is a bijection between the set of melon-free colored graphs yG
with 2k. yG/ vertices and the set of pairs . zGI .C1; : : : ; Cq// where zG is a reduced

scheme with q chain-vertices x1; : : : ; xq, and Ci is a chain of the same type as xi ,

such that the total number of vertices in zG and the chains C1; : : : ; Cq is 2k. yG/.

The chain-vertices we have introduced allow to keep track in zG of the faces

of the melon-free graph that are not internal faces of some chain. The following

result is a direct consequence of Lemma 10 and the de�nition of the degree, eq. (1).
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Lemma 11. Let yG1 and yG2 be two melon-free rooted colored graphs with the same

scheme zG. Then yG1 and yG2 have the same degree.

De�nition 11. The degree of a reduced scheme is the common degree of all cores

that have it as scheme.

5.2. Schemes of �xed degree. Our main interest in schemes is that unlike the

set of cores of �xed degrees, the set of reduced schemes of �xed degree is �nite.

Theorem 6. The number of reduced schemes with a �xed degree is �nite.

Proof. The proof of this is divided into two parts. First we analyze the iterative

elimination of chain-vertices, .D � 1/-dipoles, and in the cases D � 4, .D � 2/-

dipoles in a reduced scheme, to prove the following result:

Proposition 5. The number of chain-vertices, .D � 1/, and for D � 4, .D � 2/-

dipoles in a reduced scheme of degree ı is bounded by 19ı.

Proof. See Section 6. 4

Once this result is granted, we observe that the minimal realization of any

chain-vertex consists of at most four .D � 1/-dipoles, so that there is an injective

map from the reduced schemes of degree ı into melon free colored graphs of

degree ı with at most 76ı .D � 1/- and .D � 2/-dipoles.

We then establish the following result:

Proposition 6. For D D 3, the number of melon free colored graphs with �xed

degree and a �xed number of 2-dipoles is �nite. For D � 4, the number of melon

free colored graphs with �xed degree and �xed numbers of .D � 1/-dipoles and

.D � 2/-dipoles is �nite.

Proof. See Section 7. 4

Theorem 6 is an immediate consequence of these two propositions. �

6. Proof of Proposition 5

As a preliminary we analyze the e�ect that the deletion of a single .D�q/-dipole

has on the degree. We then extend the analysis to the deletion of a chain-vertex.

The conclusion of this analysis is that the deletion of a .D � q/-dipole:
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� either separates the graph into qC1 connected components (completely sepa-

rating deletion), in which case the degree is distributed among the connected

components

� or it separates the graph into less than qC1 connected components, in which

case the degree strictly decreases.

Similarly, for chains, the deletion:

� either separates the graph into two connected components, in which case the

degree is distributed among the connected components

� or it does not separate the graph, in which case the degree strictly decreases.

6.1. Analysis of a .D � q/-dipole removal. Let us de�ne more precisely the

removal of a .D�q/-dipole (with 1 � q � D�2) in a colored graph G: assuming

the half-edges of the dipole have colors c0; c1; : : : cq , we delete the two vertices,

the internal edges and the half-edges of the dipole and form one new edge for each

color c0; c1; : : : cq with the remaining pairs of half-edges in G.

By construction, the number of vertices decreases by 2 and the number of

edges decreases by D C 1 at a deletion. In order to track the variation of the

degree we need to analyze more precisely the variation of the number of faces.

This is somewhat involved, as it depends on the number of connected components

the graph separates into upon removal of the .D � q/-dipole and also on whether

couples of new edges belong to a same face or not.

Connected components and faces after a dipole removal. We denote

G1; G2; : : : GC ;

the C connected components obtained after the removal of the .D � q/-dipole,

1 � C � q C 1. As the removal of the dipole deletes two vertices we have

k.G/ D k.G1/C k.G2/C � � � C k.GC /C 1 :

We denote t1 the number of new edges belonging to G1, t2 the number of new

edges belonging to G2, and so on. We have

t1 C t2 C � � � C tC D q C 1 :

Without loss of generality we can assume that the colors of the t1 new edges

belonging to G1 are c0; : : : ct1�1, the colors of the t2 new edges belonging to G2

are ct1 ; : : : ct1Ct2�1 and so on.
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The faces a�ected by the .D � q/-dipole removal are the ones containing at

least one of its vertices. They fall into three categories.

� Faces with colors ¹c; c0º such that ¹c; c0º \ ¹c0; c1; : : : cqº D ;. For each of

the
�

D�q
2

�

choices of such pairs, exactly one face of degree two (an internal

face of the dipole) is deleted by the removal of the dipole:

F cc0
.G/ D F cc0

.G1/C F cc0
.G2/C � � � C F cc0

.GC /C 1:

� Faces with colors ¹ci ; cº, with ci 2 ¹c0; c1; : : : cqº and c … ¹c0; c1; : : : cqº.
For each of the .D � q/.q C 1/ choices of such pairs, exactly one face is

incident to the dipole: this face has length at least four in G and the dipole

removal reduces its length by 2, so that the number of faces with these colors

is unchanged:

F ci c.G/ D F ci c.G1/C F ci c.G2/C � � � C F ci c.GC /:

� Faces with colors ¹ci ; cj ºwith ¹ci ; cj º � ¹c0; c1; : : : cqº. For each of the
�

qC1
2

�

choices of such colors, either one or two faces are incident to the dipole. In

this case we distinguish between two possibilities.

– Type a (Figure 15). The four edges of color ci and cj belong to the

same face of color ¹ci ; cj º in G. Upon removal of the .D � q/-dipole

this face of color ¹ci ; cj º splits into two disjoint faces:

F ci cj .G/ D F ci cj .G1/C F ci cj .G2/C � � � C F ci cj .GC / � 1:

c1

c1 c1

c2

c2

c2

Figure 15. A face which splits by deleting a dipole.

– Type b (Figure 16). The four edges of color ci and cj belong to two

distinct faces ¹ci ; cj º in G. Upon removal of the .D�q/-dipole the two

faces ¹ci ; cj º are merged into a unique face:

F ci cj .G/ D F ci cj .G1/C F ci cj .G2/C � � � C F ci cj .GC /C 1 :
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c1

c1 c1

c2

c2

c2

Figure 16. Two faces which merge by deleting a dipole.

A third possibility, namely that the two pairs of edges of color ¹ci ; cj º belong

to the same face before the removal and the face does not split, does not exist

because the graph G is bipartite.

We are now in position to describe the global e�ect of the removal of a dipole

on the degree.

Case I. Completely separating .D � q/-dipoles. We �rst consider the case

in which the removal of .D � q/-dipoles splits the graph into q C 1 connected

components each containing exactly one new edge (C D q C 1 with the notation

above): we refer to such a dipole as completely separating. We illustrated this case

in Figure 17.

c1

c1

c1

c2

c2

c2

c3

c3

c3

Figure 17. The decomposition at a completely separating .D � 2/-dipole.

In this case all the faces of colors ¹ci ; cj º with ¹ci ; cj º � ¹c0; c1; : : : cqº are of

Type a, hence

F.G/ D F.G1/C F.G2/C � � � C F.GqC1/C
�

D � q

2

�

�
�

q C 1

2

�

D F.G1/C F.G2/C � � � C F.GqC1/C 1

2
D.D � 2q � 1/ :
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From eq. (1) we get

ı.G/ D 1

2
D.D � 1/k.G/CD � F.G/

D 1

2
D.D � 1/.k.G1/C k.G2/C � � � C k.GqC1/C 1/CD

� .F.G1/C F.G2/C � � � C F.GqC1/C 1

2
D.D � 2q � 1//

D ı.G1/C ı.G2/C � � � C ı.GqC1/:

In conclusion the degree is distributed between the connected components

created by the removal of a completely separating dipole.

Case II. Non completely separating .D � q/-dipoles. We now consider the

remaining cases (1 � C � q): we refer to such a dipole as non completely

separating.

All the faces ¹ci ; cj º with ci 2 ¹c0; : : : ct1�1º and cj … ¹c0; : : : ct1�1º are of

Type a. On the contrary the faces ¹ci ; cj º with ¹ci ; cj º � ¹c0; : : : ct1�1º can be

either of Type a or of Type b.

Let us denote b1 the number of faces of Type b, 0 � b1 �
�

t1
2

�

in G1, b2 the

number of faces of Type b in G2 and so on. We have

F.G/ D F.G1/C F.G2/C � � � C F.GC /C
�

D � q

2

�

�
�

q C 1

2

�

C 2b1 C 2b2 C � � � C 2bC

D F.G1/C F.G2/C � � � C F.GC /C 1

2
D.D � 2q � 1/

C 2b1 C 2b2 C � � � C 2bC :

Using again eq. (1) we get

ı.G/ D 1

2
D.D � 1/k.G/CD � F.G/

D 1

2
D.D � 1/.k.G1/C k.G2/C � � � C k.GC /C 1/CD

�
�

F.G1/C F.G2/C � � � C F.GC /

C 1

2
D.D � 2q � 1/C 2b1 C 2b2 C � � � C 2bC

�

D ı.G1/C ı.G2/C � � � C ı.GC /

CD.q C 1 � C / � 2b1 � 2b2 � � � � � 2bC :
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In other terms the variation of the degree through the removal depends on the

structure of the incident faces. Observe that, as bi �
�

ti
2

�

,

D.q C 1� C / � 2b1 � 2b2 � � � � � 2bC

� D.q C 1� C / � t1.t1 � 1/ � : : : tC .tC � 1/

D .D � t1/.t1 � 1/C : : : .D � tC /.tC � 1/;

(5)

as t1C � � � C tC D qC 1. For non completely separating deletions we have ti � 1

and at least one of them (say t1) is in fact at least 2, hence

.D � t1/.t1 � 1/C : : : .D � tC /.tC � 1/ � D � t1 � D � .q C 1/ � 1

We now make the various possibilities more explicit in the cases of .D � 1/-

and .D � 2/-dipoles.

Non separating .D � 1/ -dipoles. We have q D 1, C D 1 and t1 D 2.

Depending on the value of b1 we thus distinguish two cases.

� Case II.A. The face .c0; c1/ is of Type a, hence b1 D 0 and

ı.G/ D ı.G1/CD:

� Case II.B. The face .c0; c1/ is of Type b, b1 D 1 and

ı.G/ D ı.G1/CD � 2:

Non completely separating .D � 2/ -dipoles. We have q D 2 and

there are two possible values for C , and a total of 6 possible cases.

a) Non separating .D � 2/ -dipole deletion: C D 1, t1 D 3, hence

� b1 D 0, ı.G/ D ı.G1/C 2D,

� b1 D 1, ı.G/ D ı.G1/C 2D � 2,

� b1 D 2, ı.G/ D ı.G1/C 2D � 4,

� b1 D 3, ı.G/ D ı.G1/C 2D � 6.

b) Partially separating .D � 2/ -dipole deletion: C D 2, t1 D 1

(hence b1 D 0), t2 D 2, hence

� b2 D 0, ı.G/ D ı.G1/C ı.G2/CD,

� b2 D 1, ı.G/ D ı.G1/C ı.G2/CD � 2.
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In conclusion, the degree decreases by at least D � 2 by removal of a non

separating .D � 1/-dipole, and for D � 4 the degree decreases by at least D � 2

by removal of a non separating or partially separating .D � 2/-dipole.

6.2. Chain-vertex removal. The removal of a chain-vertex consists in deleting

this vertex and the incident half-edges and creating two new edges by joining the

half-edges that arise from the same extremity of the chain-vertex. The removal of

a chain-vertex in a scheme zG can equivalently be performed in the following way:

� replace the chain-vertex by its minimal length chain representation: this

yields a scheme zG0 with same degree;

� remove one of the .D�1/-dipole of the inserted chain: one of the three cases

above applies;

� eliminate the melons that might have been created: these operations do not

a�ect the degree.

This last procedure, although slightly more complex a priori, allows to built on

the case analysis already done for .D � 1/-dipole removal.

Case I. Separating chain-vertex. The removal of a chain-vertex separates zG
into two components zG1 and zG2 if and only if the deletion of any .D � 1/-dipole

of the equivalent chain separates the graph zG0 into two components zG0
1 and zG0

2.

In such a case,

ı. zG/ D ı. zG0/ D ı. zG0
1/C ı. zG0

2/ D ı. zG1/C ı. zG2/:

Observe that in this case, the chain-vertex can represent indi�erently an unbroken

or a broken chain.

Case II. Non-separating chain-vertex, broken chain. Let us call .c1; c0/ the

external colors of the �rst dipole in the chain. This case is similar to a Case II.A

removal of a .D � 1/-dipole: the removal of the chain-vertex does not separate zG
and in the resulting scheme zG1 the two new edges belong to two di�erent .c1; c0/-

cycles. Then the removal of the chain-vertex is equivalent to a Case II.A removal

of .D � 1/-dipole in the graph zG0, followed by some melon deletions:

ı. zG/ D ı. zG0/ D ı. zG1/CD :
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Case III. Non-separating chain-vertex, unbroken chain. Let us call .c1; c2/

the external colors of the chain-vertex if they are di�erent, or we call the secondary

color of the chain vertex c2, if the external colors are .c1; c1/. We have two

subcases.

� Case III.a: two resulting faces. This case is similar to a Case II.A

removal of a .D � 1/-dipole: the removal of the chain-vertex does not

separate zG and in the resulting scheme zG1 the two new edges belong to two

di�erent .c1; c2/-cycles. Then the removal of the chain-vertex is equivalent

to a Case II.A removal of .D � 1/-dipole in the graph zG0, followed by some

melon deletions:

ı. zG/ D ı. zG0/ D ı. zG1/CD :

� Case III.b: single resulting face. This case is similar to a Case II.B

removal of a .D�1/-dipole: the removal of the chain-vertex does not separate
zG but in the resulting scheme zG1 the two new edges belong to a same .c1; c2/-

cycle. The removal of the chain-vertex is equivalent to a Case II.B removal

of .D � 1/-dipole in the graph zG0, followed by some melon deletions:

ı. zG/ D ı. zG0/ D ı. zG1/CD � 2 :

6.3. Iterative deletion of chain-vertices, .D � 1/-dipoles and .D � 2/-dipoles.

We now present an algorithm which allows us to eliminate one by one chain

vertices and .D � 1/-dipoles (and, for D � 4, .D � 2/-dipoles) in a reduced

scheme. This will allow us to show that the total number of chain vertices, .D�1/-

dipoles and .D � 2/-dipoles in a reduced scheme is bounded linearly in terms

of the degree. This algorithm is not unique: we present here an adaptation of a

similar one introduced in [12]. For D D 3, the algorithm goes through ignoring

the .D � 2/-dipoles.

The deletions of chain vertices and .D � 1/-dipoles can either be completely

separating or not separating. The deletions of .D � 2/-dipoles can be completely

separating, partially separating or non separating. Under any completely separat-

ing deletion the degree is distributed among the resulting connected components,

while under the non completely separating deletions the degree decreases by at

least D � 2.

6.3.1. Non completely separating deletions. We will �rst perform a maximal

number of non completely separating deletions, that is non separating deletions of

chain vertices and .D� 1/-dipoles and non separating or only partially separating

deletions of .D � 2/-dipoles. Some examples of the algorithm we present below

are depicted in Figure 18 and Figure 19.
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Figure 18. Iterated non completely separating deletions, �rst two examples: in the �rst case

only one deletion is necessary; in the second example 3 possible maximal sequences of

deletions are shown.

Figure 19. Iterated non completely separating deletions, third example.
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Let zG be a reduced scheme of degree ı. zG/, and let us denote D. zG/ the total

number of chain vertices, .D � 1/-dipoles and .D � 2/-dipoles in zG. As long

we �nd a non separating chain-vertex, a non separating .D � 1/-dipole formed by

parallel unmarked edges or a non completely separating .D�2/-dipole formed by

parallel unmarked edges we delete it. We mark the new edges with a blue mark,

keeping track of the multiplicity. That is, if the two half-edges connected at a step

come from edges having m1Iblue and m2Iblue blue marks respectively, the new edge

will have m1Iblue C m2Iblue C 1 blue marks. Observe that the deletion of a chain-

vertex having a left and a right half-edge matched into an edge creates only one

edge with two blue marks. As we delete partially separating .D � 2/-dipoles the

scheme can become disconnected and one can obtain ring components with blue

marks, see Figure 18 and Figure 19.

Our aim is to delete at each step only dipoles which were present in the original

scheme, hence we only delete dipoles with unmarked parallel edges. If the deletion

creates new .D � 1/-dipoles and .D � 2/-dipoles having blue marks on some of

their parallel edges, these edges do not count when identifying dipoles. However,

the ring components consisting in one edge with blue marks count as connected

components when deciding whether a deletion is completely separating or not.

Observe that D. zG/ always goes down by one under a chain-vertex deletion,

but, for 3 � D � 5 it can go down by as much as 3 for the dipole deletions

(see Figure 18).

� In D D 3 the 2-dipoles (i.e. .D � 1/-dipoles) are not necessarily vertex

disjoint. Each vertex of a 2-dipole can belong to another 2-dipole, in which

case three dipoles are erased by a deletion.

� In D D 4 the 3-dipoles and 2-dipoles (i.e. .D � 1/-dipoles and .D � 2/-

dipoles) and couples of 2-dipoles (i.e. .D � 2/-dipoles) are not necessarily

vertex disjoint and again up to three dipoles can be erased at one step.

� In D D 5 the 3-dipoles (i.e. .D � 2/-dipoles) are not necessarily vertex

disjoint and again up to three dipoles can be erased at one step.

Observe that if two dipoles share a vertex, then neither of the two can be

completely separating.

We iterate the non completely separating deletions maximally and obtain a

scheme zG0. Unlike zG, zG0 in general is neither connected nor reduced (as depicted

for instance in Figure 18 and Figure 19). Furthermore, zG0 is not unique, and

depends of the sequence of deletions performed.
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The degree of zG0 is the sum of the degrees of its connected components.

Let us denote the maximal number of non completely separating deletions one

can perform starting from a reduced scheme by qn.c.s.. We have the following

inequalities:

� the degree goes down by at least one for each of these deletions, hence

qn.c.s. � ı. zG0/C qn.c.s. � ı. zG/I

� D. zG/ goes down by at most three at each step, hence

D. zG/ � D. zG0/C 3qn.c.s. � D. zG0/C 3ı. zG/I

� every deletion creates at most three new blue marks, hence the total number

of marks zG0, mblue. zG0/, is bounded by

mblue. zG0/ � 3qn.c.s. � 3ı. zG/:

In the scheme zG0, all the chain-vertices, .D � 1/ and .D � 2/-dipoles are

completely separating. It follows that, for any D, all the remaining .D � 1/ and

.D � 2/-dipoles are vertex disjoint.

In order to conclude that D. zG/ is bounded linearly in terms of ı. zG/, it is

enough to bound D. zG0/ in terms of ı. zG0/ and mblue. zG0/. This is slightly subtle

because the remaining deletions are all separating, hence they conserve the degree.

All the remaining .D � 1/- and .D � 2/-dipoles are vertex disjoint, hence we

can delete them together with the remaining chain-vertices in any order. We mark

the new edges with a black mark, keeping track of the multiplicity (and of course

of the multiplicity of the blue marks). That is, if the two half-edges connected at a

step come from edges having m1Iblack and m1Iblue respectively m2Iblack and m2Iblue

black and blue marks, the new edge will have m1Iblack Cm2Iblack C 1 black marks

and m1Iblue Cm2Iblue blue marks.

For each .D � 2/-dipole deleted (having external colors, say, c1; c2 and c3)

we add a copy of the fundamental melon (consisting in two vertices connected by

D C 1 edges) and add a black mark on its edges c1; c2 and c3. Of course, edges

with either type of marks (black or blue) do not count when identifying .D � 2/

and .D � 1/-dipoles.

As before, these deletions can create ring components with marks. We repre-

sent in Figure 20 the deletion of a maximal set of non separating dipoles and chain

vertices, followed by the deletion of all the separating .D�1/ and .D�2/-dipoles

and chain vertices in a reduced scheme.
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Figure 20. Maximal deletion of non separating chain vertices and dipoles, followed by the

deletion of the separating chain vertices and dipoles in a reduced scheme.

Let us denote the scheme obtained in this way by zG00. By construction zG00 has

� blue and black marks (The number of blue marks of zG00 is equal to the number

of blue marks of zG0, mblue. zG00/ D mblue. zG0/. We denote mblack. zG00/ the

number of black marks in zG00.),

� the same degree as zG0,

� ring components with marks (either blue or black),

� no .D � 1/-dipole made of unmarked parallel edges,

� no chain-vertex,

� all the .D � 2/-dipoles made of unmarked parallel edges are copies of the

fundamental melon with three marked edges,

� at least a mark (blue or black) in every connected component (or no mark and

only one connected component if no dipole or chain-vertex is ever deleted).

The connected components of zG00 can be seen as the vertices of an abstract

graph F (represented in Figure 20 at the bottom) whose edges correspond either

to the chain-vertices and to the .D � 1/-dipoles in zG0, or to pairs of half-edges

of the same color of the .D � 2/-dipoles in zG0. A subtle point is the following

(see Figure 20): a pair of half-edges of the same color of a .D � 2/-dipole in zG0

can lead
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� either to an edge and a vertex in F if the pair is matched to a pair of half-edges

of a chain-vertex, .D � 1/- or .D � 2/-dipole (this is the case of the left and

right pairs around the middle dipole in Figure 20)

� or to just an edge in F if it is not (this is the case of the bottom pair around

the middle dipole in Figure 20).

As all the chain vertices and .D�1/- and .D�2/-dipoles of zG0 are completely

separating, F is a forest: every tree in F corresponds to one of the connected

components of zG0. We denote D.D�1/ the number of chain vertices and .D � 1/-

dipoles of zG0 and D.D�2/ the number of .D � 2/-dipoles of zG0, hence

D. zG0/ D D.D�1/ CD.D�2/ and D.D�1/ C 3D.D�2/ D E.F/ ;

where E.F/ denotes the number of edges of the abstract forest F,

The following lemma characterizes the components of degree zero having only

black marks in zG00.

Lemma 12. The components of degree zero having only black marks of zG00 and

not containing the root:

� either are rings with only two marks such that at least one of the marks comes

from a .D � 2/-dipole deletion

� or have at least three marks.

Proof. The crucial observation is that all the unmarked edges in zG00 are in fact

edges which were present in zG, and zG is a reduced scheme.

The components of degree zero of zG00 are either ring components or melonic

graphs with at least two vertices.

Ring components with one black mark can be created by separating deletions

only if one deletes D � 1 edges in a melon O
c in zG, one deletes a chain-vertex

whose left (or right) external half-edges are matched together into an edge in zG
or one deletes D � 2 edges in a .D � 1/-dipole of G. The �rst two cases are

impossible as zG is reduced, while the third would mean that a dipole of zG has

been mislabeled.

Ring components with two marks can be created by the deletion of only

.D � 1/-dipoles and chain vertices only if, in zG, the two left (or right) half-edges

of a .D � 1/-dipole or a chain-vertex are both matched to the two left (or right)

half-edges of another .D � 1/-dipole or a chain-vertex. This is again impossible,

as zG is reduced.

Ring components with three marks can be created, as depicted in Figure 21

below.
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c cc

c

c c

c

Figure 21. Ring components with three marks.

A nontrivial melonic graph with fewer than three marks contains at least a

.D � 1/-dipole made of unmarked parallel edges, which is impossible by the

construction of zG00. �

The remainder of the proof relies on the observation that F is a �nite forest as it

has a �nite number of vertices of valence zero or one (as only the root component,

the strictly positive degree components, and the zero degree components with blue

marks of zG00 can be zero valent or univalent in F) and a �nite number of vertices of

valence two (as this number is bounded linearly in the number of .D� 2/-dipoles

in zG0). We denote

� nC � ı. zG0/ the number of connected components of zG00 having strictly

positive degree,

� n0;blue � mblue. zG0/ the number of connected components of zG00 having

degree zero and having at least a blue mark,

� n
.2/

0;black � 3D.D�2/ the number of connected components of degree zero of

zG00 having exactly two black marks and no blue mark (They are necessarily

ring components and at leas one of the marks comes from a .D � 2/-dipole

deletion.),

� n
.3/
0;black the number of connected components of degree zero of zG00 having

only black marks and having at least three marks.

We have

1C nC C n0;blue C n
.2/
0;black C n

.3/
0;black � E.F/C 1;

2n
.2/

0;black C 3n
.3/

0;black � mblack. zG00/ D 2E.F/;
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that is n
.3/
0;black � 2nC C 2n0;blue, which further leads to

D.D�1/ C 3D.D�2/ D E.F/ � 3nC C 3n0;blue C n
.2/

0;black

H) D.D�1/ C 3D.D�2/ � 3nC C 3n0;blue C 3D.D�2/

H) D.D�1/ � 3nC C 3n0;blue:

On the other hand, as only the root component, the positive degree components

or the zero degree components with blue marks can be univalent in F, D.D�2/

is bounded by the maximal number of trivalent vertices in a forest with exactly

1C nC C n0;blue univalent vertices, D.D�2/ � nC C n0;blue � 1 ; i.e. the number

of such vertices in a binary tree. Thus

D. zG0/ � 4nC C 4n0;blue � 1 � 4ı. zG0/C 4mblue. zG0/;

which �nally leads us to

D. zG/ � 3ı. zG/CD. zG0/ � 3ı. zG/C 4ı. zG0/C 4mblue. zG0/ � 19ı. zG/;

as ı. zG0/ � ı. zG/ and mblue. zG0/ � 3ı. zG/.

This concludes the proof of Proposition 5.

7. Proof of Proposition 6

7.0.1. The case D D 3. For D D 3, we are interested in melon free graphs

with �xed number of 2-dipoles, or equivalently, with a �xed number of faces of

degree 2. In view of eq. (4), the number of faces of degree 6 or more in such a

graph satis�es

X

p�3

Fp. yG/ �
X

p�2

2.p � 2/Fp. yG/ � .D C 1/ı. yG/C 2F1. yG/;

i.e. this number is �nite. Moreover the number of vertices incident to a face of

degree 6 or more is �nite:

X

s�3

2pFp. yG/ D
X

p�3

2Œp � 2C 2�Fp. yG/ � 5.D C 1/ı. yG/C 10F1. yG/:
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The vertices belonging to a face of degree not equal to 4 either belong to a face

of degree two or to a face of degree larger than or equal to 6. According to our

previous remark, the number of such vertices is at most

5.D C 1/ı. yG/C 12F1. yG/:

However there could a priori be an arbitrary number of faces of degree 4 (that

is arbitrarily many vertices incident only to faces of degree 4), since the coe�cient

of F2 in eq. (4) is zero for D D 3. Let us rule this possibility out.

Let us count the maximal number of vertices that can be at distance at most 3

of a vertex on a face of degree not equal to 4. Since all vertices have degree 4, the

number of vertices at distance at most 3 of any vertex is 4C 4 � 3C 4 � 32 D 52.

Therefore if a colored graph G has more than Œ5.D C 1/ı. yG/ C 12F1. yG/�52

vertices, then it contains a vertex v such that all vertices at distance less than 3

of v belong only to faces of length 4.

Now take an arbitrary jacket of yG: for instance the one corresponding to the

cycle .0; 1; 2; 3/. Then the faces of color .0; 1/, .1; 2/, .2; 3/ and .3; 0/ of yG are

faces of the resulting map, which is thus locally a regular square grid around v

(up to distance 3 at least). Then the fact that faces of color .1; 3/ and .0; 2/ also have

length 4 implies that this map is in fact a four by four toroidal grid. In particular
yG has only �nitely many vertices.

We conclude that there are only �nitely many colored graphs with �xed number

of 2-dipoles, hence Proposition 6 is proved for D D 3.

7.0.2. The case D � 4. The proof of Proposition 6 is similar for all D � 4.

Consider a melon free .D C 1/-colored graph yG of degree ı. yG/ with 2k. yG/

vertices, having t1. yG/ .D � 1/-dipoles and t2. yG/ .D � 2/-dipoles. We will show

that the number of such graphs is �nite. The bound we establish below is not tight

and can be improved with minimal e�ort, but it is su�cient for our purpose.

Let us count faces of degree 2 according to whether they belong to a .D � 1/-

dipole, a .D � 2/-dipole or none of these two:

F1. yG/ � t1. yG/

�
D � 1

2

�

C t2. yG/

�
D � 2

2

�

C ˛.D/k. yG/; (6)

where

� ˛.4/ D 0 as, for D D 4, all the faces with two vertices must belong to a

.D � 1/- or a .D � 2/-dipole (i.e. a 3- or a 2-dipole),
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� ˛.5/ D 3 as, for D D 5, a vertex not belonging to a .D�1/- or .D�2/-dipole

can belong to at most three 2-dipoles,

� ˛.6/ D 6 as, for D D 6, a vertex not belonging to a .D�1/- or .D�2/-dipole

belongs to the largest number of faces of degree two when it belongs to two

3-dipoles i.e. to six faces of degree two,

� ˛.D/ D .D�3/.D�4/
2

C6, for all D � 7 as, in this case, a vertex not belonging

to a .D � 1/- or .D � 2/-dipole belongs to the largest number of faces of

degree two when it belongs to a .D � 3/-dipole and a 4-dipole.

On the one hand, the bound (6) together with eq. (4) gives

X

p�2

Œ.D � 1/p �D � 1�Fp. yG/

� .D C 1/ı. yG/ �D.D C 1/

C 2t1. yG/

�
D � 1

2

�

C 2t2. yG/

�
D � 2

2

�

C 2˛.D/k. yG/:

On the other hand, eq. (2) can be rewritten as

D.D C 1/

2
k. yG/ D F1. yG/C

X

p�2

pFp. yG/;

hence

hD.D C 1/

2
� ˛.D/

i

k. yG/ �
X

p�2

pFp C t1. yG/

�
D � 1

2

�

C t2. yG/

�
D � 2

2

�

: (7)

Eliminating k. yG/ between these two equations and reordering we get

X

p�2

h�

D � 1� 4˛.D/

D.D C 1/ � 2˛.D/

�

p �D � 1
i

Fp. yG/

� .D C 1/ı �D.D C 1/C
�

2C 4˛.D/

D.D C 1/ � 2˛.D/

�

t1. yG/

�
D � 1

2

�

C
�

2C 4˛.D/

D.D C 1/ � 2˛.D/

�

t2. yG/

�
D � 2

2

�

:
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The coe�cient of Fp on the left hand side is

� for D D 4: 3p � 5;

� for D D 5: 7
2
p � 6;

� for D D 6: 21
5

p � 7;

� for D � 7: 3.D�4/.DC1/
4.D�3/

.p � 2/C .D�6/.DC1/
2.D�3/

.

In particular this coe�cient is strictly positive for p � 2 so that we get an upper

bound for each Fp. yG/, p � 2 depending only on D, ı. yG/, t1. yG/ and t2. yG/, and

there is a maximal value of p, depending again only on D, ı. yG/, t1. yG/ and t2. yG/

for which Fp can be non zero.

On the other hand:

D.D C 1/

2
� ˛.D/ D

8

ˆ
ˆ̂

<̂

ˆ
ˆ̂

:̂

10 forD D 4;

12 forD D 5;

15 forD D 6;

4.D � 3/ forD � 7;

is always positive, so that from eq. (7), we �nally get an upper bound on k. yG/

depending only on D, ı. yG/, t1. yG/ and t2. yG/.

This completes the proof of Proposition 6.

8. Exact enumeration

8.1. Melonic graphs and cores. In view of Theorem 4 we will need, in order to

enumerate colored graphs, the generating function of melonic graphs.

Proposition 7 (See e.g. [7]). The generating function T .z/ of melonic graphs (and

open melonic graphs) with respect to the number of black vertices is the unique

power series solution of the equation:

T .z/ D 1C zT .z/DC1:

Proof. Let M.z/ be the generating function of prime melonic graphs. Then the

inductive de�nition (De�nition 5) of melonic graphs and prime melonic graphs

immediately translate into the equations:

T .z/ D 1C
X

i�1

M.z/i D 1

1 �M.z/
; M.z/ D zT .z/D ;

and we conclude. �
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Corollary 2 (e.g. [7]). The generating series T .z/ admits the power series

expansion

T .z/ D
X

k�0

1

.D C 1/k C 1

�
.D C 1/k C 1

k

�

zk :

It has a dominant singularity at z0 D DD=.1CD/1CD and the following singular

expansion in a slit domain around z0

T .z/ D 1CD

D
�

r

2
D C 1

D3

p

1� z=z0 CO.1 � z=z0/; (8)

1�DzT .z/DC1 D D

r

2
D C 1

D3

p

1� z=z0 CO.1 � z=z0/: (9)

In particular T .z0/ D .1CD/=D and z0T .z0/DC1 D 1=D.

Proof. The �rst expansion follows immediately from Proposition 7 using

Lagrange inversion formula. The singular expansion is a direct instance of the

standard theory of singularity analysis of simple trees generating functions [6,

Chapter VII.4]. �

Proposition 8. Let yG be a rooted melon-free graph with 2k. yG/ vertices, and thus

.D C 1/k. yG/ edges. The generating function H yG
.z/ of colored graphs with core

yG with respect to the number of black vertices is

H yG
.z/ D zk. yG/T .z/.DC1/k. yG/C1:

Proof. This immediately follows from the bijection of Theorem 4. The case

k. yG/ D 0 corresponds to the ring graph which is the core of the melonic graphs.

�

8.2. Chains and schemes. In view of Theorem 5, in order to enumerate cores

in terms of reduced schemes, we will need several proper chain generating series,

depending on whether the chain is broken or not, on whether its external edges

have identical color or not and on whether its white squares are both on the top or

not. Recall that a proper chain has at least four internal vertices.

Arbitrary chains. Let us �x one color c1. A non-empty chain with external

colors .c1; c1/ (which is necessarily proper) consists of a non-empty chain not

reusing color c1 followed by a .D � 1/-dipole with right external color c1 and a
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possibly empty chain with external colors .c1; c1/:

AD.u/ D Du

1� .D � 1/u
� u � .1C AD/

H) AD.u/ D Du2

1 � .D � 1/u

1

1 � Du2

1 � .D � 1/u

D Du2

.1C u/.1�Du/

D Du2 1C .D � 1/u �Du2

.1 � u2/.1�D2u2/
:

Now �x a second color c2 ¤ c1. A proper chain with external colors .c1; c2/

is either a dipole with external colors .c1; c2/ followed by a non empty chain with

equal external colors .c2; c2/, or a dipole with external colors .c1; c0/; c0 ¤ c2

followed by either a dipole or a non empty chain with external colors .c0; c2/:

A¤ D uAD C .D � 1/u2 C .D � 1/uA¤

H) A¤ D u2 .D � 1/CDu

.1C u/.1 �Du/

D u2 .D � 1/C .D2 �D C 1/u �D2u3

.1� u2/.1�D2u2/
:

The chains with an even number of dipoles correspond to the even powers of u,

while the ones with an odd number of dipoles to the odd powers of u, hence

AD; ı�
�ı

.u/ D Du2.1�Du2/

.1� u2/.1�D2u2/
; ADI ıı

��
.u/ D Du2.D � 1/u

.1� u2/.1�D2u2/
;

A¤I ı�
�ı

.u/ D u2.D � 1/

.1 � u2/.1 �D2u2/
; A¤I ıı

��
.u/ D u3ŒD2 �D C 1 �D2u2�

.1 � u2/.1�D2u2/
:

Unbroken chains. Let us �x two colors c1 ¤ c2. There is exactly one .c1; c2/-

unbroken chain with 2k vertices, for k � 1, so that the generating function of

proper unbroken chains with respect to the number of black vertices, is U.u/ D
u2=.1 � u/. The half-edges have di�erent colors if the number of dipoles is odd,

and equal colors if it is even, hence the generating function for the two kinds of

proper unbroken chains are

U¤I ıı
��

.u/ D u3

1� u2
and UDI ı�

�ı
.u/ D u2

1� u2
:
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Broken chains. Let us �x two colors c1 and c2 (maybe equal). A proper

broken chain with external colors .c1; c2/ is an arbitrary proper chain which is

not unbroken. If c1 D c2, all the D possible second colors for the unbroken chain

have to be considered:

BDI ı�
�ı

.u/ D ADI ı�
�ı

.u/ �DUDI ı�
�ı

.u/ D D2.D � 1/u4

.1 � u2/.1�D2u2/
;

BDI ıı
��

.u/ D ADI ıı
��

.u/ D D.D � 1/u3

.1� u2/.1�D2u2/
;

B¤I ı�
�ı

.u/ D A¤I ı�
�ı

.u/ D .D � 1/u2

.1� u2/.1�D2u2/
;

B¤I ıı
��

.u/ D A¤I ıı
��

.u/ � U¤I ıı
��

.u/ D D.D � 1/u3

.1 � u2/.1�D2u2/
:

This is summarized in Figure 22.

Figure 22. The generating series of the chain-vertices.

Proposition 9. Let zS be a reduced scheme with 2k. zS/ black and white vertices,

and with U¤I ıı
��

chain-vertices of type U¤I ıı
��

, UDI ı�
�ı

of type UDI ı�
�ı

, B¤I ıı
��

of

type B¤I ıı
��

, BDI ıı
��

of type BDI ıı
��

, B¤I ı�
�ı

of type B¤I ı�
�ı

and BDI ı�
�ı

of type BDI ı�
�ı

.

The generating function G zS .u/ of rooted melon-free colored graphs with scheme
zS with respect to the number of black vertices is
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G zS .u/ D uk. zS/ ŒU¤I ıı
��

.u/�
U

¤I ıı
�� ŒUDI ı�

�ı
.u/�

U
DI ı�

�ı ŒB¤I ıı
��

.u/�
B

¤I ıı
��

ŒBDI ıı
��

.u/�
B

DI ıı
�� ŒB¤I ı�

�ı
.u/�

B
¤I ı�

�ı ŒBDI ı�
�ı

.u/�
B

DI ı�
�ı

D
P zS .u/

.1 � u2/UCB.1�D2u2/B
;

where U D U¤I ıı
��
CUDI ı�

�ı
, B D B¤I ıı

��
C BDI ıı

��
C B¤I ı�

�ı
C BDI ı�

�ı
and P zS .u/ is

the monomial

P zS .u/ D .D � 1/B D
B

¤I ıı
��

CB
DI ıı

��
C2B

DI ı�
�ı

u
k. zS/C2U

DI ı�
�ı

C3U
¤I ıı

��
C3B

¤I ıı
��

C3B
DI ıı

��
C2B

¤I ı�
�ı

C4B
DI ı�

�ı :

Proof. This follows immediately from the bijection in Theorem 5. �

8.3. The enumeration of rooted colored graph of �xed degree. Putting to-

gether Theorem 4, Theorem 5 and Theorem 6 we obtain the enumeration of the

edge colored graphs of �xed degree.

Theorem 7. Let ı � 0. The generating function of rooted colored graphs with

root edge of color 0 and degree ı with respect to the number of black vertices is

H 0
ı .z/ D T .z/

X

zS2zS0
ı

G zS .zT .z/DC1/;

where the sum runs over the �nite set zS0
ı

of reduced schemes with degree ı and

root edge of color 0.

Together with Proposition 9, this theorem implies Theorem 1 in the Introduc-

tion. The �rst values can be computed explicitly.

8.3.1. Degree ı D 0. The reduced schemes of degree zero have no chain-vertex.

First they can not have any non-separating chain-vertex. Assume now that they

have separating chain-vertices. Deleting the chain vertices one obtains several

connected components which are (see Section 6 ) colored graphs with only black

marks. All these connected components have degree 0, and some of them have

only one mark, which is impossible according to Lemma 12. It follows that the

reduced schemes of degree zero are melon-free colored graphs of degree zero,

hence the unique such reduced scheme is the ring graph and, as expected:

H 0
0 .z/ D T .z/ :
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8.3.2. Degree ı D D � 2. We are interested in identifying the smallest integer

ımin > 0 such that there exist reduced schemes zSmin with ı. zSmin/ D ımin and

furthermore classify all the reduced schemes zSmin.

Lemma 13. The minimal non-zero degree ımin is at most D � 2.

Proof. For any D, let us consider the two reduced schemes presented in Figure 23

where the vertical arm can be empty, represent a dipole or a chain vertex (broken

or unbroken), and the unbroken chain vertex can be replaced by a unique dipole

for the case on the left hand side.

c1

c1

c1

c1

c1

c1

c2

c2

c2

c2

Figure 23. The “lollipop” reduced schemes.

These schemes have a non-separating unbroken chain-vertex in Case III.b

(single face of colors .c1; c2/ after deletion), hence the degree goes down by

D � 2 upon deletion and the resulting scheme (which is no longer reduced) has

degree 0. �

We will now show that the minimal non trivial degree is D � 2 and that the

“lollipop” schemes in Figure 23 are the only reduced schemes of degree D � 2.

Let us denote ySmin the melon free colored graph with degree ımin obtained from
zSmin by replacing all the chain-vertices by their minimal realization as chains of

.D � 1/-dipoles.
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Lemma 14. ySmin can not contain

� for all D � 3, two separating .D � 1/-dipoles which do not belong to the

same maximal chain,

� for all D � 4 a (partially) separating .D � q/-dipole with 2 � q � D � 2

which separates it in more than two connected components,

� for all D � 5 a non-separating .D � 2/-dipole,

� for all D � 5 a 2-dipole which separate ySmin into exactly two connected

components,

� for all D � 6 a .D � q/-dipole with 3 � q � D � 3.

Proof. Assume that ySmin contains a .D � q/ dipole. By removing the dipole,
ySmin separates into C connected components and from eq. (5) the variation of the

degree through the removal is at least

D.q C 1� C / � t1.t1 � 1/ � � � � � tC .tC � 1/;

where ti � 1 denotes the number of new edges in the component i (hence

t1C� � �C tC D qC1). This bound is saturated only if, in each connect component,

all the faces containing new edges are of Type b, i.e. any pair of new edges in the

same connected component belongs to the same face after deletion.

First item. By removing two separating .D � 1/-dipoles which do not belong

to the same maximal chain, ySmin separates into three connected components.

But this impossible as at most one of the components can have zero degree

(the one containing the root), and ımin can not be distributed among the two

remaining components.

Second item. By removing such a .D � q/-dipole, ySmin splits into at least three

connected components which, by the same argument as before, is impossible.

Third item. In the case q D 2, C D 1 (hence t1 D 3), the variation of the degree

is at least 2D � 6 > D � 2, for all D � 5.

Fourth item. In the case q D D�2, C D 2 the variation of the degree is at least

D.D � 3/ � t1.t1 � 1/ � t2.t2 � 1/ ;
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which, using t1C t2 D qC 1 D D� 1, amounts to �2t2
1 C 2.D� 1/t1� 2. Taking

into account the sign of t2
1 , we have

min
t12¹1;:::;D�2º

¹�2t2
1 C 2.D � 1/t1 � 2º D min

t1D1;t1DD�2
¹�2t2

1 C 2.D � 1/t1 � 2º

D 2D � 6

> D � 2;

for all D � 5.

Fifth item. Let us now consider the variation of the degree with the deletion of

a .D � q/-dipole in the only two possible cases, C D 1; 2.

� C D 1, (hence t1 D q C 1). The variation of the degree with the deletion is

Dq � q.q C 1/, and, due to the sign of q2, we have

min
q2¹3;:::D�3º

¹�q2C .D � 1/qº D min
qD3;qDD�3

¹�q2C .D � 1/qº

D min¹3D � 12; 2D � 6º

> D � 2;

for all D � 6.

� C D 2. The variation of the degree is D.q�1/� t1.t1�1/� t2.t2�1/, which,

using t1C t2 D qC 1, amounts to �2t2
1 C 2.qC 1/t1CD.q� 1/� q.qC 1/.

Taking into account the sign of t2
1 , we have

min
t12¹1;:::;qº

¹�2t2
1 C 2.q C 1/t1 CD.q � 1/ � q.q C 1/º

D min
t1D1;t1Dq

¹�2t2
1 C 2.q C 1/t1 CD.q � 1/ � q.q C 1/º

D �q2 CD.q � 1/C q;

and, taking the minimum over q, we have

min
q2¹3;:::D�3º

¹�q2 CD.q � 1/C qº D min
qD3;qDD�3

¹�q2CD.q � 1/C qº

D min¹2D � 6; 3D � 12º

> D � 2;

for all D � 6 .

which concludes. �
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Lemma 15. For D � 4, if ySmin contains a non-separating 2-dipole, then it

contains a non-separating .D � 1/-dipole.

Proof. We will show that if ySmin contains a non-separating 2-dipole, then it it

is one of the two graphs depicted in Figure 24, (where the vertical arm can be

empty or represent a chain of .D � 1/-dipoles) hence contains a non-separating

.D � 1/-dipole.

cc

cc

c

c
c0

c0

c0

c0

Figure 24. Graphs with a non-separating 2-dipole.

In the notations of the previous lemma, this corresponds to q D D � 2 for

and C D 1. By deleting the 2-dipole the degree goes down by at least D � 2,

and it goes down by exactly D � 2 only if for any two external colors c1; c2 of the

2-dipole, all the faces .c1; c2/ incident to the 2-dipole are of Type b (single face

after the deletion).

After the deletion of the 2-dipole one obtains a graph yS 0 of degree zero.

Inspired by Section 6, let us mark the D � 1 new edges of yS 0 generated by the

deletion with blue marks: any couple of marked edges in yS 0 belong to a face.

Observe that if the root of ySmin is incident to the dipole, then the root of yS 0 is

marked. While yS 0 is melonic and can have melonic subgraphs, because ySmin is

melon free, any melonic subgraph of yS 0 must contain at least a marked edge.

If yS 0 has two vertices, it is immediate to see that we are in one of the two cases

depicted in Figure 24 with empty vertical arm, depending on whether the root of
yS 0 is marked or not.
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If yS 0 has four vertices or more, then it has at least two pairs of vertices, .uı; u�/

and .vı; v�/ connected by D parallel edges, hence at least one pair, say .vı; v�/,

connected by D parallel non-root edges. Then at least one of the parallel edges

connecting vı and v� must be marked. This edge belongs to D�1 faces of degree 2

made only of parallel edges connecting vı and v�, and to only one face of degree

larger than two. Thus at least D � 3 other parallel edges must be marked.

This implies that yS 0 can not have a third pair of vertices .wı; w�/ connected

by D parallel edges, as this would require another D � 2 marked edges and, as

D � 4, 2D � 4 > D � 1. It follows that yS 0 is a chain of .D � 1/-dipoles such that

� the left half-edges (incident to uı and u�) are joined together into the root

edge,

� the chain has at least two .D � 1/-dipoles uı � u� and vı � v�,

� the right half-edges are joined into an edge,

� at least D � 2 of the parallel edges connecting vı and v� are marked.

Finally, the last marked edge either connects also vı and v�, or it is incident to

one of them (say v�), as only these edges in the chain share faces with D � 2 � 2

of the parallel edges connecting vı and v�. This is depicted in Figure 25.

vıvı v�v�

Figure 25. Blue marks after deletion of a non-separating 2-dipole.

Reinstating the 2-dipole leads to the two cases in Figure 24. �

Lemma 16. For D � 4, if ySmin contains a .D � 2/-dipole which separates it into

two connected components, then it contains a non-separating .D � 1/-dipole.

Proof. Let us remove the .D�2/-dipole and mark the new edges with blue marks.

The graph ySmin separates into two connected components of degree zero such that

one component has two marks and the other one has one.
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The connected component not containing the root edge r. ySmin/ has at least two

vertices and, as it does not have any melonic subgraph made only of unmarked

edges, it must contain two marked edges. It follows that this component is a chain

having at least a .D � 1/-dipole with left half-edges and right half-edges joined

into (marked) edges. Any .D � 1/-dipole in the chain is a non-separating dipole

of ySmin. �

Proposition 10. A graph ySmin must contain a Case II.B non-separating .D � 1/-

dipole (single resulting face after the removal).

Proof. First observe that it su�ces to show that ySmin contains a non-separating

.D � 1/-dipole: as ımin � D � 2, this dipole can only be a Case II.B non-

separating dipole. If ySmin contains a separating .D � 1/-dipole, removing the

maximal separating chain to which this dipole belongs, ySmin splits into two graphs,

one of which has degree ımin and, from Lemma 14, does not contain any separating

.D � 1/-dipole. It thus su�ces then to show that any ySmin contains at least a

.D � 1/-dipole. According to eq. (4),

.D C 1/ımin C 2F1. ySmin/ D D.D C 1/C
X

p�2

Œ.D � 1/p �D � 1�Fp. ySmin/

� D.D C 1/;

and, as ımin � D � 2, F1. ySmin/ � D C 1. Thus ySmin has at least a face of degree

2 which does not contain the root edge, hence belongs to some .D� q/-dipole for

1 � q � D � 2. We denote this dipole d . We have:

� for D D 3, d is a 2-dipole, hence a .D � 1/-dipole;

� for D D 4, d is either

– a 2-dipole, hence a .D � 2/-dipole. Then d can not be completely

separating (Lemma 14), and if it is either non-separating (Lemma 15) or

partially separating (Lemma 16), then ySmin contains a .D � 1/-dipole,

– a 3-dipole, hence a .D � 1/-dipole;

� for D D 5, d is either

– a 2-dipole. According to Lemma 14, d must be non-separating hence

(Lemma 15) ySmin contains a .D � 1/-dipole,

– a 3-dipole, hence a .D�2/-dipole. Then (Lemma 14) d must be partially

separating and (Lemma 16) ySmin contains a .D � 1/-dipole,

– a 4-dipole, hence a .D � 1/-dipole;
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� for D � 6, d is either

– a 2-dipole. According to Lemma 14 d must be non-separating hence

(Lemma 15) ySmin contains a .D � 1/-dipole,

– a .D�2/-dipole. Then, from Lemma 14, d must be partially separating

hence (Lemma 16) ySmin contains a .D � 1/-dipole,

– a .D � 1/-dipole.

This concludes the proof. �

We are �nally in the position to classify the minimal reduced schemes and to

determine the minimal non zero degree.

Theorem 8. The minimal non zero degree is ımin D D � 2 and the only reduced

schemes of minimal non zero degree ( zSmin with ı. zSmin/ D ımin) are the lollipop

schemes represented in Figure 23.

Proof. From Proposition 10, the minimal realization ySmin of zSmin as a colored

graph contains a non-separating Case II.B .D � 1/-dipole which we denote d .

Deleting the maximal (necessarily unbroken) chain Ud containing d in ySmin, the

degree decreases by exactly D � 2, hence ımin � D � 2 and in conjunction with

Lemma 13 we conclude that ımin D D � 2.

The deletion leads to a colored graph yS 0
min of degree 0 having two blue marks,

such that any melonic subgraph of yS 0
min contains at least a blue mark.

If yS 0
min has only one edge carrying both marks, then it is either a ring or a chain

with the left halfedges matched into the root edge and the right halfedges matched

into the marked edge. It follows that zSmin is of the form depicted on the right in

Figure 23.

Suppose now that yS 0
min has two edges carrying the marks. Then yS 0

min must

have at least a pair of vertices connected by D parallel non-root edges. As any

melonic subgraph of yS 0
min must have a blue mark, one of the D parallel non-root

edges is marked. If no other parallel non root-edge is marked, it follows that the

D � 1 parallel edges are a .D � 1/-dipole in ySmin which extends the chain Ud .

But this is not possible as Ud is maximal. Hence both marked edges connect the

same two vertices. It follows that yS 0
min is a chain with left half-edges matched in

the root edge, right half-edges matched in an edge such that two internal edges

of the rightmost dipole are marked and zSmin is of the form depicted on the left in

Figure 23. �



Regular colored graphs of positive degree 311

Let us analyze �rst the vertical arm in Figure 23. Including the degenerate

con�gurations, it can be empty, consist of one dipole, or consist of a (broken or

unbroken) chain-vertex. Fixing the incoming color (bottom color of the arm in

Figure 23) to be c1, allowing all the possible outgoing colors c2, and taking into

account that, if the chain-vertex is unbroken and has external colors .c1; c1/, then

it can have any secondary color c2 ¤ c1, the generating function of the vertical

arm in Figure 23 is

1C BDI ı�
�ı

.u/CDUDI ı�
�ı

.u/C BDI ıı
��

.u/

CDŒuC B¤I ıı
��

.u/C U¤I ıı
��

.u/C B¤I ı�
�ı

.u/�

D 1C Du2.1�Du2/

.1� u2/.1�D2u2/
C D.D � 1/u3

.1 � u2/.1�D2u2/

CD
h u.1�Du2/

.1 � u2/.1 �D2u2/
C .D � 1/u2

.1� u2/.1�D2u2/

i

D 1C Du2

.1C u/.1 �Du/
C Du

.1C u/.1 �Du/

D 1

1 �Du
:

The generating function of the lollipop schemes are therefore

T .z/

�
1

1 �Du
� u �

�
D

2

�

� u

1 � u2

�

uDzT .z/DC1

and

T .z/
h 1

1 �Du
�D � u2

1� u2

i

uDzT .z/DC1
;

where we counted the fact that the non separating chain-vertex can be reduced to

a unique dipole for the leftmost scheme. Putting the two together we obtain

H 0
D�2.z/ D T .z/

�
1

1�Du

��
D

2

�

CD

�
u2

1 � u2

�

uDzT .z/DC1

D T .z/
D.DC 1/

2

z2T .z/2DC2

1� z2T .z/2DC2

1

1 �DzT .z/DC1
;

reproducing the result of [11]. An alternative proof would have been to list all

the reduced schemes of
S

ı�1
zS0

ı
up to a su�ciently large size and compute their

degree and contribution: this is admittedly quite tedious by hand, but could in

principle easily lead to an automated computation of the H 0
ı

for small ı.
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9. Dominant schemes

Combining Proposition 9 and Theorem 7 with the singular expansion (8),

we immediately see that H 0
ı

.z/ has radius of convergence z0 and admits a

singular expansion near z D z0 of the form

H 0
ı .z/ D D C 1

D

X

zS2zS0
ı

P zS.1=D/

.1 � 1=D2/UCBŒ2.D C 1/=D3�B=22B
.1� z=z0/�B=2

Œ1CO.
p

1� z=z0/�;

which is dominated by the reduced schemes that maximize B. In other terms, with

probability tending to 1 when k goes to in�nity, a uniform random colored graph

with degree ı will have a reduced scheme that maximizes B. In order to identify

these schemes we improve in this section the analysis of the number of broken

chain-vertices in a reduced scheme.

9.1. A bound on the number of broken chain-vertices. Let us use a simpli�-

cation of the algorithm presented in Section 6.3 and only remove broken chain-

vertices in a reduced scheme zG. As the �rst step involves only non separating

deletions, zG0 is connected and every connected component of zG00 has at least a

black mark (or no separating deletion is performed). The algorithm goes through

with several modi�cation:

� the number of blue marks in zG0 and zG00 is mblue. zG0/ D mblue. zG00/ D 2q,

where q is the number of non-separating deletions;

� the degree goes down by exactly D with each non separating deletion

ı. zG/ D ı. zG0/CDq;

� the abstract graph F associated to zG00 is a tree T and mblack. zG00/ D 2E.T/;

� in view of Theorem 8, the minimal degree of a positive degree component is

ımin D .D � 2/. Denoting cC the number of such components, we have

.D � 2/cC CDq � ı. zG/:

Crucially, we have the following result.

Lemma 17. The non root connected components of degree zero in zG00 must have

at least three marks (either blue or black). The non root connected components of

degree zero with exactly three marks are either ring components or consist of two

vertices connected by D parallel edges, three of which are marked.
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Proof. We denote yG, yG0 and yG00 the minimal realizations of the schemes zG, zG0

and zG00 as colored graphs. As zG is reduced, yG is melon free.

Let us consider a non root zero degree component of yG00, say yG1. Then yG1 is

a melonic graph such that any of its melonic subgraphs contains at least a marked

edge. Observe that yG1 has at least a mark coming from deleting some separating

maximal chain in yG0 (i.e. some maximal chain in yG). But then it must have at

least another mark, as yG has no melonic subgraph.

If yG1 is a ring graph and has exactly two marks, then it corresponds to two

chain-vertices in the scheme zG joined together into a longer chain, which is

impossible as zG is reduced.

If yG1 is non trivial then, for any D-uple of parallel edges connecting the same

two vertices in yG1

� at least one of the parallel edges is marked (as any melonic subgraph of yG1

has a marked edge),

� if one of the parallel edges has only one mark then at least another parallel

edge has a mark, (otherwise in zG the left (or right) half-edges of a chain-

vertex would be incident to the left (or right) half-edges of a .D � 1/-dipole

or chain-vertex).

If yG1 has four vertices or more, it has two disjoint D-uples of parallel edges

and, as there are at least two marks for any D-uple of parallel edges, yG1 has at

least four marks.

If yG1 has only two vertices joined by D C 1 parallel edges (say e0; : : : eD),

at least one of them (say e0) is marked. Considering the D-uple e1; : : : eD , we

conclude that one of these edges (say e1) is also marked. If either e0 and e1

have only one mark, then considering the D-uple e0; e2; : : : eD or e1; e2; : : : eD

we conclude that one of the edges e2; : : : eD is marked. Thus either yG1 has three

marks on three distinct edges, or it has at least four marks. �

Let us denote c0 the number of non root zero degree components (each of

which has at least three marks) of zG00. The positive degree components and the

root component have at least a mark. As T is a tree we have

1C cC C c0 D E.T/C 1 H) mblack. zG00/ D 2cC C 2c0;

and counting the minimal number of marks in a connected component we have

mblue. zG00/Cmblack. zG00/ � 1C cC C 3c0;

which implies

2q C 2cC C 2c0 � 1C cC C 3c0 H) 2q C cC � 1 � c0:
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Moreover, this inequality is saturated only if all the zero degree non root

components have exactly three marks, and all the positive degree components and

the root component have exactly one mark. The total number of broken chain-

vertices is half the number of marks, hence

B D mblue. zG00/Cmblack. zG00/

2
D q C cC C c0 � 3q C 2cC � 1:

Proposition 11. The number B of broken chain-vertices in a reduced scheme zG
of degree ı is at most

Bmax D 2cC C 3q � 1;

and it saturates this bound only if in zG00 all the positive degree components

and the root component have exactly one mark and all the non root zero degree

components have exactly three marks.

Furthermore, the parameters cC and q satisfy

.D � 2/cC CDq � ı

and the constraint is saturated only if all the components of positive degree of zG00

have degree exactly D � 2.

9.2. Realizability and dominant schemes. Given integers cC and q that satisfy

the constraint .D � 2/cC CDq � ı, it is always possible to construct a reduced

scheme with these parameters that has 2cC C 3q � 1 broken chain-vertices: form

cC loops each using one unbroken chain-vertex, and put these loops and a root ring

component at the cCC1 leaves of a binary tree whose 2cC�1 edges are separating

broken chain-vertices. Finally add q non-separating broken chain-vertices and

attach their two extremities to existing edges: each attachment creates another

broken chain-vertex (as it splits an existing one into two), so that 3q broken chain-

vertices are added in total. The total number of broken chain-vertices is thus of

2cC C 3q � 1.

Proposition 12. For any ı � 1, the dominant reduced schemes zG of degree ı

are reduced schemes with Bmax broken chains where Bmax is the maximum of the

integer linear program

2cC C 3q � 1; subject to the constraint .D � 2/cC CDq � ı;

and zG is such that

� all the non root zero degree components in zG00 have exactly 3 marks: they are

either ring components with three marks, or consist in two vertices connected

by D C 1 parallel edges, three of which are marked;
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� the root component has one mark and degree 0: it is a root ring graph;

� all the strictly positive degree components in zG00 have one mark and degree

D � 2 (They either represent an unbroken chain with equal external colors

and half-edges paired into edges h`�; rıi and hr�; `ıi, one of which is marked

or they represent an unbroken chain with di�erent external colors incident at

a .D� 2/-dipole whose third pair of half-edges is joint into a marked edge.);

� all the other elements of the schemes are Bmax broken chains.

Together with the asymptotic expansion (8), this Proposition implies Theo-

rem 2 in the Introduction. The dominant reduced schemes can be seen as abstract

graphs whose edges represent the broken chains and whose vertices can either be

trivalent (representing the non-root zero degree components) or univalent (repre-

senting root component and the non zero degree components).

In order to completely characterize these schemes we need to determine Bmax.

Optimizing the above linear program yields the parameters of the candidate

reduced schemes with a maximal number of broken chain-vertices: the “pure”

solutions are

ca
C D ı=.D � 2/ ; qa D 0 H) B

a D 2ı=.D � 2/ � 1;

cb
C D 0 ; qb D ı=D H) B

b D 3ı=D � 1:

Pure solutions are not realizable for values of ı that are not divisible by D or D�2,

so that for D � 5 mixed solutions should be considered also.

Let us describe the schemes in the pure cases:

� Case a , with ı D n � .D � 2/ , n � 1 . Since qa D 0, all the 2n � 1

broken chains are separating: the scheme is a binary tree with nC 1 leaves,

one carrying the root ring and the others carrying unbroken loops, with

n � 1 internal nodes each carrying a ring or a .D � 2/-dipole, and with the

2n� 1 edges carrying the broken chains. The generating function of graphs

associated to such schemes is obtained by counting

– the root ring contributes 1,

– the choices of colors, every non root leaf contributes,

DUDI ı�
�ı

.u/C
�

D

2

�

u.uC U¤I ıı
��

.u// D D.D C 1/

2

u2

1� u2
;
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– the choices of the colors, every trivalent internal node contributes,

1C
�

D

2

�

u;

where the 1 corresponds to the case of a ring component with three

marks, and second term corresponds to the case of a D� 2-dipole with

all the half-edges matched into marked edges,

– the choices of outgoing colors, the generating function for the separat-

ing chains with �xed incoming color is

BDI ı�
�ı

.u/C BDI ıı
��

.u/CDB¤I ıı
��

.u/CDB¤I ı�
�ı

.u/

D D.D � 1/u3.1CDu/CD.D � 1/u2.1CDu/

.1� u2/.1�D2u2/

D D.D � 1/u2

.1 � u/.1 �Du/
:

The total contribution of these reduced schemes is

T .z/
1

n

�
2n� 2

n� 1

��� D.D � 1/u2

.1� u/.1 �Du/

�2n�1
�

1C
�

D

2

�

u

�n�1

�D.D C 1/

2

u2

1� u2

�n�

uDzT .z/DC1

;

where the Catalan numbers count the choices of binary trees. Observe that

for n D 1 we recover the lollipop, but with the restriction that the vertical

arm is a broken chain-vertex.

� Case b , with ı D n �D . since cb
C D 0, there are no components of

positive degree: the scheme is a graph with 3n � 1 edges each carrying a

broken chain-vertex, one node with degree one carrying the root ring and

2n�1 nodes of degree 3 carrying either rings or .D�2/-dipoles. In particular

this graph can be decomposed (in many ways) into a spanning tree with 2n�1

edges and n extra edges. The singular behavior of G zS .u/ for such a scheme

S is of the form:
1

.1�Du/3n�1
.ı D n �D/:

As the number of trivalent graphs grows super exponentially the correspond-

ing series of dominant contributions is not summable in n.
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In conclusion:

� For D D 3, we get B
a D 2ı � 1 and B

b D ı � 1 so ca
C D ı=.D � 2/; qa D 0

gives the dominant contribution: for all ı > 0, the dominant schemes are the

binary trees of Case a above.

� For D D 4, we get B
a D ı � 1 and B

b D 3ı=4� 1, so again ca
C D ı=.D � 2/

(hopefully here ı is always even) qa D 0 gives the dominant contributions

and Case a schemes dominate again, for all (even) ı > 0.

� For D D 5, we get B
a D 2ı=3 � 1 and B

b D 3ı=5 � 1, and binary trees

again, but only for values of ı that are multiples of 3. For the other values of

ı, the dominant graphs have a lower ratio B=ı (so that they do not appear in

the scaling limit of next section).

� For D D 6, we get B
a D ı=2 � 1 and B

b D ı=2 � 1 so its a draw: all

combinations are possible. The dominant graphs are both binary trees with

loop leaves and 3-regular graphs, as well as mixed graphs.

� For D � 7, we get B
a D 2ı=.D � 2/ � 1 < B

b D 3ı=D � 1 so qb D ı=D

wins, and the dominant graphs are the rooted trivalent graphs.

9.3. Double scaling. The Feynman amplitude of graphs (maps) in matrix mod-

els is N 2�2g , where g is the genus of the map. In colored tensor models [9] the

.D C 1/-colored graphs come equipped with a scaling in N , N D�ı hence the

leading behavior of the generating function of graphs with degree ı and B broken

chains is N DŒN �ı.z0 � z/� B

2 �. In this context a natural question is whether the

dominant terms of such a family of generating functions can be resummed.

In the case 3 � D � 5 the generating functions of colored graphs having

dominant reduced schemes can indeed be resummed to

T .z/

�

1C
X

n�1

1

N .D�2/n

1

n

�
2n � 2

n � 1

�

� D.D � 1/u2

.1� u/.1�Du/

�2n�1
�

1C
�

D

2

�

u

�n�1�D.D C 1/

2

u2

1� u2

�n
�

D T .z/

"

1C 1

N D�2

D.D � 1/u2

.1 � u/.1 �Du/

D.D C 1/

2

u2

1� u2

X

n�0

1

nC 1

�
2n

n

�

Tn

�

;

where

T D
�

1

N D�2

� D.D � 1/u2

.1 � u/.1�Du/

�2
�

1C
�

D

2

�

u

��D.D C 1/

2

u2

1 � u2

��



318 R. Gurau and G. Schae�er

and all the other generating functions of reduced schemes are either more sup-

pressed in 1=N or less singular close to criticality.

Letting N !1 and z ! z0 while keeping N D�2.1� z=z0/ D x�1 �xed and

large enough, the above sum over n converges. For each such choice of x we can

de�ne a non trivial limit distribution on the set of all rooted colored graphs with

dominant reduced schemes such that large schemes are favored in this distribution.

The sum over dominant reduced schemes is

T .z/

8

ˆ̂
ˆ
<

ˆ
ˆ̂
:

1C 1�
p

1� 4T

2

�� D.D � 1/u2

.1� u/.1 �Du/

��

1C
�

D

2

�

u

��

9

>>>
=

>
>>;

D T .z/

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

1C .1� u/.1�Du/

2D.D � 1/u2

�

1C
�

D

2

�

u

�

�

v
u
u
u
u
u
u
t

.1 � u/2.1�Du/2

4D2.D � 1/2u4

�

1C
�

D

2

�

u

�2
�

�D.D C 1/

2

u2

1 � u2

�

N D�2

�

1C
�

D

2

�

u

�

9

>
>>>
=

>
>>>
;

:

Taking into account that for z ! z0 we have

T .z/ � 1CD

D
�

r

2
D C 1

D3

r

1 � z

z0

;

u � 1

D
�

r

2
D C 1

D3

r

1 � z

z0

;

1 �Du � D

r

2
D C 1

D3

r

1� z

z0

;

this becomes

D C 1

D
�

r

2
D C 1

D3

s

1� z

z0

� D2

N D�22.D � 1/

C 2

D2

r

1 � z

z0

s

1 � z

z0

� 1

N D�2

D2

2.D � 1/
:
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Note that, as expected, we recover the singular behavior of T .z/ in the N !1
limit. At �nite N the singularity is shifted from z0 to

z1 D z0

�

1� D2

N D�22.D � 1/

�

< z0:

The new singularity governs the critical behavior of the double scaling series.

The double scaling regime identi�ed in this paper must be studied further. The

next step is to study the geometry of the resulting continuum random space starting

with its Hausdor� and spectral dimensions. In the case 3 � D � 5, as the doubles

scaling is summable, one can attempt to iterate this procedure and construct a

multiple scaling limit in which a genuinely new random space is obtained.
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