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Multi-Catalan tableaux and the two-species TASEP

Olya Mandelshtam

Abstract. The goal of this paper is to provide a combinatorial expression for the steady
state probabilities of the two-species ASEP. In this model,there are two species of particles,
oneheavyand onelight, on a one-dimensional �nite lattice with open boundaries. Both
particles can swap places with adjacent holes to the right and left at rates 1 andq. Moreover,
when the heavy andlight particles are adjacent to each other, they can swap places asif
the light particle were a hole. Additionally, theheavyparticles can hop in and out at the
boundary of the lattice. Our main result is a combinatorial interpretation for the stationary
distribution atq D 0 in terms of certain multi-Catalan tableaux. We provide an explicit
determinantal formula for the steady state probabilities and the partition function, as well
as some general enumerative results for this case. We also describe a Markov process
on these tableaux that projects to the two-species ASEP, andthus directly explains the
connection between the two. Finally, we give a conjecture that gives a formula for the
stationary distribution to theq D 1 case, using certain two-species alternative tableaux.

Mathematics Subject Classi�cation (2010).05E99.
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1. Introduction

The asymmetric simple exclusion process (ASEP) is a well-studied model that
describes the dynamics of particles hopping on a �nite one-dimensional lattice on
n sites with open boundaries, with the rule that there is at most one particle in a
site, and at most one particle hops at a time. Figure1shows the parameters of this
process, with�; � , andq denoting the rates of the hopping particles. Processes of
this �avor have been studied in many contexts, in particularfor their connections
to some very nice combinatorics. For instance, see [4] and the references therein.
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Figure 1. The parameters of the ASEP.

In this work we consider a two-species ASEP, studied by Uchiyama [10] and
others (see [7, 1] and the references therein). The two-species ASEP has two
species of particles,heavyandlight. Many variations of multi-species exclusion
processes have been studied for some of their interesting combinatorics and ther-
modynamic properties. In our process, both types of particles can swap places
with an adjacent hole to the right and left with rates 1 andq, respectively. Further-
more,heavyparticles can enter from the left and exit on the right of the lattice
with respective rates� and � , and they can treat thelight particles as holes and
swap places with them to the right and left, also at rates 1 andq. Since thelight
particles cannot enter or exit, their number stays �xed. In particular, when we �x
the number oflight particles to be zero, we recover the original ASEP.

We denote theheavyandlight particles by and respectively, and we denote
a hole, or absence of a particle, by. We letr denote the number of's. Then
the two-species ASEP of size.n; r / is a Markov chain, whose states are words of
lengthn in the letters¹ ; ; ºn with exactlyr 's.

Figure2 shows the parameters of the two-species process. More precisely, the
transitions in the Markov chain are the following, withX andY arbitrary words
in ¹ ; ; º� .

X Y
1

� *) �
q

X Y X Y
1

� *) �
q

X Y X Y
1

� *) �
q

X Y

X
�

� * X X
�

� * X

where byX
u

� * Y we mean that the transition fromX to Y has probability u
nC 1 ,

n being the length ofX (and alsoY ).

Figure 2. The parameters of the two-species ASEP.

A Matrix Ansatz solution and corresponding matrices in the work of Uchiyama
in [10, Theorem 2.9] give exact expressions for the steady state distribution of the
two-species ASEP. We denote the steady state probability ofa stateX by Prob.X/ .
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Theorem 1.1(Uchiyama, 2008).LetX D X1 : : : Xn withX i 2 ¹ ; ; º represent
a state of the two-species ASEP of lengthn with r light particles. Suppose there are
matrices D,E, and A and vectorshwj andjvi which satisfy the following conditions:

DE D D C E C qED;

DA D A C qAD;

AE D A C qEA;

hwjE D
1
�

hwj;

D jvi D
1
�

jvi :

Then

Prob.X/ D
1

Z n;r
hwj

nY

i D 1

D 1.X i D ) CA 1.X i D ) CE 1.X i D ) jvi

whereZ n;r is the coe�cient ofy r in hw j.D C yA C E/ n jv i
hw jA r jv i .

This result generalizes a previous Matrix Ansatz solution for the regular ASEP
of Derrida et. al. in [6].

In his work, Uchiyama provides matrices (that are neither positive or rational)
that satisfy the conditions of Theorem1.1. From these, the matrix product yields
steady state probabilities in the form of polynomials in� , � , andq with positive
integer coe�cients. Therefore one would hope for a combinatorial interpretation
of these probabilities, with results akin to those of Corteel and Williams [5] for
the original ASEP. Such results could yield explicit general formulae for both the
desired probabilities and the partition function.

The goal of this paper is to provide some combinatorial solutions to the two-
species ASEP for some special cases. In Section2 of this paper, we describe
certain tableaux which we callmulti-Catalan tableauxthat give an interpretation
for the steady state distributions of the two-species TASEP, which is the ASEP
at q D 0. In Section3 we provide some enumerative results for the multi-
Catalan tableaux. In Section4 we describe a Markov process on the multi-Catalan
tableaux that projects to the two-species TASEP, and which gives another proof
of our main result in Section2. Finally, in Section5 we de�ne some more general
multi-Catalan tableaux that we believe give an interpretation for the steady state
distributions of the two-species ASEP atq D 1. Note that our forthcoming paper
with X. Viennot [9] will give another combinatorial solution to the two-species
ASEP for generalq.
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2. Multi-Catalan tableaux

A number of combinatorial objects have been introduced to study the com-
binatorics of the original ASEP, including permutation tableaux [4], tree-like
tableaux [2], staircase tableaux, and thealternative tableauxof Viennot [11].
The cardinality of the set of alternative tableaux corresponding to the usual
TASEP (i.e. the ASEP atq D 0) is the Catalan number (these are sometimes called
the Catalan tableaux). In this Section, we introduce the multi-Catalan tableaux
which generalize the Catalan tableaux, in order to give a combinatorial interpre-
tation for the two-species TASEP.

De�nition 2.1. A multi-Catalan tableauof sizen is a �lling of a Young diagram
of shape.n; n � 1; : : : ; 1/ with the symbols�; � , andx as follows:

(1) every box on the anti-diagonal must contain an�; � , or x ;

(2) a box that sees an� to its right and a� below must contain an� or � ;

(3) a box that sees an� to its right and anx below must contain a� ;

(4) a box that sees anx to its right and a� below must contain an� ;

(5) every other box must be empty.

In the de�nition above, when we refer to the symbol that a box �sees� to its
right or below, we mean the �rst symbol encountered in the same row or column,
respectively. For example, in the �rst tableau of Figure3, x is the �rst symbol that
the � in the top row sees below it. Finally, note that Rule 5 impliesthat all boxes
in the same row and left of a� must be empty, and also that all boxes in the same
column and above an� must be empty.

De�nition 2.2. Theweightwt.T / of a multi-Catalan tableauT is the product of
all the � 's and� 's it contains.

De�nition 2.3. Thetypetype.T / of the tableauT is the word in¹ ; ; º� that
is read from the anti-diagonal from top to bottom, by assigning a to � , a to � ,
and a to x .
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De�nition 2.4. Theweightof a wordX in ¹ ; ; º� is

weight.X/ D
X

T

wt.T /;

where the sum is over all multi-Catalan tableauxT such that type.T / D X .

Our main result is the following.

Theorem 2.1.Consider the two-species ASEP of sizen. LetX be a state described
by a word in¹ ; ; ºn with r 's. Let Z 0

n;r D
P

X 0 weight.X 0/ where the sum is
over all wordsX 0of lengthn with r 's. Then the steady state probability of state
X is

Prob.X/ D
weight.X/

Z 0
n;r

:

We show as an example all possible multi-Catalan tableaux and their weights
of type in Figure3. Thus Theorem2.1implies that

Prob. / D
1

Z 0
5;1

.� 4� 4 C � 3� 4 C � 2� 4/:

Figure 3. The multi-Catalan tableaux of type with weights� 4 � 4 ; � 3 � 4 , and� 2 � 4

respectively.

In keeping with common ASEP notation, where the, , and are called
the type2, type1, andtype0 particles respectively, we introduce the following
notation for the rows, columns, and boxes of the multi-Catalan tableaux.

De�nition 2.5. A 2-row is a row whose right-most box contains an� and a
1-row is one whose right-most box contains anx . A 0-columnis a column whose
bottom-most box contains a� and a1-columnis one whose bottom-most box
contains anx . Then a2 � 0 box is one that lies in a 2-row and a 0-column
(and correspondingly for 2-1, 1-0, and 1-1 boxes).
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Note that we can ignore the rows with right-most box containing a� or columns
with bottom-most box containing an� since they are automatically required to be
empty according to De�nition2.1.

To connect back to the two-species TASEP, let the wordX in ¹ ; ; ºn

describe a state. Then we �ll a Young diagram of shape.n; n � 1; : : : ; 1/ as follows:
from top to bottom, we �ll the anti-diagonal with symbols�; � , andx by reading
the wordX from left to right, and placing an� for a , a � for a , and anx for
a . Then any valid �lling of the rest of the diagram according tothe rules (2)�(5)
of De�nition 2.1will result in a multi-Catalan tableau of typeX .

2.1. Condensed multi-Catalan tableaux.We provide a condensed version of
the characterization of the multi-Catalan tableaux, whicho�ers a more natural
proof of our results. We introduce the following de�nitions.

Figure 4. The grey squares mark the corners and the darkened edges mark the inner corners.

De�nition 2.6. An inner cornerof a Young diagram is a consecutive pair of a
west edge and a south edge on the boundary of the tableau. Acorner is simply
the box that is both the right-most box of some row and the bottom-most box of
some column. Figure4 shows some examples.

De�nition 2.7. A condensedmulti-Catalan tableauT of size.n; k; r / is a Young
diagramY D Y.T / with at leastr inner corners, that is justi�ed to the northwest
and contained in a rectangle of sizek C r � n � k. Y is identi�ed with the lattice
pathL D L.T / that takes the steps south and west and follows the southeastborder
of Y . In addition, we have the following:

� each edge ofL is labelled with a 0, 1, or 2 such that exactlyr inner corners
have both edges labeled with 1's, and the remaining west edges have the label
0, and the remaining south edges have the label 2;

� a 0-column is a column with a 0 labeling its bottom-most edge (a 1-column
is de�ned correspondingly);
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� a 2-row is a row with a 2 labeling its right-most edge (a 1-row is de�ned
correspondingly);

� a 2-0 box is a box in a 2-row and a 0-column (the 2-1, 1-0, 1-1 boxes are
de�ned correspondingly).

Finally, we �ll T with � 's and� 's according to the following rules.

i. A box in the same row and left of a� must be empty.

ii. A box in the same column and above of an� must be empty.

iii. A 2-0 box that is not forced to be empty must contain an� or a � .

iv. A 2-1 box that is not forced to be empty must contain a� .

v. A 1-0 box that is not forced to be empty must contain an� .

We identify the Young diagramY with a partition� D �.T / , which we also
call theshapeof Y and ofT . Speci�cally, � D .� 1; : : : ; � k C r / where� i is the
number of boxes ofY in row i of thek C r � n � k rectangle.

De�nition 2.8. The labeling wordof the multi-Catalan tableau is the word in
¹2; 1; 0º that is read from the labels on the lattice pathL.T / from top to bottom,
but with 1 counted only once for each 1-labeled inner corner of T . Thetypeof T
is the word in¹ ; ; º that is associated to the labeling word, by assigning ato
a 2, a to a 1, and a to a 0.

De�nition 2.9. Theweightof the condensed tableau is the weight of the symbols
inside it times the weight of the lattice pathL.T / , which is obtained by giving
each 2-edge weight� and each E edge weight� . In particular, for a tableau of
size.n; k; r / , the weight ofL.T / is � k � n� k � r .

In Figure5, we demonstrate by example the conversion from a staircase multi-
Catalan tableau to a condensed multi-Catalan tableau. Speci�cally, we remove the
anti-diagonal from the staircase along with the 0-rows and 2-columns, and then
glue together all the 2-0, 2-1, 1-0, and 1-1 boxes. Then we label the boundary edges
of the tableau. We label a vertical edge with a 2 if it belongs to a 2-row and with a
1 if it belongs to a 1-row. Similarly, we label a horizontal edge with a 0 if it belongs
to a 0-column and with a 1 if it belongs to a 1-column. It is easyto check that the
types and weights (according to De�nitions2.2 and2.9) of the two tableaux are
equal.
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Another way to obtain a condensed tableau from a wordX in ¹ ; ; º� is
to draw a lattice pathL D L.X/ with steps south and west, by readingX from
left to right and drawing a 2-labeled south edge for a, a 0-labeled west edge
for a , and a 1-labeled pair of a west edge and a south edge for a. L is then
identi�ed with the Young diagramY whose southeast border it coincides with.
(More precisely,Y has shape� D .� 1; � 2; : : :/, where� i is the number of 's and

's in X following the i th instance of either or .) Any �lling of Y according
to rules (i)-(v) of De�nition 2.7results in a tableau of typeX .

Figure 5. The staircase multi-Catalan tableau and its corresponding condensed multi-
Catalan tableau with size.10; 4; 2/ and shape� D .4; 4; 4; 2; 2; 0/have type
and weight� 6 � 6 . The condensed tableau is formed by gluing together the white boxes of
the staircase tableau.

Note that ifTs denotes the staircase version of a multi-Catalan tableau ofsize
.n; r; k/ andTc is the corresponding condensed version, and wt.Ts/ is the product
of the symbols�; � , andq in the �lling of Ts, then wt.Tc / is � k � n� r � k times
the product of the symbols�; � , andq in the �lling of Tc . By construction, it is
easy to see that wt.Tc/ D wt.Ts/ . Since the staircase version of the multi-Catalan
tableaux is in simple bijection with the condensed version,we will call them both
multi-Catalan tableaux,and refer to them interchangeably.

The usual proof of Theorem2.1uses the by now standard technique of showing
that the weight generating functions of the multi-Catalan tableaux satisfy the same
recurrences as the steady state probabilities of the two-species TASEP as given
by the Matrix Ansatz of Theorem1.1. See [5] for an example of such a proof for
the original ASEP. Instead of the Matrix Ansatz style proof,we provide a more
illuminating proof of Theorem2.1in Section4 by constructing a Markov chain on
the multi-Catalan tableaux that projects to the two-species TASEP.
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3. Enumeration of multi-Catalan tableaux

Building on some enumerative results in [8] for regular Catalan tableaux that
correspond to the usual TASEP, we can deduce some propertiesof the multi-
Catalan tableaux. We include the proofs for these results togive some intuition
for the structure of the tableaux.

Theorem 3.1. The number of multi-Catalan tableaux corresponding to a two-
species TASEP of sizen and withr 's is

Z 0
n;r .� D � D 1/ D

2.r C 1/
n C r C 2

�
2n C 1
n � r

�
:

Proof. We make two observations about the structure of the tableaux. First, any
box that lies in a 1-row or column is either empty or automatically determined by
the rules (iv)-(v) from De�nition2.7. Second, any box that liesleft of a 1-column
or abovea 1-row must be empty. In particular, note that any box that lies in a
1-column is either empty if there's already a� to the right in the same row, or is
forced to contain a� otherwise. In both of these cases, any box to the left of that
1-column must be empty. Similarly, any box that lies in a 1-row is either empty if
there's already an� below in the same column, or must contain an� otherwise.
In both of these cases, any box above that 1-row must be empty.Figure6 shows
an example of this structure.

Figure 6. The grey boxes indicate the boxes that belong to a 1-row or 1-column. Observe
that any box above a 1-row or left of a 1-column is forced to be empty.

Consequently, the �lling of the multi-Catalan tableau can be recreated from
the �llings of just the 2-0 boxes that do not lie north or west of any 1-rows or
columns. Thus to enumerate these �llings, we can remove all the boxes that lie in
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ther 1-rows and 1-columns along with all the boxes respectively north and west of
these rows and columns. We are left with a disjointed set ofr C 1smaller tableaux,
each of which is a multi-Catalan tableau whose type has zero's. The sum of the
sizes of theser C 1 tableaux isn � r .

Multi-Catalan tableaux whose type has zero's are the same as the Catalan
tableaux from [8], which are a well-known specialization of the aforementioned
alternative tableaux. In particular, the number of such tableaux of sizen is the
Catalan numberCnC 1 D 1

nC 1

� 2nC 2
nC 1

�
. We obtain the equation in the theorem as the

appropriately chosen coe�cient of the convolution ofr C 1 Catalan numbers. �

Theorem 3.2. Let r C k C ` D n. The number of multi-Catalan tableaux
corresponding to a two-species TASEP of sizen and withr 's andk 's is

r C 1
n C 1

�
n C 1

k

��
n C 1

`

�
:

Proof. We re�ne the proof of Theorem3.1by keeping track of the number of
2-rows. More precisely, after removing the 1-rows and 1-columns and the boxes
that lie respectively above and west of the 1-rows and 1-columns, we are left with
a disjointed list ofr C 1 smaller tableaux, the sum of whose sizes isn � r .
We let these smaller tableaux (starting from top to bottom) have sizesn1; : : : ; nr C 1

with n1 C � � � C nr C 1 D n � r . Furthermore, if we wish to have a total ofk
2-rows, we let the smaller tableaux have, respectively,k1; : : : ; kr C 1 2-rows with
k1 C � � � C kr C 1 D k.

The number of Catalan tableaux of sizen whose type hask 's is NnC 1;k C 1

(such tableaux are in bijection with pairs of nested latticepaths contained in a
k � n � k box). Thus we have that the number of multi-catalan tableauxof size
.n; r; k/ is

X

k1 � n1 ;:::;k r C 1 � nr C 1 ;

n1 C���C nr C 1 D n� r;

k1 C���C k r C 1 D k

r C 1Y

i D 1

Nn i C 1;k i C 1

whereNn;k D 1
n

� n
k

�� n
k � 1

�
is then; k-Narayana number. The theorem follows.�

The formulae above can also be obtained through a di�erent combinatorial
interpretation of the two-species TASEP in [7, Section 4].1

1In their paper, Duchi and Schae�er study a di�erent version of a two-species TASEP
with four parameters�; � ;  , and� , which does not reduce to the version studied in our paper.
However, it turns out that the specialization� D � D  D � D 1 in their model is equal to the
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Moreover, using the structure described above, one can derive the partition
function Z 0

n;r with some manipulations of sums from the following formula of
Derrida [6]:

Z 0
n;0 D .��/ n

n� rX

p D 1

p
2n � p

�
2n � p

n

�
� � p � 1 � � � p � 1

� � 1 � � � 1
: (3.1)

The following formula is also given in [1, Appendix C].

Theorem 3.3. The weight generating function for the multi-Catalan tableaux of
sizen and whose type hasr 's is

Z 0
n;r D .��/ n� r

n� rX

p D 1

2r C p
2n � p

�
2n � p
n C r

�
� � p � 1 � � � p � 1

� � 1 � � � 1
:

Proof. Direct calculations ofZ 0
n;r are not particularly illuminating. Instead we

prove the formula by induction onn andr . Equation(3.1) gives us for free the
caser D 0. Now de�ne Z n;r D

P
X weight. X/ andZ n;r D

P
X weight. X/ ,

where X ranges over all words in¹ ; ; ºn� 1 with r 's. Similarly, de�ne
Z n;r D

P
Y weight. Y / whereY ranges over all words in¹ ; ; ºn� 1 with

r � 1 's. Then

Z 0
n;r D Z n� 1;r C Z n� 1;r C Z n� 1;r � 1: (3.2)

We obtain the following recursions.

� The tableaux of type X can be built by adding a single boundary 0-edge of
total weight� to each tableau of typeX , so

Z n;r .�; �/ D �Z 0
n� 1;r .�; �/:

� The tableaux of type X can be built by adding a 2-row to the top of each
tableau of typeX . If a tableau of typeX hasj � -free columns, then there
are the following options for that 2-row:

� there is an� in every free box, or

� there is a� in one of the free boxes and an� in every free box to the
right of the� .

two-species TASEP we describe in our paper when� D � D 1. Thus in their paper, one can
also �nd the formulae given in Theorems3.1and3.2.
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The coe�cient of � � j in
Z 0

n � 1;r

.�� / n � r � 1 is the sum of the weights of the tableaux
of typeX with exactlyj � -free rows. Also, note that ifr > 0 , then that 2-row
will necessarily have a� from one of the 2-1 boxes in that row. Thus

Z n;r .�; �/ D .��/ n� r
nX

j D 0

� jX

` D 0

� � `
�
Œ�� j •

� Z 0
n� 1;r .�; �/

.��/ n� r � 1

�
:

� The tableaux of typeY can be built by adding a 1-row to the top of a tableau
of typeY , whereY hasr � 1 's. Every free DA box in that new 1-row must
contain an� . Thus

Z n;r .�; �/ D � n� r Z 0
n� 1;r � 1.1; �/:

Now, we suppose that the formula in Proposition3.3holds for allZ 0
n0;r 0 with

n0 < n , and allr 0. We show that it also holds forZ 0
n;r . In particular, the formula

holds forZ n� 1;r , Z n� 1;r , andZ n� 1;r � 1. Thus it is su�cient to check that

Œ�� s� � t •
1

.��/ n� r
.Z n� 1;r C Z n� 1;r C Z n� 1;r � 1/

equals the desired

Œ�� s� � t •Z 0
n;r D

2r C s C t
2n � s � t

�
2n � s � t

n C r

�
;

where byŒxk •f .x/ we denote the coe�cient ofxk in f .x/ .
Indeed, a careful computation con�rms that the coe�cients of � � s� � t of both

the expressions above are equal, and so the formula in Proposition 3.3does hold
for Z 0

n;r . �

For the next theorem, we make some more precise de�nitions todescribe the
structure of the multi-Catalan tableaux.

De�nition 3.1. We represent a wordX in ¹ ; ; ºn with exactlyr 's by a list
of r C 1 words in ¹ ; º� , where each word of the list is the longest possible
continuous sub-word ofX that does not contain a. We call thislist of �
sub-words.X 1; : : : ; Xr C 1/ . We then represent that list by a list of partitions
ƒ D .ƒ 1; : : : ; ƒ r C 1/ , where the partitionƒ i D �.X i / is the shape obtained from
applying the de�nition of the partition� to thei th � word.
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As an example for the above, the tableau in Figure6 has type
, which can be rewritten as a list of three� words

. ; ; / . Then the list of partitions isƒ D ..2; 1/; .1; 1/; . ; // .
For our �nal result in this section, we de�ne the matrixA �;�

� D .A ij /1� i;j � k ,
where� is some partition.� 1; : : : ; � k / , and

A ij D � j � i � � i � � j C 1

��
� j C 1

j � i

�
C �

�
� j C 1

j � i C 1

��

C � j � i � � i � � j

� j � � j C 1 � 1X

` D 0

�
� `

�
� j � ` � 1
j � i � 1

�
C �

�
� j � ` � 1

j � i

��
:

From [8], weight.X/ D detA �;�
�.X/ for X a word in¹ ; º� corresponding to a state

of the two-species ASEP with zero's. Thus we obtain the following exact closed
formula for the steady state probabilities of the two-species TASEP.

Theorem 3.4. Consider the two-species TASEP of sizen, and a stateX with
exactlyr 's. Let ƒ D .ƒ 1; : : : ; ƒ r C 1/ be the list of partitions that corresponds
to X according to De�nition3.1. Letƒ i haveki rows andmi columns. Then

Prob.X/ D � n� m1 � n� k r C 1 detAƒ 1 .�; 1/ detAƒ r C 1 .1; �/
rY

i D 2

detAƒ i .1; 1/

is the unnormalized steady state probability of stateX .

4. A Markov chain on the multi-Catalan tableaux
that projects to the two-species TASEP

In this section we construct a Markov chain on the multi-Catalan tableaux that
provides a proof of Theorem2.1and generalizes the construction of Corteel and
Williams from [3]. We start by de�ning projection for Markov chains, from [3,
De�nition 3.2-0].

De�nition 4.1. Let M andN be Markov chains on �nite setsX andY , and letF
be a surjective map fromX to Y . We say thatM projectsto N if the following
properties hold.

� If x1; x2 2 X with ProbM .x 1 ! x2/ > 0 , then

ProbM .x 1 �! x2/ D ProbN .F .x 1/ �! F .x 2 //:
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� If y1 andy2 are in Y and ProbN .y 1 ! y2/ > 0 , then for eachx1 2 X
such thatF.x 1/ D y1, there is a uniquex2 2 X such thatF.x 2/ D y2 and
ProbM .x 1 ! x2/ > 0 ; moreover,

ProbM .x 1 �! x2/ D ProbN .y 1 �! y2/:

This means that ifM projects toN via the mapF , then the steady state
probability thatN is in statey is equal to the sum of the steady state probabilities
over all the statesx 2 ¹ z 2 X jF .z/ D yº. In our case,N is the two-species
TASEP, andM is the Markov chain on the multi-Catalan tableaux which we
describe below. Corteel and Williams de�ned a Markov chain on permutation
tableaux (in bijection with alternative tableaux) that projects to the ASEP. In the
two-species TASEP, we have an analogous result using similar transitions.

Figure 7. The tableau corner associated to the transition ! .

De�nition 4.2. De�ne a cornerof the tableau to be a 2-0, 2-1, or 1-0 box that is
both the right-most box of some row and the bottom-most box ofsome column.
De�ne a right leg to be the set of 0-edges of the lattice pathL.T / that lie on the
north boundary of thek C r � n � k rectangle. In other words,T has a right
leg when type.T / begins with a . Analogously, de�ne aleft legto be the set of
2-edges of the lattice pathL.T / that lie on the west boundary of thek C r � n � k
rectangle. In other words,T has a left leg when type.T / ends with a . We call
thetransition pointsthe union of the set of corners along with the left leg and right
leg (if those are present).

We describe the process by examining the possible transitions out of some
multi-Catalan tableauT which corresponds to the two-species TASEP stateX
for which type.T / D X . Every transition is associated to some chosen transition
point (namely, either a chosen corner or a right leg or a left leg). In particular,
the right leg corresponds to a transitionX 0 ! X 0 for X D X 0, and the left
leg corresponds to a transitionX 0 ! X 0 for X D X 0 . On the other hand,
each corner ofT corresponds to a transition fromX on the TASEP that does not
involve particles entering or exiting at the boundary � these transitions occur with
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rate 1. Speci�cally, a transition on stateX at TASEP locationi corresponds to a
transition at the corner box inT that has its east edge precisely thei th edge of the
lattice pathL.T / (from top to bottom). Moreover, a 2-0 corner ofT corresponds
to a transition ! , a DA corner corresponds to a transition ! ,
and an AE corner corresponds to a transition ! out of stateX . (We note
here that 1-1 boxes are not included in the set of corners since there is no TASEP
transition they correspond to.) Figure7shows a transition location in a two-species
TASEP wordX along with the corresponding corner of a multi-Catalan tableau
of typeX .

To obtain a transition at a chosen corner, we �rst strip o� thelabels on the
boundary, then perform certain column or row removal and re-insertion, and
�nally reapply new labels. We describe the row/column procedure below for the
two possible cases for the Greek symbol that corner box couldcontain.

Figure 8. The row removal and re-insertion procedure for (a)and (b) the chosen corner
containing a� , and (c) and (d) the chosen corner containing an� . The rows and columns
labeled byx andy are preserved.

The corner contains a� . Remove the row containing the corner (which is a
horizontal stack of empty boxes with a� on the right), cut o� one of the empty
boxes, and insert the row (with the� still at the right of it) in the bottom-most
location possible so that the resulting shape is still a Young shape. Figure8 (a)
shows an example. If the row originally had a single box, cutting o� a box means
it becomes an empty row, and so it should be placed at the southend of the shape
with the rest of the empty rows. Figure8 (b) shows an example of this case.

The corner contains an� . Remove the column containing the corner (which
is a stack of empty boxes above an� ), cut o� one of the empty boxes, and insert
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the column (with the� still at the bottom of it) in the right-most location possible
so that the resulting shape is still a Young shape. Figure8 (c) shows an example.
If the column originally had a single box, cutting o� a box means it becomes an
empty column, and so it should be placed at the east end of the shape with the rest
of the empty columns. Figure8 (d) shows an example of this case.

Now we put the labels back on the edges of the boundary after exchanging the
relevant two letters in the labeling word. For example, if the original state was
X Y for some wordsX andY , and a hopped to get the stateX Y , then
the labels on the boundary change fromX 2 0 Y to X 0 2 Y.

The following lemmas verify that the above actions are well-de�ned.

Lemma 4.1.LetX be a word in¹ ; ; º� , and letT be a multi-Catalan tableau
with type.T / D X . A transition as de�ned aboveat a corner that contains a�
results in a valid multi-Catalan tableau.

Proof. Let Y be the Young diagram and� D .� 1; : : : ; � r C k / be the partition
associated toT with r andk the number of 's and 's respectively in type.T / .
Let L.T / be the lattice path associated toT . The edges ofL.T / are labeled with

's, 's, and 's according to the labeling wordX . LetX 0andX 00denote arbitrary
words in¹ ; ; º� .

Suppose the chosen corner ofT occurs in rowi of length� i . For the following,
we identify the partition.� 1; : : : ; � s/ with the partition.� 1; : : : ; � s; 0; : : : ; 0/
Let � i > 1 . After removing rowi of T and reinserting a row of length� i � 1
into the lowest position possible, we obtain a tableauT 0 of shape.� 1; : : : ; � i � 1;
� i � 1; � i C 1; : : : ; � r C k / . In other words,T 0 has the shape� with the single box
removed in rowi .

Since rowi contains a� , the its label must be 2. The fact that its right-most box
is a corner implies that for anyj > i , � j < � i . Thus we have two cases, depending
on whether� i C 1 is equal to or less than� i � 1. For both of these cases, we check
that applying toL.T 0/ the new labeling word corresponding to the two-species
TASEP transition fromX is consistent with the shape ofT 0.

Figure 9. The transition on a multi-Catalan tableau that corresponds to the two-species
TASEP transition (a) ! , (b) ! , and (c) ! .
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Case 1: � i C 1 D � i � 1. The label of the column containing the chosen corner
is either 0 or 1. Since 1 always labels a pair of edges belonging to an inner corner,
if the label of the column containing the chosen corner is 0, then the label of row
i C 1 is necessarily 2, and similarly if the label of that column is1, then the label
of row i C 1 is necessarily 1. In the �rst case, we can writeX D X 0 X 00, and
in the second case we can writeX D X 0 X 00. From the above, the shape ofT 0

is simply the shape ofT with the right-most box of rowi removed. Figure9 (a)
and (b) show that labelingL.T 0/ with the labeling wordX 00 2 X00andX 01 2 X00

for the �rst and second case respectively is consistent withthe shape ofT 0.

Case 2: � i C 1 < � i � 1. The label of the column containing the chosen corner
must be 0, since otherwise that column would have to belong to an innercorner
labeled 1, which would require� i C 1 D � i � 1 as in Case 1. Thus we can write
X D X 0 X 00. From the above, the shape ofT 0 is simply the shape ofT with
the right-most box of rowi removed. Figure9 (a) shows that labeling the lattice
pathL.T 0/ with the labeling wordX 0 0 2 X00is consistent with the shape ofT 0.

For both of these cases, the newly inserted row is labeled by 2, and since it
was placed in the south-most location possible for its length, its right-most box is
a corner box. Thus inserting this row with a� in its right-most box indeed results
in a valid multi-Catalan tableau. Furthermore, neither theweight of the �lling
or the weight of the boundary of the tableau changed after thetransition and so
wt.T 0/ D wt.T / .
Let � i D 1. As before, rowi is labelled with a 2. The transition fromT to T 0

is completed by simply removing rowi and replacing it with a single 2-labeled
south edge on the west boundary ofT to makeT 0. The column ofT containing the
corner box of rowi is labeled by 0 or 1. In the �rst case,X must necessarily have
the formX 0 j for somej , and so the type and labeling word ofT 0 become
X 0 j C 1 andX 0 0 2j C 1 respectively. In the second caseX must have the form
X 0 j for somej , and so the type and labeling word ofT 0becomeX 0 j C 1

andX 0 1 2j C 1 respectively. For both of these special cases, the labelingword of
T 0 is consistent with its shape. Furthermore, the weight of theboundary ofT 0 is
the same as forT , but the �lling of T 0 lost one� , so wt.T 0/ D 1

� wt.T / .
This concludes the proof of the lemma. �

Lemma 4.2. LetX be a word in¹ ; ; º� , and letT be a multi-Catalan tableau
with type.T / D X . A transition as de�ned aboveat a corner that contains an�
results in a valid multi-Catalan tableau.
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Proof. By the symmetry of the rules for the multi-Catalan tableaux,the proof is
exactly the same as the one for Lemma4.1, except if we take the transpose of the
tableau and exchange the roles of� and� . For this case, see Figure9 (a) and (c)
for the transitionL.T / ! L.T 0/ . It will be useful further on that if the transition
from T to T 0 occurs at a corner that belongs to a column of length� i > 1 , then
as before, wt.T 0/ D wt.T / . Otherwise, if� i D 1, then wt.T 0/ D 1

� wt.T / . In that
case, if the transition occurred at a 2-0 corner, type.T / necessarily has the form

j X , and if the transition occurred at a 1-0 corner, type.T / necessarily has
the form j X for somej and some wordX in ¹ ; ; º� . �

Transitions at the boundary. For an arbitrary two-species TASEP wordX in
¹ ; ; º� , we describe the transition that corresponds to the two-species TASEP
transition X ! X from a tableauT of type X to a tableauT 0 of type X . T
must necessarily have at least one empty 0-column on its right, so after stripping
o� the labels of the tableau, we remove the right-most empty column and instead
insert a row with a� in its right-most box, of maximal possible length such that
the semi-perimeter stays �xed, but at the lowest position possible for that length.
(In the degenerate case, if type.T / D j , we simply insert a row of length zero
to makeT 0with type j C 1.) Finally, we apply the labeling wordX to the edges
of L.T 0/ . Figure10(a) shows an example where� 1 < n � k � 1.

Figure 10. The transitions on multi-Catalan tableau that correspond to the two-species
TASEP transitions (a)X ! X and (b)X ! X .

Let such a transition occur with rate� .
If a new row of nonzero length was inserted intoT , then e�ectively one 0-

labeled boundary edge ofT was replaced with a 2-labeled boundary edge for
T 0, plus the �lling of T 0 gained one� . Then wt.T 0/ D � wt.T / . Otherwise, in
the degenerate case when type.T / D j , we have type.T 0/ D j C 1 and so
wt.T 0/ D �

� wt.T / .
The transitionX ! X is symmetric to the above, if one were to take the

transpose of the tableau and exchange the roles of� and� . For a transition from
T of type X to T 0 of type X , T must necessarily have at least one empty
2-row at the bottom of it. After stripping o� the labels of thetableau, we remove
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the bottom-most empty row and instead insert a column with an� in its bottom-
most box, of maximal possible length such that the semi-perimeter stays �xed,
at the right-most position possible for that length. (In thedegenerate case, if
type.T / D j , we simply insert a column of length zero to makeT 0 with
type j C 1.) Finally, we apply the labeling wordX to the edges ofL.T 0/ .
Figure10(b) shows an example where the number of nonzero rows ofT equals
r C k � 1.

Let such a transition occur with rate� .
Similarly to the above, if the new column added has nonzero length, we obtain

that wt.T 0/ D � wt.T / . Otherwise, in the degenerate case where type.T / D j

and type.T 0/ D j C 1, we have wt.T 0/ D �
� wt.T / .

The following lemmas prove that these boundary transitionsare well-de�ned.

Lemma 4.3. LetX be a word in¹ ; ; º� , and letT be a multi-Catalan tableau
with type.T / D X . A transition on the boundary ofT as de�ned above,
corresponding to the two-species TASEP transitionX ! X results in a valid
multi-Catalan tableau.

Proof. Let the shape ofT of size .n; r; k/ with associated lattice pathL.T / be
� D .� 1; : : : ; � s/ for somes > 0. We assume the non-degenerate case� 1 > 0 .
Suppose� 1 D : : : D � i > � i C 1 for somei . Then the shape ofT 0 must be
� 0 D .� 0

1; : : : ; � 0
sC 1/ where� 0

1 D : : : D � 0
i C 1 D n � k � 1 and � 0

j D � j � 1 for
j > i C 1. It is easy to check that labelingL.T 0/ with the labeling word2X is
consistent.

It remains to check that placing a� in row i C 1 of T 0 was valid. Since
� 0

i D � 0
i C 1, the vertical edge of rowi C 1 of T 0 does not belong to an inner

corner, and thus is necessarily labeled by 2. Therefore since the right-most box of
row i C 1 of T 0 is a corner box in a 2-row, it can certainly contain a� , and soT 0

is a valid multi-Catalan tableau with labeling word2X . �

Lemma 4.4. LetX be a word in¹ ; ; º� , and letT be a multi-Catalan tableau
with type.T / D X . A transition on the boundary ofT as de�ned above,
corresponding to the two-species TASEP transitionX ! X results in a valid
multi-Catalan tableau.

Proof. The proof is equivalent to the proof of Lemma4.3 above, except that
instead we take the transpose of the tableaux and exchange the roles of� and� .

�
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We carefully summarize the transitions from a multi-Catalan tableauT to the
tableauS, depending on the chosen corner at which the transition occurs. We will
be referring to these cases further on. First we make the following de�nitions. Let
T have size.n; k; r / and let� D .� 1; : : : ; � k C r / be the shape ofT . Assume that
� has at least one non-zero part.

De�nition 4.3. We de�ne � R be the indicator that equals 1 ifT has a right leg,
and 0 otherwise. We de�ne� L be the indicator that equals 1 ifT has a left leg,
and 0 otherwise.

De�nition 4.4. We call atop-most cornera corner such that the length of the
row containing it equals� 1. We de�ne the indicator� � which equals 1 if the top-
most corner contains a� , and 0 otherwise. Analogously, we call abottom-most
cornera corner such that the length of the row containing it equals the length of
the smallest non-zero row of� . We de�ne the indicator� � which equals 1 if the
bottom-most corner contains an� , and 0 otherwise. We call amiddle cornera
corner that is neither a top-most corner or a bottom-most corner.

Remark 4.1. Denote by�.T ! S/ the rate of transition from tableauT to S
(where by rate we mean the unnormalized probability). We obtain the following
cases for the transitions fromT to S.

(1) For a transition at a middle corner, a top-most corner with� � D 1, or a
bottom-most corner with� � D 1, we have wt.S/ D wt.T / and�.T ! S/ D 1.

(2) For a transition at a top-most corner with� � D 0 such that the length of
the column containing it is greater than1, we have wt.S/ D wt.T / and
�.T ! S/ D 1. ThenS will have top-most corner that contains an� .

(3) For a transition at a bottom-most corner with� � D 0 such that the length
of the row containing it is greater than1, we have wt.S/ D wt.T / and
�.T ! S/ D 1. ThenS will have a bottom-most corner that contains a� .

(4) For a transition at a top-most corner with� � D 0 such that the length of the
column containing it is 1, we have wt.S/ D 1

� wt.T / and�.T ! S/ D 1.

(5) For a transition at a bottom-most corner with� � D 0 such that the length of
the row containing it is 1, we have wt.S/ D 1

� wt.T / and�.T ! S/ D 1.

(6) For a transition at a right leg, we have wt.S/ D � wt.T / and�.T ! S/ D � .
S will not have a right leg, and it will have a top-most corner that contains
a � .
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(7) For a transition at a left leg, we have wt.S/ D � wt.T / and�.T ! S/ D � .
S will not have a left leg, and it will have a bottom-most cornerthat contains
an � .

Figure 11. This is the state diagram of a two-species TASEP ofsize.3; 1/. The words in
¹ ; ; º3 represent the corresponding states, and the unlabelled arrows are transitions with
rate 1.

Figure11shows the transitions on all the states of the two-species TASEP of
size 3 with one .

Theorem 4.5. In the Markov chain on multi-Catalan tableaux, the steady state
probability of a multi-Catalan tableauT is wt.T / . This Markov chain projects to
the two-species TASEP.

Proof. Let T be a multi-Catalan tableau of size.n; k; r / . Let

S D ¹ SW�.T �! S/ > 0 º

and

T D ¹ T 0W�.T 0 �! T / > 0 º:

We show the following.



342 O. Mandelshtam

i. The unique stationary probability ofT in this Markov chain is proportional
to wt.T / due to the fact that detailed balance holds:

wt.T /
X

S2S

�.T ! S/ D
X

T 02T 0

wt.T 0/�.T 0 ! T /: (4.1)

ii. For everyS 2 S, we have that 1
nC 1 �.T ! S/ equals the probability of the

transition from the state type.T / to type.S/ of the two-species TASEP.

iii. For every stateX of the two-species TASEP and every stateY for which
there is a nonzero probabilityp

nC 1 of transition fromX , for any tableauT
with type.T / D X , there exists a unique tableauS with type.S/ D Y , and
moreover�.T ! S/ D p .

Condition (i) implies that wt.T / is proportional to the steady state probability of
T . Satisfying condition (ii) for allT and (iii) for all statesX of the two-species
TASEP implies that weight.X/ is proportional to the steady state probability of
X . Thus proving (i)-(iii) is su�cient to show that our Markov chain on the multi-
Catalan tableaux indeed projects to the two-species TASEP.

Condi t ion (i). Let X D type.T / . First we treat the transitions going out ofT
to S 2 S. By the construction of our Markov chain on the tableaux, it is clear that
there is a transition with probability 1 for every corner, a transition with probability
� for a right leg, and a transition with probability� for a left leg. These transitions
directly correspond to all the possible transitions out of the two-species TASEP
stateX . SupposeX hasC corners (note that 1-1 boxes are excluded). Thus we
obtain X

S2S

�.T ! S/ D C C �� L C �� R : (4.2)

For the transitions going intoT from T 0 2 T, we observe that any transition
from one tableau to another ends with a corner, an edge on the right leg, or an edge
on the left leg. This is because for a transition that involves either inserting into
the tableau a nonempty column containing an� or a nonempty row containing
a � , then the box containing the Greek symbol is the aforementioned corner.
Otherwise, for a transition that involves inserting into the tableau an empty column
or an empty row, the result is a contribution of an edge to the right leg or an edge to
the left leg, respectively. Thus it is su�cient to examine the corners and the right
leg and left leg ofT to enumerate all the possibilities forT 0 2 T. We examine
the pre-image of the cases for the possible transitions going out ofT to obtain the
following cases forT 0.
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(1) For a middle corner, a top-most corner with� � D 0, or a bottom-most
corner with � � D 0, we have wt.T 0/ D wt.T / and �.T 0 ! T / D 1.
This is the inverse of Case1of Remark4.1. This gives a contribution of
wt.T /.C � 2 C .1 � � � / C .1 � � � // to the right hand side (RHS) of the
detailed balance equation.2

(2) For a top-most corner with� � D 1 and � R D 0, we have a transition
involving the right-leg ofT 0, so wt.T 0/ D 1

� wt.T / and �.T 0 ! T / D � .
This is the inverse of Case2 of Remark4.1. This gives a contribution of
� 1

� wt.T /� � .1 � � R / to the RHS of the detailed balance equation.

(3) For a bottom-most corner with� � D 1 and � L D 0, we have a transition
involving the left-leg ofT 0, so wt.T 0/ D 1

� wt.T / and �.T 0 ! T / D � .
This is the inverse of Case3 of Remark4.1. This gives a contribution of
� 1

� wt.T /� � .1 � � L / to the RHS of the detailed balance equation.

(4) For a top-most corner with� � D 1 and� R D 1, there are two possibilities.
For the �rst, T 0 could fall into Case2 of Remark4.1, meaning thatT 0 has a
top-most corner containing a� , which is the usual transition with wt.T 0/ D
wt.T / . For the second possibility,T 0 could fall into Case4 of Remark
4.1, meaning thatT 0 has a top-most corner containing an� and the column
containing it has length 1. In that case, wt.T 0/ D � wt.T / . In both situations,
�.T 0 ! T / D 1. We obtain a contribution of wt.T /� � .� R C �.1 � � R // to
the RHS of the detailed balance equation.

(5) For a bottom-most corner with� � D 1 and � L D 1, there are two pos-
sibilities. For the �rst, T 0 could fall into Case3 of Remark4.1, mean-
ing thatT 0 has a bottom-most corner containing an� , which is the usual
transition with wt.T 0/ D wt.T / . For the second possibility,T 0 could
fall into Case5 of Remark4.1, meaning thatT 0 has a bottom-most cor-
ner containing a� and the row containing it has length 1. In that case,
wt.T 0/ D � wt.T / . In both situations,�.T 0 ! T / D 1. We obtain a
contribution of wt.T /� � .� L C �.1 � � L // to the RHS of the detailed balance
equation.

2Note that ifC < 2 , the formulae we give have some degeneracies. However, it iseasy to
verify that these do not cause any problems due to cancellation of all the degenerate terms.
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We sum up the contributions to the RHS of the detailed balanceequation to
obtain

X

T 02T

wt.T 0/�.T 0 ! T / D wt.T /.C � � � � � � C � � .1 � � R / C � � .1 � � L /

C � � .� R C �.1 � � R // C � � .� L C �.1 � � L ///:
(4.3)

We see that after simpli�cation, Equation4.3equals Equation4.2, so indeed the
desired Equation4.1holds for �most� T .

It remains to check a few degenerate cases forT , in particular, when�.T / D
.0; : : :/ . However, those cases can only occur when type.T / contains zero 's.
Thus we refer to [3] for these details.

Condi t ion (ii). In the de�nition of the Markov chain, the transitions on the
corners of the tableau are set to have rate 1. These transitions, which occur
on 2-0, 2-1, and 1-0 corners, precisely correspond to the respective transitions
X Y ! X Y , X Y ! X Y , andX Y ! X Y on the two-
species TASEP that do not involve particles hopping on and o�the boundary.
On the two-species TASEP, such transitions have probability 1

nC 1 , as desired.
Similarly, the transitions involving an empty column on theeast end of the

tableau have rate� , and they precisely correspond to the transitionX ! X of
the two-species TASEP, which has probability�nC 1 . Analogously, the transitions
involving an empty row on the south end of the tableau have rate � , and they
precisely correspond to the transitionX ! X of the two-species TASEP,
which has probability �

nC 1 .

Condi t ion (iii). This condition holds by the de�nition of the Markov chain on
the multi-Catalan tableaux. �

Theorem4.5and its proof imply the following corollary, which completes the
proof of Theorem2.1.

Corollary 4.6. The stationary probability of a two-species TASEP stateX is
proportional toweight.X/ .

Remark 4.2. The multi-Catalan tableaux can be given a certain binary tree struc-
ture in the �avor of tree-like tableaux, which are are in bijection with alterna-
tive tableaux, and were introduced in [2] based o� theory developed by Viennot
[11]. The tree structure on the multi-Catalan tableaux naturally generalizes the
tree structure on the usual Catalan tableaux. The perspective of the tree structure
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gives an illuminating interpretation of the multi-Catalantableaux, and in particu-
lar provides an easy way to visualize the Markov chain on the tableaux and prove
it projects to the two-species TASEP. We leave this interpretation of the tableaux
for future work.

5. Two-species tableaux atq D 1

The goal of this section is to give a combinatorial formula for the two-species
ASEP atq D 1. To this end, we de�netwo-species alternative tableaux. These
tableaux are inspired by the alternative tableaux of Viennot. When the type of
a two-species alternative tableau has zero's, it reduces to a usual alternative
tableau. Furthermore, if only the tableaux with noq's are considered, we recover
the multi-Catalan tableaux. In Figure12, we illustrate the rules given in the
following de�nition.

Figure 12. An illustration of the rules in De�nition5.1for the �lling of a two-species
alternative tableau.

De�nition 5.1. A two-species alternative tableauof sizen is a �lling of a Young
diagram of shape.n; n � 1; : : : ; 1/ with the symbols�; O�; �; O�; q; Oq; u; Ou according
to the rules below:

� every box on the anti-diagonal must contain an�; � , or x ;

� a box that sees an� to its right and a� below must contain an� , � , or q;

� a box that sees an� to its right and a� below must contain anO� or q;

� a box that sees an� to its right and a� below must contain aO� or q;

� every box in the same column and above an� must contain au, and every
box in the same row and left of a� must contain au;
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� for every pair ofO� 's and O� 's ( O� left of O� ) such that the number ofx-rows and
x-columns (i.e. rows and columns containing anx in the anti-diagonal box)
between themis notequal, put au at the intersection of theO� column and the
O� row;

� for every pairO� 's and O� 's ( O� left of O� ) such that the number ofx-rows and
x-columns between themis equal, put either aOq or a Ou at the intersection of
the O� column and theO� row;

� the placement of theOq and Ou above must satisfy that there is no instance of
Oq Ou
Ou Ou

or Oq Ou
Ou Oq .

� every other box must contain au.

In these �llings, theu's are simply place-holders for the empty boxes, and
the Ou's are place-holders that enforce valid placement of theOq's. An easy way
to construct these �llings is to place the Greek symbols andq's starting from the
boxes closest to the anti-diagonal and moving inwards. Oncethese symbols are
placed everywhere possible, we de�ne anO� -column to be the boxes directly above
an O� , and a O� -row to be the boxes directly to the left of aO� . We then identify the
boxes that lie at the intersections of theO� -columns and theO� -rows, and �ll them
appropriately withOq's, Ou's, or u's. The rest of the tableau is automatically �lled
with u's.

Figure 13. A two-species alternative tableau of type and weight� 6 � 6 .
The shaded boxes are ones that are automatically empty due tothe labels on the anti-
diagonal.

De�nition 5.2. Thetypeof the two-species alternative tableau is read o� of the
anti-diagonal from top to bottom, by reading an� as , a � as , and anx as .
Theweightof the tableau is the product of the symbols in the �lling in the form of
a monomial in� and� , where we setOu D u D 1, O� D � , O� D � , andOq D q D 1.
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Note that if we instead setOq D q D 0, erase theOu andu, and replaceO� and O�
with � and� respectively, we obtain once more the multi-Catalan tableaux.

The following conjecture is analogous to the main result of Section2, Theo-
rem2.1.

Conjecture 5.1. Consider the two-species ASEP atq D 1, and letX be a state
represented by a word in¹ ; ; ºn with preciselyr 's. Then the steady state
probability ofX is

Prob.X/ D
1

Z 1
n;r

X

T

wt.T /;

where the sum is over all two-species alternative tableauxT such that type.T / D
X , and whereZ 1

n;r D
P

T wt.T / , for T ranging over all two-species alternative
tableaux of sizen whose type has exactlyr 's.

We have veri�ed the above using SAGE for up ton D 10. However, so far the
proof appears tedious.
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