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Ising model from intertwiners

Bianca Dittrich and Je� Hnybida

Abstract. Spin networks appear in a number of areas, for instance in lattice gauge theories

and in quantum gravity. They describe the contraction of intertwiners according to the

underlying network. We show how a certain generating function of intertwiner contractions

for arbitrary networks, when restricted to a square lattice is exactly related to the high

temperature expansion of the 2d Ising model partition function. This implies that the

intertwiner model possesses a second order phase transition, thus leading to a continuum

limit with propagating degrees of freedom.
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1. Introduction

Spin networks are combinatorial objects which are used in Lattice Gauge theories,

Condensed matter systems, Topological Quantum Field theories, as well as models

of Quantum Gravity. They are de�ned simply by a directed graph � decorated with

spins je i.e. labels for irreducible representations, on the edges and intertwiners

iv on the vertices corresponding to a compact group G. An n valent node of � is

assigned an n-valent intertwiner which is nothing but an invariant rank n tensor

on the group G. For a historical overview see [1].

For the choice G D SU.2/, the case of interest for Quantum Gravity, a

coherent representation is given in terms of spinors. In this representation n-

valent intertwiners are labeled by n spinors [4, 2, 3] and their contraction de�nes

so–called coherent spin network amplitudes. Coherent states, in general, have a

special exponentiating property, which was used by Freidel and one of the authors,

to construct a generating function for these intertwiner contractions [5].

In [5] two generating functions were constructed: one for the contraction of

coherent intertwiners (introduced in [4]) and one for the contraction of a new
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basis of intertwiners which were studied further in [6]. The �rst generating

function was found to be expressed as the inverse square of a sum over terms in 1–1

correspondence with loops of the graph which don’t share vertices or edges. The

second generating function, on the other hand, was found to be a generalization

of the �rst in which loops were allowed to share vertices but not edges. These

generating functions were also studied in [7].

The expression of the generating function in terms of sums over loops of

the graph is reminiscent of the high temperature expansion of the Ising model.

Indeed, the 2d Ising model is de�ned by the con�gurations of spins on a 2d

square lattice which can take one of two orientations. In the high temperature

expansion, the various con�gurations of spins can be described by loops on the

dual lattice corresponding to the boundaries between domains of the two di�erent

orientations.

By choosing the weights and graph orientations of the spin network generating

function appropriately we show that one can reproduce exactly this high tempera-

ture expansion of the 2d Ising model. The bene�t of making this connection is that

the 2d Ising model is exactly solvable. Moreover, it allows us to identify a phase

transition in the statistical model corresponding to the spin network generating

function.

There has also been a considerable amount of work on generating functions for

other spin network amplitudes, such as the Penrose evaluation [8]. Traditionally

these amplitudes have been de�ned for trivalent graphs since the space of trivalent

intertwiners is one dimensional, while the space of n-valent intertwiners, with

n > 3, is non-trivial, but possesses bases constructed from trivalent trees. Here

the edges of the graph are labeled by the irreducible representations of SU.2/

je D N=2 and the trivalent intertwiners are unique, but possess an ordering of the

edges at each vertex.

The amplitude associated with a trivalent spin network, referred to as the

Penrose evaluation [8], is computed by replacing each edge with 2je strands and

connecting all the strands at each node. There are many way to do this which we

will call routings, and each routing results in N closed loops.1 The amplitude is

then de�ned by

A�

�

¹jeº
�

�
X

routings

�.�2/N (1)

1 Note that if not all of the strands at a vertex can be matched then the amplitude vanishes.

This can happen if the sum of spins at the vertex is a half integer, or if the sum of two spins is

less than the third.
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where � is a sign which is de�ned such that two routings which di�er by a crossing

of strands have opposite sign. Di�erent amplitudes usually di�er from this one just

by a sign and normalization factor.

Various other generating functions for the evaluations of spin networks have

been developed, which can also be expressed in terms of loops. This began

with Schwinger’s generating function for the 3nj -symbols [9] which Bargmann

gave a more succinct presentation of in [10]. In 1975 Labarthe [11] developed a

graphical method for computing the 3nj-symbol generating function for arbitrary

graphs. Then in the 1998 Westbury found a closed formula for the generating

function of the chromatic evaluation on planar, trivalent graphs [12] and shortly

after by Schnetz [13]. Finally, and more recently, Garoufalidis [14] proved the

existence of the asymptotic limit while Costantino and Marche [15] solved the

asymptotic evaluation and also generalized to the non-planar case, and also non-

trivial holonomies.

These generating functions for amplitudes such as the Penrose evaluation (1)

are constructed via the variable transform je 7! xe:

A
�

¹xeº
�

D
X

¹jeº

A�.¹jeº/
Y

e

1

jeŠ
xje

e : (2)

Let us note that (2) can be understood as partition function for a statistical

model. Here a choice of ¹xeº amounts to a choice of statistical weights. Indeed (2)

can be understood as a special case of so–called intertwiner models discussed

in [16]. In this work we will propose another link to a statistical model, namely the

Ising model. To do this however, we will instead employ the generating function

introduced in [5].

In the next section we will shortly introduce a speci�c basis of SU.2/ inter-

twiners, which we will use to de�ne the generating function. This section will

also review the rewriting of the generating function as a sum over loop con�g-

urations L obtained in [5]. This is in some sense an extension of the result of

Westbury [12] from planar trivalent graphs to arbitrary graphs, but for a slightly

di�erent evaluation, essentially di�ering by an overall sign. This di�erence, how-

ever, has a signi�cant e�ect on the generating function and is ultimately what

allows us to treat higher valent nodes, in particular the square lattice.

In hindsight, one could in fact relate Westbury’s result directly the Ising model

on a honeycomb lattice since it is planar and trivalent, however we are not aware

of any other observation of this relation.

Section 2.3 will de�ne the partition function of the Ising model on the square

lattice and give its formulations in terms of closed subgraphs �even with even–

valent vertices.
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In the next Section 3 we show that for a speci�c choice of variables in the

generating function the loop con�gurations L and the con�gurations �even can be

matched to each other. This allows to evaluate the generating function for this

speci�c choice of variables in terms of the partition function of the Ising model.

We close with a discussion in Section 4.

2. Spin network generating functions and the Ising model

In this section we review the construction of spin network generating functions

as was done in [5] by summing over the contraction of SU.2/ intertwiners in

the holomorphic representation. In the last Subsection 2.3 we give a standard

derivation of the high temperature expansion of the 2d Ising model. The similarity

between the two formulations both being expressed in terms of loops on the lattice

should be apparent.

2.1. Intertwiners. First, we de�ne a representation of SU.2/ on the Bargmann-

Fock space [10] of holomorphic functions on spinor space C
2. This space is

endowed with the Hermitian inner product

hf jgi D
Z

C2

f .z/g.z/d�.z/ (3)

where d�.z/ D ��2e�hzjzid4z and d4z is the Lebesgue measure on C
2. We use

the notation

jzi � .˛; ˇ/t ; jz� � .� Ň; N̨ /t

and Lz to denote the conjugate spinor j Lzi � jz�. We use the bra-ket notation for

the scalar product (3) of the two states jf i; jgi and a round bracket to denote

f .z/ � .zjf i.
The group SU.2/ acts irreducibly on representations of spin j given by the

2j C 1 dimensional subspaces V j of holomorphic functions homogeneous of

degree 2j . Given a set of n spins ¹jiº the space of intertwiners is de�ned to be

Hj1;:::;jn
� InvSU.2/ŒV

j1 ˝ � � � ˝ V jn �: (4)

In the representation space (3) these are precisely the holomorphic functions

of n spinors z1; :::; zn which are SU.2/ invariant and homogeneous of degree 2ji

in zi for i D 1; ::; n. Holomorphic functions of di�erent degree are orthogonal

with respect to (3) so we have

Hn D
M

¹ji º

Hj1;:::;jn
(5)
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where Hn is the Hilbert space of SU.2/ invariant functions on L2.C2n; d�/.

An (overcomplete) basis of Hn is given by monomials in the holomorphic in-

variants
�

¹ziº
ˇ

ˇ¹kij º
˛

�
Y

i<j

Œzi jzj ikij

kij Š
(6)

where ¹kij º1�i;j �n are non-negative integers and kij D kj i . If ¹kº satisfy the n

homogeneity conditions
X

j ¤i

kij D 2ji : (7)

and the sum of the spins J �
P

i ji D
P

i<j kij is a positive integer then (6) is

an element of Hj1;:::;jn
. The identity on Hj1;:::;jn

is resolved as follows:

1Hj1;:::;jn
D

X

¹kº2Kj

j¹kij ºih¹kij ºj
k¹kij ºk2

; k¹kij ºk2 � .J C 1/Š
Y

i<j

kij Š
: (8)

with the set Kj de�ned by (7). For more information about this basis see [6].

The contraction of a set of intertwiners in the holomorphic representation is an

operation on one or more intertwiners which arises from the natural pairing given

by the scalar product (3). In general the result is another intertwiner, or when the

legs of the intertwiners form a closed graph we obtain an amplitude. If any pair

of identi�ed legs have di�erent spins then the contraction vanishes identically.

Let � be a simple2, closed, directed graph with edges e and vertices v. Assign

an intertwiner j¹kee0ºi 2 Hj1;:::;jn
to each vertex where kee0 is de�ned for each

pair .e; e0/ meeting at v. The contraction of the intertwiners with the connectivity

given by the graph � de�nes the amplitude

A�

�

¹kee0º
�

�
Z

Y

e2�

d�.ze/
Y

v2�

.¹zv
e ºj¹kee0ºi (9)

where according to the edge directions we de�ne

zv
e �

´

ze; if se D v;

Lze; if te D v.

where se , te are the source and target vertices of the edge e.

2 We will restrict ourselves to simple graphs here since this will be su�cient to describe a

lattice. This will allow us to label pairs of edges without a vertex label which will simplify the

notation somewhat. However, this is not a required assumption.
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This amplitude is identically zero unless the spins of each of the contracted

intertwiners are equal. Thus by summing over all spins and contracting one can

construct a generating function for the spin network amplitudes (9) as was done

in [5]. We will review this in the next section.

2.2. Spin network generating functions. As was done in [5] we introduce the

following generating function at a �xed vertex v for the intertwiner basis (6) which

depends holomorphically on n spinors ze for each edge and n.n � 1/=2 complex

numbers �ee0 D ��e0e

C¹�ee0 º.¹zeº/ � e
P

e<e0 �ee0 Œze jze0 i D
X

¹kº

�

¹zeºj¹kee0ºi
Y

e<e0

.�ee0/kee0 : (10)

Note that we have assumed an ordering of the edges e < e0 at the vertex.

Now given a closed, simple, directed, �nite graph � we attach an intertwiner

generating function (10) to each vertex and integrate over the spinors with the

measure (3). This will give us a generating generating function for the spin

network amplitudes for the contraction of the basis states (6).

To be more precise, we choose the convention that if two vertices are connected

by an edge e then the vertex with the outgoing direction is assigned ze while the

vertex with incoming direction is assigned Lze which is de�ned by j Lzei D jze� as

in (9). To each pair of edges we assign a complex number �ee0 D ��e0e and we

de�ne

G�.¹�ee0º/ �
Z

Y

e2�

d�.ze/
Y

v2�

e
P

.e;e0/�v �ee0 Œzv
e jzv

e0 i

D
X

¹kº

A�.¹kee0º/
Y

v

Y

.e;e0/�v

.�ee0/kee0 ;

(11)

where the integral is over one spinor per edge of � and the sum is over pairs

of edges .e; e0/ meeting at v. Note that an ordering of the edges at each vertex

is assumed since each pair .e; e0/ is associated to �ee0 . In what follows, for planar

graphs, we will use either a cyclic or acyclic ordering at each vertex, meaning there

is a reference edge and edges are ordered either clockwise or counterclockwise

from that reference.

Since G�.�/ is expressed as a Gaussian integral we can perform these integra-

tions which results in the determinant of a matrix with �ee0 for elements. Further-

more, as was shown in [5] this determinant can be evaluated as a sum of terms,

which are in one to one correspondence with certain loops of � which we now

de�ne:
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De�nition 2.1. A loop of � is a sequence of edges l D .e1; � � � ; en/ with a cyclic

ordering such that tei
D seiC1

and ten
D se1

. We will identify loops which just

di�er by a permutation of edges leading to the same cyclic ordering of the edges,

as well as loops just di�ering in the two possible directions. A simple loop of �

is a loop of � in which each edge enters at most once. We say two simple loops

are disjoint if they have no edges in common.

Note that a simple loop can intersect itself at vertices and disjoint simple

loops can also intersect at vertices. This will be important for graphs with va-

lence greater than four since there are various ways in which paths can cross.

(See Figure 1). Finally, we state a key result of [5] in which the evaluation of (11)

is expressed as a sum over all collections of disjoint simple loops. For a proof

see [5].

Figure 1. Some examples of paths on a graph which are collections of disjoint simple loops.

Notice that the middle three diagrams each have an intersection of four edges at one vertex,

but but they follow di�erent paths.

Theorem 2.2. The generating function (11) has the evaluation

G�.�/ D 1

.1 C
P

L AL.�//2
(12)

where the sum is over all collections of disjoint simple loops of �. For each

collection L D ¹`1; :::; `kº we de�ne AL.�/ D A`1
.�/ � � � A`k

.�/ where for each

simple loop `i D ¹e1; � � � ; enº we de�ne the quantity

A`.�/ � �.�1/jej�e�1
1

e2
�e�1

2
e3

� � � �e�1
n e1

(13)

where jej is the number of edges of ` whose orientation agrees with the chosen

orientation of �.
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This representation of the spin network generating function is reminiscent of

the high temperature expansion of the 2d Ising model partition function. We will

show in the next section that if we take � to be a square lattice with a particular

choice of weights and orientations, we can �nd an exact relationship.

2.3. The 2d Ising model. Following [18] we review how the 2d Ising model

can also be formulated in terms of simple loops on a lattice. The 2d Ising model

on a square 2d lattice describes the possible con�gurations of spins placed on

the lattice sites which can take one of two possible orientations. The intuition of

R. Peierls [17] was that the possible states of this model are given by all possible

loops on the dual lattice, which represent the boundary between domains of

aligned spins. The energy associated with the creation of such a domain is given

by

�E D 2JL

where J is a coupling constant and L is the number links in the boundary of the

domain. The partition function of the Ising model on a square lattice LN of size

N � N at zero magnetic �eld with one coupling constant J is

ZN .v/ D
X

¹�º

exp
�

ˇJ
X

.i;j /

�i�j

�

(14)

where for each vertex i the spins are �i D ˙1, and the sum in the exponent is over

nearest neighbors. Using the identity

exp.x�i�j / D cosh.x/.1 � �i�j tanh.x//

we get

ZN .v/ D coshN .J /
X

¹�º

Y

.i;j /

.1 � tanh.ˇJ /�i�j / (15)

Expanding the product and de�ning v � tanh ˇJ

ZN .v/ D 2N .1 � v2/�N
�

1 C
X

P �4

gP vP
�

(16)

where gP is the number of closed subgraphs �P
even of the lattice L having a total

of P links and with an even number of edges adjacent to each vertex. In what

follows we de�ne �even to be the set of such closed, even–valent subgraphs having

an arbitrary number of links P � 4. Here a closed subgraph can have disconnected

components which share neither edges nor vertices. For more details see [18].
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Figure 2. The closed even valent subgraphs of the square lattice correspond to domain

boundaries in the 2d Ising model.

3. Matching of generating function and Ising model

So far we have reviewed the construction of the spin network generating func-

tion (12) and the 2d Ising model partition function (16), both in terms of sums of

loops on a graph. We now show that for a particular choice of the parameters �ee0

and orientation in the spin network generating function we can produce 2d Ising

model partition function exactly.

To see this, �rst note that the sum over collections of disjoint simple loops

in Theorem 2.2 on a square lattice contains all of these con�gurations of closed

subgraphs �even in (16), but also more due to the three possible ways in which

two paths can cross at a four–valent vertex.3 Another di�erence is that there are

signs in (12) due to the edge orientation and the vertex ordering. However, for a

particular choice of edge orientation and vertex ordering of the square lattice, and

a homogeneous choice of weights �ee0 D i�ee0v, with �ee0 being an antisymmetric

function, the two sums are equal, as we now show.

Theorem 3.1. LetL be the square lattice with edge orientation and vertex ordering

as in Figure 3. Let the vertex weights in (11) be given homogeneously by �ee0 D iv

for e < e0 and �ee0 D �iv for e > e0. Then the spin network generating

function (11) takes the form

GL.iv/ D
�

1 C
X

P

gP vP
��2

(17)

where the sum is over all even–valent, closed subgraphs of L as in (16).

3 See the middle three diagrams of Figure 1.
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1

1

2

2 3

3

4

4

Figure 3. The edge orientation and vertex ordering of a square lattice for which the terms

in (12) all have a positive sign as shown in Theorem 3.1.

We will prove this theorem by a series of lemmas. The �rst step is to control

the signs in (12) which is accomplished by the speci�c edge direction and vertex

ordering in Figure 3. We say that a vertex v in a loop disagrees with the vertex

ordering, if the loop traverses �rst the edge e and then the edge e0 adjacent to v

and e0 < e. Furthermore a loop without crossing is a loop which may have self

intersections (i.e. four edges of the loop meet at one vertex), however the edges

are traversed without leading to crossing edge pairs.

Lemma 3.2. Let L be the lattice in Figure 3 with the indicated edge orientation

and vertex ordering. Then

(1) the number of edges in a loop which agrees with the orientation of L is equal

to half the number of edges in the loop;

(2) the number of vertices in a loop without self–crossing, which disagrees with

the vertex ordering is odd.

Proof. For the �rst part, it is easy to see that the edges of every loop inL alternates

orientation and every loop has an even number of edges so the number of edges

that agrees with the orientation is equal to half the number of edges in the loop.

For the second part, we will use induction on the number of plaquettes in the

lattice. To this end we will build up the lattice from the left most lower corner.

One can add squares so that the boundary on the right forms a staircase to reach

an in�nite lattice in the limit. A �nite size lattice can be built row by row. We thus

have two cases to consider: adding a square which starts a new row and adding a

square to an existing row as is illustrated in Figure 4. Notice furthermore that the

ordering along a vertex is reversed if the loop is reversed, hence we need just to

consider one speci�c loop orientation. Furthermore exchanging all black vertices

with white ones and vice versa we also exchange all orientation induced signs,

hence we again just need to consider one choice for the partitioning of the vertices

into black and white.
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One can check that the loop on a single square has an odd number of ver-

tices which disagrees with the vertex ordering. Assume that we have a square

lattice for which every loop has an odd number of vertices which disagree.

Consider adding a single square starting a new row, as in the left panel of

Figure 4. By the hypothesis all of the loops which contain e1 have an odd num-

ber of vertices which disagree. Traversing e1 in any direction gives one vertex

which disagrees. On the other hand traversing the three edges in the new square

clockwise gives three vertices which disagree (or one vertex that disagrees in the

counter-clockwise direction). Furthermore the new square might lead to a loop

with a non–crossing self intersection at the black vertex v1, shared by e1. Here

one can also check that for a counter–clockwise orientation of the loop a defor-

mation of the loop to include the new square leads to four additional vertices that

disagree. Hence all loops of the lattice with the new square also have an odd

number of vertices which disagree.

Similarly, for adding a square to an existing row, one can check that traversing

e2, e3 (or both) contributes the same parity as traversing the new square. Again

one can also check that loops with non–crossing self intersections at the black or

white vertex of e3, which include the new square, have an odd number of vertices

disagreeing with the ordering.

Hence by induction the loops in a square lattice of any size will always have

an odd number of vertices that disagrees with the ordering. �

Figure 4. Adding one square to the lattice: Starting a new row and adding to an existing

row. Assuming all the loops in the existing lattice have an odd number of vertices which

disagree with the edge ordering, then the loops containing the new square also have an odd

number.

We have now to discuss the situation that at a given vertex either one loop

self–intersects, or two loops touch or even cross each other. A priori all these

cases are allowed to appear in the sum for the generating function (12). This leads

to three terms for such a vertex, as there are three possibilities for how two paths

meet or cross at a four–valent vertex (see the middle three diagrams of Figure 1).

In the partition function of the Ising model (16) only one term for such a vertex
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appears. Hence we have to show that always two terms cancel each other, and that

the surviving term does not lead to a loop with crossing.

Lemma 3.3. Consider the lattice L and let

�ee0 D �ee0�e�e0 (18)

where �ee0 D 1 if e < e0 and �ee0 D �1 if e > e0 according to the vertex ordering.

Then the sum over collections of disjoint simple loops in (12) is reduced to

only collections without crossings. Furthermore, there is a one–to–one matching

between these terms and con�gurations �even of closed, even–valent subgraphs.

Proof. Suppose we have a con�guration AL.�/ of disjoint simple loops, for which

all four edges e1; : : : ; e4 adjacent to a vertex v are shared by either one or two loops.

The way the loop or the two loops traverses the four edges, leads to a partition of

the four edges into two pairs of consecutive edges in the loop(s). There are three

such possible pairings. The crossing case .1 � 3; 2 � 4/ and the two non–crossing

cases .1 � 2; 3 � 4/ and .2 � 3; 4 � 1/. (Here the ordering of the edges inside a pair

does not matter.)

Hence there are also two other con�gurations, which include the same set of

edges as AL.�/, but di�er by a certain rearrangement of the edges into loops, so

that the other two pairings are obtained. This gives three con�gurations, which we

will name AU for the crossing case, AS for .1 � 2; 3 � 4/ and AT for .2 � 3; 4 � 1/.

To be concrete consider a black vertex, for white vertices one just has to invert

the edges e1; : : : e4 everywhere. Note that under a change of orientation of a

simple loop we have A` D A�1
`

due to the anti–symmetry of the �ee0 and the

de�nition (13). Furthermore we can choose w.l.o.g. the initial vertex in any given

loop. Hence we can assume that in the con�guration AU we have a loop `U1 of the

form `U1 D .e�1
3 PP 0e1/ where P and P 0 stand for paths with the source vertex

s.P / given by t .e�1
3 / and the target vertex of P 0 being t .P 0/ D s.e1/.

We now consider three possibilities for the end point of P .

(a) We have that the target vertex t .P / D s.e2/ D s.P 0/ with P 0 D .e2e�1
4 p0/.

(b) We have t .P / D s.e4/ D s.P 0/ with P 0 D .e4e�1
2 p0/.

(c) We have t .P / D s.e1/. In this case P 0 is empty and there is a second loop

`U 2 contributing to AU whose orientation and starting point we can choose

such that `U 2 D .e�1
4 p0e2/ with s.p0/ D t .e�1

4 / and t .p0/ D s.e2/. (The two

loops intersect also elsewhere for a planar lattice.)
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Let us de�ne the corresponding con�gurations AS and AT for the di�erent

cases.

(a) AS agrees with AU in all simple loops except for `U1 which is replaced by

`S D .e�1
2 P �1e3e�1

4 p0e1/. Likewise we replace for AT the loop `U1 by two

loops `T D .e�1
4 p0e1/.e�1

3 Pe2/.

(b) For AS we replace `U1 by a pair of loops `S D .e�1
2 p0e1/.e�1

4 P �1e3/ and

for AT by a loop `T D .e�1
4 P �1e3e�1

2 p0e1/.

(c) For AS we replace `U1`U 2 by a loop `S D .e�1
2 .p0/�1e4e�1

3 Pe1/ and for AT

by a loop `T D .e�1
4 p0e2e�1

3 Pe1/.

Figure 5. The three possible intersections at a 4-valent vertex. For each intersection (a),

(b), and (c) there are three possible con�gurations of simple loops S , T , and U . The paths

P and p0 are arbitrary.

We have now to compare the corresponding amplitudes as de�ned in (13). To

this end denote by

AP D .�/jPj
Y

bulk v

�v (19)

the contribution from an open pathP, where jPj is the number of edges disagreeing

with the orientation of the path and �v stands for �ee0 with .e; e0/ a pair of edges

in P adjacent to v and ordered according to the orientation of jPj.
Note that under a reversal of the orientation of P we have

AP D .�/AP�1 : (20)

The reason for this is that the change in sign due to the orientation of edges is

given by .�1/]P where ]P is the number of edges in P. Furthermore the change

in sign due to the orientation of the vertices and the antisymmetry of the �ee0 is

given by .�1/]PC1.
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We can now consider all three cases.

With Arest denoting the contribution of all other simple loops in AU we obtain

for the case (a)

AU D Arest.�/A.e�1
3

P e2/�e2e�1
4

A.e�1
4

p0e1/�e1e�1
3

;

AS D Arest.�/A.e�1
3

P e2/�1�e3e�1
4

A.e�1
4

p0e1/�e1e�1
2

D �AU ;

AT D Arest.�/A.e�1
3

P e2/�e2e�1
3

.�/A.e�1
4

p0e1/�e1e�1
4

D �AU :

Here we used the special form of the weights �ee0 D �ee0�e�e0 to reach

AS D AT D �AU :

Likewise we also obtain for the other two cases (b) and (c) that

AS D AT D �AU :

Thus for cases (a) and (b) we can cancel in the sum
P

L AL.�/ the term with

a crossing AU such that we remain with the contribution of two simple loops, i.e.

for (a) we cancel AU with AS and for (b) we cancel AU with AT .

In the case (c) we have to cancel AU with either AS or AT and we remain with

a loop `S or `T with self–intersection (but non–crossing) at the vertex v under

consideration.

However, in the case of a planar lattice the two loops `U1 and `U 2 need to cross

at least one other time at one or more other vertices v0; v00; : : :. Going to the next

vertex, for instance v0, we can now resolve this crossing so that the loop is split

into two loops. The self–intersection of `S or `T at v then turns into two di�erent

loops sharing two vertices.

Doing this with all vertices we remain with loops which do not self–intersect.

Di�erent loops may share vertices. Counting all such con�gurations would still

lead to an over–counting compared to the number of con�gurations of closed

graphs �even, as can be seen by an example of two loops sharing two vertices,4

for which there are two (if the loops are not crossing) possibilities involving the

same set of edges. But in fact the proof shows that resolving all intersections

leads always to just one con�guration that remains in the end. This leads to a

matching of (left–over) loops con�gurations with con�gurations of closed, even–

valent subgraphs �even for the Ising model.

4 See the lower right diagram in Figure 2.
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Remark. The fact that from the three possible terms AS ; AT ; AU two terms cancel

out generalizes to arbitrary lattices. However to specify the crossing term AU one

needs a planar vertex. Furthermore for i.e. six–valent vertices, three paths might

meet at one vertex, in which case one has more terms to consider. �

Now Theorem 3.1 follows from lemmas 3.2 and 3.3. Indeed, from Lemma 3.3

the sum in (12) is reduced to a sum of terms in one–to–one correspondence with the

subgraphs �even and each term in the sum is a collection of disjoint simple loops

having no crossings. Suppose such a subgraph has P edges then by Lemma 3.2

the quantity (13) will have a sign .�1/P=2 which is canceled by the factors of i in

the weight.

This gives us the following relation between the spin network generating

function and the 2d Ising model partition function:

GLN
.iv/ D 2N

.1 � v2/N ZN .v/2
; (21)

where ZN .v/ is the partition function (14) of the 2d Ising model. In particular,

this shows that in the limit N ! 1 the spin network generating function GLN
.iv/

possesses a second order phase transition at

v D
p

2 � 1

Indeed, it is known that the 2d Ising model undergoes a second order phase

transition for a particular temperature, namely when v D
p

2�1. The free energy

of ZN .v/ is de�ned by

F.T / D �kT log ZN .v/ (22)

and is exactly solvable for N ! 1. At the critical temperature the logarithm in

F.T / becomes singular and since

logGLN
.iv/ D N log 2 � N log.1 � v2/ � 2 log ZN .v/ (23)

it follows that the logarithm of GLN
.iv/ is also singular at this point. Thus we have

shown that the spin network generating function GLN
.iv/ will undergo a second

order phase transition at the critical value v D
p

2 � 1.

4. Conclusion

We have shown that spin network generating functions can encode partition func-

tions of statistical models, in this case, the Ising model. The solvability of the
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2D Ising model allowed us to obtain an explicit expression for the spin network

generating function – for a speci�c choice of arguments.

This shows that the rewriting of the spin network generating function as a sum

over loops obtained in [5], see also [14], can help to understand properties of this

generating function. As mentioned such generating functions can be understood

as statistical models themselves, where the variables in the generating function

encode the weights of the models. As such generating functions are related to

intertwiner models considered in [16] for which choices of weights were identi�ed

which lead to topological models, that is a continuum limit without propagating

degrees of freedom. Here we speci�ed weights leading to a second order phase

transition, i.e the continuum limit gives a theory with propagating degrees of

freedom.

Here we started with an intertwiner model, which admits a geometrical inter-

pretation (similar to spin foam models) of the underlying spin variables, due to

the triangle inequalities satis�ed by the spins meeting at a vertex, see also [16].

We have shown that for a speci�c choice of weights, i.e. choice of dynamics, we

obtain a continuum limit with propagating degrees of freedom. This model can

therefore serve as a toy example for many conceptual questions about coarse grain-

ing spin foam models, see also [19]. It will be in particular interesting to study the

meaning of the macroscopic order parameters and correlation functions emerging

from the Ising model description, in the original microscopic model.

We hope that the techniques presented here can be extended to map to other

known statistical models, also involving irregular lattices. Also lattices with dif-

ferent topology might be treatable if one introduces certain defects or special ver-

tices. Even if these models are not exactly solvable, such maps would provide

many tools to understand the properties of spin network generating functions.

Such generating functions appear [20] if spin foam or spin net models are coarse

grained [19, 21, 22]. For an interesting and di�erent approach see [23]. The un-

derstanding of the coarse graining �ow for spin foams, which aim at a description

of quantum gravity, is a key problem for quantum gravity research [24]. This can

be also very much understood as a problem of statistical physics, with models de-

�ned on regular lattices [16, 21], as we are using here. We hope therefore that the

technique developed here will eventually help to understand the phase diagram for

spin foams.

We would like to note that during the �nal stages of this work, we became

aware that similar results are being developed by Valentin Bonzom, Francesco

Costantino and Etera Livine.
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