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The phase transition in random regular exact cover

Cristopher Moore

Abstract. A k-uniform, d -regular instance of Exact Cover is a family of m sets Fn;d;k D
¹Sj � ¹1; : : : ; nºº, where each subset has size k and each 1 � i � n is contained in d of

the Sj . It is satis�able if there is a subset T � ¹1; : : : ; nº such that jT \ Sj j D 1 for

all j . Alternately, we can consider it a d -regular instance of Positive 1-in-k SAT, i.e.,

a Boolean formula with m clauses and n variables where each clause contains k variables

and demands that exactly one of them is true. We determine the satis�ability threshold for

random instances of this type with k > 2. Letting

d ? D ln k

.k � 1/.� ln.1 � 1=k//
C 1 ;

we show that Fn;d;k is satis�able with high probability if d < d ? and unsatis�able with

high probability if d > d ?. We do this with a simple application of the �rst and second

moment methods, boosting the probability of satis�ability below d ? to 1 � o.1/ using the

small subgraph conditioning method.
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1. Introduction

A k-uniform d -regular instance of Exact Cover, or equivalently a Positive

1-in-k SAT formula, has n variables and m clauses where dn D km. We can treat

it as a bipartite multigraph, with n variables of degree d on one side connected to

m clauses of degree k on the other. A satisfying assignment is a subset T of the

variables such that exactly one variable in each clause is true.

We choose random formulas Fn;d;k according to the con�guration model: that

is, we make d copies of each variable and k copies of each clause, and choose a
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uniformly random bipartite matching of the resulting dn D km copies with each

other. We assume that d; k D O.1/ so that m D ‚.n/.

Note that the con�guration model allows repetitions where some variable

appears in a clause more than once. However, the number of such clauses is

asymptotically Poisson with mean O.1/, and the formula is simple (i.e., with

no repetitions) with constant probability. Thus any event that holds with high

probability in the con�guration model also holds with high probability in the

uniform distribution over simple formulas with n variables and m clauses.

We determine the satis�ability threshold for these formulas. Namely, we prove

the following.

Theorem 1. Let

d ?
k D ln k

.k � 1/.� ln.1 � 1=k//
C 1: (1)

Then for any k > 2 and any integer d ,

lim
n!1

PrŒFn;d;k is satis�able� D

8

<

:

0 d > d ?
k

;

1 d < d ?
k

:

Note that when k is large, the threshold given by Theorem 1 is d ?
k

� .ln k/C1.

Note also that d ?
k

is never an integer if k > 2, since then k would be a rational

power of k�1. Finally, when k D 2 we have d ?
k

D 2, and the formula corresponds

to a d -regular graph whose vertices are variables and whose edges are clauses.

The formula is satis�able if and only if this graph is bipartite; this is obviously the

case if d D 1, but is false with high probability if d � 2. Thus Theorem 1 holds

for k D 2 as well.

Our proof begins with an easy application of the �rst and second moment

method gives unsatis�ability with high probability for d > d ?
k

, and satis�ability

with positive probability for d < d ?
k

. We boost the latter to high probability with

the small subgraph conditioning method [1, 2].

The fact that the second moment method is exact suggests that, at least in the

d -regular case, this problem does not have a condensation transition. In contrast,

for Graph Coloring, NAE-k-SAT and k-SAT, at a certain density condensation

occurs [3, 4, 5, 6]: the set of satisfying assignments becomes dominated by a con-

stant number of clusters, and since the sizes of these clusters �uctuates the number

of satisfying assignments becomes much less concentrated. Thus while the second

moment method gives fairly good bounds for these problems [7, 8, 9, 10], pushing

it beyond this point requires much more sophisticated methods that count clusters
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of solutions, and further reduce the variance by carefully conditioning on the dis-

tribution of neighborhood structures throughout the formula [11, 12, 13]. This line

of work recently culminated in a proof of the threshold conjecture for k-SAT for

su�ciently large k [14], although many open questions still remain.

Here the situation is much simpler. The only source of variance in the number

of satisfying assignments is the number of cycles of each length in the formula, so

the small subgraph conditioning method reduces the variance enough to prove sat-

is�ability with high probability. It also turns out that that the point corresponding

to two independent satisfying assignments is a local maximum of the rate func-

tion for the second moment, so there is no need to reweight the assignments as

in [8, 17, 18].

The second moment method also owes its success to the fact that, in the

d -regular case, Positive 1-in-k SAT is “locked” in the sense that most variables

cannot be �ipped without also �ipping many others, so that satisfying assignments

are isolated [15, 16]. Given a set S 2 ¹1; : : : ; k � 1º let S -SAT be the problem

where each clause has k variables, and demands that the number of true variables

it contains is an element of S . If S does not contain any adjacent pairs i; i C 1,

and if every variable has degree at least 2, these problems are locked. In [16] the

authors wrote the �rst and second moments for this family of problems, described

the resulting bound as a �xed point equation, and conjectured that it is exact. This

paper proves the case of their conjecture where S D ¹1º.
One can also consider random Positive 1-in-k SAT formulas where clauses

appear independently, so that the degrees of the variables are Poisson distributed.

A lower bound on the threshold in this model was given in [19] for k D 3

using di�erential equations. Other constraint satisfaction problems for which

the threshold can be computed exactly (and where condensation does not appear

to occur) include random XOR-SAT [20, 21, 22] as well as 1-in-k SAT [23]

where literals are negated with probability 1=2 as opposed to the positive case

we consider here.

We write f .n/ � g.n/ if limn!1 f .n/=g.n/ D 1. We say a series of events

En holds with high probability if PrŒEn� � 1, and with positive probability if, for

some constant B > 0, PrŒEn� � B for all su�ciently large n.

2. The �rst and second moments

Throughout the paper, Z denotes the number of satisfying assignments of a

random formula chosen according to the con�guration model. In this section we

bound the �rst and second moments of Z; we show that EŒZ� is exponentially
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small if d > d ?
k

, and that EŒZ2�=EŒZ�2 tends to a constant if d < d ?
k

and k > 2.

This implies that Fn;d;k is unsatis�able with high probability if d > d ?
k

, and

satis�able with positive probability if d < d ?
k

and k > 2. We improve the latter

to high probability in Section 3.

Lemma 1. If d > d ?
k

then EŒZ� D e��.n/.

Proof. Since there are d copies of each true variable, and each of the m D dn=k

clauses must contain exactly one of them, the number of true variables is jT j D
n=k. Thus the expectation of Z is

�

n
n=k

�

times the fraction of bipartite matchings,

for a given T , that connect each clause to exactly one copy of a true variable.

Applying Stirling’s formula xŠ D .1 C o.1//
p

2�x xxe�x gives

EŒZ� D
�

n

n=k

�

mŠ km ..k � 1/m/Š

.km/Š

D km

�

n

n=k

���

km

m

�

�
p

d km e.n�km/h.1=k/

D
p

d en�1 :

(2)

where

�1 D d

k
ln k � .d � 1/ h.1=k/

D ln k C .d � 1/.k � 1/ ln.1 � 1=k/

k
:

(3)

and

h.˛/ D �˛ ln ˛ � .1 � ˛/ ln.1 � ˛/

denotes the Shannon entropy function. Since �1 D 0 when d D d ?
k

, and �1

is a decreasing function of d , we have PrŒZ > 0� � EŒZ� D e��.n/ whenever

d > d ?
k

. �

Lemma 2. If k > 2 and d < d ?
k

then

EŒZ2�

EŒZ�2
�

r

k � 1

k � d
: (4)

Proof. The second moment EŒZ2� is the expected number of pairs of assignments

T; T 0 that are both satisfying. This depends on the size of their di�erence. For a
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given w 2 Œ0; 1�, let Z
.2/
w denote the expected number of satisfying pairs with

jT n T 0j D jT 0 n T j D wn=k. For a given such pair, .1 � w/m of the clauses

must be satis�ed by a variable in T \ T 0, and the remaining wm clauses must

be satis�ed both by a variable in T n T 0 and one in T 0 n T . The number of such

matchings is
�

m

wm

�

..1 � w/m/Š k.1�w/m .wm/Š2 .k.k � 1//wm ..k � .1 � w/ � 2w/m/Š

D km .k � 1/wm mŠ .wm/Š ..k � 1 � w/m/Š :

Thus

EŒZ.2/
w � D km .k � 1/wm

�

n

n=k

��

n=k

wn=k

��

.1 � 1=k/n

wn=k

�

mŠ.wm/Š..k � 1 � w/m/Š

.km/Š

D EŒZ�.k � 1/wm

�

n=k

wn=k

��

.1 � 1=k/n

wn=k

���

.k � 1/m

wm

�

:

(5)

For 0 < w < 1, applying Stirling’s formula to (5) gives

EŒZ.2/
w � � 1p

2�n
f .w/ en�2.w/ ;

where

f .w/ D d

s

k

w.1 � w/
(6)

and

�2.w/ D �1 C wd

k
ln.k � 1/ C 1

k
h.w/ � .d � 1/

�

1 � 1

k

�

h
� w

k � 1

�

: (7)

As in [7], we can approximate the second moment by an integral, which we

evaluate asymptotically using Laplace’s method. If �2.w/ has a unique maximum

wmax 2 Œ0; 1� where 0 < wmax < 1 and �00
2.wmax/ < 0, then

EŒZ2� D
X

wD0;k=n;2k=n;:::

EŒZ.2/
w �

� 1p
2�n

n

k

Z 1

0

dw f .w/ en�2.w/

� 1

k

f .wmax/
p

��00
2.wmax/

en�2.wmax/:

(8)



354 C. Moore

In particular, suppose wmax D 1 � 1=k. We have

�2.1 � 1=k/ D 2�1 ;

which corresponds to the fact that 1 � 1=k is the typical value of w if the two sets

T; T 0 are chosen independently. Thus if �2 is maximized at 1�1=k, and if �00
2 < 0

there, we have EŒZ2� � CEŒZ�2 for some constant C .

The following lemma shows that this is in fact the case whenever d < d ?
k

.

Lemma 3. Let k > 2 and d < d ?
k

. Then wmax D 1 � 1=k is the unique maximum

of �2.w/ in the unit interval, and �00
2 .wmax/ < 0.

Proof. By direct calculation we have �0
2.1 � 1=k/ D 0 and

�00
2 .1 � 1=k/ D �k.k � d/

.k � 1/2
;

which is negative since d ?
k

< k for all k > 2. Thus 1 � 1=k is a local maximum.

To show that it is unique, note that �2 has a unique in�ection point w0 where

�00
2 D 0, namely

w0 D .d � 2/.k � 1/

dk � d � k
:

This implies that 1�1=k is the only local maximum. Thus we just have to eliminate

the possibility that the maximum of �2 in the unit interval is at w D 0 or w D 1.

But this is easy: since d < d ?
k

we have �1 > 0, so �2.0/ D �1 < 2�1 D
�2.1 � 1=k/, and as w ! 1. At the other end of the interval, as w ! 1 we

have �2.w/ ! �1 due to the h.w/ term in (7). 4

Plugging Lemma 3 into the Laplace method (8) gives

EŒZ2� � d

r

k � 1

k � d
e2n�1 ;

and combining this with (2) gives

EŒZ2�

EŒZ�2
�

r

k � 1

k � d
D C :

In particular, since PrŒZ > 0� � EŒZ�2=EŒZ2� � 1=C , this shows that Fn;d;k is

satis�able with constant probability. �
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3. Small subgraph conditioning

When there are strong correlations between the events that a pair of assignments

are both satisfying, the variance EŒZ2� � EŒZ�2 is a constant times EŒZ�2, and

the second moment method can only prove satis�ability with positive probability.

However, in some cases we can show that the variance is much smaller if we con-

dition on the number of small subgraphs in the formula—in particular, the number

of cycles of each constant length. This technique was introduced in [1], where it

was used to show that random 3-regular graphs possess a Hamiltonian cycle with

high probability; other applications include [24], showing that random 5-regular

graphs are 3-colorable with high probability, and [6], proving k-colorability for

G.n; m/ up to the condensation threshold for su�ciently large k. (Note that this

last case is for non-regular graphs, making the calculation more complicated than

ours.)

Let Xi be the number of cycles of length 2i in the formula, i.e., cycles alter-

nating between i distinct variables and i distinct clauses. Our goal is to compute

the correlation between Z and Xi and its higher moments, and hence to learn to

what extent Xi a�ects the number of satisfying assignments. Our goal is to explain

almost all of the variance in Z with the variance in the Xi .

Let .x/r denote the falling factorial x.x � 1/.x � 2/ � � � .x � r C 1/; thus .Xi /r

is the number of ordered lists of r cycles of length 2i . If X is Poisson with mean

�, we have EŒ.X/r � D �r . We use the following “plug and play” version of the

subgraph conditioning method from [2].

Theorem 2. Let Z and X1; X2; : : : be nonnegative integer-valued random vari-

ables. Suppose that EŒZ� > 0, and that for each i � 0 there are constants �i > 0,

ıi > �1 such that

(1) for any j , the variables X1; : : : ; Xj are asymptotically independent and

Poisson distributed, with EŒXi � � �i ,

(2) for any sequence m1; : : : ; mj of nonnegative integers,

EŒZ
Qj

iD1.Xi /mi
�

EŒZ�
�

j
Y

iD1

�
mi

i where �i D �i.1 C ıi /; (9)

(3)
P1

iD1 �iı
2
i is �nite, and

EŒZ2�

EŒZ�2
� exp

�

1
X

iD1

�iı
2
i

�

: (10)

Then PrŒZ > 0� D 1 � o.1/.
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Applying this technology to prove the following theorem, and thus complete

the proof of Theorem 1, is an enjoyable exercise in combinatorics.

Theorem 3. If k > 2 and d < d ?
k

then Fn;d;k is satis�able with high probability.

Proof. Standard arguments for sparse random graphs [25] show that the Xi are

asymptotically independent and Poisson distributed. To compute the asymptotic

expectation �i , note that there are .m/i .n/i sequences of clauses and variables

that C could visit; since there are i variables where we could start a cycle and

two directions in which we could go, this overcounts by a factor of 2i . There

are .k.k � 1/d.d � 1//i choices of copies with which to wire each variable to

the clause before and after it in the sequence, and the number of matchings that

include a given such wiring is .km � 2i/Š. Thus

EŒXi � D 1

2i
.m/i .n/i .k.k � 1/d.d � 1//i .km � 2i/Š

.km/Š

� ..k � 1/.d � 1//i

2i

D �i :

(11)

In order to establish (9), we �rst warm up by computing EŒZXi �. This is the

sum over all pairs .T; C /, where T is an assignment and C is a cycle of length 2i ,

of the fraction of matchings containing C for which T is satisfying.

We start by choosing one of the
�

n
n=k

�

possible satisfying assignments T .

We then choose C . First, we choose t D jC \ T j, the number of true variables

in C . Let us think of C as a cycle of i variables, where the edges between them

correspond to their shared clauses. Since each clause must contain exactly one

true variable, none of C ’s true variables can be adjacent; in particular, t � bi=2c.

(This is similar to [1], where no two adjacent edges of C can belong to a Hamil-

tonian cycle.) Let Ni;t be the number of ordered, labeled cycles with t true vari-

ables, where no two true variables are adjacent; for instance, N6;0 D 1, N6;1 D 6,

N6;2 D 9, and N6;3 D 2.

Now that we have chosen t , and chosen one of the Ni;t arrangements of

true variables in it, we choose what variables and clauses C contains and how

they are matched to each other. There are .m/i ordered sets of i clauses, and

.n=k/t

�

.1 � 1=k/n
�

i�t
choices of which true and false variables appear in C and

in what order. As before, there are .k.k � 1/d.d � 1//i ways to wire each variable

to the clause before and after it, and all this overcounts by a factor of 2i .
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At this point in the process, we have already satis�ed 2t clauses in C , so there

are m � 2t clauses waiting to be satis�ed. Happily, we have dn=k � 2t D m � 2t

unmatched copies of true variables with which to satisfy them. The m � i clauses

outside C have k unmatched copies each, and the i � 2t clauses in C that are not

yet satis�ed each have k � 2 unmatched copies. Thus there are .m � 2t/Š orders in

which we can assign copies of true variables to clauses, and km�i .k �2/i�2t ways

to match them with these clauses’ copies. After all this, there are .k�1/m�2.i �t /

unmatched copies of false variables, which can be matched with the remaining

clause copies arbitrarily. Finally, we divide by .km/Š to obtain

EŒZXi � D
�

n

n=k

� bi=2c
X

tD0

hNi;t

2i
.m/i .n=k/t ..1 � 1=k/n/i�t .k.k � 1/d.d � 1//i

.m � 2t/Š km�i.k � 2/i�2t ..k � 1/m � 2.i � t //Š

.km/Š

i

:

Dividing by EŒZ� and using .m/i � mi , mŠ=.m � 2t/Š � m2t and so on gives

EŒZXi �

EŒZ�
D

bi=2c
X

tD0

hNi;t

2i
.m/i .n=k/t ..1 � 1=k/n/i�t .k.k � 1/d.d � 1//i

.m � 2t/Š km�i.k � 2/i�2t ..k � 1/m � 2.i � t //Š

mŠkm..k � 1/m/Š

i

� ..k � 2/.d � 1//i

2i

bi=2c
X

tD0

Ni;t

� k � 1

.k � 2/2

�t

D �i D �i .1 C ıi /;

where

ıi D
�k � 2

k � 1

�i
bi=2c
X

tD0

Ni;t

� k � 1

.k � 2/2

�t

� 1: (12)

We can evaluate this sum with a generating function. The requirement that no

two true variables are adjacent can be expressed as a transition matrix between

two states, true and false, where the matrix element corresponding to the true-true

transition is zero. Moreover, since there are a total of 2t true-false and false-true

transitions, we can think of each one as giving us a factor
p

z where

z D k � 1

.k � 2/2
: (13)
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Thus
bi=2c
X

tD0

Ni;t

� k � 1

.k � 2/2

�t

D g
� k � 1

.k � 2/2

�

where

g.z/ D
bi=2c
X

tD0

Ni;tz
t D tr

�

0
p

zp
z 1

�i

:

The trace of the t th power of a matrix is the sum of the t th powers of its eigen-

values. These are the roots �˙ D of the quadratic equation �.� � 1/ � z D 0.

Thus

g.z/ D �i
C C �i

� D
�1 C

p
1 C 4z

2

�i

C
�1 �

p
1 C 4z

2

�i

Plugging in the value (13) for z and combining with (12) �nally gives

ıi D
�k � 2

k � 1

�i

g
� k � 1

.k � 2/2

�

� 1

D
�k � 2

k � 1

�i��k � 1

k � 2

�i

C
� �1

k � 2

�i�

� 1

D
�

� 1

k � 1

�i

:

(14)

Generalizing this calculation to show that (9) holds is a matter of bookkeeping.

Let ` D
Pj

sD1 ms , and let i1; : : : ; i` be a sorted list where each s appears ms times.

Then EŒZ
Qj

iD1.Xi /mi
� is the expected number of tuples .T; C1; : : : ; C`/ where

T is a satisfying assignment and C1; : : : ; C` are disjoint cycles, where Cs is of

length 2is. Counting as before gives

EŒZ
Qj

iD1.Xi /mi
�

EŒZ�
D

bi1=2c
X

t1D0

bi2=2c
X

t2D0

� � �
bi`=2c
X

t`D0

h�

Ỳ

sD1

Nis ;ts

2is

�

SS
0
i

�
Ỳ

sD1

..k � 2/.d � 1//is

2is

bis=2c
X

tsD0

Nis ;ts

� k � 1

.k � 2/2

�ts

D
Ỳ

sD1

�is

D
j

Y

iD1

�
mi

i ;
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where

S D .m/P

s is .n=k/P

s ts ..1 � 1=k/n/P

s.is�ts/.k.k � 1/d.d � 1//
P

s is

and

S
0 D .m � 2

P

s ts/Š km�
P

s is .k � 2/
P

s.is�2ts/..k � 1/m � 2
P

s.is � ts//Š

mŠ km..k � 1/m/Š
:

Finally, we establish (10). Using the Taylor series � log.1 � z/ D
P1

iD1 zi =i

gives
1

X

iD1

�iı
2
i D 1

2

1
X

iD1

1

i

�d � 1

k � 1

�i

D 1

2
log

k � 1

k � d
;

and comparing with (4) shows that this is indeed the logarithm of the asymptotic

ratio C � EŒZ2�=EŒZ�2. This completes the proof. �
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